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Characteristic Classes of T2·bundles 

Shigeyuki Morita 

§ 1. Introduction 

In our previous paper [5], we have proposed the problem to determine 
characteristic classes of differentiable fibre bundles whose fibres are 
diffeomorphic to a given closed manifold M, in other words the problem 
to compute the cohomology group H*(B Diff M). The case when M is a 
closed orientable surface of genus greater than or equal to two has been 
treated in [4] [5]. In this paper we consider the case when M is the 2-
dimensional torus T2. Let Diff+ T2 be the group of all orientation preserv
ing diffeomorphisms of T2 equipped with the COO topology. Then our 
main result is 

Theorem 1.1. 

n=t= 1 (mod 4) 

n=24m+l 

o 
2m-l 

dim ffn(B Diff+T2; Q)= 2m+l n=24m+5, 24m+9, 24m+13 

or 24m + 17 

2m+3 n=24m+21. 

The first non-trivial group is H\B Diff+ T2; Q) ~ Q and 
dim H 4k +1(BDiff+ p; Q) is approximately tk. Obviously the ring struc
ture on H*(B Diff+ T2; Q) defined by the cup product is trivial. We can 
also obtain informations on the torsions and by making use of them we 
obtain 

Theorem 1.2. Mod 2 and 3 torsions, we have 

{

torsion 

_ free abelian group of rank 
. H (BDiff p. Z)= 

n +, indicated in Theorem 1.1 

o 

n-O (mod 4) 

n:=: 1 (mod 4) 

n:=:2, 3 (mod 4). 
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Moreover it turns out that p-torsions appear in H4iB Diff+ P; Z) for 
any prime p (see Remark 5.2 for more precise statements). 

The proof of the above theorems consists of elementary but pleasant 
computations in linear algebra. Finally we remark that the remaining 
case when M = S2 should be well-known because of Smale's theorem [7]: 
Diff+S2::::S0(3). 

§ 2. T2-bundles 

Let DiffoP be the connected component of the identity of Diff+T2. 
Then as is well-known the factor group Diff+ T2jDiffoT2, which is the 
mapping class group of P, can be naturally identified with SL2Z. There
fore we have a fibration 

T2 acts on itself by "translations" and hence it can be considered as a 
subgroup of DiffoT2. It is easy to see that the action by conjugations of 
SL2Z on this subgroup PCDiffoT2 is the same as the standard one. 
Now Earle and Eells [3] proved that the inclusion T 2CDiffoT2 is a homo
topy equivalence so that BDiffoP has the homotopy type of K(Z2, 2). 
Hence if we choose suitable elements x, y E H2(BDiffoT2; Z), we can write 

H*(BDiffoT2; Z)=Z[x, y] 

on which SL2Z acts through the automorphism of it given by r -*tr- 1 

(r E SL2Z). 
Now let {E~,t, dr } be the Serre spectral sequence for cohomology (with 

coefficients in a commutative ring R) of the fibration (*). Then by the 
above argument, The E2-term is given by 

EB E~,t = HS(SL2Z; R[x, YD. 
t~O 

As is well-known the abelianization H 1(SL2Z) of SL2Z is a cyclic group of 
order 12 and the kernel of the natural surjection SL2Z-*H1(SL2Z) is the 
commutator subgroup of SLzZ, which in turn is isomorphic to a free 
group of rank 2 (see [6] for example). Hence applying the standard 
argument of group cohomology (see e.g. Proposition 10.1 of [I]), we 
obtain 

Proposition 2.1. If s>2, then EB';~o E~,t =H'(SL2Z; R[x, y]) is anni
hilated by 12. In particular if R=Q or Zn with (n, 12)= 1, then 

EB E~,t = HS(SL2Z; R[x, yD=O for s>2. 
t~O 
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Corollary 2.2. Let k=Q or Zp (p is a prime different from 2 and 3). 
Then 

§ 3. Lemmas 

As is well-known SL2Z has the following presentation (see [6]) 

SL2Z=<a, p; a4=a2p-3= I). 

