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Introduction 

Let G be a compact Lie group throughout this paper. We consider 
a paracompact differentiable manifold M of class C k and dimension m 
with a differentiable G-action G X M----+M of class C\ which we call a Ck 
G-manifold. 

We shall see that a differentiable (i.e., C k with I ::;'k< 00) G-manifold 
Mis equivariantly diffeomorphic to a real analytic (i.e., C"') G-manifold 
(Theorem 1.3). A COl equivariant smoothing is "uniquely" determined 
(Theorems 1.2-1.2'): unique up to C" equivariant diffeomorphism if M is 
compact or more generally M has only a finite number of orbit types and 
unique up to subanalytic C1 equivariant diffeomorphism in general. We 
use here the equivariant embedding theorem for real analytic G-manifold 
with finite orbit types in a finite dimensional linear representation space 
(Theorem 1.1). 

Reviewing the notion of subanaIytic sets and maps defined by Hiro­
naka [HI] in Section 2, we treat the real analytic G-manifolds in Section 
3. A natural subanalytic set structure is introduced on the orbit space 
(Theorem 3.1) and the stratification filtered by orbit types is subanalytic 
(Lemma 3.2). So, we have a unique triangulation of the orbit space 
which is compatible with the subanalytic set structure and consequently 
with the orbit type decomposition in the sense that two such triangula­
tions have a common subanalytic and combinatorial subdivision (Theorem 
3.3) using the results of [SY]. 

Combining these results we get a unique triangulation of the orbit 
space also for any differentiable G-manifold M. Notice that the orbit 
space of a differentiable G-manifold M with boundary is nothing but that 
of the differentiable GXZ2-manifold DM, where DMis the double of M; 
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our argument applies also to the G-manifold with boundary. 
Lifting each simplex in the barycentric subdivision of a triangulation 

compatible with the orbit type decomposition in the manner that the 
isotropy subgroups are constant in the image of each open simplex, we 
get a G-CW complex structure on M (Theorem 4.1). (See [MI] and [13].) 
The uniqueness of the triangulation of the orbit space implies a kind of 
uniqueness of G-CW complex structure on M in the sense of Theorem 
4.2. This means in particular that a compact differentiable G-manifold 
(with or without boundary) has a well-defined equivariant simple homo­
topy type in the sense of Illman [11] (Corollary 4.2). This seems to have 
applications in equivariant differential topology. 

We add some history about the works related to (unique) triangula­
tion. A C1 manifold is uniquely (modulo isotopy) triangulated by White­
head [Wh] supplementing the work of Cairns. Before this an analytic 
set and hence a COl manifold in Rn is uniquely triangulated in the sense 
that two analytic triangulations have a common analytic subdivision by 
Koopman-Brown and Lefschetz-Whitehead following the algebraic trian­
gulation of an algebraic set by van der Waerden. (See [H2] and [S].) 
Any COl manifold is proved to be embeddable in Rn much later by Morrey 
(for the compact case) and Remmert-Grauert. (See [Sh] or [Hi].) The 
combinatorial uniqueness follows from the fact that analytic triangulation 
of a simplex is combinatorially equivalent to a simplex, which is recently 
proved by Shiota-Yokoi [SY]. Note also that the unique C1 equivariant 
triangulation and hence the unique triangulation of the orbit space are 
given by Illman [12] when G is a finite group. We see that it is much 
easier to get a COl equivariant triangulation in this case, because we have 
a stronger uniqueness property. 

For a compact Lie group of positive dimension we know that the 
orbit space of a differentiable G-manifold has a Thom-Mather stratifica­
tion defined by the orbit type decomposition and hence a triangulation 
compatible with it. But, since two triangulations compatible with a 
stratification neither have a common subdivision nor are combinatorially 
equivalent in general, this is not enough to our present purpose. Also 
triangulability of a Thom-Mather stratification was a more delicate pro­
blem than that of a subanalytic set. We introduce some references to it, 
for "Theorem" of C.T. Yang [Y] was considered to be remedied by them. 
It is a good way to quote Verona's paper [V] for the triangulability of a 
stratified set in the sense of Thom-Mather, because it is the first published 
paper with a rigorous and detailed proof of a reasonable length. We 
may recommend also Johnson [J] for the case of a compact stratified set, 
because this is a sophisticated version of his thesis (in 1972) which was the 
first written paper about it. The proof given in Kato [K] of the trian-
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gulability of a Whitney stratification has still worth to understand; he 
claimed that the proof follows from the weak homotopy equivalence 
PL(lJ)---+PD(lJ), where lJ is a system of tubular neighborhoods with fixed 
control data and PL(lJ) (or PD(lJ) is the complete semi-simplicial Kan 
group complex of P L (or P D) automorphisms of lJ. 

