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A Stratification Theoretical Method of Construction 
of Holomorphic Vector Bundles 

Nobuo Sasakura 

In this paper, we propose an explicit method of construction of 
holomorphic vector bundles over a complex variety. In the construction, 
our guiding model is the universal quotient bundle over Grassmann 
variety. The content of this paper is rather provisional and experimental, 
but may be used as a general method for treatments of bundles. 

Introduction 

1. Letting X be a normal complex variety, the purpose of this 
paper is to construct holomorphic vector bundles over X, by the following 
two steps: 

(I) To find a bundle Ex over X = X - {a codimension two subvariety 
of X}, which is endowed with a suitable 'stratification theoretical represen
tation', and 

(II) to investigate structure of the direct image Ex= i*Ex , i being 
the injection: X~X, by giving a similar representation to the one in (I). 
(See Section 0 for more details of (I) and (II).) 

Encouraging facts for our proposed approach are: (i) If X is a quasi 
projective or a Stein variety, then each bundle over X is obtained in the 
manner (I), (II), and (ii) the procedure (I), (II) may be regarded as a 
generalization of classical methods in treatments of bundles over a 
Riemann surface [Bir], [Weill and [Tj] (cf. § 0). 

2. The content of this paper is briefly as follows: In Section 1 we 
give some explicit coherent sheaf theoretical expressions of the bundle Ex 
as in (I). In Section 2, we introduce the notion of 'type (G)' for such a 
bundle and give some basic properties of the bundle. A bundle Ex of 
type (G) is, in our context, an abstraction of a bundle obtained as the pull 
back of the universal quotient bundle over a Grassmann variety. The main 
results of this paper are given to such a bundle Ex and are as follows: 
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(i) An explicit determination of the local structure of its direct image Ex 
(Theorems 3.1-3.4), (ii) that of r(Ex) and r(End Ex) (Theorems 4.1-
4.5) and (iii) a type of residue formula for the characteristic classes of 
Ex (Theorem 5.1), which is based on the Cech theoretical treatment of 
the classes due to Atiyah ([At]). The basic tools for getting (i) (iii) are: 

(a) Some subvarieties of X and a coherent sheaf(cf. § 2.1), where the 
former is gotten by taking Schubert subvarieties of Grassmann variety as 
our model and the latter is gotten by applying the arguments in Section 1. 

Actually, investigations of the above two data and uses of them in 
the proof of (i)-(iii) are, the author feels, the central part of this paper. 

As an application of (i), (ii) we give a criterion in order that the 
direct image sheaf Ex is locally free and simple (§ 4). This criterion 
gives a general method to get simple bundles over a smooth variety of 
dimension 22 (lheorem 4.6), and is our main results for the original 
purpose of the construction of bundles. 

3. Very many important results have been known for constructions 
of vector bundles. (See, for example, the surveys in [Har-I] and [Schn], 
[Ok-Schn-Sp]). In connection with our proposed approach, we like to say 
that many important results on the constructions seem to be concentrated 
to the projective space ([Har-I] and [SchnD. On the other hand, in [Mar], 
Maruyama developed a general algebraic argument on elementary trans
formation, and got, among others, a basic result which says that there are 
a 'lot of' simple bundles over a smooth projective variety of any charac
teristic and of dimension 22. (For more precise formulation, see [Mar]. 
See also a recent work of Sumihiro ([Sum]) generalizing [Mar].) From a 
general character of the result of Maruyama, it seems, to the author, to 
be suitable to take his result as a starting point for the constructions in 
general situation. Now, our result mentioned above may be an analytic 
analogue of the above result of Maruyama, and will be also a starting 
point for further considerations. 

Remark. In getting 'starting data' for the constructions of bundles, 
there are some similarities between the view point in the theory of the 
elementary transformation ([Mar] and [Sum]) and ours. Some relations 
between them are discussed in Section 2.2 (cf. Remark 2.6). 

As was stated in the beginning of this paper, the content should be 
regarded as provisional, and some speculations arise concerning how to 
push the present results further. We list them in the form of Question in 
the course of the arguments. Good parts of them concern singularity 
problems ariSing naturally in the construction of bundles. We hope that 
they may be interesting for readers. 
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Remark. This paper is a continuation of our previous works on 
stratification theory and cohomology with growth and division ([Sa 1-4]). 
We hope to write a survey paper for this and previous papers elsewhere. 

Remark. The author does not present the proof of Theorem 5.1 
and Lemma 2.5 in this paper (chiefly because of its length). The proof 
will be given elsewhere in a near future. The other parts of the present 
paper is read independently from the above two results. 

A fact on morphisms to a Grassmann variety ([Hir] and [Ka]) (cf. 
(2.6.4)) was informed by Kazama, by answering to my question. The 
author expresses his thank to Professor Kazama for his kindness. 

Notation and Terminologies 

Here we summarize notation and terminologies, which are used 
throughout this paper: First we make the convention: 

(1) {
complex variety = complex reduced space 

bundle = holomorphic vector bundle 

For a complex variety X, we use the symbol Ox for its structure sheaf 
without mentioning it. Letting {Yx be a coherent sheaf over X and U an 
open set of X, we use the following notation: 

where, for an abelian group A and a commutative ring B, we mean: 

(
Mr(A) = the abelian group of r X r-matrices with coefficients in A 

(3) G Lr(B) = group of r X r-matrices with coefficients in B, whose 
determinant is a unit in B. 

By a Cartier (resp. set theoretical Cartier) divisor of X, we mean a codi
mension one subvariety Y of X such that, for each point p e Y, there is 
an open set U of p (in X) with which we have: 

(4) {
There is an element f e T(U, Ox) which generates the i~eal of Y n U 

(resp. whose reduce divisor (f)o,red coincides with (Un Y). 

As usual C and Z are the field of complex numbers and the ring of 
integers. Also we mean by Z+ the set of positive integers and we set 
Z+o=Z+ U{O}. 

§ O. Preliminaries 

Here we add some remarks to the line (I), (II) in Introduction. 
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1. First of all, letting X be a complex variety and Ex a bundle*) 
over X, what we have in mind by 'stratification theoretical treatment' of 
the bundle Ex is: 

(*-1) To stratify X, to attach an open neighborhood to each stratum 
and to form a frame of Ex over each neighborhood, and 

(*-2) to use the stratification, the neighborhoods and the frames for 
investigations of the bundle. 
Thus our treatment is based on the Cech cohomology theory, to which 
methods of stratification theory are applied. Now the following defini
tion is used throughout this paper. 

Definition 0.1.1. In this paper we mean, by a prebundle over X, a 
pair DI = (1'2, Ex) consisting of a codimension two subvariety 1'2 and a 
bundle Ex over X:=1'-1'2. 

Definition 0.1.2. (1) By an s-representation of DI, we mean a datum 
D2=(1'I, N, eO, e l ) as follows: 

(0.1) 
j1'I=(redUCed) divisor of X, which contains 1'2, 

NI = open neighborhood of XI: = 1'1_ 1'2 in X, 

ei=(ei, .. " e~), r==-ra~ of Ex, is a frame of EXINi (i=0, 1), 

where we set No=X _XI. 

(2) By an s-prebundle over X, we mean a pair D=(DI, D2) as above. 
When there is no fear of confusions, we call Ex also a prebundle (or 

an s-pre bundle) over 1'. 

------.. ---------
-... -... X2 .-- .-- Xl 

-:-------__ --:X~-:--------- N1 ------ ......... ""'----- -------~ 
Figure I. 

The datum D2 is stratification theoretical, because writing No also as 
x o, we have a stratification g'/=(XO, XI) of Xand the frames e:=(eO, e l ) 

(i=0, 1) are attached to the system of neighborhoods JV/: = (No, N I ) of 
g'/. Now we sharpen the line (I), (II) in Introduction as follows: 

(III) To find an s-pre bundle Ex over X, and investigate its direct 
image Ex by the stratification theoretical method. 

In connection with (III), let hlO E GL(NI n No, Ox) be the transition 

':<> Bundle=holomorphic vector bundle (cf. Introduction). 
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matrix for the frames (eO, e l ): eO=elhlO . Then our basic technique for the 
investigations of Ex will be (cf. § 1): 

(IV) Analysis of growth properties of hlO with respect to the first 
and second boundaries Xl and xz of XO = No. 

Remark 0.1. In Definition 0.1, the neighb:>rhood NI of Xl = XI_ Xz 
is not determined uniquely by (Xl, XZ). As a type of such a neighbor" 
hood, what we have in mind is a 'tubular neighborhood' of Xl in the 
stratification theory (cf. [Th] and [Mat]. See also [Sa-I].) Zariski open 
neighborhoods of Xl are also important. In this paper, we check what a 
type of neighborhoods are used, according to arguments in question. 

2. Here we check that our approach to bundle theory along the 
line (I), (II) have generalities. For this letting Ex be a locally free sheaf 
over X, we make: 

Definition 0.2. We say that Ex is of type (e), if there is an s-pre 
bundle D= (DI , Dz) as in Definition 0.1 such that Ex is the direct image 
sheaf of the prebundle appearing in D. 

Lemma 0.1. Assume that X is normal and is a quasi projective variety. 
Then an algebraic bundle Ex over X is of type (e). 

Proof First take a codimension one subvariety Xl of X so that 
Ex1xo, Xo= X -XI, is a product bundle, and we fix a frame eO of it. Next 
take a codimension two subvariety xz of X which is also contained in Xl. 
Then one can assume that the restriction of Ex to Xl: = XI_ Xz is a 
product bundle, and take a frame ell of it. Assume that Xl is an affine 
variety, and take an open neighborhood NI of Xl in X:=X-Xz. Then 
we have elements elCr(Nlo Ex) whose restriction to Xl coincides with ell. 
Assuming that NI is small enough, we can assume that e l is a frame of 
Ex IN,· Now we set DI=(XZ, Ex:=Ex1x) and DZ=(XI, Nlo eO, e l ). Because 
X is normal, we see that the direct image i*Ex of Ex, i=injection: X~ 
X, coincides with Ex, and we finish the proof of this lemma. q.e.d. 

Assume that X is a normal Stein variety, and take a bundle Ex over 
X. Then, by the similar reasoning to the proof of Lemma 0.1, we see 
that Ex is of type (e). 

