A Necessary and Sufficient Condition for a Local Commutative Algebra to be a Moduli Algebra: Weighted Homogeneous Case

Stephen S.-T. Yau*

Let $\mathcal{O}_{n+1}=\boldsymbol{C}\left\{z_{0}, z_{1}, \cdots, z_{n}\right\}$ denote the ring of germs at the origin of holomorphic functions $\left(C^{n+1}, 0\right) \rightarrow C$. If $(V, 0)$ is a germ at the origin of a hypersurface in C^{n+1}, let $I(V)$ be the ideal of functions in \mathcal{O}_{n+1} vanishing on V, and let f be a generator of $I(V)$. It is well known that $V-\{0\}$ is nonsingular if and only if the C-vector space

$$
A(V)=\mathcal{O}_{n+1} /((f)+\Delta(f))
$$

is finite dimensional, where $\Delta(f)$ is the ideal in \mathcal{O}_{n+1} generated by the first partial derivatives of $f . A(V)$, provided with the obvious C-algebra structure, is called the moduli algebra of V. In [4] the following theorem was proved.

Theorem 1 (Mather-Yau). Suppose $(V, 0)$ and $(W, 0)$ are germs of hypersurfaces in C^{n+1}, and $V-\{0\}$ is nonsingular. Then $(V, 0)$ is biholomorphically equivalent to $(W, 0)$ if and only if $A(V)$ is isomorphic to $A(W)$ as a C-algebra.

It is natural to raise the recognition problem: When a commutative local Artinian algebra is a moduli algebra? How can one construct the singularity $(V, 0)$ explicitly from the moduli algebra $A(V)$. In this short note, we shall answer the above questions in the case ($V, 0$) is a weighted homogeneous singularity. We thank Herwig Hauser for encouraging us in writing up this note for publication.

Let A be a commutative Noetherian algebra with maximal ideal m. Let x_{1}, \cdots, x_{k} be a system of minimal generating set of m such that their images in m / m^{2} form a basis. Consider the algebra homomorphism

$$
\varphi: C\left\{z_{1}, \cdots, z_{k}\right\} \longrightarrow A
$$

Received December 20, 1984.
Revised February 28, 1986.
*) Research partially supported by N.S.F. Grant \#DMS-8411477.
where $\varphi\left(z_{i}\right)=x_{i}$ for all $1 \leq i \leq k$. Let Δ be the kernel of φ. Then $\boldsymbol{C}\left\{z_{1}\right.$, $\left.\cdots, z_{k}\right\} / \Delta$ is isomorphic to A. Therefore to determine whether A is a moduli algebra, it suffices to determine when Δ is a moduli ideal, i.e., an ideal of the form $\left(f\left(z_{1}, \cdots, z_{k}\right),\left(\partial f / \partial z_{1}\right)\left(z_{1}, \cdots, z_{k}\right), \cdots,\left(\partial f / \partial z_{k}\right)\left(z_{1}, \cdots\right.\right.$, $\left.z_{k}\right)$) in \mathcal{O}_{k}.

Theorem 2. Let $\Delta=\left(g_{1}\left(z_{1}, \cdots, z_{k}\right), g_{2}\left(z_{1}, \cdots, z_{k}\right), \cdots, g_{l}\left(z_{1}, \cdots\right.\right.$, $\left.\left.z_{k}\right)\right) \mathcal{O}_{k}$ be an ideal in \mathcal{O}_{k} with l generators where $1 \leq l \leq k$. A sufficient condition for Δ to be a moduli ideal is the following. There exists a $k \times l$ matrix B of rank l with entries in \mathcal{O}_{k} such that

$$
\frac{\partial F_{i}}{\partial z_{j}}=\frac{\partial F_{j}}{\partial z_{i}} \quad \forall 1 \leq i, j \leq k
$$

where

$$
\left(\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{k}
\end{array}\right]=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 l} \\
b_{21} & b_{22} & \cdots & b_{2 l} \\
\cdots & \cdots & \cdots \\
b_{k 1} & b_{k 2} & \cdots & b_{k l}
\end{array}\right]\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{l}
\end{array}\right]
$$

and $\left(F_{1}, F_{2}, \cdots, F_{k}\right) \mathcal{O}_{k}$ is a weighted homogeneous ideal, i.e., $\exists d_{1}, d_{2}, \cdots, d_{k}$, $l_{1}, \cdots, l_{k} \in Z$ such that for any $1 \leq i \leq k$

$$
F_{j}\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)=t^{l_{j}} F_{j}\left(z_{1}, \cdots, z_{k}\right) \quad \forall\left(z_{1}, \cdots, z_{k}\right) \in C_{k} \quad t \in C-\{0\} .
$$