We hope that the state of existence of a G-CW complex structure on 
a smooth G-manifold becomes clear by this paper especially by this 
introduction. 

§ 1. On C k equivariant smoothing of cr G-manifolds (1 ~r<k~w) 

We use 'class Cw' for an abbreviation of 'real analytic'. Recall that 
Lie group G has a unique Cw structure for which the map G X G---+G 
taking (g, h)""""gh-1 is of class Cw. A manifold M of class C k with action 
GXM---+Mofclass Ck is called a C k G-manifold. We can remark that 
Co G-manifold is a C k G-manifold if each homeomorphism Og: M---+M 
taking x,.....,.gx is of class Ck (see [MZ]). 

Noticing that C G-manifolds with finite orbit types (i.e., finite non­
conjugate isotropy subgroups) are properly cr equivariantly embeddable 
in some linear G-space (Theorem 1.1), we shall show first that such cr 
G-manifolds are uniquely Ck equivariantly smoothable and then applied 
this result to the case of G-manifolds with infinite orbit types. Palais [P2] 
proved Theorems 1.1-1.3 for the case that M is compact and k<oo. We 
remark also that a C1 G-manifold has locally finite orbit types and in 
particular, a compact G-manifold has only a finite number of inequivalent 
orbit types. (See, e.g. [B].) 

Theorem 1.1. Let G be a compact Lie group and MaCk G-manifold 
with afinite number of orbit types (1 <k<w). Then, there exists a proper 
C k equivariant embedding of M in some real linear representation space W 
ofG. 

Theorem 1.2. Let G be a compact Lie group and let M and N be Ck 
G-manifolds (2<k<w). When k=w, we assume that N has a finite 
number of orbit types. If M and N are cr equivariantly diffeomorphic 
(l ~r <k<w), then they are C k equivariantly diffeomorphic. In fact, any 
cr equivariant map f: M ---+N can be approximated arbitrarily well in the 
Whitney cr topology by a C k equivariant map. 

Theorem 1.2'. (Complement to the exceptional case of Theorem 1.2). 
If k=w and N has an infinite number of orbit types, Theorem 1.2 remains 
true by replacing "Ck equivariant" by "subanalytic C! equivariant (I < 00 

and I <r)". 
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Theorem 1.3. Let G be a compact Lie group and MaC' G-manifold 
(1 <r< 00). Then, there is a C k G-manifold M which is C' equivariantly 
diffeomorphic to M (r < k < (J). 

Now let M be a Ck G-manifold and W a linear G-space. Using a 
normalized Haar measure on G, we define A: Ck(M, W)~C~(M, W) 
(l~k~oo) by 

(Af)(x) = Lgf(g-Ix)dp(g). 

We know that the operator A is continuous with respect to the Whitney 
C k topology. Moreover, 

Lemma 1.4. If M is a CO> G-manifold and f E Co>(M, W), then Af E 

CaCM, W). 

Lemma 1.5. CaCM, W) is dense in CaCM, W) with the Whitney cr 
topology (1 ~r ~ 00). 

Proof of Lemma 1.4. There is a small complexification M of M 
such that we have a holomorphic extension 1: M~ W0 R C and holomor­
phic extensions Og: M~M of Og (g E G), since G is compact. Then, 

Al(x) = J G gj(g-Ix)d p(g) is a holomorphic map and All M = AI Indeed, 

Ai satisfies the Cauchy-Riemann equation provided that i does. q.e.d. 

Proof of Lemma 1.5. Since M is properly (non-equivariantly) Co> 
embeddable in a Euclidean space, we can approximate f E CaCM, W) with 
respect to the Whitney C' topology by a Co> map (see e.g. [Hi]). So, if 
we take a CO> map i sufficiently close to f, then Ai is a Cm equivariant 
map which is close to Af=fbecause A is continuous. q.e.d. 

Proof of Theorem 1.1. Theorem is well known for 1 <k~oo by 
Mostow [Mo] and Wasserman [Wa]. Let l~r~oo andf: M~W be a 
proper C' equivariant embedding into a linear G-space. Notice that all 
the proper C' embeddings form an open subset in C'(M, W) with the 
Whitney topology (see e.g. [Hi, Corollary 2.16]). So, if we choose a CO> 
equivariant map i sufficiently close to f by Lemma 1.5, i is at the sa,me 
time a proper C' embedding. q.e.d. 

Proof of Theorem 1.2. Case of finite orbit types: We may assume 
that there is a proper C k equivariant embedding j: N ~ W into a linear 
G-space. Let v(N) be an equivariant tubular neighborhood of N in W 
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and IT: v(N)-+N its equivariant projection. (IT is originally of class Ck-I 

but it is not difficult to deform it to a pair (v(N), IT) with IT of class C k .) 

