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§ O. Introduction 

(0.1) Let (V,p) be a germ of normal two-dimensional algebraic 
variety over C at a reference point p. We simply call it a normal two­
dimensional singularity. Let +: (y, A)~(V, p) be a resolution of the 
singularity (V, p) with exceptional set A. It is well-known that the 
coherent Ov-module RI+*Ott is independent of the choice of resolution. 
The geometric genus of the singularity (V, p) is the integer pi V, p) defined 
by:pg{V,p)=dimR1+*Ott. This number has been studied by many 
authors from many viewpoints (cf. [9, 10, 11, 12, 15, 17, 19,20,21,22,23, 
24] and the references there). 

In this paper, we shall study the Ov-module RI+*Ott itself. More 
precisely, we shall study the numerical invariants which are related to the 
following maximal-ideal-adic filtration on R1+*Ott: 

(*) 

where m denotes the maximal ideal of Ov,p. We define the invariant 
L(V,p) as the length of the filtration above. Since mi .R1+*Ott=1=mi+ l • 

R1+*Ott for non-zero mi. R1+*Ott, this integer can be written as follows 
(see also (0.2) and (2.9)): L(V,p)=min{r E Zlr>O, mT .R1+*Ott=0}. 

First we shall show the existence of an element f of m such that the 
equalities mT.RI+*Ott=j'·R1+*Ott for r>O hold. Hence the filtration 
(*) is determined by the nilpotent endomorphism 

F: RI+*Ott ----'» R1+*Ott; ex ~ 1- ex (Section 1 and (2.3)). 

At the same time, by using the divisor D(m, +) which is called maximal 
ideal cycle in [24,17,19] we can show the equality (R1+*Ott!m.R1+*Ott) 
~HI(OD(m, .. »). In particular, we obtain the equalities dim(RI+*Ottl 
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m.RI'1hOp)=dimHI(Ozo)=Pa(Zo) when Artin's fundamental cycle Zo 
equals the divisor D(m, t) for the resolution t (cf. (2.2.2». The virtual 
arithmetic genusPa(Zo) of Zo is defined as the integer l-X(Ozo) and can 
be computed arithmetically from the intersection dual graph of the ex­
ceptional set A by Laufer's computation sequence method (Section 2 of 
[11]). Some of the examples of singularities and resolutions t with the 
condition Zo=D(m, t) are as follows: 

(0.1.1) (Artin [2]). A rational singularity and any resolution. 
(0.1.2) (Theorem 3.12 of Yau [24], Corollary (7.9) of Tomari [19]). 

A maximally elliptic singularity and the minimal resolution. In this case, 
the equality L=pg holds. 

(0.1.3) (Dixon [5]). Let (V, p) be an isolated singularity written as 
follows: (V,p)=({(x, y, z) E C 3\Z2_g(X, y)=O}, 0). If the order ofg at 0 
is even or g is irreducible at 0, then the condition D(m, t)=Zo holds in the 
minimal resolution t. 

Generally two integers dimHl(OD(m,t» and Pa(Zo) are independent 
of the choice of the resolution, and not necessarily the same (cf. Example 
(2.13». The study, as in (2.2), of the relations between them still remains 
open. 

Next we shall study another invariant. The arithmetic genus Pa(V,p) 
of the singularity (V, p) is the invariant defined via a resolution t : (p, A) 
-,>-(V,p) as follows:Pa(V,p)=max{Pa(D)\D is non-zero effective divisor 
on V whose support is contained in A} (Wagreich [20]). Here Pa(D) is the 
virtual arithmetic genus of D. The invariant Pa(V, p) is also related to the 
filtration (*) by the following inequality: Pa(V,p)+L(V,p)-l <piV,p) 
(cf. Theorem (2.6». 

By using this, we shall show the relation pi V, p) < the Cohen­
Macaulay type of the local ring Ov,p under the assumption Pa(V,p)= 
piV, p) (Corollary (2.11». Furthermore, we will rediscover Yau's criterion 
for singularity to be elliptic (Corollary (2.10». 