Proof.

$$
\begin{gathered}
\frac{\partial F_{i}}{\partial z_{j}}=\frac{\partial F_{j}}{\partial z_{i}} \quad \forall 1 \leq i, j \leq k \\
\Rightarrow \omega=F_{1}\left(z_{1}, \cdots, z_{k}\right) d z_{1}+\cdots+F_{k}\left(z_{1}, \cdots, z_{k}\right) d z_{k} \text { is a } d \text {-closed }
\end{gathered}
$$

holomorphic 1-form

$$
\Rightarrow \omega=d f \text { for some } f \in \mathcal{O}_{k} \text { by the Poincaré Lemma }
$$

$$
\Rightarrow \frac{\partial f}{\partial z_{1}}=F_{1}, \frac{\partial f}{\partial z_{2}}=F_{2}, \cdots, \frac{\partial f}{\partial z_{k}}=F_{k}
$$

$$
\Rightarrow \Delta(f) \subseteq\left(g_{1}, g_{2}, \cdots, g_{l}\right)
$$

On the other hand, the fact that the $k \times l$ matrix B is of rank l implies that

$$
\left(g_{1}, g_{2}, \cdots, g_{l}\right) \mathcal{O}_{k} \subseteq\left(F_{1}, F_{2}, \cdots, F_{k}\right) \mathcal{O}_{k}=\Delta(f)
$$

Hence $\left(g_{1}, g_{2}, \cdots, g_{i}\right) \mathcal{O}_{k}=\Delta(f)$. In order to prove that $\left(g_{1}, g_{2}, \cdots, g_{i}\right) \mathcal{O}_{k}$ is a moduli ideal, it suffices to prove that f is in $\Delta(f)$.

$$
\begin{aligned}
& f\left(z_{1}, z_{2}, \cdots, z_{k}\right)=\int_{0}^{1} \frac{d}{d t} f\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{n}\right) d t \\
& =\int_{0}^{1}\left[d_{1} t^{d_{1}-1} z_{1} \frac{\partial f}{\partial z_{1}}\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)+\cdots\right. \\
& \\
& \left.\quad+d_{k} t^{d_{k}-1} z_{k} \frac{\partial f}{\partial z_{k}}\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)\right] d t \\
& =\int_{0}^{1}\left[d_{1} t^{d_{1}-1} z_{1} F_{1}\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)+\cdots+d_{k} t^{d_{k}-1} z_{k} F_{k}\left(t^{d_{1}} z_{1}, \cdots, t^{\left.\left.d_{k} z_{k}\right)\right] d t}\right.\right. \\
& =\int_{0}^{1}\left[d_{1} t^{d_{1}+l_{1}-1} z_{1} F_{1}\left(z_{1}, \cdots, z_{k}\right)+\cdots+d_{k} t^{d_{k}+l_{k}-1} z_{k} F_{k}\left(z_{1}, \cdots, z_{k}\right)\right] d t \\
& =\frac{d_{1}}{d_{1}+l_{1}} z_{1} F_{1}\left(z_{1}, \cdots, z_{k}\right)+\cdots+\frac{d_{k}}{d_{k}+l_{k}} z_{k} F_{k}\left(z_{1}, \cdots, z_{k}\right) \\
& =\frac{d_{1}}{d_{1}+l_{1}} z_{1} \frac{\partial f}{\partial z_{1}}\left(z_{1}, \cdots, z_{k}\right)+\cdots+\frac{d_{k}}{d_{k}+l_{k}} z_{k} \frac{\partial f}{\partial z_{k}}\left(z_{1}, \cdots, z_{k}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

Theorem 3. Let

$$
\Delta=\left(g_{1}\left(z_{1}, \cdots, z_{k}\right), g_{2}\left(z_{1}, \cdots, z_{k}\right), \cdots, g_{l}\left(z_{1}, \cdots, z_{k}\right)\right) \mathcal{O}_{k}
$$

be an ideal in \mathcal{O}_{k} with l generators where $1 \leq l \leq k$. A necessary and sufficient condition for Δ to be a moduli ideal of a weighted homogeneous function is the following. There exists a $k \times l$ matrix B of rank l with entries in \mathcal{O}_{k} such that

$$
\frac{\partial F_{i}}{\partial z_{j}}=\frac{\partial F_{j}}{\partial z_{i}} \quad \forall 1 \leq i, j \leq k
$$

where

$$
\left(\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{k}
\end{array}\right]=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{12} \\
b_{21} & b_{22} & \cdots & b_{2 l} \\
\cdots & \cdots & \cdots & \cdots \\
b_{k 1} & b_{k 2} & \cdots & b_{k l}
\end{array}\right]\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{l}
\end{array}\right]
$$

and there exist $d_{1}, \cdots, d_{k}, d \in Z$ such that $\forall 1 \leq i \leq k$

$$
F_{i}\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)=t^{d-d_{i}} F_{i}\left(z_{1}, \cdots, z_{k}\right) \quad \forall\left(z_{1}, \cdots, z_{k}\right) \in C^{k} \quad t \in C-\{0\} .
$$