Here, for the convenience of later computations, we choose two generators 

a=( _? ~) and p=( _? D. The action of SL2Z on H*(BDiffoT 2 ; Z) 

=Z[x, y] is given by 

a(x) = -y, 

P(x)=x-y, 

because ta-I=a and tP-I=(_~ ~). 

a(y)=x 

P(y)=x 

Now for each q e N, let Lq be the submodule of Z[x, y] consisting of 
homogeneous elements of degree 2q. We choose a basis {xq, xq-1y, ... , 
xyq-I, yq} for Lq and let 

be the matrix representations of the actions of a and P on Lq with respect 
to the above basis. Let p denotes either a prime or O. We write Aip) 
and Bip) for the corresponding elements of SLq+IZp if p is a prime or of 
SLq+lQ if p=O. It is easy to prove 

Lemma 3.1. (i) If q is odd, then A~=B~= -E. Moreover the 
minimal polynomials of Aq and Bq are t 2 + 1 and t 3+ 1 respectively. 

(ii) If q is even, then A~ = B~ = E and the minimal polynomials of Aq 
and Bq are t 2 _1 and t 3-1 respectively. 

Corollary 3.2. If q is odd, then both of Aq(p)+E and Bip)-E are 
invertible provided p =/= 2. In fact we have 

(Aip)+E)-I= -~(Aip)-E) and 
2 

(Bip)-E)-I= - ~ (B~(p)+Bip)+E). 
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Now let Lip) be either L/i9Zp if p is a prime or L/i9Q if p=O. Aq{p) 
and Bq(p) act on Lip). We assume q is even and define 

L;(p)={u e Lip); Aq{p)u= -u} 

L~(p)={u e Lip); (B~(p)+Bq{p)+E)u=O}. 

Lemma 3.2. If p=l=2 and q=2r, then 

{
r+l 

dim L;(p) = r 
r: odd 

r: even. 

Proof It is easy to see that 

{xq - yq, xq-1y+xyq-t, xq-2y2_x2yq-2, .... , xr+lyr-l_xr-lyr+l, xryr} 

(r: odd) or 
{xq - yq, xq-1y+xyq-t, xQ-2y_ryq-2, ... , xr+1yr-l+xr-lyr+l} 

(r: even) 

forms a basis of L;(p). 

Next we determine dim L~(p). We first consider the case p=O. 

Lemma 3.3. Trace Bq= 1, 1, 0, -1, -1,0 according as q=O, 1,2, 
3, 4, 5 (mod 6). 

Proof Observe that Bq=(b~J)' where 

( Here we understand that (:) = 0 if t > s). In other words the j-th co

lumn of Bq consists of coefficients of the polynomial (1- t)q-J+l. Bq is 
naturally. a minor matrix of Bq+l and if we look at the "third quadrant 
infinite matrix" B=limq_~ Bq carefully, we find out that 

But we have 

Trace Bq = the coefficient of t q in the power series 

1 +t(1-t)+t2(I-ty+ . .. 

i: (t(1~t»n= 1 
n=O I-t+t2 

1 
(t-co)(t-w) 
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where m=exp (211:i/6). From this we conclude 

Then the desired result follows from a direct computation. 

Lemma 3.4. If q is even, then 

for q=6k, 6k+2 or 6k+4. 

Proof. According to Lemma 3.1 (ii). the characteristic polynomial 
of Bq is 

for some a, bEN. But clearly 

a+2b=q+ 1 and a-b=Trace Bq. 

A simple computation using Lemma 3.3 implies the result. 

Next we show that the above lemma also holds even if we replace Bq 
by Bip) (p=I=3). 

Lemma 3.5. Let Bq=(b~j») and define Cq=(ClJ») by 

Then we have Cq-=B;I. In other words, Bq and B;I are mutually symmetric 
with respect to the "center" of them. 

Proof. We use induction on q. If q = 1, then it is easy to check 
that B1C1=E. We assume that BiCi=E for i=l, ... , q-1. Now let 
W) be the i-th row of Bq and let C)q) be the j-th column of Cq• We can 
write 

Cq=( 0 c(q»). C q+1 q-I 

Hence by the induction assumption, it suffices to prove 

for i = 1, ... , q+ 1. Now it is easy to check that 

i 
"" b(q) -b(q) -b(q-l) 
L.J lej - i,j+l- iJ 
k=1 
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for any i,j U<q). Hence we have 

W)+W)+··· +W)=(W-1) 1) (i=I, ••• , q) and 

W)+W)+··· +b~~I=(O 1). 

From this we can deduce 

W) =(W- 1) 1)-(bi~ll) 1) (i =2, ••. , q). 