We take a Ck equivariant approximation] sufficiently close to the proper 
map j 0 f: M-+ W. Then, IT 0] is defined and j -1 0 IT 0] is a C k equivariant 
approximation. Iff is a cr equivariant diffeomorphism, IT 0] is a proper 
C k equivariant embedding of Minto W such that IT 0 J(M)Cj(N). Since 
this is a properly embedded submanifold of the same dimension, IT 0 ](M) 
= j(N). Thus, j-I 0 IT 0] is a required C k equivariant diffeomorphism. 
Note also that we can choose 1 so that j-l 0 IT 0] is cr equivariantly 
isotopic to f 

Case of infinite orbit types and 1 <k-:::;;,oo: Let ",: M-+R be a 
positive Ck G-invariant proper function. Let 0= ao < a1 < a2 < ... -+ 00 
be regular values of ",. Put Mj=",-I«aj_l> aj+1)),/;=fl M t and Nt=f(Mi) 
wheref: M-+N is a given cr equivariant map. Since f(",-I«O, ai+1])) is 
compact and contains N j , Ni is of finite orbit types. Then, there exists 
C k equivariant approximation]i: Mi-+Ni of/;. Assume that each Nt is 
equivariantly embedded in some linear representation space Wj of G. 
Let ITi: vj(Nj)-+Ni be a C k equivariant tubular neighborhood. Take C k 

G-invariant functions ai: M j n Mj+1-+[0, 1] such that aj = I on ",-I«a j , at 
+c)) and aj=O on ",-l«aj+1-C, ai +1)) for a small c>O. Define 1: M-+N 
by 

Here the summation is carried out in Wi. 
approximation off 

Then, ] is a Ck equivariant 
q.e.d. 

Proof of Theorem 1.2'. It suffices to note the following. We can 
find only subanalytic Ct (£' < 00) G-invariant functions ai: M j n M j + 1-+ 
[0,1] with aj=1 on ",-l«aj, aj+c)) and aj=O on ",-1«aj+1-c, a j+1)) in 
the proof of Theorem 1.2 when k=w. The sum and the compositions of 
subanalytic maps defined on compact sUbanalytic sets are subanalytic. 
See Section 2 for the notion of sub analytic map and also [S]. q.e.d. 

Proof of Theorem 1.3. Case of finite orbit types: Letj: M-+Wbe 
a proper c~ equivariant embedding in a linear G-space and IT: v(M)-+M 
the equivariant projection of its equivariant tubular neighborhood. (We 
may assume IT is of class cr.) We have a following commutative 
diagram: 
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where t; is a universal vector bundle and (F,f) is the classifying map. 
Since t; and v(M) are Ck G-manifolds, we have a Ck equivariant approxi­
mation £ of F so as to be fiberwise transverse, that is, tr: I £1: £1---'1> M is a 
cr covering map, where £1 =£-1 (zero section) (cf. Palais [P2, Proposition 
4.2]). Noticing that £1 is a Ck G-manifold by the implicit function theo­
rem and that tr: I £1 is 1: 1, we see that tr: I £1 is a required cr equivariant 
diffeomorphism. 

Case of infinite orbit types: Let,y: M ---'I> R be a positive cr G­
invariant proper function. Let O=ao<a l < ... ---'1>00 be regular values of 
,yo Put Mi=,y-I«(ai_l, ai+2)). Denote M; =Mi_1 n Mi and Mt =Mi n 
Mi+l. Then, there are C k G-manifolds £Ii and cr equivariant diffeomor­
phisms <Pi: Mi---'l>Mi for i = 1, 2, ... , because Mi has finite orbit types as 
a subset of a compact G-space ,y-I((O, ai +2]). Put £1; = <p;I(M;) and 
Mt=<Pil(Mt). We have cr equivariant diffeomorphisms Pi: Mt---'l>Mi+1 
defined by <PiJI 0 <Pi I £It. Let Pi be a C k equivariant approximation of 
Pi. We can choose Pi so close to Pi that the map ibi+l : Mi+1---'1>Mi+l, 
defined by 

if x E M;+l> 

if x rt M;+I' 

is of class cr. Then, £1 = U £Ii, unioned by Pi: £It ---'I> 1il i+ I> is a C k G­
manifold and ib: M---'I>M defined by U ib i is a cr equivariant diffeomor­
phism. q.e.d. 

§ 2. Preliminaries about subanaJytic sets 

We review the facts about subanalytic sets that will be used in the 
next section. 