3. Now assume that dim X = 1 and X is compact. Then we see 
easily that 'to give an s-pre bundle Ex over X, is equivalent to give data 
as follows: 

(**-1) {
finite points PI' ... , Pu on X, neighborhoods Na of Pa and 

matrices ha E GL(Na-Pa, Ox) (I:S:a:S:u). 
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Repeating the arguments below Definition 0.1, we set N,=U~N~ and 
No= X - UaP~. Then the bundle Ex is defined by the element: 

(**-2) 

Though we do not enter into details of (**-1,2), we like to point out that 
the procedure (**-1,2) has many similarities to classical treatments of 
bundles over a Riemann surface ([Bir], [Weill and [TjD. In particular, the 
notion of 'matrix divisor' in [Weill and [Tj] is essentially equivalent to our 
notion of s-prebundle in the present situation. . This observation is a 
starting point of the present paper (d. Introduction). 

§ 1. Explicit expressions of Ex 

In the remainder of this paper, we fix a normal complex variety X. 
Also we fix an s-pre bundle D=(D1, Dz) over X, with D,=CXz, Ex) and 
D 2=(Xl, N 1, eO, e l ), once for all, where 

{
the subvarieties: Xl:::> X2, the bundle Ex over X: = X - X2, the 

(*) neighb~rhoods Ni and the frames ei=(ef, ... , et) of EXlNi' r=rank 
of Ex (1=0, 1) 

has the similar meaning to (0.1). 
In Section 1 we assume that there is an element Y E r(Dx ) such that 

(l.0) Xl = (Y)O,red in X. 

1. First we check that if the transition matrix hlO for (eO, e l ) E 

GLr(NI n No, Ox): eO=e1hlO in Nl n No, has a suitable growth property with 
respect to Xl, then E is imbedded into O~. 

Proposition 1.1. Assume that hOI: = hjj/ admits the following expres
sion: 

(1.1) h01=yah~I' with elements a E Z+O and h~l E Mr(NH Ox). Then 
Ex is imbedded into O~. 

(1.2) 

Proof Define an Ox-homomorphism !': Ex~O~ by the following: 

{
!'Nl: Exl.v, 3 el.,I~O~, 3 h~l,l 

!'No: Exlso 3 eO.,o~O~o 3 ya.,o 

where ,i=('f, ... , ,~) is an element of O~i and ei'i= I:j~l '}. e}. Note 
that (1.1) implies !'Nl =!'.vo in Nl n No. Because X is normal, we see that 
!' is injective. q.e.d. 
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Denote by Lx and L'y the determinant bundles of Ex and E'y:=T(Ex). 
Then we have the following commutative diagram: 

E~T 
~Or 

)E'y°r 

(1.3) Nl IN 
Lx (/\ r~) 

)L'y 

where /\ r denotes the r-th exterior product morphism. Note that,by 
takingfi:= /\re i to be a frame of L XIN, (i=O, 1), the isomorphism (/\rT ) 

is explicitly as follows: 

(1.4) {
(/\rT)IN': LxlN, 3p.,I~ON' 3 (deth~I)"t, 

(/\ rT)INo: LxLvo 3fo.'0~ONo 3 yar "0, 

where ,i is an element of ON, (i=0, 1). 
For an element cP e rr(Ex) we mean by the divisor of cp the one of 

/\rcp E T(Lx). Letting D", and D"" be the divisors of cp and cp'=T(Cp) e 
rr(E'x), we have the following from (1.4): 

(1.5) D""=D,,,+Do, where Do is defined as follows: DolN,=locus of 
det h~l and DolNo=that of 1. 

Note that D"" is the divisor of /\ r cp' e reX, Ox), and treatments of it 
are easier than those of D", in general. Divisors like D", will play basic 
roles in our arguments henceforth (cf. § 2). 

2. Next we check that a suitable growth property of hlo with respect 
to .1"2, in addition to (1.2), will insure a more explicit expression of Ex. 
For this letting x be an element of r(Ox) which does not vanish on Nj, 
we assume the following for the matrix h;o:=hril l (cf. (Ll». 

(1.6) h;o= yb. (x-ch' + yb. h"), where band c are elements of Z+o, 
and h' and h" are respectively elements of Mr(Ox) and MrCNl' Ox). (We 
may say that (1.6) claims that the main part of the matrix hlO is meromor
phic with respect to y and x.) Now let fJ and 0) denote the Ox-morphism: 
Ox 3 '--+O'Y 3 h', and the quotient morphism: Ox--+Ox/ybOX' Then 
we have: 

Lemma 1.1. E'x(=T(Ex)COx) is the kernel of the Ox-homomorphism 
0). fJ: OX--+OX/yb. O"x. (We write 0), fJ also for their restrictions to X.) 

Proof Take a point p E XI and an element, e Ox,P' Then we 
easily have the following equivalence: 

(a) 
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and we have E'x,p= kernel of (w· p)p. On the other hand, for a point p e 
No(=X -X'), we obviously have: Ex,p=kernel of W· Pp=Ox,p. q.e.d. 

Lemma 1.2. The direct image sheaf E x( : = i *Ex , i being the injection: 
X~X) is coherent. 

Proof It suffices to check the coherency of E'x = i*E'x. But, the 
normality of X implies that E'x coincides with the kernel of w· p: Ox--+ 
Ox/ybO'X. q.e.d. 

Remark 1.1. The above explicit form of E'x: 
(*) E'x=the kernel of the Ox-homomorphism W· p: O'X--+O'X/ybO'X 

wiII be used frequently in later arguments (cf. § 2 and § 3). Moreover, 
remark that the isomorphism T: Ex~E'x is extended to the isomorphism: 
Ex~E'x(cOx). In later arguments we use T also for its extension. 

3. Coherency conditions. Let 1'12 be a codimension two subvariety 
of X and Fx ' a locally free sheaf over X': = 1'- 1'12. Recall that a basic 
condition of Serre ([SeD for the coherency of the Fx := i*Fx', i being the 
injection X': ~X, is as follows: 

(L.A) For each p e 1'12 there is an open neighborhood U of p in X 
such that rex' n u, {Yx) generates FX',q for each q e un X'. 

Next we say that Fx ' satisfies condition (L.G) if, for each p e 1'12 there 
are an open neighborhood U of p in X and a codimension two subvariety 
1'112 of U containing 1"2 n U with which the following holds: 

(L.G) There are an s-representation Dz=(X', N" eO, e' ) (cf. (0.1)) of 
D,: = (1'112, Fx ' Iu -X"2) and an element y e r( U, Ox) with which the follow
ing holds: 

(1.7) XI:=(y")o,red and the transition matrix hID for the frames eO, el 

of Fx over U-X', N, (=open neighborhood of X':=X'-XII2 in U-
1'112) admits the expression of the form (1.1) and (1.6). 

Lemma 1.3. The following three conditions are equivalent. 
(1.8) (a) Fx is coherent (b) Fx' satisfies (L.A) and (c) Fx' satisfies 

(L.G). 

The equivalence of (a) and (b) is in ([SeD. The condition (c) is given 
in terms of the growth properties of the matrix hID, and is concordant to 
our stratification theoretical approach to bundle theory. Here we give 
a simple proof of Lemma 1.3, by emphasizing the role of the growth 
properties. 

Proof The implication: (a)¢(b) is obvious and (c)¢(a) follows 
from Lemma 1.2. We check (b)¢(c) as follows. For a point p e X~, 



Construction of Vector Bundles 535 

take an open neighborhood U of p in X and sections eO e rr(U_X'2, Fx'), 
r=rank of Fx ', such that I\reo does not vanish identically on U-X'2. 
Take an element y e r(u, Ox) which vanishes on X; and the extension of 
(I\reO)o,red to U, and we set Xl = (Y)o,red' Next take an element el e 
rr( U - X '2 , Fx ') such that 1\ reI does not vanish identically on any irreduc
ible component of Xl. Take a codimension two subvariety XII2 of X 
satisfying the following: X l:JXII2 :JX'2 U (Xl n XII), where XII is the 
extension of (1\ r el)o,red to U. Then, by a simple observation, we have the 
following relation in U - XII2: 

(1.9) ya·el=eoh~l' with a e z+o and h~le Mr(U, ,ox). 

Thus setting Dl=(XII2 , Fxl x - x",) and D2=(Xt, Nl, eO, e l ), with a suitable 
open neighborhood Nl of X l=Xl_XII2 , we get an s-pre bundle D= 
(D!> D 2), where the transition matrix hlO for (eO, e l ) clearly satisfies (Ll) 
and (1.6). q.e.d. 

§ 2. Bundles of type (G) 

The most important property of the s-pre bundle in the title is the 
existence of (rank of the prebundle + I)-sections of the prebundle satisfy
ing suitable conditions (Definition 2.1). This section is divided into three 
parts according to the nature of the arguments. 

§ 2.1. Key definitions 

1. First we make: 

Definition 2.1. We say that the s-pre bundle D=(Dt> D2), where 
Dl=(X2,Ex) and D2=(Xl,Nl,eO,el) (cf. thebeginningof§ 1), is of type 
(G), if there are sections e= (el, .. " er +l) of Ex, r= rank of Ex, with 
which the following hold: 

(2.1.1) The frames ei (i=0, 1) are of the form: eO=(et> .. " er_l, er ) 

and el=(el, "', er_l, er+l). 
(2.1.2) (1\ r eO)o (c X: = X - X2) is a reduced divisor and its closure 

in X coincides with Xl. 
(2.1.3) (1\ r el)o,red (c X) is a (reduced) divisor, and letting XII be its 

closure in X, the codimension two subvariety X 2 is of the form: X 2= 
Xl n XII. 

Remark 2.1. Note that Ni:=(X _X'l)(=(X_XIl» and X'l:=XIl 
_X2 satisfy: (1) Ni:JX l :=Xl_X2 and (2) e l is a frame of Ex over Ni. 
Note that they are the conditions imposed on the open set Nl of X, which 
appears in D2 (cf. (0.1), § 0). In order to fix our idea, unless we say 
otherwise, we assume the following for an s-pre bundle D of type (G): 
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(2.1.4---1) The neighborhood Nl of Xl is taken to be Ni( = (X_X'I)). 
In connection with this, we remark the following immediate consequence 
of (2.1.1-3): 

(2.1.4---2) Xl n XII = ljJ, and Nl-:::;Xl, No-:::;XII . 

Remark 2.2. One can check easily that the most important property 
of an s-pre bundle of type (G): 'it admits (r+ l)-sections as in Definition 
2.1', characterizes also such a bundle in the sense that the following equi
valence holds: 

(*) To give an s-pre bundle over X of type (G) R To give an s-pre 
bundle over X, which admits (r+ I)-sections e of the prebundle such that the 
frames eO and el, formed in the manner as in (2.1.1), satisfy (2.1.2, 3), where 
r is the rank of the prebundle. 