From the study onpa(Zo) above, we obtain the inequality 

dim(Rlt*Op/m.Rlt*OI')~Pa(V,p) 

when the equality Zo=D(m, t) holds. Moreover we can prove the same 
inequality for a singularity with good C*-action (Theorem (3.4» by using 
the general theory of canonical partial resolution with good properties 
(cf. (3.2». 

In particular, we obtain the following characterizations in the case 
the singularity has a good C*-action (Corollary (3.6»: 
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(0.1.4) L~1 ifandonlyifpg=Pa. 
(0.1.5) L=pg if and only if Pa < 1. 

635 

For more studies on the highest direct image sheaf Rn- 1t*Off (in the 
case of n=dim Ov,p>2) by purely ring-theoretic data of the singularity 
(V,p), we refer to [21, 22]. 

(0.2) The invariant L(V,p) is originally introduced in [17] for the 
Gorenstein singularity (V, p) in the following form: 

L(V,p)=min{r E Zlr>O, -Kff~r.D(m, t)} 

in t he terminology of (2.9). In the situation of [17] the geometric genus 
piV,p), the maximal ideal cycle D(m, t), and the canonical divisor Kp are 
computed explicitly in terms of the numerical data appearing in Zariski's 
canonical resolution which is decomposed into the composition of 
blowing-ups with smooth centers. Based on those computations, the 
information concerning L(V, p) and pi v, p) is closely related to precise 
numerical data in the resolution. Actually the resolution process of the 
elliptic singularity of multiplicity two is studied by proving the equival­
ence of the conditions L=pg andpa <1 in [17]. 

Hence our studies of the present paper might be expected to help us 
to study the resolution process of more general singularities (cf. [18]). 

Acknowledgement. I am very grateful to Professor Kei-ich~ Watanabe 
for many important suggestions for this work. I have learned so mu~h 
basic fact on this subject from him. I would like to thank all members 
of the singularity seminor of RIMS for their encouragements. 

§ 1. A lemma about Rn- 1t*N 

(1.1) Let (V, p) be a reduced n-dimensional singularity and t: 
(y, A)~(V,p) a proper modification with relation A=lt- 1(p)ll) such 
that V is normal. After M. Reid, we call t a partial resolution. Let I 
be an Ov-ideal sheaf and N a locally free Off-module sheaf. The purpose 
of this section is to show the existence of an element f of the stalk Ip at p 
such that the equality I.Rn- 1t*N=j-Rn- 1t*Nholds atp (Lemma (1.3)). 

(1.2) Before we proceed to discuss the problem above, we prepare 
some notations and remarks for precise statements. 

We denote the critical locus of t in V by E. Since dim E;;:;;n-l, 
the set {q E Vldimlt- 1(q)l>n-1} is a discrete subset of V. Hence we may 
assume that the support of the sheaf Rn- 1t*N is contained in {pl. 

1) For an analytic space D, we denote the support of D by ,D ,. 
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We decompose the analytic set A as follows: A=(Ui=l Aj) U A', 
where Aj is a prime divisor of V, j= 1,· .. , m, and A' the part of cod i­
mension greater than or equal 2. 

Let the function VA;: Ov,p-+ZU{oo} be as follows: vAit*j) = 00 if 
t*f vanishes identically in the neighborhood of Aj in V. In the other 
case, vAit*f)=the vanishing order of t*f at the generic point of A j. 

For I and t, we introduce a symbol D(I, t) as follows: 

By definition, there is an element h of Ip such that V A/ t*h) = 
inffEIpvA/t*f) holds,j=l, ... , m. If we define an element fa of Ip by 
fa=L..'J=lajh, for a=(aj ) E em, the condition D«(f.), ~r)=D(I, t) holds 
for generic a E em. 

We define the Or-ideal sheaf ID(I,t) associated to the symbol D(I, t) 
as follows: ID(I,t)=O in the neighborhood of Aj such that vAit*j) = 00 

for any fin Ipo Otherwise, ID(I,t) = the divisorial ideal sheaf Oy( - D(I, t) 
in the neighborhood of Aj • 

We denote NjID(I,t)N by ND(I,t). We shall simply denote (OY)D(I,t) 
by OD(I,t). 