We shall need the following lemma.
Lemma 4. Let $l \leq k$ be two positive integers. Let A be a $l \times k$ matrix and B be a $k \times l$ matrix with entries in C. Then there exists a $k \times l$ matrix C with entries in C such that the matrix

$$
C(I-A B)+B
$$

has rank l, where I is the identity matrix of rank l.
Proof. Let $\alpha: \boldsymbol{C}^{k} \rightarrow \boldsymbol{C}^{l}$ and $\beta: \boldsymbol{C}^{l} \rightarrow \boldsymbol{C}^{k}$ be the linear transformation corresponding to A and B respectively. Choose a basis e_{1}, \cdots, e_{l} of C^{l} such that $\beta e_{i}=0, i \geq r+1$, where r is the rank of β. Choose $e_{r+1}^{\prime}, \cdots, e_{k}^{\prime}$ in \boldsymbol{C}^{k} such that $\beta e_{1}, \cdots, \beta e_{r}, e_{r+1}^{\prime}, \cdots, e_{k}^{\prime}$ is a basis of \boldsymbol{C}^{k}. Let $\gamma: \boldsymbol{C}^{\boldsymbol{t}} \boldsymbol{\rightarrow} \boldsymbol{C}^{k}$ be the linear transformation defined by $\gamma e_{i}=0,1 \leq i \leq r$ and $\gamma e_{i}=e_{i}^{\prime}, r+1$ $\leq i \leq l$. Then

$$
[\gamma(1-\alpha \beta)+\beta]\left(e_{i}\right)=\left\{\begin{array}{cl}
\beta e_{i}+\sum_{j=r+1}^{l} d_{i j} e_{j}^{\prime} & \text { if } 1 \leq i \leq r \\
e_{i}^{\prime} & \text { if } r+1 \leq i \leq l
\end{array}\right.
$$

so $\gamma(1-\alpha \beta)+\beta$ has maximal rank l. This proves the lemma, where we take for C the matrix corresponding to γ.

Proof of Theorem 3. Necessary condition: Suppose $\Delta=\left(g_{1}, \cdots\right.$, $\left.g_{l}\right) \mathcal{O}_{k}$ is a moduli ideal of a weighted homogeneous function, i.e., there exist $d_{1}, \cdots, d_{k}, d \in Z$ such that

$$
f\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)=t^{d} f\left(z_{1}, \cdots, z_{k x}\right) \quad \forall\left(z_{1}, \cdots, z_{k}\right) \in C^{k} \quad t \in C-\{0\}
$$

Since f is in the Jacobian ideal of f, we have

$$
\left(\frac{\partial f}{\partial z_{1}}, \cdots, \frac{\partial f}{\partial z_{k}}\right) \mathcal{O}_{k}=\left(g_{1}, \cdots, g_{l}\right) \mathcal{O}_{k}
$$

There exist $l \times k$ matrix \tilde{A} and $k \times l$ matrix \widetilde{B} with entries in \mathcal{O}_{k} such that

$$
\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{k}
\end{array}\right]=\left[\begin{array}{cccc}
\tilde{b}_{11} & \tilde{b}_{12} & \cdots & \tilde{b}_{11} \\
\tilde{b}_{21} & \tilde{b}_{22} & \cdots & \tilde{b}_{2 l} \\
\cdots & \cdots & \cdots \\
\tilde{b}_{k 1} & \tilde{b}_{k 2} & \cdots & \tilde{b}_{k l}
\end{array}\right]\left(\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{l}
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{l}
\end{array}\right]=\left[\begin{array}{ccc}
\tilde{a}_{11} & \tilde{a}_{12} \cdots \tilde{a}_{1 k} \\
\tilde{a}_{21} & \tilde{a}_{22} & \cdots \\
\tilde{a}_{2 k} \\
\cdots & \cdots & \cdots \\
\tilde{a}_{l 1} & \tilde{a}_{l 2} & \cdots \tilde{a}_{l k}
\end{array}\right]\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{k}
\end{array}\right)
$$