Next, for convenience of later arguments, we add the following to 
Definition 2.1 : 

Definition 2.2. D is said to be of type (W.G.), if (2.1. 1, 2, 4) and the 
following weaker form of (2.1.3) holds. 

(2.1.3)' X2=Xl nX'\ where XI! is a divisor of X such that X II := 
1"11_1"2 is a set theoretical Cartier divisor and (!\rel)o,redCXII. (Note 
that XII is not, in general, determined uniquely by el. When we are 
concerned with an s-prebundle of type (W.G), we fix a divisor XI! as above 
and the open set Nl defined as in (2.1.4-2).) 

2. Now, letting D=(Dl , D 2) be the s-pre bundle of type (W.G) as 
in Definition 2.2, we have: 

Proposition 2.1. The following holds for D. 
(2.1.5) X l=Xl_X2 and XI!=X/l_X2 are, respectively, Cartier and 

set theoretical Cartier divisors of X. 
(2.1.6) The transition matrix 1110 for (eO, e l ): eO=elhlO in Nl n No, is 

explicitly as follows: 

(2.1.7) [
l r _ l 11] 

hlO= 0 i' 
where J,., ... ,/r are meromorphic functions overX with the pole XII. 

(2.1.8) (fr)o is reduced and coincides with Xl (in Nl=X-XI!). 
(2.1.9) l/fr and hlfr (1 <j-;;;'r-l) are holomorphic in No (-:::;XI!) 

(cf. (2.2.4---2)). 

Remark 2.3. Note that (2.1.8) gives a defining equation of Xl in Nt. 
In later arguments, we discuss such an equation of Xl in X (cf. Lemma 
2.6 and Proposition 3.1. Also see Remark 2.5.) 
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Proof of Proposition 2.1. First (2.1.5) is a direct consequence of 
(1.1.2) and (2.1.3)'. Next we check (2.1.6, 9) as follows: Remark that et 

is a frame of Ex over NI and eO is an element of rr(Ex). Then, from 
(2.1.1), we obviously have: 

(a) hlO is of the form (2.1.7), by understanding that];, .. . ,f,. are 
holomorphic functions on Nt. 
On the otherhand, it is checked easily that hOI = h10 I is of the form: 

(2.1.10) -hlfr] (l;;2;j:S:r-I). 
llfr 

But eO is a frame of Ex over No, el is an element of rr(Ex) and e1=eohol 
in No. Thus the coefficients of hOI are holomorphic in No and we have 
(2.1.9). Next, from (a) and (2.1.9) (cf. also (2.1.4--2)), we see easily that 
It, ... , f,. are meromorphic functions over X with the pole XII and we 
have (2.1.6). Finally, from (2.1.7), we have: 

(b) (f\ r eO) = fr(f\ rei) in N1• 

From this we have (2.1.8), and we finish the proof of this proposition. 
q.e.d. 

Remark 2.4. Assume that X is smooth. Then, in (2.1.6), we have 
the unique extensions Jj of h to X. Thus, in that place, one can assume 
that];, .. . ,fj are meromorphic functions over X with the pole XII. 

3. Basic tools. The arguments here are divided into three parts, 
according to their nature. 

3.0. Letting D= (DI' D 2) be the s-prebundle of type (W.G) as in 
Definition 2.2, we assume that there are elements s; (1;;2;j;;2;r + 1) and 
Sr+I' S;'+I E r(Ox) such that (2.2.0-1, 2, 3) soon below hold: 

(2.2.0-1) h=s;/s~ (l;;2;j;;2;r-l) and f,.=s~+l/s~, where h are the 
coefficients of the matrix hlO (cf. (2.1.7)). 

(2.2.0-2) XII = (s~)o,red' 
(2.2.0-3) (Sr+l)o is reduced and coincides with XI. Moreover, S~+I= 

ST+l·S;'+1 and (S;'+I)o,redCXI1. 
Define matrices hOI and h61 by hOI = h101 and hOI = S ;~1 . h61. Also we set 
hio=h61t. Then, by a simple computation, we have: 

(2.2.1) h61=eT+~r-1 g'], where g'=(g;Xj~1 with g;=-s~/s~'+1 
(l <j:s:r-l) and g~=s~/s;'+1" 

(2.2.2) hio=(sr+l·s~tl.h', where h,=[S~~-1 g], and the vector 
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q=(gj)j=l is as follows: gj=s~ (l::::;j~r-l) and gr=S~+l' (Remark that 
(2.1.9) and (2.2.0) imply: 

(2.2.1)' g~ (l~j<r) are elements of T(O;r). 

Remark 2.5. If X is smooth, then (2.2.0-1, 2, 3) are legitimate in 
the local situation. Namely, for a point p e X, take a suitable open 
neighborhood U of pin X. Then, by restricting the data 1"2, Ex, .. " to 
U, we check easily that h and XI, 1"11 admit the expression given in 
(2.2.0-1,2,3) in U. In the global case, we see easily that a similar expres
sion to (2.2.0-1, 2, 3) holds by understanding that s~, ... are sections of 
a suitable line bundle over X. 

3.1. Our first tool is the imbedding of Ex into Ox as in (1.2) (cf. 
also Remark 1.1) and some resulting explicit expressions of Ex. 

Proposition 2.2. (1) The imbedding ,,: Ex~E!1(:=,,(Ex)COx) 
(as in (1.2» is as follows: 

(2.2.3-1) { "INl: ExlNl 3 el,I~ONl 3 ,~.q' +Sr+I' [~l 
"INo: ExlNo 3 eo,o~ONo 3 Sr+I·'O. 

(2) We have: 
(2.2.3-2) ,,(ej)=sr+luj (1 <j~r) and ,,(er+l)=q', where uj=thej-th 

unit vector of Ox (i.e., the i-th component of Uj=Oij (1 <i<r» and el> .• " 
er+1 are as in (2.1.1). 

(3) E'x(:=,,(Ex» is the kernel of mp.:O x-+Oh, where m is the quo
tient morphism: Ox-+Oh and the Ox-homomorphism p. is given by: 

(2.2.4) 

(In (2.2.3-1) and (2.2.4), 'i and, are the elements of ON; (i= 0, 1) and 
Ox' Moreover, ,; and e;;r are the roth components of ,I and e;;, and ,11", 
are the subvectors of 'I, , consisting of the first (r-l)-components.) 

Proof (1) and (3) are just a rewritten form of Propositions 1.1 and 
1.2 in the present situation, while (2) follows easily from (1). q.e.d. 

Now, we give a simple but quite useful expression of Ex. For this 
let h" be the submatrix of h' consisting of the first (r-l)-rows of it, and 
we set h"=m(h") with the quotient morphism m: O..r-+OI:=Q.rl' 

(2.2.5-1) h"=[s~Ir_t' q], where s~=m(s;) and q=(gj)j:~ with gj=m(gj)' 

Let X denote the Ot-homomorphism: Or 3 ~ -+Or- I 3 h" .~, and we define 
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an O,-module {jXI (cOr) to be the kernel of X. Thus an element f.= 
('j)j=1 e Or is in {jXI, if and only if 

(2.2.5-2) f.r . g + s~ . f.' = 0, with f.' = (f.j)j:~. 

Lemma 2.1. We have the following exact sequence: 

(2.2.6) 

where w is the restriction of w: Ox---+Or to EH cOx) and i is the injection 
of Sr+102 into Ox. 

i 
Proof First remark that (2.2.6) is reduced to sr+,Ox~E~ in No. 

Next take a pointp e XI and an element r:. e Ox,P' Then we easily have: 

(a) 

Thus we have: {jxl,p=w(E~,p). Because {jXI is the submodule of Or, we 
obviously have: kernel of X= Sr+ lOX' q.e.d. 

By Lemma 2.1, investigations of E~ are reduced to those of {jXI' 
The sheaf {jXl and the exact sequence (2.2.6) will play basic roles in later 
arguments (cf. § 3.2). 

3.2. Next, from the sections e= (el, .. " er+l) e rr+l(Ex) (cf. Defini
tion 2.1), we form some subvarieties of X. First we set: 

(2.2.7-1) X} : = the closure of (/\ r eJ)o,red( C X) in X, where we set: 
ei=(el, .. " er+l_j , •• " er+l) (er+l- i is omitted) (O<j<r). 
(Thus we have: 

(2.2.7-2) X~=XI and X~CX". Moreover, if D is of type (G), then 
X~=X" (cf. (2.1.2,3) and (2.1.3)'). 
Also we have: 

Proposition 2.3. X}=(g~+1-j)o,red (I <j<r) and X~=(Sr+l)O' 

Proof First assume that 2 <j < r. Then, by a simple computation, 
we have: 

(2.2.8-1) 

From the explicit form of j,.+1-J and g~+I_j (cf. (2.2.0, 1» we get this 
proposition for 2 <j s;, r, once we see that s, and S~'+l are units in Nl and 
N1• On the other hand, from (2.2.0,1), we have: 

(2.2.8-2) l\'eo=j,.(/\re1) in N, and I\rel=(g~/Sr+I)(l\reO) in No. 
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Thus remarking that s~ and S'+I are units in NI and No, we see that 

(2.2.8-3) 

(For the case of j = 0, we also use (3) in (2.2.0).) q.e.d. 

Now, using the varieties XJ (O;?J<r), we form the following subvarieties 
of X: 

(2.2.9-1) Y'=(nJ=o XD, and Y = the union of the irreducible 
components of Y' that are not contained in X!ing' 

(2.2.9-2) Z = Y n X!lng' 
Then we obviously have: 

(2.2.9-3) 

Moreover, we define a closed subvariety YJ in the following manner: 
(2.2.9--4) Yj=the union of the irreducible components of (XI n XD 

that are not contained in (YU X!ing) {l < j ~ r). 
Thus we have: 

(2.2.9-5) (XI n XD= Y u Y j U (X!lng n XD.) 

(X::) XI ::) X2)::) Y::) Z 

U 
Yj(I<.i~r) 

Figure II. 

These varieties admit a clear interpretation from a view point of Schubert 
calculus, when the s-pre bundle D is obtained from the universal quotient 
bundle over a Grassmann variety (§ 2.3 and Appendix I). 