Lemma (1.3). Let t : (V, A)-+(V,p), N and I be as in (Ll). If an 
element f of Ip satisfies the condition D(I, t)=D«(f), t), then: 

(1) I.Rn-1t*N=f·Rn-1t*N. 
(2) Rn-1t*NjI. Rn-lt*N=Rn-lt*(ND(I,t)=Rn-lt*(Njt-II. N) 

where t-1I· N is a sheaf on V defined as the image of t* I0 ovN-+N. 

Proof (1) We note the following exact sequence. 

Rn-1t*« t*j)· N)~ Rn-1t*(Iw ,"/<)' N)~ R"-ltiID(I,"/<)N/( t*j)· N) 

-~-------~---')':.N ~ , 
The vanishing c comes from the fact that ID(I,"/<)=(t*f) if n= 1 and 

that the relative dimension of the support of ID(I,,j,)/(t*f)<n-2 if n::?:2. 
Hence we obtain the equality Image a=Image b. Noting the isomorphisms - -
N ~ (t*f) 0 0yN ~ (t*f)N by the locally 0 v-freeness of N, we have 
the following commutative diagram: 

a 
Rn-1t*«t*j)N) ~ Rn-1t*N 

m ~tiPlication by i 
Rn-1t*N. 
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Hence we obtain the equality Image a=/-Rn-t'hN. From the 
commutative diagram 

we obtain the relations j.Rn-t'hN~I.Rn-I'hN=Image e~Image d~ 
Image b. Furthermore we have already shown the equalities Image b 
=Image a=j.Rn-I'hN above. Therefore the equalities j.Rn-1t*N= 
/.Rn-1t*N=Image d=Image b=Image a hold. 

( 2) From the above, Coker e= Coker b= Coker d. Q.E.D. 

§ 2. The inequality Pa+L-1 <pg 

(2.1) In the rest of this paper, we assume that (V, p) is a normal 
two-dimensional singularity over C. Let t : (r, A)-+( V, p) be a resolution 
of (V, p) with exceptional set A=I t-l(p)l. The purpose of this section is 
to prove the inequality Pa(V, p)+L(V, p)-l "S:pg(V, p) and to discuss 
some corollaries of this. 

(2.2) First we shall review some results concerning the invariants P g 

andpa. Let the situation be as in (2.1). Let Zo be Artin's fundamental 
cycle on (V, A). The inequalities 

(2.2.1) o <Pa(Zo)<Pa <Pg 
were proved in [2,20]. Here the non-negativity of Pa(Zo) was improved to 
the following form in Section 2 of [11]: 

(2.2.2) Pa(Zo)=dimH1(Ozo) (that is, dim HO(Ozo) = 1). 
M. Artin [1,2] characterized the rational singularity as follows: 
(2.2.3) The three conditions Pa(Zo)=O, Pa=O, and pg=O are equi-

valent each other. 
Moreover P. Wagreich [20] pointed out the following (see also 

Corollary 4.2 [11], Remark (2.2) [17], and Remark (6.5) [19]): 
(2.2.4) Pa(Zo) = 1 if and only ifPa= 1. 
Then he noted 
(2.2.5) There is a singularity with P a = 1 and with arbitrarily large P g' 
Furthermore in Remark (4.3) [17], the following fact was proved: 
(2.2.6) For any couple oj integers ({3, r) such that {3 ?:T2 2, there is a 

singularity with Pa>{3;;::;.r=Pa(Zo), 
It seems that Pa(Zo), Pa' and Pg are very different in general. In fact, 

under the Gorenstein condition, the following fact was proved by several 
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authors independently ([12], Theorem B [24], Proposition 1.3 [9], and 
Theorem 2.16 [23]): 

(2.2.7) If (V,p) is Gorenstein and Pa(Zo)=Pa=Pg hold, then the 
inequality Pg~ 1 holds. 

In this section, we generalize (2.2.7) in Corollary (2.11). 

(2.3) We consider the m-adic filtration of R1t*Oy as III Intro­
duction: 

(2.3.1) Rlt*Oy~m.Rlt*Oy~ ... ~mL(V,P) .R1t*Oy=O. 
We take an element f of m such that the condition D(m, t)= 

D«(f), t) holds. Then the equality D(mr, t)=D«(fr), t) automatically 
holds by definition of the symbol D( , t), for r~O. By Lemma (1.3), we 
obtain the relation 

for r~O. 