Apply Lemma 5 to the matrices $\tilde{A}(0)$ and $\widetilde{B}(0)$, we fined a $k \times l$ matrix C such that

$$
C(I-\tilde{A}(0) \widetilde{B}(0))+\widetilde{B}(0)
$$

has rank l.
Now we take $F_{i}=\partial f / \partial z_{i}, 1 \leq i \leq k$; and $B=C(I-\tilde{A} \widetilde{B})+\widetilde{B}$. Then clearly $\partial F_{i} / \partial z_{j}=\partial F_{j} / \partial z_{i} \forall 1 \leq i, j \leq k$ and

$$
F_{i}\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)=t^{d-d_{i}} F_{i}\left(z_{1}, \cdots, z_{k}\right) \quad \forall\left(z_{1}, \cdots, z_{k}\right) \in C^{k} \quad t \in C-\{0\} .
$$

It remains to check $(F)=B(G)$ where

$$
\begin{aligned}
& (F)=\left(\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{k}
\end{array}\right) \quad \text { and } \quad(G)=\left(\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{2}
\end{array}\right) \\
B(G) & =[C(I-\widetilde{A} \widetilde{B})+\widetilde{B}](G)=C[(G)-\widetilde{A} \widetilde{B}(G)]+\widetilde{B}(G) \\
& =C[(G)-\tilde{A}(F)]+(F) \\
& =C[(G)-(G)]+(F) \\
& =(F) .
\end{aligned}
$$

Sufficient condition: By the proof of Theorem 2, we know that $\left(g_{1}, \cdots, g_{l}\right) \mathcal{O}_{k}$ is a moduli ideal of a function f which satisfies the following equation.

$$
\begin{aligned}
f\left(z_{1}, z_{2}, \cdots, z_{k}\right)= & \frac{d_{1}}{d} z_{1} F_{1}\left(z_{1}, \cdots, z_{k}\right)+\cdots+\frac{d_{k}}{d} z_{k} F_{k}\left(z_{1}, \cdots, z_{k}\right) \\
\Rightarrow f\left(t^{d d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)= & \frac{d_{1}}{d}\left(t^{d_{1}} z_{1}\right) F_{1}\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right)+\cdots \\
& +\frac{d_{k}}{d}\left(t^{d_{k}} z\right) F_{k}\left(t^{d_{1}} z_{1}, \cdots, t^{d_{k}} z_{k}\right) \\
= & \frac{d_{1}}{d} t^{d} z_{1} F_{1}\left(z_{1}, \cdots, z_{k}\right)+\cdots+\frac{d_{k}}{d} t^{d} z_{k} F_{k}\left(z_{1}, \cdots, z_{k}\right) \\
= & t^{d} f\left(z_{1}, z_{2}, \cdots, z_{k}\right) \quad \forall t \in C-\{0\} \quad\left(z_{1}, \cdots, z_{k}\right) \in C^{k} .
\end{aligned}
$$

Therefore f is a weighted homogeneous function.
Q.E.D.

Theorem 5. Let $\Delta=\left(g_{1}\left(z_{1}, \cdots, z_{k}\right), g_{2}\left(z_{1}, \cdots, z_{k}\right), \cdots, g_{l}\left(z_{1}, \cdots\right.\right.$, $\left.\left.z_{k}\right)\right) \mathcal{O}_{k}$ be an ideal in \mathcal{O}_{k} with l generators where $1 \leq l \leq k$. Suppose $g_{1}\left(z_{1}, \cdots\right.$, $\left.z_{k}\right), \cdots, g_{l}\left(z_{1}, \cdots, z_{k}\right)$ are homogeneous polynomial of the same degree d. Then a necessary and sufficient condition for Δ to be a moduli ideal is the following. There exists a $k \times l$ matrix B of rank l with entries in C such that

$$
\frac{\partial F_{i}}{\partial z_{j}}=\frac{\partial F_{j}}{\partial z_{i}} \quad \forall 1 \leq i, j \leq k
$$

where

$$
\left(\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{k}
\end{array}\right)=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 l} \\
b_{21} & b_{22} & \cdots & b_{2 l} \\
\cdots & \cdots & \cdots & \\
b_{k 1} & b_{k 2} & \cdots & b_{k l}
\end{array}\right]\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{l}
\end{array}\right] .
$$

In fact if Δ is a moduli ideal, it must be a moduli ideal of a homogeneous polynomial of degree $d+1$.

Proof. In view of Theorem 4, it is sufficient to prove the last statement.