§ 2.2. A remark on finding an s-pre bundle of type (G) 

1. First, let us start with a datum U = (XI, X't, f) as follows: 
(2.3.1) XI and XII are reduced divisors of X such that X2=XI n X'I 

is of codimension two in X and X I:=XI_X2 as well as XII:=XII_X2 
are Cartier and set theoretical Cartier divisors of X. 

(2.3.2) 1= (!t, ... ,f,.) consists of meromorphic functions h (1 <j 
<r) over X with the pole XII, and (f,)o is reduced and coincides with XI 
in NI=X-XII. 

Then we set: 

(*) 

where the bundle Ex over X: = X - X2 is characterized by {l) Ex IN; has a 
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frame ei (i = 0, 1), with No = X - Xl, and (2) the frame relation between 

eO and el is: eO=elhlO in NI n No, with the matrix hlO= [lr_1 fll. 

o fr 

Proposition 2.4. Du: = (Dul , Du2) is an s-pre bundle and satisfies the 
following: 

(2.3.3) The components e~ (1 <j ~ r) of eO are sections of Ex and 
the first (r-I)-components of eO and el coincide, and 

(2.3.4) the last element e~ of e l is a meromorphic section of Ex over 
X with the pole XII. 

Proof This is straightforward from (2.3.1, 2). q.e.d. 

Note that, in general, e~ is not a (holomorphic) section, and D is, in 
general, not of type (W.O). But it is easy to see that 

(2.3.5) e~ is a (holomorphic) section of Ex, if and only if f satisfies 
(2.1.9), and we clearly have: 

(2.3.6) Du is of type (W.O), if and only if f satisfies (2.1.9). Now, 
let iJIt be the collection of all data U=(XI, XII, f) as in (2.3.1,2), which 
also satisfy (2.1.9). Then, by Proposition 2.4, Dr.; is an s-pre bundle of 
type (W.O). Moreover, we have: 

Proposition 2.5. ( 1 ) The map: 
(2.4.1) iJIt ~ U=(XI, X'I, f)-+{s-pre bundles of type (W.O)} ~ Dr.; is 

surjective, where Du is defined in the manner (*). 
(2) Du is of type (0), if and only if 
(2.4.2) (;\"el)o,red coincides with XII. 

Proof (1) follows easily from Proposition 2.1, while (2) is a direct 
consequence of (2.1.3). q.e.d. 

Thus, in order to find s-pre bundles of type (W.O) and (0), it suffices 
to find a more naive datum U. 

2. Now, a simplest (but a most important) method in getting a 
datum U just above may be as follows: Start with a line bundle Lx over 
X and sections 5= (Sl, ... , Sr+l) E rr+I(X, Lx) satisfying the following: 

(2.5.1) (sr+ 1)0 is reduced and (Sr+I)O n (sr)o,red is of codimension two 
in X 

Then setting 
(2.5.2) XI=(Sr+l)o, XII=(sr)o,red and h=sis, (l:-:;;:j~r-l), f,.= 

ST+l!Sn 
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one checks easily that the datum U(s)=(XI, X'I, !=(n'j~I) satisfies 
(2.3.1,2). Also it is easily seen that the s-pre bundle Ds=Du(s) is of type 
(G). Some discussions for such an s-pre bundle D. will be given later 
(cf. § 4). 

Remark 2.6. In the construction of algebraic vector bundle in [Mar] 
(cf. Introduction), Maruyama starts with a smooth divisor D of a smooth 
quasi projective variety X (of any characteristic) of dimension >2. Then 
he takes sections Slo .. " Sr E rr(LD), LD being a line bundle of D, such that 
nj~1 (Sj)o,red=cjJ (cf. Principles 2.5 and 2.6, [Mar]. See also [Sum] where 
the smoothness condition for D and (Slo .. " sr) is dropped to certain 
degree). Assume that X is defined over C. Then, letting Lx and 
S=(SI, "', Sr+I)Cr(X, Lx) be as in (2.5.1,2), we have the divisor 
D(=(Sr+l)o,red) and the sections Slo .. " Sr of LD, where L D:=ODQ9Lx and 
Slo ... are the restrictions of Slo ... to D. Thus we have similar datum 
(D, (Slo .. " sr)) to the one in the theory of Maruyama (though we do no 
assume the corresponding conditions for D and (SI' .. " ST))' Conversely, 
starting with a datum (D, (SI' .. " sr)) as in [Mar], take a line bundle MD 
over D suitably so that ND=LDQ9MD has an extension to X. Then it 
looks like that one can get our datum (Lx, (SI' .. " Sr+I)) by regarding 
Slo .. " Sr as sections of ND and extending them to X. (Ytie like to discuss 
relations more precisely in an another place.) From what are mentioned 
just above it seems to be better that our theory is giving an another 
treatment of the results of Maruyama, when the conditions on the smo
othness of the divisor and on the disjoince of the loci of the sections are 
satisfied. How to treat bundles without the above conditions may be an 
open problem (from either view point of the elementary transformation 
([Mar] and [Sum]) or of Cech-stratification method in this paper). In spite 
of the above similarities between the starting data for the constructions 
of bundles, we point out that our view point and techniques differ largely 
from the ones in [Mar]. 

§ 2.3. Relations to Grassmannian geometry 

1. Let F be a vector space of dimension n over C, and let V be the 
Grassmann variety of d-dimensional subspaces of F, where I <d<n-l. 
Then letting F v denote the product bundle V X F, we have the exact 
sequence of the universal bundles: 

w 
(2.6.0) 0--+ Gv--+Fv----+Ev--+O, where Gp and Ep are the sub and 

quotient universal bundles over V. (Recall that Gp is defined to be: 
Gv,p=tautological subspace Gp(CF) of P E V.) Take a basis ei, "', e~ 
of F, and we write e'l, .. " also for the corresponding sections of Fp. 
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Setting ej=(l)(e~) (1 <j~n), we form the following subvarieties of V: 

(2.6.1) VI=(J\TeO)O and VII=(!\Tel)O, and V2= VI n VII, where we 
set: eO= (el> .. " eT_1> er ) and e l = (el, .. " er _ l, eT+ I). 

Lemma 2.2. The s-pre bundle D=(DI, D2), where DI=(V2, Evlv) and 
D2=(VI, Nt> eO, el), V= V - V2 and NI= V_VII, is of type G. 

The proof is given in Appendix I, where we summarize some explicit 
computations for Ev which are obtained from Schubert calculus or 
elementary direct computations. 

Next, returning to our original variety X, we will give a corresponding 
fact to Lemma 0.1 for the s-pre bundle of type G. For this we say that 
a bundle Fx over X is of type G, if there is an s-pre bundle D= (DI' D2) 
of type G such that Fx is the direct image of the pre bundle which appears 
in D. 

Lemma 2.3. Assume that X is normal and a quasi projective variety 
and that Ex is an algebraic bundle over X. Then letting L be the line bundle 
corresponding to the hyperplane cut, we have: 

(2.6.2) Ex®L m (m ~ 0) is of type (G). 

Proof It is well known that Ex®Lm is the pull back of the universal 
quotient bundle of a Grassmann variety (cf., for example, [F]). Then 
from the generic position argument in [KL-2], we have this lemma. q.e.d. 

When X is a Stein variety and Fx is a bundle over X, the following 
stronger form of Theorem A of H. Cartan holds ([Hir] and [Ka]). 

(2.6.3) There are finitely many sections s = (Sl' .. " st)Cr(Fx ) 
which generate Fx ,p for each p E X. 

Thus the bundle Fx is induced from the universal quotient bundle of 
a Grassmann variety. Lemma 2.3 and (2.6.4) are supporting facts for 
our introduction of the notion of type (G). In connection with (2.6.4) we 
make: 

Question 2.1.1. Is any bundle over a Stein variety of type (G)? 

Question 2.1.2. (1) Is any bundle over a Stein variety induced 
from the universal bundle over a Grassmann variety? An affirmative 
answer to Question 2.1.1 seems to follow from 2.1.2 and a corresponding 
fact to the generic position argument in [Kl-2]. 

Remark 2.7. Lemma 2.2 is a starting point for our introduction of 
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the notion of type (G). As a matter of fact, our idea in introducing the 
notion of type (G) may be given as follows: 

(**) To form bundles over a complex variety, which have similar 
properties to the universal bUfldle over a Grassmann variety, by direct com
putations (assuming only the facts for line bundles). 

4. Here we check that the 'notion of type (G)' appears also in analysis 
of singularities of coherent sheaves. Namely, shiriwith ~ coherent sheaf 
Fx over X and a subvariety Y of X of codirn~nsion > 2; which satisfies 
the following: . • . . 

(2.7.0) Fx:=Fx!x, X=X-:Y, is locally free and Fx coincides with 
the direct image sheaf of Fx. . 

Then what we want to do is: 

(*) To attach a suitable s-pre bundle of type (G) to' Fx 'and to use it 
for analysis of properties (like local freeness) of Fx . 

For this we first recall the following basic fact concenling the singularities 
of coherent sheaves: 

Lemma 2.4 (Scheja [Sc] and Siu-Trautmann [S-T]). Assume that X 
is smooth. Then the singular set S(Fx):={q eX; Fx,q is not ,ox,q-free} is 
of codimension > 3 in X. 

Next take integers (1:::;;) r<t. For each index I=(il,'" .,ir ): 1< 
i l < ... <iT< t, take an element fr e r(,ox). Then for an t X r-matrix 
A e Mt;.(C), we form an elementfA e r(,ox) by 

(2.7.1)' fA=L.I det AI ·fr, where AI is the submatrix of A consisting 
of I (= (iI' ... , ir))-rows. 

Wedenote by DA the divisor of fA' Also setting f:=(h)I, let B, 
denote the base locus of f: 

(2.7.2) . B1= nI Cfr)O,red' 
Take a matrix Ao e M.C C) and a point p e X. Then choosing a 

suitable open neighborhood U of p (in X) and V of Ao (in MtT(C)), we 
have the following 

Lemma 2.5. Take a proper subvariety W of V. Then, for each A e 
V - W, we have: 

(2.7.3) (DA,Sing-(B, n XSing))!u is of codimension >4 in X. 
This may be an analogue of the theorem of Bertini (on the moving 

singularities of the divisors in a linear system) to our 'Grassmannian 
system' of divisors D A; A e Mtr(C). The proof is given by reducing it to 
the original Bertini's theorem, by a certain induction argument. The 
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proof requires some pages, and is given in an another place (see also an 
algebraic analogue of Lemma 2.5 in [Sa-5]). 