This means that the m-adic filtration (2.3.1) is determined by the 
nilpotent endomorphism F: R1t*Oy-..R1t*Oy; a 1---+ f· a. Since the order 
of nilpotency of F equals L(V, p) and the dimension of the eigen vector 
space of F equals the dimension of Coker F, Jordan's theorem and 
Lemma (1.3) implies the following theorem: 

Theorem (2.4). Let (V, p) be a normal two-dimensional singularity. 
Then the following inequalities hold: 

(1) dim(Rlt*OYlm.Rlt*Oy)+L(V,p)-I~piV,p). 
(2) pg(V, p)~L(V, p). dim(R1t*Oylm. R1t*Oy). 

We need the following lemma for the discussion on Pa: 

Lemma (2.5). Let the situation be as in (2.1). Let D be a non-zero 
effective divisor on V such that [D I ~ A. Then the following equality holds: 

Pa(D)=dim R1t*Oy-dim R1t*In-dim(mlt*In). 

Proof We have the following exact sequence on V: O-..Ovlt*In 
-..t*On-..Rlt*In-..Rlt*Oy-..Rlt*On-"O. Hence we obtain: Pa(D)= 
1-X(On)= I-dim t*On + dim R1t*On= I + dim R1t*Oy-dim R1t*In 
-dim(Ovlt*In). Since dim (Ovlm) = 1, the assertion follows. Q.E.D. 

Theorem (2.6). Let (V, p) be a normal two-dimensional singularity. 
Then the following inequality holds: 

Pa(V,p)+L(V,p)-I <pg(V,p). 

Proof We take a resolution t: (V, A)-..(V,p) and choose a non-
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zero effective divisor D on V such that IDI~A and that Pa(D)=Pa(V,p). 
By Lemma (2.5)/we obtain the equality pg(V,p)-Pa(V,p)=dimRI1Jr*ID 
+ dim (m/1Jr*ID). Now we set the integers sand t by s=dimRI1Jr*ID and 
t=dim(m/1Jr*ID). By Nakayama's lemma, we can easily show m S • RI1Jr*ID 
=0 and mt . (m!1Jr*ID) =0 (that is mt+l~1Jr*ID). From the commutative 
diagram 

we obtain the following relations: ms+t+l.Rl1Jr*Ov~m··1Jr*ID·RI1Jr*Ov 

~g(m·.RI1Jr*ID)=O. Therefore the inequality l+s+t>L(V,p) follows. 
Q.E.D. 

(2.7) We recall some basic facts related to the Serre duality (cf. [10, 
11]). We choose a representative V of (V,p) such that V-{p} is non­
singular and V is strongly pseudoconvex. Then Hl(V, Ov) is a finite 
dimensional vector space and isomorphic to RI1Jr*Ov. By Serre [16], there 
is a non-degenerate C-bilinear pairing < , ) : Hl(V, ° v) X H~(V, IJ2v )~C 
such that the equality <ra, (3)= <a, r(3) holds for any triple (a, 13, r) of 
H 1(V, ° v) X H~(V, Q2v) X H°(V, ° v). Here Q1> is the sheaf of holo­
morphic two-forms on V and H~(V, ) denotes the cohomology with 
compact supports. 

Furthermore Laufer [10] represented H~(V, Q2v) in the following 
form: H~(V, Q2V)=WV/1Jr*(Q1». Here Wv is the dualizing sheaf of Ov de­
fined by wv=i*(1Jr*(Q1>-A)), where i: V-{p}~Vis the inclusion map. 