Suppose Δ is the moduli ideal of a function f. Write

$$
f=\sum_{i=m+1}^{\infty} f_{i}
$$

where f_{i} is a homogeneous polynomial of degree i and $m+1$ is the multiplicity of f. The fact that $\Delta=$ moduli ideal of f implies $d=m$. Since Δ is a homogeneous ideal and

$$
\frac{\partial f}{\partial z_{j}}=\sum_{i=m+1}^{\infty} \frac{\partial f_{i}}{\partial z_{j}} \in \Delta .
$$

We have $\partial f_{m+1} / \partial z_{j} \in \Delta \quad \forall 1 \leq j \leq k$. So $\left(\partial f_{m+1} / \partial z_{1}, \cdots, \partial f_{m+1} / \partial z_{k}\right) \mathcal{O}_{k} \subseteq \Delta$. On the other hand, for any $1 \leq a \leq l$,

$$
\begin{aligned}
g_{a} & =\sum_{j=1}^{k} h_{a j} \frac{\partial f}{\partial z_{j}} \quad \text { where } \quad h_{a j} \in \mathcal{O}_{k} \\
& =\sum_{j=1}^{k} \sum_{i=d+1}^{\infty} h_{a j} \frac{\partial f_{i}}{\partial z_{j}}
\end{aligned}
$$

Since the degree of g_{a} is d, by degree consideration, we have

$$
g_{a}=\sum_{j=1}^{k} h_{a j}(0) \frac{\partial f_{d+1}}{\partial z_{j}}
$$

Therefore

$$
\left(\frac{\partial f_{m+1}}{\partial z_{1}}, \frac{\partial f_{m+1}}{\partial z_{2}}, \cdots, \frac{\partial f_{m+1}}{\partial z_{k}}\right) \mathcal{O}_{k}=\Delta
$$

Q.E.D.

Remark. To find f explicitly, we simply use the standard method in Advanced Calculus.

Example 1. Let $\Delta=\left(3 x_{2}^{2}-4 x_{1} x_{3}, x_{2} x_{3}-2 x_{1} x_{4}, x_{3}^{2}-x_{2} x_{4}-2 x_{1} x_{5}\right.$,

$$
\left.x_{3} x_{4}-3 x_{2} x_{5}, x_{4}^{2}-2 x_{3} x_{5}\right) \mathcal{O}_{5} .
$$

Is Δ a moduli ideal? We shall follow the above described procedure and try to find f explicitly.

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}}= & a_{11}\left(3 x_{2}^{2}-4 x_{1} x_{3}\right)+a_{12}\left(x_{2} x_{3}-2 x_{1} x_{4}\right)+a_{13}\left(x_{3}^{2}-x_{2} x_{4}-2 x_{1} x_{5}\right) \\
& +a_{14}\left(x_{3} x_{4}-3 x_{2} x_{5}\right)+a_{15}\left(x_{4}^{2}-2 x_{3} x_{5}\right) \\
\frac{\partial f}{\partial x_{2}}= & a_{21}\left(3 x_{2}^{2}-4 x_{1} x_{3}\right)+a_{22}\left(x_{2} x_{3}-2 x_{1} x_{4}\right)+a_{23}\left(x_{3}^{2}-x_{2} x_{4}-2 x_{1} x_{5}\right) \\
& +a_{24}\left(x_{3} x_{4}-3 x_{2} x_{5}\right)+a_{25}\left(x_{4}^{2}-2 x_{3} x_{5}\right) \\
\frac{\partial f}{\partial x_{3}}= & a_{31}\left(3 x_{2}^{2}-4 x_{1} x_{3}\right)+a_{32}\left(x_{2} x_{3}-2 x_{1} x_{4}\right)+a_{33}\left(x_{3}^{2}-x_{2} x_{4}-2 x_{1} x_{5}\right) \\
& +a_{34}\left(x_{3} x_{4}-3 x_{2} x_{5}\right)+a_{35}\left(x_{4}^{2}-2 x_{3} x_{5}\right) \\
\frac{\partial f}{\partial x_{4}}= & a_{41}\left(3 x_{2}^{2}-4 x_{1} x_{3}\right)+a_{42}\left(x_{2} x_{3}-2 x_{1} x_{4}\right)+a_{43}\left(x_{3}^{2}-x_{2} x_{4}-2 x_{1} x_{5}\right) \\
& +a_{44}\left(x_{3} x_{4}-3 x_{2} x_{5}\right)+a_{45}\left(x_{4}^{2}-2 x_{3} x_{5}\right) \\
\frac{\partial f}{\partial x_{5}}= & a_{51}\left(3 x_{2}^{2}-4 x_{1} x_{3}\right)+a_{52}\left(x_{2} x_{3}-2 x_{1} x_{4}\right)+a_{53}\left(x_{3}^{2}-x_{2} x_{4}-2 x_{1} x_{5}\right) \\
& +a_{54}\left(x_{3} x_{4}-3 x_{2} x_{5}\right)+a_{55}\left(x_{4}^{2}-2 x_{3} x_{5}\right) \\
& \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}=a_{11}\left(6 x_{2}\right)+a_{12} x_{3}+a_{13}\left(-x_{4}\right)+a_{14}\left(-3 x_{5}\right) \\
& \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=a_{21}\left(-4 x_{3}\right)+a_{22}\left(-2 x_{4}\right)+a_{23}\left(-2 x_{5}\right)
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}=\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \Rightarrow a_{11}=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& a_{12}=-4 a_{21} \\
& a_{13}=2 a_{22} \\
& a_{14}=\frac{2}{3} a_{23}
\end{aligned}
$$