Now, take a point p e f and an open neighborhood U of p in X, 
and we choose sections e=(el, ... , er+l)cr(U, Ex) suitably. Then, sett
ingeo=(el, · .. ,er_l,er)andel=(el, ···,er-l,eT+l), we form subvarieties 
of U as follows: 

(2.8.1) Xl and XIl are the closures of (!\ reO) and (j\ reI) (c un X) 
in U, and XZ=XlnXfl, Nl=X-XIl. 

Lemma 2.6. Assume that X is smooth. Then the s-pre bundle D= 
(Dl' Dz), where 

(2.8.2) Dl=(Xz. Fxlx), X=X-X2, and Dz=(Xl, N l , eO, e l ) 

is of type (G). Moreover, we have: 
(2.8.3) Xl is irreducible and codimx X~lng~ 3. 

Proof Take sections SH ••• , s, e r(u, Fx ), which generates Fx over 
U. For a general matrix A e Mtr(C), we set: eA=s·A and DA=the 
closure of (!\ reA)o in X. Then Lemmas 2.4 and 2.5 imply: co dim X:1ng > 3. 
This also implies that Xl is reduced and irreducible. Moreover, taking 
a suitable section er + l e r(u, Fx ), we see easily that (eA, eT+l) satisfies 
(2.1.1 - 3), and we have this lemma. q.e.d. 

For our s-pre bundles (in particular, those of type (G)), a quite basic 
problem is to discuss properties of the varieties Xl, X2 (and f, f j , ... as 
in (2.2.9)). Lemma 2.6 concerns the singularity of the divisor XI, and we 
are led to make the following 

Question 2.2. Letting sections e=(el,···,er+l) have the similar 
meaning to the one in Lemma 2.6, discuss the nature of the singularity of 
the divisor Xl. Also discuss the similar things for the varieties X2, Yand 
f J (1 ~j ~ r) (cf. (2.2.9)). The above question seems to have relations 
to the theory of Le-Teisser-Navaro ([Le-Te] and [Nav]) on treatments of 
singularities of coherent sheaves (and underlying theories of Nash modi
fications). 

§ 3. Local structures of the direct image Ex 

In Section 3 we assume: 

(*) X is smooth, and the s-pre bundle D= (D I , Dz) is of type (W.G). 

We use freely the notations for D, which were introduced in the 
beginning of Section 1 and in Section 2.1. 
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§ 3.1. Plans for investigations 

1. The arguments in Section 3 will be done, by using the OX1-
module iYXl and the varieties Y, Z and Y j (I <j<r) (cf. (2.2.5, 9) and 
Figure II, § 2.1). Our arguments will be basically divided into the follow
ing three steps: 

(*-1) Thosefor (X- Y), (Y -Z) and Z. 
The first step is done by an entirely elementary argument. The main 

subject in the second step is: 

(*-2) To construct explicitly frames of FXl and Ex, by using structures 
of iYXl and the variety Y (Theorems 3.1 ;and 3.2). Now the third step of 
the investigation of iYXl and Ex over Z concerns the singular locus of the 
divisor XI (cf. (2.2.9», and the arguments become substantially harder 
than the ones in the first two steps. Our main idea in the third step is 
then stated as follows: 

(*-3) To make a full use of the explicit form of the frames in (*-2) 
for the investigations of Ex over Z. 

The main result in the third step describes the germ FX1,p (p e Z) 
explicitly in terms of the ideals of Y j (cf. Theorem 3.3). 

2. Here, using the assumption of the smoothness of X, we sharpen 
the arguments in (2.2.0) - (2.2.9). First, recall that the explicit form of the 
transition matrix hlO for the frames eO, el is as follows (cf. (2.1.6»: 

(3.0) hlO= [/r_1 ~Il' with meromorphic functions/t, ... ,J,. over X 
o fT 

with the pole XII (:=the closure of (/\ 'el)O,red(CX) in X). 
For the divisor XII of X, we assume: 
(3.1.1) XII has the finite irreducible components (and we write the 

irreducible decomposition of XII as: XII = X~I U ... U X~l.) 
(3.1.2) There are elements Sr,l, .. " S"u e r(Ox), which generate 

the ideals of X~I, .. " X:;. 
Moreover, we assume the existence of data as follows: 
(3.1.3-1) Sl>"', Sr_1 and Sr+1 e r(Ox) such that none of them 

vanishes identically on X~I (I < t < u), and 
(3.1.3-2) m(j)=(m(j, 1), "', m(j, u» e Zu (l:::;;j<r), with which 

It, .. " J,. are expressed in the following form: 
(3.1.4) ~=Sj/s';!(j) (1<j<r-l) and f,.=Sr+I/S,;!(T), where we set 

s';!(J) = Sr:,ii,l) .. . sr:,<.!'U) (I <j <r). 

Remark 3.1.1. Because X is smooth, (3.1.1) -(3.1.4) are valid in the 
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local ~ituation (cf. Remark 2.5) and are ligitimate for the investigations of 
the local structure of Ex. 

Remark 3.1.2. For t= 1, ... , u, we set: 

mt=max (1, maxJ=1 m(j, t», and set: (3.1.5) 

(3.1.6) s'=llu sm, s'.=llu sm,-m(j,t) (I<J'<r-l) and 
r t=1 r,U J t=1 r,t = = 

S' - (ll u sm,-m(r,t» S 
r+1- t=1 r,t • r+l-

Then the elements si, .•. , S~+I satisfy (2.2.0). The arguments below 
follows easily from (2.2.1 - 9). 

3. First we set: 

(3.2.1) n(j):= m(r)-m(j) E ZU (1 <) ~r-l), 

and define vectors as follows: 

(3.2.2) g=(gj)j=t> with gj= -SjS~(j) (1 <j <r-l) and g,=s,:(r). 

Then the matrices hol:=hli/, h~I:=Sr+lhol and hio=h~11 are explicitly as 
follows: 

h' - [S'+I[r_1 
g], and hio= (Sr+IS':(T»-lh', with 01- 0 

(3.2.3) 
h'= [g'~T-I -gj] (1 <j~r-l). 

ST+I 

Proposition 3.1. We have the following. 
(3.3.1) U\'eO)o=(sT+I)o in X (and so (Sr+l)o is reduced and coincides 

with XI (in X». 
(3.3.2) (!\'el)o=(gr)o (=(S':(T»O) (in X), and so mer) E Z!o. 
(3.3.3) The elements n(j) are in Z':o (1 <j :::;r-l). 

Proof. The first two facts follow directly from (2.2.8), and the last 
follows from the explicit form of hlo (cf. (3.2.3» and (2.1.9). q.e.d. 

The varieties X}, Y'· .. ars as follows: 

(3.3.4) Y'=ni=1 (gJ)o,red on Xl, and Xj=(gT+I-j)o,red (1 <j<r). 

For completeness we rewrite Figure II, Section 2.1: 

(3.3.4-2) 

(3.3.5) 

Xj=(gT+I-Ared (2~j<r), X~=X~=XIl 

Y'=nJ=I(gAred on XI. 

For completeness we rewrite Figure II, Section 2.1. 
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(X::::>X1::::>X2):::, Y::::>2' (:= Yn X!lng) 
-0 

YJ (1~j::;;;r) 

4. Thirdly, letting the injection 't': Ex~EH='t'(Ex)cOi) be as 
in (2.2.3), we have: 

(3.4.1) 't'(ej)=sT+IUj (1 <j ~r) and 't'(eT+1)=g, where uj is the j-th 
unit vector of Oi (cf. (2.2.3». 

Let h" be the submatrix of h' consisting of its first (r-I)-rows, and 
we set fill = w(h") with the quotient morphism w: Or-+Oxl' 

(3.4.2) fi"=[gT·1T_1> (-gj)] (1 <j<r-I), withgj=w{gJ). 
Then the basic OXI-module ~XI is defined as follows: 
(3.4.3) An element '=('j)j=1 E Oi, is in ~x"P' if and only if it 

satisfies: gT' 'j= gj' 'T (I :S::j <r-l). 
Moreover, the exact sequence (2.2.5) takes the following form: 

§ 3.2. Frame constructions 

In Section 3.2 we write OXI and ~XI as 0 1 and ~1' 

5. First we check that E'x and ~1 have very simple properties 
outside Y' (cf. (3.3.5». For this setting Nj=X-X} (O~j::;;;r), we obvi
ously have: 
(3.5.1) X-Y'=Ui=oNj. 

Lemma 3.1.1. Ex is locally free over (X - Y'), and we have: 
(3:5.2) eJ is a frame of ExlNj (O<j<r) (cf. (3.3.4». 

Proof Recalling the definition of X} (cf. (3.3.4», it is clear that ej 

is a frame of Ex over (Nj _X2). This implies also that, for a point p E 

(Nj n X2), Ex,p is Ox,p-free and eJ is a base of it. Thus we have this 
lemma. q.e.d. 

Next, take a point p E Xl_ Y'. Then for g= (gj)i~1 (=w't'(eT+1» (cf. 
also (3.4.2», we have: 

Lemma 3.1.2. Assume that each gf (1 <j :s:: r) is not a zero divisor in 
OI,P' Then the Ol,p-module ~I,P is spanned by g. 

Proof Take an element, E ~IP (cO[p)' Then, from the explicit 
form of FI (cf. (3.4.3», we see easily the following: 

(3.5.3.1) If one of the j-th component{j of,=O in OIP (l::;;;j::;;;r), 
then '=0 in ~IP' 

From this we see easily the following: 
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(3.5.3.2) If there is an element, e {YIP such that one of its compo
nent, say 'J' does not vanish at p, then the OIP-module {YIP is generated 
~t . 

On the other hand, from (3.3.5), we see that one ofg} (1~j~r) 
does not vanish at p, and we have this lemma. q.e.d. 

Remark 3.2. We take eJ to be a standard frame of EriN! (O<j<r). 
Also, ifOIP does not contain a zero divisor for eachp e Xl_Y', we take 
iJ to be a frame of the invertible sheaf {Yl over Xl_ Y'. Assume that 

(3.5.3.3) gJ does not vanish identically on Xl (1 <j =::;;;r). 
Then, if Xl is normal, we have :~, 
(3.6.0), gJ (1~j<r) is not a zero divisor in OI,P 

and iJ is a frame of {Yl over (Xl_ Y'). In the remainder 'Or Section 3, we 
assume: 

(3.6.0) the generic condition (3.5.3.3) for gJ (1 =::;;;j ~ r) holds. . 