From the characteristic of the pairing < ,), we can easily prove the 
following lemma: 

Lemma (2.8). Let the situation be as above. Let I be an ideal sheaf 
of ov. Then the pairing < , ) above induces the following duality over C: 

(RI1Jr*Ov/I.RI1Jr*Ov) ( ) {f3 E wv/1Jr*(Q2v)II. f3=O}. 
dual over C 

(2.9) Therefore the integer L(V, p) is written as follows: Let an 
element f of m satisfy the condition D(m, 1Jr) = D ((f), 1Jr). Then: 

L(V,p)=min{r E Zlr:;;:::O, mr . (wV/1Jr*(Q2V))=0} 

=min{r E Zlr>O,Jr. (wv/1Jr*(m,,))=O} 

= max {dim C[1Jr*f]· 13113 E wv/1Jr*(Q2v)} 
=max{dimC[1Jr*h]·f3lf3 E wv/1JriQ2v), hEm}. 
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Hence if (V,p) is Gorenstein, the integer L(V,p) coincides with the 
integer min{r E Zj-Kv;5;,r·D(m, t)} (Proposition 4 [17]). Here Kv is the 
divisor on V such that IKvj~A and Q'1>·A j =Kv ·A j for any irreducible 
component Aj of A. 

Corollary (2.10) (Theorem 3.2 of Yau [24]). Let (V, p) be a normal 
two-dimensional singularity. If there is a couple of elements (f3,J) of 
(wv/tiQ'1») X m such that the set {f3,J. f3, ... ,J(P,(V,P) -I). f3} forms a C-basis 
ofwv/t*(Q2v), then the inequality Pa(V,p);£; 1 holds. 

Proof By (2.9), the assumption is equivalent to the condition 
L(V,p)=piV,p). Therefore the assertion is a corollary of Theorem 
(2.6). Q.E.D. 

The following statement generalizes (2.2.7): 

Corollary (2.11). Let (V,p) be a normal two-dimensional singularity. 
If the condition piV,P)=Pa(V,p) holds, then Pg(V,p) is not greater than 
the Cohen-Macaulay type of Ov,p' 

Here the Cohen-Macaulay type of Ov,p is the number of the minimal 
generators of the dualizing sheaf at p. 

Proof By Theorem (2.6), we obtain the relation m·R1t*Ov=0 
for any resolution 1/~: (fl, A)---+(V,p) of (V,p). Hence the relation 
m·(wv/t*(Q'1»)=O holds by Lemma (2.8). Therefore 

pi V, p) = dimwv/t*(Q'1»6: dim wv/m· Wv· 

Q.E.D. 

Example (2.12) (K.-i. Watanabe). A singularity with Pg=Pa=Pa(Zo) 
= Cohen-Macaulay type. Let F be a negative line bundle over a non­
singular curve X of genus g and (V, p) the singularity obtained from the 
construction of zero-section of F. 

Then we can represent (V,p) as follows: 

V=Spec R, R= EB HO(X, F- k ). P~k(X)[T], 
k;;;;O 

where k(X) is the field of rational functions of X and T is an indetermi­
nate (cf. Pinkham [15]). By Goto-Watanabe [8] and Watanabe [21], the 
canonical module of R is the graded module KR written by 

KR = EB HO(X, Kx®(F- k )). P. 
kEZ 
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for n;;;;'l, and HO(X, Kx)@HO(X, F-n}---+Ho(X, Kx@(F-n)) is surjective for 
n2:0 by Proposition 1.10 of Fujita [6]. 

By Pinkham [15], P iV, p) = .I;k<:O dim Hl(X, F- k). 
Therefore piV,p)=Pa(V,p)=Pa(Zo)=the Cohen-Macaulay type=g, 

if -deg(F);;;;'2·g+1. 

Example (2.13). A singularity with dimH 1(OD(m,,y»)=;t:Pa(Zo)' 
We compute dim H 1(OD(m,,y») for the minimal resolution t : (fl, A) 

---+(V,p) of the singularity (V,p)=({(x,y,z)e C S lz2 =(x+Y)·(X4 +y6). 
(X6 +y4)}, 0) by our method. 

First one can compute the geometric genus of (V, p) by Lemma 2 of 
[17]: pg(V, p)= 8. 

Second we choose a C-basis of (1)V/t*(Q2r) in the following way: We 
choose a meromorphic two-form (1)0 on V which is holomorphic and no­
where vanishing on V-A. Then the relation (1)v = Ov, (1)0 at P follows by 
definition of (1)v (2.7). 