$$
\frac{\partial^{2} f}{\partial x_{3} \partial x_{1}}=a_{11}\left(-4 x_{1}\right)+a_{12}\left(x_{2}\right)+a_{13}\left(2 x_{3}\right)+a_{14}\left(x_{4}\right)+a_{15}\left(-2 x_{5}\right)
$$

(2) $\frac{\partial^{2} f}{\partial x_{1} \partial x_{3}}=a_{31}\left(-4 x_{3}\right)+a_{32}\left(-2 x_{4}\right)+a_{33}\left(-2 x_{5}\right)$

$$
\begin{gather*}
\frac{\partial^{2} f}{\partial x_{3} \partial x_{1}}=\frac{\partial^{2} f}{\partial x_{1} \partial x_{3}} \Rightarrow a_{11}=0=a_{12} \\
a_{13}=-2 a_{31} \\
a_{14}=-2 a_{32} \\
a_{15}=a_{33} \\
\frac{\partial^{2} f}{\partial x_{4} \partial x_{1}}=a_{12}\left(-2 x_{1}\right)+a_{13}\left(-x_{2}\right)+a_{14}\left(x_{3}\right)+a_{15}\left(2 x_{4}\right) \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{4}}=a_{41}\left(-4 x_{3}\right)+a_{42}\left(-2 x_{4}\right)+a_{43}\left(-2 x_{5}\right) \tag{3}
\end{gather*}
$$

(4)

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{5}}=a_{51}\left(-4 x_{3}\right)+a_{52}\left(-2 x_{4}\right)+a_{53}\left(-2 x_{5}\right) \\
\frac{\partial^{2} f}{\partial x_{5} \partial x_{1}}=\frac{\partial^{2} f}{\partial x_{1} \partial x_{5}} \Rightarrow a_{13}=a_{14}=0=\alpha_{52}=a_{53} \\
a_{15}=a_{51} \\
\frac{\partial^{2} f}{\partial x_{3} \partial x_{2}}=a_{21}\left(-4 x_{1}\right)+a_{22}\left(x_{2}\right)+a_{23}\left(2 x_{3}\right)+a_{24}\left(x_{4}\right)+a_{25}\left(-2 x_{5}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{3}}=a_{31}\left(6 x_{2}\right)+a_{32}\left(x_{3}\right)+a_{33}\left(-x_{4}\right)+a_{34}\left(-3 x_{5}\right)
\end{gathered}
$$

(5) $\frac{\partial^{2} f}{\partial x_{3} \partial x_{2}}=\frac{\partial^{2} f}{\partial x_{2} \partial x_{3}} \Rightarrow a_{21}=0$

$$
\begin{aligned}
& a_{22}=6 a_{31} \\
& a_{23}=\frac{1}{2} a_{32} \\
& a_{24}=-a_{33} \\
& a_{25}=\frac{3}{2} a_{34}
\end{aligned}
$$

$$
\frac{\partial^{2} f}{\partial x_{4} \partial x_{2}}=a_{22}\left(-2 x_{1}\right)+a_{23}\left(-x_{2}\right)+a_{24}\left(x_{3}\right)+a_{25}\left(2 x_{4}\right)
$$

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{2} \partial x_{4}}=a_{41}\left(6 x_{2}\right)+a_{42}\left(x_{3}\right)+a_{43}\left(-x_{4}\right)+a_{44}\left(-3 x_{5}\right) \tag{6}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial^{2} f}{\partial x_{4} \partial x_{2}}=\frac{\partial^{2} f}{\partial x_{2} \partial x_{4}} \Rightarrow a_{22}=0=a_{44} \\
a_{23}=-a_{41} \\
a_{24}=a_{42} \\
a_{25}=-\frac{1}{2} a_{43} \\
\frac{\partial^{2} f}{\partial x_{5} \partial x_{2}}=a_{23}\left(-2 x_{1}\right)+a_{24}\left(-3 x_{2}\right)+a_{25}\left(-2 x_{3}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{5}}=a_{51}\left(6 x_{2}\right)+a_{52}\left(x_{3}\right)+a_{53}\left(-x_{4}\right)+a_{54}\left(-3 x_{5}\right) \tag{7}
\end{gather*}
$$