Definition. A subanalytic set in a real analytic manifold M is a 
subset of M of the form 

U (Imltl-Imlt2) 
i 

where It; are a finite number of proper real analytic maps of real analytic 
manifolds into M. A subanalytic map between subanalytic sets is a 
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continuous map whose graph is subanalytic. A subanalytic homotopy 
Ie: M ---+ Y is one such that F: X X 1---+ Y taking (x, t) to Ie(x) is subanalytic. 

For example a polyhedron PL embedded in Rn as a closed subset is 
subanalytic and a PL map between such polyhedra is subanalytic. So, 
a subanalytic structure on a polyhedron is thus uniquely determined by 
any closed PL embedding up to subanalytic homeomorphism. We list 
here the properties which will be used later. 

Lemma 2.1 (Hironaka [HI]). A (semi-)analytic set, the closure of a 
subanalytic set and the image of a subanalytic set by a proper (sub-)analytic 
map into a real analytic manifold M are all subanalytic. A subset X in M 
is subanalytic if for every point x of M there exists a neighborhood U of x 
in M such that xn U is subanalytic in U. 

Lemma 2.2 (Hironaka [HI]). Let X be a subanalytic set in a real 
analytic manifold M. Then, there exists a subanalytic stratification {Xl} 
of X, i.e., X is the disjoint union of Xi' each Xi is subanalytic,connected 
and at the same time a real analytic submanifold of M, Xi n X{=f=.P implies 
Xl-:::>Xj and {Xi} is locally finite in M. 

Lemma 2.3 (Hironaka [H2], Hardt [Ha]). Let {Xi} be a locally finite 
family of subanalytic sets in Rn which are contained in a subanalytic closed 
set X in Rn. Then, we have a subanalytic triangulation of X compatible 
with {Xi}, i.e., a locally finite simplicial complex K and a subanalytic 
homeomorphism t': 1 K 1---+ X such that Xi is a union of some t'(Int 0'), 0' e K. 

The following is a refinement of Theorem 4.1 of [SY]. 

Lemma 2.4. Let X, {Xi} and (K, to) be as in Lemma 2.3. Let (K', t'') 
be another subanalytic triangulation of X compatible with {Xi}' Then, there 
exist subanalytic isotopies t't: IKI---+X and t':: IK'I---+X (t e I) which satisfy 
the following four conditions: (i) t'o=t' and t'~=t", (ii) (K, t't) and (K', t'D 
are subanalytic triangulations of M for each tel, (iii) t't( 0') = t'( 0') and t':( 0") 
=t"(0'') for each 0' e K, 0" e K' and tel, and (iv) (t'i)-l 0 t'l: IKI---+IK'I is a 
PLmap. 

Proof. By the assumption of Lemma, 

A={t'(O'), t"(0"); 0' e K, 0" e K'} 

is a locally finite family of sub analytic sets in R". Applying Lemma 2.3 
to A, we have a 3rd subanalytic triangulation (K", t"') of X compatible 
with A. Put ;or=t'-l 0 t''': IK"I---+IKI. Then, Lemma follows from the 
following assertion. 
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Assertion. There exists a subanalytic isotopy 7rt : IK"I~IKI (t E J) 
with 7ro=7r such that 7rt(a)=7r(a)for each a E K and t E J and {7rI (a"); a" E 

K"} is a linear subdivision of K. 

Proof of Assertion. Let Kk denote the k-skeleton of K and K"(Kk) 
be defined by 

K"(Kk) = {a" E K"; 1:(a")CIKkl}. 

Then, since 7r" is compatible with A, we have 7r(IK"(Kk)I)=IKkl. We 
shall construct trt on K"(Kk) by induction of k. Put 7rt(a'')=7r(a'') for 
each a" E K"(KO) and t E J, and as a hypothesis of induction we assume 
that tr t is already defined on K"(Kk). It suffices to extend trt on 7r- I (a) 
for each a E KHI. As oaCIKkl, trt is already defined on 7r- I(oa). Now 
Theorem 4.4 of [SY] tells us that 7r- I (a) is a PL ball, since it is subanaly­
tically homeomorphic to a. Hence, by the Alexander trick we can extend 
7rt over 7r- I «(1) as Co isotopy and moreover, we can do so as a sub analytic 
isotopy (cf. [SY, 3.3]). This completes the proof of Lemma. q.e.d. 

§ 3. Subanalytic triangulation of the orbit space of a real analytic G­
manifold 

Let Mm be a C" G-manifold, that is, a real analytic manifold of 
dimension m with a real analytic action GXM~M of a compact Lie 
group G. Collapsing each G-orbit to one point, we get a quotient map 
q: M~MIG onto the orbit space. The purpose of this section is to give 
a unique subanalytic triangulation of the orbit space MIG. 