We write the dual graph of the exceptional set A as follows: 

Then the divisors defined by the form and functions (1)0' 1jJ'*(x), t*(y), 
t*(z), and t*(x- y) on V are as follows: 

(2.13.1) 

(2.13.2) 

(2.13.3) 

(2.13.4) 

(2.13.5) 

(2.13.6) 

div((1)o) = -3.D(m, t)-A3 -A4 , 

div(,fp*(x))=D(m, t)+2·A 3+Dx , 

div(t*(y))=D(m, t)+2.A4 +D y , 

div(t*(z))=5·D(m, t)+A 3 +A4 +D., 

div(t*(x-y))=D(m,t)+D x _ y , and 

D(m, t)=A 1 +2.A2 +2.As+2.A4 • 

Here the divisors Dx, D y , D., and D x _ y on V are the strict transforms of 
the divisors {x=O}, {y=O}, {z=O}, and {x-y=O} on V by t respectively. 
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These relations can be easily proved by using Zariski's canonical resolution 
in Section I of [17]. 

Hence the meromorphic form Xi. y' . Zk • W O, where i, j and k are non­
negative integers, is not holomorphic on V if and only if this is one of the 
following 8 forms: WO, Xo· WO, y. WO, x2. wo, xy· wo, y2. wo, x8. Wo and y8. Wo. 
They give a C-basis of wv/ti{,Pp). Furthermore (2.13.5) means the 
condition D(m, t)=D«x-y), t). 

Finally we can easily see the following relations: 

{fi E wv/t*(Q~)lm·fi=O}={fi E wv/t*(Q~)I(x-Y)·fi=O} 

= C·cls[xy.wo]EBC· cls[x3 .wo]EBC· cls[y3. wo]. 

Therefore dim(Rlt*Op/m.Rlt*Op)=dimHl(OD(m,t»)=3. 
On the other hand, the fundamental cycle Zo is reduced. Then one 

can easily see the following equalities (2.2.2): dimH1(Ozo)=Pa(Zo)=2. 

§ 3. Arithmetic genus of normal two-dimensional singularity with good 
C*-action 

(3.1) The purpose of this section is to prove the inequality 

for the normal two-dimensional singularity with good C*-action. At the 
same time, we obtain a formula for computation of the arithmetic genus 
of the singularity with exceptional set of star-shaped dual graph. Then we 
shall give some corollaries of these. 

(3.2) Let (V, p) be a normal two-dimensional singularity with good 
C*-action and t : (y, A)~(V, p) the minimal good resolution. Then the 
dual graph of A is star-shaped (Orlik-Wagreich [13]). If the dual graph 
of A has no center, (V, p) is a cyclic quotient singularity (Brieskorn [3]). 
In particular it is rational. If the dual graph of A has the central curve 
E, we can represent (V, p) by using certain Q-divisor D on E as follows 
(pinkham [15]): V=SpecR, R=EBk~oHO(E, OE(D(k»)). Tk~k(E)[T], where 
k(E) is the field of rational function on E, the symbol T is an indetermi­
nate, and the integral divisor D(k) on E is defined by the maximum among 
the set {integral divisor G on EIG:::;:k·D} for k=O, 1,2, .... 

By using the representation above, we shall construct the following 
canonical partial resolution ([4, 14, 21, 22]): We denote the scheme 
Spec(EBk:1:0 OE(D(k»)P) over E by C(E, D) and the canonical morphism 
C(E, D)~Spec(EBk~oHO(E, OE(D(k»)). Tk)= V by 1>. Then C(E, D) is 
normal. The exceptional locus of 1> is isomorphic to E. In fact, as 
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analytic space, C(E, D) is obtained by contracting rational contractible 
curves from the minimal good resolution. 

Lemma (3.3). Let (V, p) be a normal two-dimensional singularity and 
t : Cr, A)---+ (V, p) a non-trivial partial resolution such that the singularity 
of V is rational. 

Then the arithmetic genus Pu(V, p) equals the maximum among the set 
{l-X(Ov/I)11 is coherent ideal sheaf of 01" such that 1=1=01" and the 
support of 01"/1 is contained in A}. Moreover this maximum is attained by 
a divisorial ideal sheaf J. 