Similarly we have 

Now it is easy to see that 

On the other hand if 2 <i ~ q, then 

b(q)c(q) _b~q)(c(q)_(C~q-l»)). 
i q+l-, q 0 

= _W)(C~~-I») 

=«bi~ll) 1)-(W-1) l))(C~~-I;) 

=0 

by the induction assumption (the first equality follows from the fact that 
biq)c~q) =biq-1)c~q-I». This completes the proof. 

Lemma 3.6. For each q, let B~:! (1<r<q+l, l<s~q+2-r) be 
the matrix defined by 

(
b(q) b(q) ... b(q) ) B(r) _ 1 s 18+1 1 s+r-l 

q,s- b(q) b(q) .. . b(q) . 
r8 r8+1 r8+r-l 

Then we have det B~:!= 1 for all r, s. 

Proof First observe that B~:~=B~'".!.S+I,1" Hence we may assume 
that s= 1 and we simply wirte B~r) instead of B~:l. If r =q+ 1, then 
det B~q+l)=det Bq=1. So assume that r<q+1. As in the proof of 
Lemma 3.5, we have 

i 
" b(q) -b(q-I) 
L...J kj - ij 
k=: 



Characteristic Classes of T 2·bundles 141 

for any i,j(j~q). Hence if we define Jj~r) to be the matrix obtained 
from B~r) by the following rule: 

i 

the i-th row of Jj~r) = .L; (the k-th row of B~r»), 
/C~1 

then we have 

and clearly det B~r) =det Jj~T) =det B~'21' Hence inductively we have 

This completes the proof. 

Lemma 3.7. Assume that q is even andp =/=3. Then we have 

rank (B~(p)+Bip)+E)=2k+ 1 if q=6k, 6k+2 or 6k+4. 

Proof Clearly we have 

Hence, in view of Lemma 3.4, we have only to show the existence of a 
minor determinant of (B~+Bq+E) of degree 2k+ 1 (for q=6k, 6k+2 or 
6k+4), which is a power of 3. Now observe that if i+ j>q+2, then 

We are assuming that q is even so that B~=B;l (see Lemma 3.1 (ii)). 
Hence by Lemma 3.5, if i+ j <q+2, then 

Therefore the (i,j)-component of B~+Bq+E coincides with that of Bq if 
(i, j) belongs to the set 

K={(i,j); i+ j<q+2 andj>i}. 

If q=6k+2 or 6k+4, then it is easy to see that the minor matrix B~~~:!1 
of Bq is completely contained in the region of Bq corresponding to K so 
that B~~~:!1 can also be considered to be a minor matrix of B~+Bq+E. 
But we have 

det B~~~:!1= 1 

by Lemma 3.6. Now if q=6k. then the bottom elements of the first 
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and the last columns of B~~~tll are not contained in the region of Bq cor
responding to K. If we denote D~~~tli = (dtj) for the corresponding minor 
matrix of B~+Bq+E, then all the entries of D~~~tli coincide with those of 
B~~~t!i except the following two components: 

dzk+1,1 =bi~~I,Zk+l + I 
dZk+1,Zk+l =bi~~1,4Hl + I =2. 

Here we have used Lemma 3.5 to deduce the second equality. Then by 
Lemma 3.6, we conclude that 

det"D(Zk+l) -3 
q,2k+l- . 

This completes the proof. 

§ 4. H*(SLzZ; k[x, y]) 

In this section we compute H*(SLzZ; k[x, y]) for k=Q or Zp (p*2, 
3). 

Recall that we denote Lip) for L/i9Zp if p is a prime or for L/59Q 
if p=O. Now let Zl(SLzZ: Lip» be the set of a1l1-cocycles of SLzZ 
with values in Lip), namely it is the set of all crossed homomorphisms 

f: SLzZ~Lip)· " 

Since SLzZ is generated by two elements a and ft, a crossed homomor
phism f: SLzZ~Lq(p) is completely determined by two values f(a) and 
f(ft). Moreover the two relations a' = 1 and a2 = ft3 imply 

(A~(p)+A~(p)+Aip)+E)f(a)=O 

(Aip)+E)f(a)=(B~(p)+Bq(p)+E)f(ft)· 

Conversely if two elements f(a) and f(ft) of Lip) satisfy the above two 
equations, then there is defined the associated crossed homomorphism 
f: SLzZ~Lip) with prescribed values at a, ft. If we combine the above 
argument with Lemma 3.1, we can conclude 

Lemma 4.1. (i) If q is odd, then 

ZI(SLzZ; Lq(p» = {(u, v) e Lq(p) X Lq(p); (Aq(p)+E)u 

=(B~(p)+Bq(p)+E)v}. 