Theorem 3.1. There exists a proper G-invariant (real) analytic map 
f: Mm~Rn such that the induced map]: MIG~f(M) is a homeomorphism 
for some n. (We can take n=2m+ 1.) Moreover, if another subanalytic 
set structure on MIG is given by an inclusion j: MIG~RN such that 
jo q: M~RN is a proper subanalytic map, thenj(MIG) and](MIG)=f(M) 
are subanalytically homeomorphic. 

Proof The 2nd statement is trivial; in fact, (jXj) 0 Ll2 0 q is also a 
proper subanalytic map and the graphs of the projections are (jXjXj) 0 

Ll3 and (]XjX]) 0 Lls which are subanalytic in R 2n+N and Rn+2N respec­
tively. Here, Lli denotes the diagonal map of MIG into the i-th product. 

If M is of finite orbit types, then we have a proper COl equivariant 
embedding h: M ~ W into a linear representation space. By a classical 
invariant theory we know that the set of finite generators {PI' ... , Pn} of 
G-invariant polynomials gives a proper analytic map P=(PI, ... , Pn): 
W~Rn which induces a homeomorphism of WIG into Rn. (See Weyl 
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[W, Theorem 8.14A].) So, po h: M~Rn is a proper analytic map such 
that the induced map (p 0 h)-: MIG~p 0 heM) is a homeomorphism. 

In the case with no restriction we put 

X={(X,y) E MXM; q(x)=q(y)}cMXM. 

Then, X is the image of the projection of the graph of the C" action 
GXM~Mto MXM. Hence, by Lemma 2.1 Xis subanalytic in MXM. 
For any G-invariant analytic map F: M~Re we put 

XF={(X,y) E MXM-X; F(x)=F(y)}CMXM. 

As an analytic set is subanalytic (Lemma 2.1), X F is also subanalytic in 
MXM. We remark that X F is GXG-invariant. We will define induc­
tively proper G-invariant analytic maps Fk : M~Rk, 1 <k~2m+ 1, so 
that dimXFk=2m-k. Then,f=F2m +l : M~R2m+1 will satisfy the require­
ment of Theorem. 

Let Fo: M ~ RO be the constant map. Assume that we have already 
constructed F.. We want to define Fk + l • Applying Lemma 2.2, we have 
a subanalytic stratification of XFk' Collecting the dimension 2m-k 
strata, we get a locally finite family {Ya}aEA (may be empty) in MXM 
such that 

On each Ya we pick up one point za=(xa, Ya). Now we note that M= 
U Me is the union of the compact G-invariant manifolds Me with Me C 

Int M i + l • Then, {Me X Me n Ya} is a finite family for each i by Lemma 2.2. 
Since q(xa)::j::q(Ya) we can choose a proper G-invariant C~ function h 
on M such that h(Me+1 -M;)C(i-1/3, i+ 1 + 1/3) and h(xa)::j:: h(Ya) if 
both Xa and Ya are contained in Me+2-Me_1 for some i. This implies 
h(xa)::j::h(Ya) for each a. Take a C" equivariant approximation h suffi­
ciently close to h such that h(xa)::j::h(Ya) for each a. Put Fk+l =(Fk , h) 
and ",,(x, y)=h(x)-h(y). Then, Fk+l is the required map for the follow­
ing reason. Trivially XFk+1 =XFk n ",,-1(0). As ",,(za)::j::O and Ya is con­
nected, Ya n ",,-1(0) has no inner point, which shows dim Ya n ",,-1(0)< 
2m-k. Hence, dimXFk+l<2m-k. Thus, Theorem is proved by induc­
tion on k. q.e.d. 

Lemma 3.2. Let M be a C'" G-manifold. The stratification of M 
defined by the orbit type decomposition is subanalytic. In particular, it 
induces a stratification on MIG which is subanalytic with respect to the 
subanalytic set structure given in Theorem 3.1. 
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Proof We want to prove that each stratum M(H)={X EM; Gx = 
gHg- 1 for some g E G} is subanalytic in M and a CO) submanifold of M. 
Take a point x with Gx=H. Then, there is a G-invariant neighborhood 
U of x which is identified with G X H W by a C'" equivariant diffeomor­
phism, where W is an isotropic representation space of H at x. By 
Lemma 2.1 it suffices to show that M(H) n U is subanalytic in U and 
M(H) n U is a CO) submanifold. Notice that M(H) n U =G/HX WHo 
Since WH is a linear subspace of W, we see that M(H) n U is subanalytic 
in U and a C'" submanifold of U. q.e.d. 

In view of Theorem 3.1 and Lemma 3.2, the subanalytic triangulation 
of the orbit space is characterized as follows. 

