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Stiefel-Whitney Homology Classes 
and Riemann-Roch Formula 
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§ 1. Introduction 

In this note, we give a Riemann-Roch type theorem for certain maps 
between Euler spaces. These are the cases where Halperin's conjecture 
holds, although it is not true in general [6]. 

Let X be a locally compact n-dimensional polyhedron. For a point 
x in X, let X(X, X-x) denote the Euler number of the pair (X, X-x). 
The polyhedron X is called a mod 2 Euler space or simply an Euler space 
if for each x in X, X(X, X -x)= 1 (mod 2) (Halperin and Toledo [3]). 

Let K' denote the barycentric subdivision of a triangulation K of a 
polyhedron X. If X is an Euler space, the sum of all k-simplexes in K' is 
a mod 2 cycle and defines an element Sk(X) in H.(X; Zz) (cf. [3]). The 
element Sk(X) is called the k-th Stiefel- Whitney homology class of X. 

In the book [2], Fulton and MacPherson defined the notion of a 
homologically normally nonsingular map. As an analogy to the Riemann
Roch formula for singular algebraic spaces, they introduced Halperin's 
conjecture ([2, p. 112]): 

If 9: X -+ Y is a homologically normally nonsingular map of Euler 
spaces, then 

where (WN¢)-l is the inverse of the cohomology Stiefel- Whitney class of the 
normal space of 9 defined by Thom's formula using the Steenrod squares. 

If Y is an Euclidean space and 9 is an embedding, then 9 is homolo
gically normally nonsingular if and only if X is a Zz-homology manifold. 
In this case, Halperin's conjecture is equal to the equation 

s*(X) = [X] n w*(X), 

which is proved by Taylor [8], Veljan [9] and Matsui [4]. 
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But we have shown in [6] that, in general, there are many examples 
where the conjecture does not hold. 

The main result of this paper is the following. 

Theorem. Let X and Y be Euler spaces and ¢: X ---? Y be an embedding 
such that it has a normal block bundle l.J (Rourke-Sanderson [7]). Then the 
following Riemann-Roch theorem holds, 

where W(l.J)-l is the inverse of the Stiefel- Whitney cohomology classes of l.J. 

A similar result is announced in [2, p. 67]. By virtue of a result of 
Taylor [8], this theorem will probably hold when ¢ has a normal Z2-
homology bundle. 

In this paper, homologies and cohomologies are always with Z2 
coefficient. 

§ 2. Characterization of Stiefel-Whitney homology class 

In this section, we give a characterization of the Stiefel-Whitney 
homology classes of an Euler space. Let X be an Euler space embedded 
in a Euclidean space R". Let R be a regular neighborhood of X, R its 
boundary, and ¢: X ---?R be the embedding. Let 9CiR, R) denote the 
unoriented differentiable bordism group (cf. [1]). We define a homomor
phism 

as follows ([4, p. 322]). 
Let f: (M, aM)---?(R, R) be an element in 9C*(R, R). Then there exist 

a triangulation of M and a PL-embedding g: (M, aM)---?(RXDfi, RXDfi), 
where Dfi is the disc of sufficiently large dimension such that g:::JX {O} 
and (¢ X id)(X X Dfi) is block transverse to g by Transversality Theorem 
[4]. Put Z = (¢ X id)(X X Dfi) n geM). Then Z ,is an Euler space. We 
define eiJ, M) to be the modulo 2 Euler number e(Z) of Z. This defini
tion is independent of the choice of the representative (J, M) by Transver
sality Theorem. 

Proposition 1 (characterization of Stiefel-Whitney homology class). 
Let X be an Euler space embedded in a Euclidean space R". Let R be a 
regular neighborhood of X in R", and let ¢: X ---?R be the embedding. Then 
the Stiefel-Whitney homology class siX) is the unique homology class in 
H*(X) satisfying the relation 
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«[R] n )-l~is*(X»,fi[M] n w*(M») =e~(f, M), 

for any (1, M) E m*(R, R). 
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This is a conjunction of Lemma 6 and Lemma 7 of Matsui [5]. In 
[4], this is proved when X is an Euler space satisfying the Poincare duality. 
In Veljan [9], this is proved when X is an Euler manifold, a little narrower 
category. 

§ 3. Characteristic classes of block bundles 

Let ~ be a q-block bundle over a complex K [7]. In this paper, we 
write 

~=(E, B, ~), 

where B=IKI, E is the total space and ~: B~E is the inclusion. We 
write E for the total space of the (q-l)-sphere bundle of E. Let )8*(E, E) 
denote the unoriented bordism group consisting of PL-maps from Euler 
space pairs to (E, E) (see [4]). We will define a homomorphism 

e<: )8iE, E)~Z2 

as follows ([4, p. 326]). 
Let R be a regular neighborhood of the polyhedron B embedded in 

Ra, for a sufficiently large. Let i: B~R be the inclusion and letp: R~B 
be the retraction. Let p*~=(p*E, R, ~R) be the induced bundle. For 
each (g, N) E )8*(E, E), we can choose an embedding h: (N, aN)~(p*E, 
p* E) such that h::::: i 0 g. By Transversality theorem, we can assume that 
heN) is block transverse to ~R: R~p*E. We define eig, N) to be the 
modulo 2 Euler number e(Z) of the intersection Z = ~ R(R) n heN). This 
is independent of the choice of (g, N) by Transversality Theorem. 