(ii) If q is even, then 

Zl(SLzZ; Lq(p»={(u, v) e Lip) X Lq{p); (Aip)+E)u=O, 

(B~(p)+Bip)+E)v=O}. 



Characteristic: ClasSes' of T"-bundles 

Now let 

0: Lq(p)~Zl(SLzZ; Lip)) 

be the homomorphism defined by 

o(u)(r)=(r -1)u (u e Lq(p), r e SLzZ). 

Then by the definition of cohomology of groups, we have 

HO(SLzZ; Lip» = Ker 0 
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={u e Lip); Aip)u~u=Bip)u-u=O} and 

Hl(SLzZ; Lq(p»=Cok o. 

Proposition 4.2., HO(SLzZ; Q[x, y])=Q. 

Proof It suffices to prove that the only polynomials in:Q[x, y] which 
are left invariant under the action of SLzZ are constants. This follows 
from a direct computation details of which are omitted. 

Remark 4.3. *) According to a classical result of Dickson [2] (see 
also Tezuka [8]), the subring of Zp[x, y] consisting of those~elements which 
are invariant by the action of SLzZ, namely HO(SLzZ;!Zp[x, y]), is the 
polynomial ring generated by the following two elements 

Hence if we write dq(p) for dim HO(SLzZ; Lip», then we have 

Proposition 4.4. If q is odd and p=l=2, then 

HO(SLzZ; Lip» = HI (SLzZ; Lq(p»=O. 

Proof According to Corollary 3.2, Bq(p)-E is invertible and so 
the homomorphism 0: Lip) ~ Zl(SLzZ; Lip» is injective. Hence 
HO(SLzZ; Lq(p»=O. Next let (u, v) e Zl(SLzZ; Lip» be any element 
(see Lemma 4.1 (i» so that 

(Aq(p)+E)u=(B~(p)+Bq(p)+E)v. 

*l lowe this remark to M. Tezuka. I would like to express my hearty thanks 
to him. 
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By Corollary 3.2, we have 

u= -~(Aq(p)-E)(B~(p)+Bq(p)+E)v. 
2 

Since Bip)-E is invertible, there is an element WE Lip) such that V= 
(Bip)-E)w. Then 

Therefore 

(u, v)=«Aip)-E)w, (Bip)-E)w)=ow 

and hence Hl(SLzZ; Lip)) =0. This completes the proof. 

Henceforth we assume that q is even and consider Hl(SLzZ; Lip». 
According to Lemma 4.1 (ii), we have an identification 

(p=F2) 

where L;(p) and L~(p) have been defined in Section 3. 

Proposition 4.5. If q is even, then 

1
2m-I 

dim HI(SLzZ; LiO)) = 2m+ 1 

2m+3 

q=12m 

q= 12m+2, 12m+4, 12m+6, 

or 12m+8 
q=12m+1O. 

Proof We know that the homomorphism 0; LiO)~Zl(SLzZ; LiO)) 
is injective (Proposition 4.2). Hence we have 

dim Hl(SLzZ; LiO))=dim Zl(SLzZ; LiO))-(q+ I) 

=dim L;(O) + dim L~(O)-(q+ I). 

Then the result follows from Lemma 3.2 and Lemma 3.4. 

Proposition 4.6. Assume q is even and let dq(p} = dim HO(SLzZ; Lip)) 
(see Remark 4.3). Then/or P=F2, 3, we have 

Proof By a similar argument as in the proof of Proposition 4.5, we 
have 
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Then the result follows because we have 

dim L~(p)=dim L~(O) 

by Lemma 3.2 and also we have 

dim L~(p)=dim L~(O) 

(p=/=2) 

(p=/=3) 

by Lemma 3.4 and Lemma 3.7. This completes the proof. 

§ 5. Proof of Theorems 
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Theorem 1.1 follows from Corollary 2.2, Proposition 4.2 and Pro
position 4.5. Also, if p=/=2, 3, Corollary 2.2, Proposition 4.4 and Proposi
tion 4.6 imply 

(dip) n=2q (q: even) 

. n . 2 Jdim Hn(B Diff+ P; Q)+dip) n=2q+ 1 
dim H (B Dlff+T ; Zp)= ~ ( 

q: even) 

o n=.2, 3 (mod 4). 