Definition. A subanalytic triangulation of the orbit space MIG of a CO) 
G-manifold M is a pair of simplicial complex K and a homeomorphism 
1": IKI~MIG such that 1"-1 0 q: M ~IKI is sUbanalytic. A subanalytic 
triangulation isotopy of MIG is the pair of K and an isotopy 1"t: IKI~MIG 
(t E /) such that (i) (K, 1"t) is a subanalytic triangulation of MIG for each 
t E / and (ii) we have 1"tCo)=1"t,(a) for each a E K and t, t' E /, and (iii) 
Mx/~IKI, taking (x, t)t--)o1";-I(q(X)), is subanalytic. 

Theorem 3.3. Let G be a compact Lie group and MaC'" G-manifold. 
Then, there exists a subanalytic triangulation of MIG uniquely in the 
following sense. If there are two subanalytic triangulations (K,1:") and 
(K', 1:",), we have subanalytic triangulation isotopies (K, 1:"t) and (K', 1:":) of 
MIG such that 1:"0=1:", 1:"~=1:"' and (1:"~)-1 0 1:"1: IKI~IK'I is a PL map. 

Remark. By Lemma 3.2 we can consider only the subanalytic tri­
angulations compatible with the orbit type stratification. 

Proof of Theorem 3.3. and Remark. Clear by Lemmas 2.3-2.4 and 
Theorem 3.1. 

§ 4. G-CW complex structure on a differentiable G-manifold and its equi­
variant simple homotopy type 

In [Ml] we have proved that there is a G-CW complex structure on 
a differentiable G-manifold M by lifting each simplex in the barycentric 
subdivision of a triangulation of the orbit space compatible with the orbit 
type decomposition (Theorem 4.1). Since two such liftings are concordant 
(Lemma 4.4), we get a uniqueness theorem for such G-CW complex 
structures. (See Theorem 4.2 for the precise meaning.) This defines the 
equivariant simple homotopy type of M at least when M is compact 
(Corollary 4.3). When M is non-compact, we may define its equivariant 
infinite simple homotopy type by Theorem 4.2. 
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Definition. A G-CW complex structure on a G-space M is a pair 
of G-CW complex X and a G-homeomorphism ~: X ~ M. It is said that 
(X, ~) induces a triangulation on M/G if X/G is a simplicial complex and 
each characteristic G-map of a G-n-cell Gu: G/Hu X Lln~x induces a linear 
characteristic map (G/Hu XLln)/G=Lln~X/G of some simplex in X/G. 
Moreover, if M is a C k G-manifold (l~k~oo) and the induced map 
e: X/G~M/G is subanalytic with respect to the subanalytic set structure 
of MIG for some Cw equivariant smoothing of M, (X, ~) is said to induce 
a "subanalytic" triangulation on the orbit space M/G. If M has a non­
empty boundary, we consider the double DM with a C k GXZ2-action 
such that M/G=DM/(GXZ2). So, a "subanalytic" triangulation is also 
meaningful in this case by using CW equivariant smoothing of DM. 

Theorem 4.1. A Ck G-manifold M (with or without boundary) admits 
a G-CW complex structure (X, ~) which induces a "subanalytic" triangula­
tion on the orbit space M/G (1 ~k~{J)). 

Theorem 4.2. In Theorem 4.1 let (Y, r;) be another such G-CW com­
plex structure on M. Then, there exist such G-CW complex structures 
(Xi' ~i)' Oi;;,i~n, with (Xo, ~o)=(X, ~), (Xno ~n)=(Y' r;) and G-homeomor­
phisms It: Xi~ Xi + 1 which satisfy one of the following conditions: 

(1) Xi_1 =Xi, It =id and ~i+l 0 ~;1 is equivariantly isotopic to the 
identity. 

(2) ~i =~i+l 0 It and It: Xi--*Xi+1 (or f;l: Xi+l~Xi) is a subdivision, 
that is, the characteristic G-maps of G-cells of X i+1 are the restrictions of 
the characteristic G-maps Gu: G/Hu X Lln--*Xi ofG-cells of Xi on G/Hu X Lln,k 
composed with It, where LIn, k are simplexes in a linear subdivision of LIn. 

(3) ~i=~i+l olt and the induced map li: XJG~Xi+l/G is a simplicial 
isomorphism. Moreover, there exists a G-CW complex structure (Z, C) on 
M X I which gives a G-cell-wise concordance between ~i: Xi~MX 0 and 
~i+l: Xi+l~MX 1; that is, Z/G=XJGXI=Xi+JGXI, and the G-cells of 
Z consist of the G-cells of Xi and X i+1 together with the G-cells having the 
characteristic G-maps G u: G I Hu X LIn Xl --* Z such that G u I G / Hu X LIn X 0 
and Gu I G/ Hu X LIn X 1 are the characteristic G-maps for the corresponding 
G-cells of Xi and Xi+1 • 

Corollary 4.3. Let G be a compact Lie group. Then, any compact 
C k G-manifold M (with or without boundary) has a well-defined equivariant 
simple homotopy type in the sense of Illman [II]. 