6. Here we examine the local structure of {Yl and E'r over Y -Z. 
For this, in the remainder of n.6, we fix a point p e Y - Z (c X~g) and 
we write the irreducible decomposition of gj (1 ~j <r) as follows: 

(3.6.1-0) gr = if{l) ... i~{V) and gj = if",l) ... nCJ,V)g1 (1 ~j ~r-l). 
where iI, ... ,1. vanishes at p and' irreducible in O;,p' Moreover, the 
elements a(1), .. " a(k) and bU, 1), .. " bU, v) are elements of Z+ and 
Z+o respectively, and g1 e OI,P is not divided by it (1 ~i ~v). 

Next, for purpose of explicit computations here, define a subset I j of 
{I, .. " v} (I ~j <r-l) by: 

(3.6.1-1) I j = {i e {I, .. " v}: bU, i) <aU)}, 
and we set: 

(3.6.1-2) 1= Uj:UiC{l, .. " v}) (or, alternatively, I={i e {I, .. " 
v}; bU, i)<a(j) for an elementj e {t, ... ,r}}), and 

(3.6.1.3) bi = minj:~ b(j, i) (for i e I). 
Then the following lemma determines explicitly the Ol,p-module {Yl,P' 

Lemma 3.2.1. Define an element ij= (ijj)j=l e OLp by 

(3.6.2) 
ijr=lltEl i~(t)-b{i) and ijj=(llieI. tf",t)-b{i» 

.(ll i~(j,i)-a{i».g~'! (I~J·~r-l). i«1 • ] __ 

(When I=ifJ we understand that ijr and the first factor of ijj= 1 (1 <j< 
r-l).) 

The the element ij is in {Y1,P' and generates the Ol,p-module {Yl,P' 

Proof Recall that an element, = ('J)'j=l e 0Lp is in {Yl,P' if and only 
if 
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(a-I) gr'j-g/;r=O (1<j<r-l) (cf. (3.4.3». 

But, by a simple computation, we have: 

(a-2) gN il _gN il -(II t-a(il-b(il+b<J,il) (II t-b(j,il) gNII j··,r- r··O- iel i • i'll i • J' 

and we have: ~ e {YIP' On the other hand, if ,=(01=1 is in {YI,P then, 
from (a-I) and the definition of J (cf. (3.6.1-2», we have easily: 'r=O 
(modia(il-b(il) (i e J) and 'r=a'~r with an element a e OI,P' By (3.5.3.1) 
and (3.6.0), we have '=a.~, and we are done. q.e.d. 

Take an element 7j e E'x,p such that w(7j)=~. Then, from Lemma 
3.2.1 and (3.3.5), (3.4.1), we have: 

Lemma 3.2.2. The Ox,p-module E'x,p is generated by sr+I'uj = 
(= T(e j» (I <j <r) and 7j, where uj is the j-th unit vector (cf. (2.2.3-2». 

From this lemma and (3.3.4), (3.6.2) we have: 

(3.7) 

Now, we give a condition for the Ox,p-freeness of Ex,p in the follow
ing form: 

Theorem 3.1.1. Ex,p is Ox,p-jree if and only if there is an element 
j e {t, .. " r} such that 

(3.8) gk=O (modg,) in OIPfor all k= 1, "', r. 

Next define a vector ~(j) (1 <j<r) by 

(3.9.1) ~(j)= (l/gj)g. 

Theorem 3.1.2. Assume that (3.8) holdsfor an elementj e {I, "', r}. 
(1) We have: 

(3.9.2) g'j does not vaniflh at p, and ~(j)= (I/g'j)~, if I=I=r, ~(r)=~, if j=r. 

(2) We can take ~(j) to be an Ol,p-basis of {YI,P' 

Remark 3.3. The base ~(j) as above is given in a global form' in 
comparison to the one ~ in Lemma 3.1.2. 

Proof of Theorems .3'.1.1. and 3.1.2. (i) It is obvious that (2) in 
Theorem 3.1.2 follows from Lemma 3.1.2, Theorem 3.1.1 and (1), Theorem 
3.1.2. 

(ii) We prove Theorem 3.1.1 and (1), Theorem 3.1.2 as follows: 
(ii-I) First, letting ~ e E'x,p be as in Lemma 3.2.1, we define the 

germ Xl~,p of a divisor atp as follows: 
(a-I) X},~,p=the closure of (elll"'lIejl\"'lIerIlT-I(7j)>o(cXp) in Xp, 

where Xp , ••• are the germs of X, ... at p. 
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Then, from Lemma 3.2.2, we easily have the following equivalence: 
(a-2) Ex,p is Ox,p-freeRnj~1 X},~,p=fjJ. 
But, from (1.5), we have: 
(a-3) X},p= (det (r(el ), .. " f(ej), .. " 'Z'(er), 7))/s;:;:Do,red' 
On the other hand, by (3.5.2), we see that the right hand side of 

(a-3)=7)J (=the j-th component of 7)), and we rewrite (a-2) as follows: 
(a-4) Ex,p is Ox,p-freeR7)j does not vanish at P for an element j E 

{l, .. " r}. 
(ii-2) Next we analyze the right hand side of (a-4) as follows: 

First assume that I=fjJ. Then, from a simple observation, we have: 
(b-l) 7)r( = 1) does not vanish at p, and g)ifr( =ijj) E Ox,p (I ~j<r). 

Thus we have the following for j= 1, .. " r-l (cf. also (3.2.3)): 
(b-2) 7)j does not vanish at PRgr=O(mod gj)Rgk=O (mod gj) 

(l~k<r). 
Next assume that I=I=fjJ. Then, by (3.6.2), we obviously have: 
(b-3) ijr vanishes at p. 
On the other hand, for an element j E {I, ... , r -I}, we also have 

the following from (3.8): 
(b-4) ijj does not vanish at PR(1) g7 does not vanish at P and (2) 

bU, i)= b(i); i E I and bU, i)= a(i); i ~ /. 
On the other hand, we obviously have the following from (3.5.1): 
(b-5-1) gr=O (modgj)R(l) ai~bU, i) for any i E {I, .. " r} and 

(2) g7 does not vanish at p, 
(b-5-2) gk=O (mod gj) (l~k=l=j~r-l)Rb(k, i)~bU, i) for any 

i E {I, .. " r} and (2) g~=O (mod g7). 
Combining (b-4) with (b-5-1, 2), we clearly have (cf. also (3.5.4)): 
(b-6) right hand side of (b-4)Rgk=O (mod gj) (1 <k~r). 
We summarize (b-l)-(b-6) in the following manner: 
(b-7-1) ijr does not vanish at PRgk=O (modgj ) (1 :S;:k:S;:r) (RI=fjJ). 
(b-7-2) ijj (l~j<r-l) does not vanish at PRgk=O(modg j ) (1 < 

k~r). (In (b-7-2), the both cases: I=fjJ and I=I=fjJ can occur.) 
Clearly, we have Theorem 3.1.1 from (a-4) and (b-7). Moreover, 

we see easily that if (b-7-1) holds, then we have: 
(c-l) ijr(=gr/gr)= 1, ijj=(IIiElifu,i)-a(i))'g7(=gigr) (l~j<r-

1), and, if (b-7-2) holds, then we have the following from (b-4) and 
(3.5.3): 

(c-2) ijk=(gk/gj)·g~ (l~k:S;r). 
From (c-cI, 2) we have (1) in Theorem 3.1.2. q.e.d. 

'From Theorem 3.1.1 we easily have: 

Corollary 3.1. If Ex,p is Ox,p-free, then the germ Yp of Y at P is that 
of a divisor. 
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This will show that the local freeness of Ex gives a very strong con
dition for the s-pre bundle D. 

7. Here, we summarize some consequences of the arguments 
hitherto in Section 3.2: First define the following subvarieties, which are 
supplementary to the ones in (2.2.9) and (3.3.6»: 

(3.10.1) 2'= Y' n X~lng and Y" = the union of the irreducible com
ponents of Y' that are contained in X~lng (cf. (2.2.9-1,2». 

Thus we have: 

(3.10.2) 2'=2U Y" (cf. (2.2.9-2». 

Theorem 3.1.3. The direct image Ex is locally free over X -2', if 
and only if one of the following holds: 

(3.10.3) Y = ¢' or Y (=1= ¢) is a divisor of XI and (3.8) holds for each 
p E Y-2. 

Proof This is clear from Lemma 3.1.2 and Theorem 3.1.1. q.e.d. 

Remark 3.3. Theorem 3.1.3 and Lemma 3.1 determine completely 
the local structure of Ex over X-2'(:)X;eg)' A more global version of 
Theorem 3.1.3 will be given in Theorem 3.4.1. 

Corresponding to our basic diagram (3.3.6), we make: 

Ex is locally free The generator of FI (and so of Ex) 
is given explicitly 

Figure III. 

8. Now we investigate the structure of Ex for a point p E 2'. This 
differs according to whether 

(3.11.0) Ex is locally free over Y -2(:)X;eg) 
or not. The latter case is more complicated than the former. In the 
remainder of Section 3.2, we assume that (3.1 I .0) holds. This assumption 
is legitimate for the discussions of the local freeness of Ex. For the 
investigation of Ex,p (p E 2), we first do the following: 

(*) To write Y:= Y -2 as a union of locally closed varieties of Y 
and to attach a frame of {Jl to each locally closed variety. 

Remark 3.4. This is a little weaker form than the one required in 
(*-1,2), Section 0 in the point that Y is not stratified. But it may give 
hints for stratifying Y. 

Now, remark that (3.11.0) and Theorem 3.1.3 imply: 
(3.11.1) Y=¢, or Y is a divisor of Xl and (3.8) holds. 
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In the second case, without losing generality for investigations of 
Ex,p(p e Z), we assume the following: 

(3.11.2) Y has the finite irreducible components (and we write the 
irreducible decomposition of Y as: Y=U~=I Yfi ). 

Setting Yfi= Yfi-Z, we define a multiplicity m(j,~) of gj along Yfi as 
follows: 

(3.11.3) gj=O(mod~p'~,fi)) but =1= o (mod ~p'~,fi)+I) for eachp e Y fi , 
where ~fi,P is the stalk at p of the ideal ~fi (c ( 1) of Yfi· 

(The divisor Yfi (c X;'g) is connected, and one checks easily that m(j, fi) is 
independent of the point p e Yfi.) 