Proof Let I be an ideal sheaf of ° v such that 1=1= ° v and the 
support of 01"/1 is contained in A. First we shall prove the inequality 
p a( V, p) > 1-X (0 1"/ /). If the support of ° 1"/1 is zero-dimensional, 1-
X(Ov//);£O. Hence we assume the support of 01"/1 is one-dimensional. 
Let 1** be the reflexive hull of the sheaf I. Then 1** is a divisorial proper 
ideal sheaf of 01'" From the exact sequence 

O~/**/I~Ov/I~Ov/I**~O, 

we obtain: I-X(Ov/I)=I-X(Ov/I**)-dim(J**jI). Therefore it suffices 
to show the inequality above in the case divisorial ideal sheaf J. We 
assume 1=1** and take a proper modification, : VI---+ V such that ,-II 
is Ov,-invertible and VI is non-singular. 

Then the composition to, : VI---+ V is a resolution of (V, p). There 
is a non-zero effective divisor B on VI such that ,-I I = Ov'( - B). Then 
IBI~I(t 0 ,tl(p) I by assumption of I. By Proposition 1.8 and Proposition 
1.9 of Giraud [7], we obtain the relations ,*(,-1/)=1 and RI,*(,-I)=O. 
Hence Ov/I=,*(OB)' Since RI,*Ov=O, we have RI,*OB=O. Hence we 
obtain the equality X(Ov//)=X(OB) by Leray's spectral sequence. Now 
the relation I-X(Ov/I)=Pu(B);;;;'pu(V,p) follows. 

We shall complete the proof. Let a : V"---+ V be a proper modifica­
tion of V induced from a resolution of singularities of V. Let D be a 
non-zero effective divisor on V" such that IDI~la-I(A)1 and Pu(D)= 
Pu(V,p). By the same argument as that of the proof of Lemma (3.8) of 
[19], we can prove the equality Pu(D) = 1- X(Ov/a*ID)-dim Rla*ID. 
Hence we obtain the inequality Pu(V,p);;;;'I-X(Ov/a*ID). 

The remaining assertion is clear from the arguments above. 

Theorem (3.4). Let (V, p) be a normal two-dimensional singularity 
with good C*-action and t : (p, A)---+(V, p) a resolution of singularity (V, p). 
Then the following inequality holds: 

dim(Rlt*Ov/m. Rlt*Ov);;;;'Pu(V, p). 
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Proof Our assertion is obvious if (V, p) is rational. Hence we 
assume (V, p) is not rational. We can consider the canonical partial 
resolution P : (C(E, D), E)-+(V, p) as in (3.2). We write the Weil divisor 
D(m, p) on C(E, D) in the form r m . E by the integer r m' Then the 
divisorial ideal sheaf IDCm,~) = OOCE,D)( -r m' E) is isomorphic to the graded 
OE-module sheaf fBk?.rm OE(DCk)). Tk (Remark (1.5) of Watanabe [22]). 
Hence we obtain the following diagram: 

O----)-P*(OOCE,D)( -r m' E))----)-P*OOCE,D)----)-P*ODCm,~) 
III III 
m Ov 

h 
----)-Rlp*(OOCE,D)( -r m' E)) )Rlp*OOCE,D) 

III II! 
EB RI(E, ° E(DCk))) . P ----)-EB RI(E, ° E(DCk))). P. 

k<:;r.. k<:;O 

Therefore h is injective. Then p*ODCm,(» is isomorphic to C. By 
Lemma (1.3) and Lemma (3.3), we obtain the relations 

dim(Rlp*OOCE,D)/m· Rlp*O DCE, D)) =dim RI(O D(m,(») 

= I-X(OD(m,(»)<Pa(V,p). 

By the Leray spectral sequence, Rlp*OO(E,D)=RI'o/*Ot>, since C(D, E) has 
only rational singularities. Q.E.D. 

Combining with Theorem (2.4), we obtain the following: 

Corollary (3.5). Let (V, p) be a normal two-dimensional singularity 
with good C*-action. Then the following inequality holds: 

piV, p)~L(V,P)·Pa(V,p). 