'Proof We define an equivariant simple homotopy type of M by 
that of X where (X, ~) is a finite G-CW complex structure which induces 
a "subanalytic" triangulation on the orbit space given in Theorem 4.1. 
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It suffices to check that (Xi' ~\) and (Xi + 1> ~i+l) in each of the conditions 
(1)-(3) in Theorem 4.2 define the same equivariant simple homotopy type. 
Since (1) does not change the G-CW complex X, there is no problem. 
It is easy and standard to find an equivariant expansion Xi/lf Z and an 
equivariant collapsing Z~Xi+l in the case (3). The remaining case (2) is 
not difficult and a proof is given in Theorem 12.2 of Illman [14] including 
also the general case that the subdivision of LIn is not necessarily linear. 

q.e.d. 

We prepare a lemma to prove Theorems 4.1-4.2. 

Lemma 4.4. Let X be a Hausdorff G-space such that there is a 
homeomorphism 't": Lln-+X/G and suppose that orbit type is constant in each 
of the set 't"(Llm_Llm-l), where Llm=uo*·· ·*Um (O<m::::;;n). Then, there is 
a continuous section s: X/G-+X such that any point of so 't" (Llm_Llm-t) has 
a constant isotropy subgroup Hm and consequently X has a G-CW complex 
structure Gs 0 't"(Lln) (=Lln(G; Ho, ... , Hn) in the notation of Illman [13]). 
Moreover, if two such sections So and St are given, there are an element 
g e G and a continuous section S: X/G X I-+XXl commuting with the 
projection on I such that SIX/GXO=so, SIX/GXI=gsl and So ('t"X id) 
«Llm_Llm-l) Xl) has the constant isotropy subgroup Hm. 

Proof Since the first part is proved in [Ml] and [13], we give only a 
sketch of the proof of the second part which is a relative version. Denote 
xo=so(uo) and Ho=Gxo. Then, there is a go e G such that goSl(UO)=Xo. 
We see that So=Hoso(Lln) and S~=HogoSl(Lln) are two slices at XO. We 
identify LIn with X/G by 't". 

Assertion (m). Let Sm and S~ be maximal slices at Xm X 0 and 
Xm X 1 in Hm_1-spaces Xm n X X 0 and Xm n X X 1 respectively for a 
Hausdorff Hm_t-space Xm over dn-mXI, where H_t=G, Xo=XXI and 
dn-m=um*·· ·*Un. Then, there is a tube Tm (i.e., Tm is an Hm-subspace 
and Hm_lXHmTm-+Hm_lTm is an Hm_t-homeomorphism where Hm=Gxm) 
about xmXlin Xm such that TmnXXO=Sm and TmnXXl=S~. 

Proof of Assertion (m). We have an Hm_1-map Xm n (X X 0 U X Xl) 
-+Hm_t/Hm given by Sm and S~. Embed Hm_1/Hm equivariantly into a 
linear Hm_1-space Wand let n: IJ-+Hm_I/Hm be an equivariant projection of 
its equivariant tubular neighborhood. Since Xm is a compact Hausdorff 
and hence normal Hm_1-space, there is an equivariant extension f: U-+ W 
over some neighborhood U of Xm n (X X 0 U X X 1) in Xm such that feU) 
CIJ andf(xm, t)=Hm/Hm- Then f-l(n-I(Hm/Hm» is a tube about Xm Xl 
in Xm. Let d[t~;:'il={2: tiUn_i; 2: ti= 1, ti>O, tn_m e [t, t1}cdn - m. Since 
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d n- m- 1 X I is the product Z(H )-space (dn- m- 1 X 0 U dn- m - 1 X IU dn- m - 1 
[O,t] m-l [O,t] t [O,t] 

Xl) X I for t > 0, we can get a maximal tube T m which is an extension of 
Sm and S:,. by the covering homotopy theorem of Palais [PI]. (See also 
[B, II.7.3].) 