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x_{4} \partial x_{3}}=a_{32}\left(-2 x_{1}\right)+a_{33}\left(-x_{2}\right)+a_{34}\left(x_{3}\right)+a_{35}\left(2 x_{4}\right) \\
& \frac{\partial^{2} f}{\partial x_{3} \partial x_{4}}=a_{41}\left(-4 x_{1}\right)+a_{42}\left(x_{2}\right)+a_{43}\left(2 x_{3}\right)+a_{44}\left(x_{4}\right)+a_{45}\left(-2 x_{5}\right)
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{4} \partial x_{3}}=\frac{\partial^{2} f}{\partial x_{3} \partial x_{4}} \Rightarrow a_{45}=0 \tag{8}
\end{equation*}
$$

$$
a_{32}=2 a_{41}
$$

$$
a_{33}=-a_{42}
$$

$$
a_{34}=2 a_{43}
$$

$$
a_{35}=\frac{1}{2} a_{44}
$$

$$
\frac{\partial^{2} f}{\partial x_{5} \partial x_{3}}=a_{33}\left(-2 x_{1}\right)+a_{34}\left(-3 x_{2}\right)+a_{35}\left(-2 x_{3}\right)
$$

$$
\frac{\partial^{2} f}{\partial x_{3} \partial x_{5}}=a_{51}\left(-4 x_{1}\right)+a_{52}\left(x_{2}\right)+a_{53}\left(2 x_{3}\right)+a_{54}\left(x_{4}\right)+a_{55}\left(-2 x_{5}\right)
$$