Furthermore this and Theorem (2.6) imply the following: 

Corollary (3.6). Let (V, p) be a normal two-dimensional singularity 
with good C*-action. Then: 

(1) L(V,p)<I if and only ifPa(V, p)=Pg(V, p). 
(2) L(V,p)=pg(V,p) if and only ifPa(V,p)~ 1. 

(3.7) Next we consider the star-shaped negative definite weighted 
dual graph with central curve E. By Pinkham [15], we can find a Q-divisor 
D on E such that the dual graph of exceptional set in the minimal good 
resolution of the singularity Spec (fBk<:;O HO(E, OE(D(k))). Tk) at the vertex 
coincides. with the given weighted dual graph. Then such a divisor D is 
not unique, but the integers g = genus(E) and deg(D(k)), k e Z, are 
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independent of the choice of D. Hence we shall treat these integers as 
the numerical invariants of weighted dual graph in the following: 

Theorem (3.8). Let (V, p) be a normal two-dimensional singularity 
and"", : (V, A)--+(V, p) the minimal good resolution. Assume that the dual 
graph of A is star-shaped with central curve E. Then the arithmetic genus 
Pa(V,P) of(V,p) is written asfollows: 

where the integers g and deg(D(k»), k>O, are defined as in (3.7) by 
Pinkham's rule (15]. 

Proof Let (VI, pI) be a singularity defined by 

VI = Spee(E£; HO(E, 0 E(D(k»))P) 
k;:;;;O 

as in (3.7). Then Pa(V,P)=Pa(VI,p'). We take the canonical partial 
resolution 1> : (CCE, D), E)--+(VI, pI) as in (3.2). Let I be a divisorial ideal 
sheaf on C(E, D) such that I-=I=Oc(E,D) and that the support of OC(E,D)/I is 
contained in E. Then I is written as I=Oc(E,D)( -r·E) by the positive 
integer r and is isomorphic to the graded 0 E-module sheaf EBk<:r 0 E(D(k»). 
P (Remark (1.5) of Watanabe [22]). 

By Lemma (3.3), we obtain the equality 

Pa(VI,p')=max {l-X(Oc(E,D)/OC(E,D)( -r.E))}. 
1~1' 

Here we have 

r-l r-l 

X(OC(E,D)/OC(E,D)( -I" E))= L: X(OE(D(k»))= L: {deg(D(k»)+ I-g} 
k=O k=O 

by the Riemann-Roch formula. Q.E.D. 

Corollary (3.9). Let (V, p) be a normal two-dimensional singularity 
and"", : (V, A)--+(V, p) the minimal good resolution. Assume that the dual 
graph of A is star-shaped. Then: 

( 1) P a (V, p) = 0 if and only if one of the conditions (a) and (b) holds: 
(a) The dual graph of A has no center. (b) The dual graph of A has the 
center E=::.Pl and deg(D(k»)~ -1 for k> 1 (cf Corollary 5.8 of Pinkham 
[15]). 

(2) Pa(V, p) = 1 if and only if one of the conditions (c) and (d) holds: 
(c) The dual graph of A has the center E. E is an elliptic curve and 
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deg(D(I)2:0. (d) The dual graph of A has the center E. E~PI and there 
are integers rand 0 such that the conditions 1 :;;,r<o, deg(Dm) = -2, 
deg (D(a);;;;O, and deg(D(i) = -1 for i E {l, .. ·,o-l} n {jJj:;t=n hold. 

Proof (1) is obvious from Theorem (3.8). (2) Sufficiency of (c) and 
(d). First we note the inequality D(k+k')2:D(k)+D(k') for k, k'>O. In the 
case (c), deg(D(k);;;;O follows for k;;;;O. Hence the condition Pa(V, p)= 1 
can be easily computed by Theorem (3.8). In the case (d), we can easily 
show the following inequalities: deg(D(k)2:0 if k=O mod 0, deg (D(k) 
>-2 if k=r modo, and deg(D(k)2:-l if k;:f=.O, r, modo. Therefore 
the condition Pa(V, p)= 1 can be computed by Theorem (3.8). 

The proof of the necessity is not difficult. 
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