For a subset p=(~(1), ... , ~(t)) of (1, ... , s), we set: 

(3.11.4) 

Proposition 3.4.1. We have the disjoint union: 
(3.12.1) Y= UfiYfi, where Yfi satisfies: Yfi -(Ur01 fi Yr)*~. 

Proof Take a point p e Y, and we define a subset p(p) of {I, ... , s} 
by: p(p)={~; Yfi:l pl. Then it is clear that pep) satisfies the condition 
in (3.12.1) and that Y is the finite disjoint union of such Yfi(p); p e Y. 

q.e.d. 

Next, for an index p=(~(l), ... ,~(t)) satisfying the condition in 
(3.12.1), we set: 

(3.12.2-1) m(j, P)= (mU, ~(l)), ... , m(j, ~(t))) (1 <j <r) and m(f3) 
=(m(~(l)), ... , m(~(t))) with m(~(I))= minj=1 m(j, ~(l)), ... , and 

(3.12.2-2) Yp,j= Yfi- Y j. (For the variety Yj,see (3.3.5).) 

Proposition 3.4.2. (1) Yfi=U j Yfi,j' whereje{l, ... ,r} must sat
isfy: 

(3.12.3) Yfi,{=1=~ and mU, p)=m(~). 

(2) The element ~U) (cf. (3.9.1)) is an Ol,p-basis ofiSl,p for each p e 
Yp,j" 

Proof First take a point p e Y. Then from the assumption (3.11.0) 
and Theorem 3.1.1, we see that there is an elementj such that Yj:l P and 
mU, f3)= m(p). From this we have (1). Also we get (2) easily from (2), 
Theorem 3.1.2. q.e.d. 

Now we summarize Propositions 3.4.1 and 3.4.2 as follows: 

Theorem 3.2. Writing Y as the union of their locally closed varieties 
in theform: 
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(3.13.1) Y=Up,j Yp,j, where the indices (f3,j) must satisfy the con
ditions in (3.12.1) and (3.12.4), we see that 

(3.13.2) i)(j) is aframe ofr51 over Yp,j. 
Here we add a remark to Theorem 3.2, which says that i)(j) is a 

frame of r51 in a Zariski open neighborhood of Yp,J in X~eg. 

Remark 3.5. Take a subset 13= (~(1), ... , ~(t» of (1, ... , s) such 
that Yp:;/=ifJ and we assume: 

(3.14.1) m(j, (3) > m(f3). (Namely, for an element u E {I, ... , flo we 
have: m(j, ~(u»>m(~(u».) 

Then, for a subset r of {I, ... , s} satisfying r~ 13, we obviously have: 

(3.14.2) m(j, r»m(r). 

Now, for an elementj E {l, ... , r}, we define a closed subvariety Wj 
of XI as follows: 

(3.14.3) Wj=YjU(UrYr), where Yr(:;/=ifJ) satisfies (3.14.1). 
From the explicit form of i)(j) (=(I/g~)i) or =i), according as I=I=or 

=r) (cf. Theorem 3.1.2 and (3.14.1, 2», we easily see: 
(3.14.4) i)(j) generates r51,P for eachp E X~eg-Wj. 
Moreover, from (3.13.2), we have the following for a locally closed 

subvariety Yp,j in Theorem 3.2: 
(3.14.5) The frame i)(j) of r51 over Yp,} is actually defined on 

(X~eg- Wj) (~ Yp,j). 

Example. The simplest form of the expression (3.14.5) is obtained 
in the case where the following holds: 

(3.15.1) Y is irreducible and the multiplicity of gj along Y (= Y -Z) 
is independent of j= 1, ... , r. 

Actually, we see easily that (3.14.3) then takes the following form: 

(3.15.2) 

and (3.14.4) is read as follows: 
(3.15.3) i)(j) generates r51P for each p E (X~eg- Y j). 
Thus, in this case, the frame construction in Theorem 3.2 takes a 

simple form. Also note that, if the s-pre bundle D is obtained from the 
universal bundle over a Grassmann variety (Lemma 2.2), we have (cf. 
Appendix I): 

(3.15.4) The condition (3.15.1) holds with a stronger form that the 
multiplicity in question = 1. 

In connection with this, we make: 

Question 3.1. Confirm conditions for the s-pre bundles D, to which 
(3.15.4) holds. 
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8. Now, we will examine the structure of 3'I,P (p e X~lng). First we 
check that if V=rp (cf. (3.11.1», then the structure is very simple. 

Lemma 3.3. If XI is normal and V = rp, then we have: 
(3.16.1) 3'I,P is generated by ij over OI,P for any p E XI, where we 

regard ij (=Wt{eT + I» as the element of r(XI, 3'1)' 

Proof By Lemma 3.1.2, the element ij generates 3'1 over X~g. On 
the other hand, because 3'1 is an Ol-submodule of Or (cf. (3.4.3», the 
normality of XI implies: 

(a) 3'1~i*i*3'1> with the injection i: X!eg=---+XI, 
and we have this lemma. q.e.d. 

Next assume that V =l=rp. In this case our arguments will be done 
under the following strong condition. 

(3.16.2) The condition (3.15.1) holds. 
Now, for an elementj e {I, .. " r}, we define an Ol,p-submodule ~P,J 

of OI,P as follows: 

Theorem 3.3.1. Assume that XI is normal. Then we have an isomor
phism of OIP-module for a point p e Z: 

(3.16.3) ~P~3'I,P' 

Proof Take a small open neighborhood U of p in XI. Then, from 
the explicit form of 3'1 (cf. (3.4.3» and from that ij(j) is a frame of 3'1 
over X!eg- Vj (cf. (3.14.4», we have: 

(a) r(Un X!eg, 3'1)= {aij(j); lX is an element of r«Un X!eg)
Vj,OI) such that aij(j) is extended to r(Un X~g, OD. 

But thej-th component ofij(j)= I (cf. (3.9.1», and we have: 
(b) the right hand side of (a)={aij(j); lX is an element of 

T(un X!eg, 0 1) and lX7J(j) is extended to r(Un X!eg, OD· 
Thus, from the similar reasoning to the proof of Theorem 3.1, we 

have this theorem. q.e.d. 

The above theorem may insure: 

(**) the structure of3'I,p is 'determined' by the boundary behavior of 
ij(j) along the divisor (Vj n X~g). 
We give some consequences of Theorem 3.3.1, in which (**) appears 
explicitly. For this, we assume: 

(3.17.0) Vj consists of the finite irreducible components and we 
write the irreducible decomposition of Vj as Vj = Ua Vj,a' 

(This does not lose generalities in local investigations of 3'1 and Ex.) 
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Now, for each fj,a, we let m(j; a) ( E Z+) be the multiplicity of gj along 
Yj,a:= fj,a n X~eg, which is defined in the similar manner to (3.11.3). We 
then define an Ol-submodule j8j of 0 1 to be the one which is associated 
to the following pre sheaf: 

(3.17.1) U-+j8 .(U)= {a E r(U 0)' a is in r(Un Xl cy,m(j;a)) 
J ' 1, reg' 'VJ,a , 

where ~j,a denotes the ideal sheaf of Yj,a (c(\). 

Theorem 3.3.2. Assume that XI is normal. Then we have the follow
ing isomorphism of Gl,p-module for a point p E Z: 

(3.17.2) 

(a) an element a E GI,p is in j8j,P8(gk/gj)a E Gl,p (l-::;'k~r). 
But the definition of the divisor fj of XI (cf. (2.2.9-5)) implies the 

following for each irreducible component fj,a: 

(b) There is an element k E {I, ... , r} such that gk=O (mod Y j ,.). 

Then we see easily that the present theorem is nothing more than the 
rewritten form of Theorem 3.3.1, by using (a) and (b). q.e.d. 

Theorem 3.3.3. Assume that X is normal and that the multiplicity 
m(j, a)= 1 for each fj,a' Then we have: 

(3.17.3) 

This follows directly from Theorem 3.3.2. See also Appendix, where 
corresponding facts to (3.17.3) are given for the universal bundle on a 
Grassmann variety, by using Schubert calculus. 

A natural question may be: 

Question 3.2.1. Give conditions for the local freeness of Ex. In 
particular, give the conditions, when Ex arises from geometric situations 
like foliations ([Ba-Bo] and [Suwa]) and monodromy representations 
([De]). 

When Ex is not locally free, it is desirable to analyze the singularities 
of Ex. As in the end of Section 2, we make a question in this direction: 

Question 3.2.2. Discuss possible relations between the treatments of 
the singularities of coherent sheaves by Le-Teisser-Navarro ([Le-Te] and 
[Nav]) and ours as in Section 3 hitherto. 

Finally, the arguments in the hardest part (Theorems 3.2 and 3.3) in 
Section 3.2 were done under the local freeness assumption of Ex over 
Y -Z (cf. (3. 11.0)). The following question then naturally arises: 
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Question 3.2.3. Discuss the local structure of Ex also in the case 
where we do not assume (3.11.0). 

Remark 3.8. Quite recently, Sumihiro ([Sum]) gives some treatments 
of singularities which arise in the elementary transformation. 

§~4. Structure of r(Ex) and r(<ffnd Ex) 

Here we start with a line bundle Lx over X and sections s = (SI' ... , 
sr+l)cT (Lx) satisfying (2.5.1), and we assume that our s-pre bundle 
D (= Ds) is obtained in the manner of (2.5.2) (cf. also (2.3.1, 2). Thus D 
is of type (G) and we have: 

(4.0) XI=(Sr+l)o, XII = (sr)o,red andh=sj/sr (l<j<r-l) andf,.= 
Sr+I/Sr' (For XI, XII and};, ... ,f,.; see (2.5.2).) 

By (3.3.1), we see that Lx:=Lxlx, with X=X _(XI n XII) coincides 
with the determinant bundle of the s-pre bundle Ex. Our arguments here 
will be given by reducing the structure in the title to that of certain sub
spaces of T(Lx). In doing it, the varieties Jormed from s as in (2.2.1 ~9) 
will be basic. 