$$
\begin{align*}
\frac{\partial^{2} f}{\partial x_{5} \partial x_{3}}=\frac{\partial^{2} f}{\partial x_{3} \partial x_{5}} \Rightarrow a_{54} & =a_{55}=0 \tag{9}\\
a_{33} & =2 a_{51} \\
a_{34} & =-\frac{1}{3} a_{52} \\
a_{35} & =-a_{53}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x_{5} \partial x_{4}}=a_{43}\left(-2 x_{1}\right)+a_{44}\left(-3 x_{2}\right)+a_{45}\left(-2 x_{3}\right) \\
& \frac{\partial^{2} f}{\partial x_{4} \partial x_{5}}=a_{52}\left(-2 x_{1}\right)+a_{53}\left(-x_{2}\right)+a_{54}\left(x_{3}\right)+a_{55}\left(2 x_{4}\right) \\
& \text { (10) } \frac{\partial^{2} f}{\partial x_{5} \partial x_{4}}=\frac{\partial^{2} f}{\partial x_{4} \partial x_{5}} \Rightarrow a_{55}=0 \\
& \begin{array}{l}
a_{43}=a_{52} \\
a_{44}=\frac{1}{3} a_{53} \\
a_{45}=-\frac{1}{2} a_{54}
\end{array} \\
& \text { (1), (2 } \\
& \text { (2), } \cdots,(10) \Rightarrow\left\{\begin{array}{l}
a_{15}=a_{33}=-a_{42}=-a_{24}=2 a_{51}=c \\
a_{i j}=0 \quad \text { otherwise }
\end{array}\right. \\
& \frac{\partial f}{\partial x_{1}}=c\left(x_{4}^{2}-2 x_{3} x_{5}\right) \\
& \frac{\partial f}{\partial x_{2}}=-c\left(x_{3} x_{4}-3 x_{2} x_{5}\right) \\
& \frac{\partial f}{\partial x_{3}}=c\left(x_{3}^{2}-x_{2} x_{4}-2 x_{1} x_{5}\right) \\
& \frac{\partial f}{\partial x_{4}}=c\left(x_{2} x_{3}-2 x_{1} x_{4}\right) \\
& \frac{\partial f}{\partial x_{5}}=\frac{c}{2}\left(3 x_{2}^{2}-4 x_{1} x_{3}\right) \\
& \Rightarrow f=c\left(x_{1} x_{4}^{2}-2 x_{1} x_{3} x_{5}\right)+h_{1}\left(x_{2}, x_{3}, x_{4}, x_{5}\right) \\
& \Rightarrow \frac{\partial f}{\partial x_{2}}=\frac{\partial h_{1}}{\partial x_{2}} \\
& \Rightarrow h_{1}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)=-c x_{2} x_{3} x_{4}+\frac{3 c}{2} x_{2}^{2} x_{5}+h_{2}\left(x_{3}, x_{4}, x_{5}\right) \\
& \therefore f=c\left(x_{1} x_{4}^{2}-2 x_{1} x_{3} x_{5}\right)-c x_{2} x_{3} x_{4}+\frac{3 c}{2} x_{2}^{2} x_{5}+h_{2}\left(x_{3}, x_{4}, x_{5}\right) \\
& \Rightarrow \frac{\partial f}{\partial x_{3}}=-2 c x_{1} x_{5}-c x_{2} x_{4}+\frac{\partial h_{2}}{\partial x_{3}}\left(x_{3}, x_{4}, x_{5}\right) \\
& \Rightarrow \frac{\partial h_{2}}{\partial x_{3}}\left(x_{3}, x_{4}, x_{5}\right)=c x_{3}^{2} \\
& \Rightarrow h_{2}\left(x_{3}, x_{4}, x_{5}\right)=\frac{c x_{3}^{3}}{3}+h_{3}\left(x_{4}, x_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore & f=c\left(x_{1} x_{4}^{2}-2 x_{1} x_{3} x_{5}\right)-c x_{2} x_{3} x_{4}+\frac{3 c}{2} x_{2}^{2} x_{5}+\frac{c x_{3}^{3}}{3}+h_{3}\left(x_{4}, x_{5}\right) \\
& \Rightarrow \frac{\partial f}{\partial x_{4}}=2 c x_{1} x_{4}-c x_{2} x_{3}+\frac{\partial h_{3}}{\partial x_{4}}\left(x_{4}, x_{5}\right) \\
& \Rightarrow \frac{\partial h_{3}}{\partial x_{4}}\left(x_{4}, x_{5}\right)=0 \\
& \Rightarrow h_{3}\left(x_{4}, x_{5}\right)=h_{4}\left(x_{5}\right) \\
\therefore & f=c\left(x_{1} x_{4}^{2}-2 x_{1} x_{3} x_{5}\right)-c x_{2} x_{3} x_{4}+\frac{3 c}{2} x_{2}^{2} x_{5}+\frac{c}{3} x_{3}^{3}+h_{4}\left(x_{5}\right) \\
& \Rightarrow \frac{\partial f}{\partial x_{5}}=-2 c x_{1} x_{3}+\frac{3 c}{2} x_{2}^{2}+\frac{d h_{4}}{d x_{5}}\left(x_{5}\right) \\
& \Rightarrow \frac{d h_{4}}{d x_{5}}\left(x_{5}\right)=0 \\
& \Rightarrow h_{4}\left(x_{5}\right)=0 \\
& \Rightarrow f=c\left(x_{1} x_{4}^{2}-2 x_{1} x_{3} x_{5}-x_{2} x_{3} x_{4}+\frac{3}{2} x_{2}^{2} x_{5}+\frac{x_{3}^{3}}{3}\right)
\end{aligned}
$$

$\therefore \quad \Delta$ is a moduli ideal of the homogeneous polynomial $x_{1} x_{4}^{2}-2 x_{1} x_{3} x_{5}$ $-x_{2} x_{3} x_{4}+\frac{3}{2} x_{2}^{2} x_{5}+\frac{x_{3}^{3}}{3}$.

Example 2. Let $\Delta=\left(3 x^{3}+2 y^{2}, y z-3 x w, z^{2}-2 y w\right) \mathcal{O}_{4}$. It is an easy exercise to prove that Δ is not a moduli ideal.

References

[1] Benson, M., Analytic equivalence of isolated hypersurface singularities defined by homogenous polynomials, Proc. Symp. Pure Math., Vol. 40, Amer. Math. Soc. (1983).
[2] Benson, M., Ph.D. Thesis, Harvard University.
[3] Mather, J., Yau, S.S.-T., Criterion for biholomorphic equivalence of isolated hypersurface singularities, Proc. Nat. Acad. Sci., 78 (1981), 5946-5947.
[4] -, Classification of isolated hypersurface singularities by their moduli algebra, Invent. Math., 69 (1982), 243-251.
[5] Shoshitaishivili, A. N., Functions with isomorphic Jacobian ideals (translated from Russian), Functional Anal. Appl., 10 (1976), 128-133.
[6] Yau, S. S.-T., Criteria for Right-Left Equivalence and Right Equivalence of Holomorphic Functions with Disolated Critical Points, Proc. Symp. Pure Math., Vol. 41, Amer. Math. Soc. (1984).

Department of Mathematics
University of Illinois at Chicago
Chicago, Illinois 60680
U.S.A.