Hence if n=.2, 3 (mod 4), then 

Hn(B Diff+ P; Z)=O mod 2, 3 torsions 

by the universal coefficient theorem. Similarly it is easy to deduce that 
Hn(B Diff+ T2; Z) has no p-torsions (p =/= 2, 3) if n =. 1 (mod 4). This com
pletes the proof of Theorem 1.2. 

Remark 5.1. H*(B Diff+ P; Z) has actually 2 and 3 torsions. This 
follows from the following argument. The projection B Diff+ P-+ 
K(SL2Z, 1) has a right inverse because SL2Z can be naturally considered 
as a subgroup of Diff+ P. Hence the homology 

H*(SL2Z; Z)~H*(K(Z12' 1); Z) 

embeds into H*(B Diff+ P; Z) as a direct summand. It is easy to check 
that H1(B Diff+ T2; Z)~Z12 and H2(BDiff+T2; Z)=O. 

Remark 5.2. By Theorem 1.1 and Theorem 1.2, we have an isomor
phism 

(p=/=2,3). 

On the other hand we have 
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by Corollary 2.2, where the right hand side denotes the subspace of L 2k(P) 
consisting of those elements which are left invariant by the action of SL2Z. 
Then in view of Remark 4.3, we can conclude that the p-primary part of 
H4k(B Diff+ T2; Z) is non-trivial provided 2k can be expressed as a linear 
combination of p+ I and pep-I) with coefficients in non-negative integers. 
Also it can be shown that mod 2 and 3 torsions we have an isomorphism 

H 4k(B Diff + T2; Z)::; L 2ki K2k 

where K2k denotes the submodule of L2k generated by elements r(u) - u 
(u e L~k' r e SL2Z). 

Example 5.3. We construct an element of H5(B Diff+ T2; Z) which 
has infinite order. First it can be shown by a direct computation that the 
crossed homomorphism 

given by f(a)=xz- yZ and f([3)=O represents a non-zero element of 
HI(SLzZ; Lz(O»::;Q(see Proposition 4.5). We write [f] e H5(BDiff+Tz; Q) 
for the corresponding element (see Corollary 2.2). Now let 7J be the 
canonical line bundle over Cp2 and let T2~E(k, l)~Cp2 be the T2-bundle 
associated to the complex 2-plane bundle 7Jkffi7J! onCPz (k, I e Z). Let 
T2~E'(k, l)~Cpl be the restriction of E(k, I) to CP1cCpz. Then we 
can write 

where the pasting map gk,!: aDz x SI x SI~aD2 x SI X SI is given by 

(ZI e aDz, Z2' Zs e SI). Now for an element r=(~ ~) e SL2Z, let hr: DZX 

SI X SI~D2 X SI X SI be the diffeomorphism defined by 

(ZI e D2, Zz, Zs e SI). It is easy to show that if two relations:· 

ak+bl=k and ck+dl=1 

are satisfied, then hr extends to a diffeomorphism h:: E'(k, l)~E'(k, I) 
which is an automorphism as a TZ-bundle. Then since n'sCDiff+T2)=0, 
we can extend h; to an automorphism Hr; E(k, l)~E(k, I). Hr is nothing 
but the automorphism of E(k, I) as a principal T2-bundle defined by the 



Characteristic Classes of T2-bundles 147 

automorphism of T2 given by r. Let Mr(k, I) be the mapping torus of Hr. 
The natural projection 

has the structure of a T2-bundle. Clearly the classifying map of this T2_ 
bundle is given by 

where io is characterized by the induced map i;: H2(B Diffor; Z)---+ 
H2(CP2; Z) which is given by i;(x)=kt, i;(y)=lt (t E H2(CP2; Z) is the 
first Chern class of r;) and the map I represents r- 1 E 1C1(K(SL2Z, 1»= 
SL2Z. Therefore we conclude that 

Ifwe choose r=(i -6) and k=I=I, then r={3-1a{3-1 so that j(r-1) = 
y2-2xy and hence i;(f(r-1»= _t2. This proves that the corresponding 
r-bundle represents a non-zero element of H5(B Diff+ T2; Q). Similarly 
we can construct non-zero elements of Hik +1(BDiff+r; Q) (k>l) exp
licitly, but we stop here. 
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