Applying Assertion (0) we can define for m=O an Hm-space Xm+1= 
Tm n q-l(dn- m-1 X 1) where d n- m-1 =Um+1 * ... * Un and let Xm+l =so(um+1) 
and Hm+l=GXm+l. Then, we have a gm+leHm+l such that gm+l··· 

glgoSI(Um+l)=Xm+l and Sm+l =Hm+lS0(dn-m-l) and S:"+1 =Hm+lgm+l· .. 
grsl(dn-m-1) are maximal slices at xm+1XO and xm+1Xl in xm+1nXXo 
and X m + 1 n X X 1 respectively. By applying Assertion (1) to Assertion (n) 
inductively we get the concordances of slices: 

Since Tn=xnXI we define TlvnXI by T(vn> t)=(xn' t). Notice 
that xn=gs/vn ) if we define g=gn·· ·go. Assume as an induction 
hyperthesis that we have already defined a section T over d k X I into Tn _ k 

so that all the isotropy subgroups at points of T(dk n (Lim - LIm-I) X I) are 
constant and equal to Hm (m?:.n-k), TldkXO=soldk and TldkXl= 
gS11 d k. Regarding the section over d k Xl into Tn- k_1 we may get an 
extension over (dk+l-vn_k_l)XI by Palais' covering homotopy theorem 
such that all the isotopy subgroups at points of T(dk+1 n (Lim _LIm-I) Xl) 
are Hm (m?:.n-k), TI(dk+l-vn_k_l)XO=sol(dk+l-un_k_l) and TI(dk+1 
-Vn_k_l)Xl=gsll(dk+l-vn_k_l). Then, since Tn_k_lnq-l(vn_k_lXI)= 
Xn- k_1 X I we have a continuous extension of section over dk+l X I with 
T«dk+1 n LIn-k-l) X 1)=Xn- k - 1 X I. This completes the inducting step and 
gets a desired concordance T of the liftings So and gSI. q.e.d. 

Proof of Theorem 4.1. Take a C'" equivariant smoothing Ml of M 
and a subanalytic triangulation r: I KI---+MJG compatible with orbit type 
decomposition. Let Lin be a simplex in a barycentric subdivision K' of 
K. Then, q-l(r(LIn» satisfies the condition of Lemma 4.4 and we get a 
lifting s: LIn---+M. Collecting G-cells Gs(r(LIn» for all simplexes of K' we 
get a G-CW complex X such that the underlying space IXI is M. 

If M has a non-empty boundary and k-:;;;' 00, we consider the double 
DM with a GXZ2-action such that M/G=DMI(GxZ2). (See [I3]). SO, 
MIG has a "subanalytic" triangulation compatible with the orbit type 
decomposition and the above lifting argument implies the result. If M 
has a non-empty boundary and k=w, there is a C'" manifold Sf contain­
ing M as a G-invariant subanalytic set. SO, MIG is also subanalytic and 
has a subanalytic triangulation compatible with the orbit type decomposi­
tion, which implies Theorem 4.1 by the above lifting argument. q.e.d. 
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Proof of Theorem 4.2. Let (X, .;) and (Y, r;) be two G-CW complex 
structures on M which induce "subanalytic" triangulations on MjG. 
Then, there are two C"' equivariant smoothings j;: Mc+M such that 
~'=I:;lo~:XjG---+MJG and fj'=I:;lofj: YjG---+M2jG are subanalytic 
triangulations. By Theorem 1.2 (or 1.2') there is a C"' (or subanalytic C I ) 

equivariant diffeomorphism f: MI---+M2 which is an approximation of 
f:;1 0 it. In any case the induced map (fj')-I 01 0 ~': XjG---+MljG---+M2jG---+ 
YjG is a subanalytic homeomorphism and we can assume that f is equi-
variantly isotopic to f:;1 0 It. (See the proofof Theorems 1.2-1.2'.) Notic­
ing that subanalytic triangulation isotopies of XjG and YjG are covered 
by equivariant isotopies of X and Y, we may assume by (1) that ~(XjG) 
and 1:;1 0 1-10120 fj(YjG) have a common linear subdivision. It is easy 
to see that the linear subdivision of XjG naturally induces a subdivision of 
X in the sense of (2). So, since f is equivariantly isotopic to f:;1 0 it, it 
suffices to show Theorem in the case .; = r; 0 f and 1: Xj G---+ Yj G is a 
simplicial isomorphism. By using subdivisions of (2) again we may sup­
pose also that jKj=XjG gives the barycentric subdivision of a triangula­
tion compatible with orbit type decomposition. For each simplex LIn in 
K there are two liftings So and SI defined by the G-CW complex structures 
X and Y, which are concordant in the sense of Lemma 4.4. This is exactly 
what Theorem 4.2 asserts for a C k G-manifold M without boundary. 

If M has a non-empty boundary, the same argument can apply by 
using the "subanalytic" or subanalytic triangulation of the orbit space 
given in the last part of the proof of Theorem 4.1. q.e.d. 
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