Let U< E Hq(E, E) be the Thom class of ~ and let Tt: H*(B)~ 
H*+Q(E, E) be the Thom isomorphism defined by Tt(x)=(~*)-l(X) U Uli • 

Proposition 2. Let ~ = (E, B,~) be a block bundle over a polyhedron 
B. Then the inverse Stiefel-Whitney cohomology class W(~)-l is the unique 
cohomology class in H*(B) satisfying the relation 

(Tt(W(~tl), g*(s*(N»)=eig, N), 

for any (g, N) E )8*(E, E). 

Proof There exists a unique cohomology class ifJ in H*(E, E) satis
fying the relation (ifJ, g*(s*(N»)=e«g, N) for any (g, N) E )8*(E, E) 
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([4, Lemma 3.2]). Since the natural map a: 'iR*(E, E)-+H*(E, E) defined 
by a(g, N) = .L:i g *si(N) is surjective, we can suppose that N is a triangula
tion of a smooth manifold. Then, as in the definition of eo, we can 
choose an embedding h: (N, aN)-+(p* E, p* E), h -==- i 0 g, such that Z = 
ifJR(R) n heN) is a PL-manifold. Since s*(h(N» = [h(N)] n w*(h(N», we 
have 

<Tt(W(~)-l), g*(s*(N») 

= <T; • .(w(p*~)-l), h*(s*(N») 

=«ifJln-l(w(p*~tl) u Up *<, [heN)] n w*(h(N») 

= «ifJ~)-l(W(p*~)-l) u w*(h(N», [heN)] n Up '<) 

= «ifJ~tl(W(p*~)-l) U w*(h(N», (ifJ R)*[Z]) 

=<w*(Z), [Z]) 

=e(Z), 

which completes the proof. 

Remark. When ~ is a vector bundle, Proposition 2 is proved in [9], 
[4] using the axioms of Stiefel-Whitney cohomology classes. The proposi
tion will still hold for Z2-homology bundles by a result of Taylor [8]. 

As a special case of Proposition 2, we have the following. 

Corollary 3. Let ~=(E, B, ifJ) be a block bundle. If the base space B 
is an Euler space, then 

Proof Since B is an Euler space, so is E. Thus (id, E) is an element 
of Q)*(E, E). Let i: B=----?R be the inclusion. The composition i 0 id is 
already transverse to ifJR' Consequently the intersection Z is equal to B. 
Thus elid, E)=e(B), which completes the proof. 

§ 4. Proof of Theorem 

In order to prove the theorem, it is sufficient to consider the case 
when Y itself is the total space of a block bundle )) = (Y, X, ifJ) over an 
Euler space X. Then Y is an Euler space with boundary. The definition 
of an Euler space with boundary is a natural extension of the definition 
of an Euler space (without boundary), and is given, e.g., in [4]. The 
Stiefel-Whitney homology class s*(Y) is an element in H*(Y, ay). Let 
""': Y -+R,,+ be an embedding for a sufficiently large and let R be a relative 
regular neighborhood of (Y, aY) in (R,,+, aR,,+). Put R=aR. We may 
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suppose that R is also a regular neighborhood of X in R~. We regard t 
as an embedding 

t: (Y, aY)~(R, R). 
Put 

where U. is the Thorn class of the bundle vas before. Since ~!s*(Y)= 
(~*tl(s*(Y)n U.), it suffices to show that s*(X) = w. By Proposition 1, 
this is equivalent to prove that 

«[R] ntl(t~)* W,f*([M] n w*(M»)=eif, M), 

for any (f, M) E 'in*(R, R). Note that W =(~*tl(S*(Y) n T.(W(vtl). We 
may assume that f: (M, aM)---+(R, R) is an embedding which is already 
block transverse to t~(X) and t(Y). Let t;=(E, M,JE) be the normal 
block bundle of M in R such that the restriction t; la M is the normal block 
bundle of aM in R.. Here fE: M ---+ E is equal to f with the restricted target 
space. Put 

Z=f(M)nX, 

Then YE is the total space of the Whitney sum t;lzEBv lz over Z. We write 

for the inclusions. Let E be the boundary of E and let q: R---+EIE be the 
Thorn map defined by collapsing R-E to the one point {E} in EIE. 
Since w*(M)=w(t;t\ we have the following; 

«[R] n tl(t~)* W,f*([M] n w*(M») 

=<f*([R]n)-l(t~)*WUw(t;t\ [M]) 

= <f*([R] n)-\t~)* WU w(t;)-t, (f]n-1([Eln Ue» 
= <Uj;)-lU*([R] n )-l(t~)* WU W(t;)-l) U Ue, [E]) 

= <Uit 1w(t;t 1 U Ue, [E] n Ui)-lf*([R] n tl(t~)* W) 

=<Uit1w(t;t1U Ue, q*(t~)*W) 

= < Tt(w(t;t 1), (qt)*(s*(y)n T~(W(vtl») 

=<Tt(w(t;t 1), (tE)*(S*(YE) n jiT;(w(vt 1») 

= <ti(Tt(w(;t1) U nT;(w(v)-l), s*(YE» 
=<T~lzED'lzlw(t;lzEBvlztl), s*(YE» 
=e(Z) by Corollary 3. 

The proof is complete. 
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