Part A. Structure of r(Ex) 

1.1. First, for the frames et of ExIN, (i=0, I), we take gt:= 1\ ret 
to be a frame of LxIN, (i= 0, 1), and we form a frame ii = (ei(l), ... , gt(r» 

r 
~ 

of L!i-INI (=LxIN,EB·· 'EBLxI N,) as follows: 

(4.1.1-1) The k-th component of ii(j)=o (k=l=j) and gi (k=j). 
Then letting 0) denote the quotient morphism: Lx-+Lx ,: =Lx@Ox" 

we have the following (cf. also Proposition 1.1 and Lemma 1.1): 

Proposition 4.1. (1) We have an injection!': Ex-+L!i- asfollows: 

(4.1.1-2) {
!'INO: ExlNo 3 eo~o~L!i-INo 3 iO. ~O 

!'IN,: ExlN, 3 el~I~L!i-IN' 3 i l . (f,.hol~l) 

where ~i is an element of O".v, (i= 0, 1). 
(2) Define an Ox-submodule E'x of L!i- asfollows: 

(4.1.1-3) E'xINo=Li-INo and E'xIN,=kernel of(O)· p): Li-IN,-+L[, 

where p is the Ox-morphism: Li-IN' 3 ~-+LHv, 3 [~-I ~].~ (1 <j<r-I) 

and we set LI = Lx,. 
Then, we have: 
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(4.1.1-4) 

Proof (1) is checked by a simple observation. To see (2), remark
ing that 

(4.1.1-5) f, h =[fr.1r-1 (-It)] (l<J'~r-l) 
rOO 0 1 --

we easily have the following for C'I( = (C?)j~I): = (f,hol)' r/ (in (4.1.1-2)). 

(4.1.1-6) C?=C}·f,-C;·1t (l<j~r-l) and C=C;. 

From this we easily have (2). q.e.d. 

1.2. Next, we form a C-morphism (= homomorphism of C-mod
ules) X: r(Ex)~r(X\ LI) by the following commutative diagram: 

r(Ex)~r(LOX) 
(4.1.2-1) X ~ I (J)P with LI=Lx,· 

r(XI, L1) 

with the projection p: LOX 3 C=(Cj)j~l~its last factor Lx 3 'r' The C
morphism X is useful for analysis of r(Ex). In order to examine X, we 
define a C-subspace r' of r(X\ L l ) by 

(4.1.2-2) r'={SE F(Xl, LI); S andJ,s (1 <j<r-l) are in wF(Lx)}, 

withJj= weft). (Here we use w also for the projection: OX~OI (: = ,ox,))· 
Also letting ~I (cOx) denote the ideal of Xl, we define a C-subspace 

of r(Ex ) as follows: 

Lemma 4.1. We have the following exact sequence: 

Proof The desired fact for X follows easily from (4.1.1-4). 
A little more precisely, take an element C= (Cj)j~l E rr(Lx). Then, 

by (4.1.1-3), we have: 
(a) C is in the image of X8Cj+It·Cr=O(modf,)(I<j~r-l). 

From this and (4.1.3-5), we have: XF(Ex)=r'. Also, from (4.1.1-2) and 
(4.1.3-5), we have: (kernel of X)=rc(Ex). q.e.d. 

In the remainder of Part A we examine r' and rc(Ex). 

2. Here we determine the structure of rc(Ex) as follows: 
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Lemma 4.2. Assume that 
(4.2.0) (C:::::.)T(X, Cx):::::.T(Dx), where Cx is the constant sheaf with 

the stalk C. 
Then we have: 

(4.2.1) 
dimcrc(Ex)=r and rc(Ex) is spanned by (e l , ••• , er ), and 

r+l:Sdimc T(Ex) (=dimcr'+r). 

Proof Letting DX[XI] be the sheaf over X of meromorphic func
tions over X with the pole X\ we define an obvious C-isomorphism: 

(4.2.2-1) 

where 8 is characterized by: 8(£°)= 1 (= constant function over X with 
the value 1). 

Then, for the injection: Dx~£lx[XI], we have the commutative 
diagram: 

(4.2.2-2) 

() 

T(Lx)~T(X, £lAXI]) 

J () J 
T(X, r;;sILx)~T(£lx) 

The first assertion in (4.2.1) follows from (4.2.2-2) and (4.2.0). The 
second is insured by checking r(er+lh'::O. q.e.d. 

3. Here, in order to determine r', we define a C-subspace r" of 
T(X\ £1) as follows: 

(4.3.1-1) r"={seT(X\£I);jj·slx1(eT(X\LI)) are also in 
T(XI, £1)' with £1:=Lx®£lx1}. 

The relation of r' to r" is: 
(4.3.1-2) r'= {se r"; sand (j·s (1~j~r-l) are 111 wT(Lx), 

where we identify jj. s with its extension to r(XI, £I)}. 
The key point for r" is that it is defined by £1 and jj (1 ~j <r-l) 

and concerns only the structure of the divisor Xl. 
Now, letting the varieties Y, Y j (1 ~j <r) be the ones formed in the 

manner (2.2.9), we describe r" explicitly in terms of them, under the 
following conditions: 

(4.3.2-1) Y=rp, or is a divisor of Xl. 
In the second case we also assume: 
(4.3.2-2) Sk=O (mod sr along Yfi) for each Yfi (1 ~k~r), where Yfo= 

Yfi n X;eg with an irreducible component Yfi of Y. Also Si= W(Si) e 
reXI, £1). 

Remark 4.1. By Theorem 3.1.1 and Corollary 3.1, the condition 
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(4.3.2-1) holds if Ex is locally free. (4.3.2-2) is a sharpened form of 
(4.3.2-1) and may be mild. (For example, if X" intersects simply with 
X, along each Yfi , then (4.3.2-2) holds.) 

Now, recalling (2.2.9-5), we have: 

XI! n X~eg (= X2 n X;eg) = yn Yl, where Y= Yn X;eg 
(4.3.3-1) 

and Y l = Y, n X~:eg, 
and, for each irreducible component Yl ,., Yfi of Y" Y, we set: 

(4.3.3-2) {m~j; a)=the order of_sj along Yl ,. (:~ Y,,~~ X;eg) 

n(sj' 13)= the order of Sj along Ys (:= Yfi n X reg) 

Then, setting m(a)=minj~l m(sj, a) E Z+o, we define divisors Yr, y* and 
X*2 of X, by 

(4.3.3-3) Yr= L:.m(a)· Yl ,., y*= L:fin(ST; 13)' Yfi and X*2= Yr+y*. 

Then letting :O,[X*2] be the sheaf over X;eg of meromorphic functions 
with the pole X*2: = X*2 n X~eg, we have: 

Theorem 4.1. Assume that X, is normal. Then we have: 

(4.3.4) r"~r(x~eg, :O,[X*2]). 

Proof (1) First we define a C-isomorphism: 

r(XI, [,,)~r(X', 8 X ,[sT]) 

in the similar manner to (4.1.1-3): 
(4.3.5-1) 8: r(XI, [,,)::::;r(X', 8MT]), which is characterized by 

8(sT)= 1. (Here 8,[ST] denotes the sheaf over Xl of meromorphic func
tions with the pole sr.) 

Take an element S E r(XI, £,) and we write S= s(1) . ST with an ele
ment s(l) E rex', :0,). We let m(s; a) and n(s; 13) be the order of the pole 
of s(l) along Y"a and Yfi. Then remarking that (4.3.2-2) is equivalent to 

(4.3.5-2) lj are holomorphic along each Yfi (1 ~j <r-l), 
we see that S is extendable to rex', [,,) if and only if: 

(a) m(s; a) <m(sn a) and n(s, j3)~n(sn 13) for each Y". and Yfi. 
On the other hand, by a simple computation, we have: 

(b) the order of the pole of lj' s(l) along Y"a=m(s, a)+m(sn a)
m(sj, a) (resp. along Yfi=n(s; j3)+n(sn j3)-n(sj, 13». 

Remark that lj' s is in r(X" [,,) if and only ifthe orders in (b) satisfy 
the similar inequalities to (a). But (4.3.0-2) implies the inequalities for 
Yfi' (When Y = <p one can dispense with this argument. Thus we have 
this theorem. q.e.d. 
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Corollary 4.1.1. . (1) Assume that X is compact and Xl is normal. 
Then we have: 

(4.3.5) r+ 1 ;;;;dimer(Ex) (=r+dimeT');;;;r+dimer(X~eg, Ol[X*2]). 

(2) If wT(X, Lx)=T(X\ £1), then the second inequality in (4.3.5) is 
actually the equality. 

The following corollary is also useful for investigations of r(Ex). 

Corollary 4.1.2. Assume that 
(4.4.0) X*2= y* (or, equivalently, the multiplicity m(a) = 0 for each 

Yl,a (cf. (4.3.2-2)). 
Then we have: 

(4.4.1) r"~T(X~eg, Ol[Y*])' with the sheafOl[Y*] of meromorphic 
functions over X~eg with the pole y* (= y* n X;eg)' (Note that if Ex is 
locally free, then Theorem 3.1.3 insures the condition (4.4.0).) 

Proof Obvious from Theorem 4.1. The structure of r(Ex) is, of 
course, very basic for the bundle Ex. By taking account into Corollary 
4.1, we make: 

Question 4.1.1. Evaluate dime r(Ex) and dime r(X~eg,Ol[X*2]) as 
well as dime T(X;eg, Ol[Y*])' 

It looks like that the structure of Ol[Y*] seems to be very interesting 
in connection with theories of special divisors and treatments of zero 
cycles as in [G-H] (cf. Introduction). Here we only show that the 
equality: 

(4.4.2) 

is checked in general situations: 

Theorem 4.2.1. Assume that X is compact and Xl is normal. More
over, assume that (4.3.2-1,2) and (4.4.0) hold. Then we have the implication: 

(4.4.3) 

(Recall that (4.3.2-1) and (4.4.0) hold if Ex is locally free. Also (4.3.2-2) 
is mild under that condition.) 

Proof Obvious from Corollary 4.1. 
The simplest case, where the condition in (4.4.3) is checked, may be 

given as follows: 

Theorem 4.2.2. Assume that X is compact and that the following 
holds: 
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(4.4.4-1) nj!~ (s)O, red = 9 and (sr+J)o is reduced and normal. 
Then we have: 

(4.4.4-2) 

Proof. First remark that (4.4.4-1) implies the first condition of 
(4.3.2-1) (and it is not necessary to assume (4.3.2-2)). Also (4.4.4-1) 
implies (4.4.0). Moreover, it implies: OJ[Y*]::::OJ (over X~eg), and we 
have the present theorem. q.e.d. 

We finish part A, by adding the following to Question 4.1.1. 

Question 4.1.2. Discuss structures of Hq(X, Ex) (q ~ 1), hopefully, 
by generalizing the arguments in part A. 

B. Structure of r(rffnd Ex) 

Our argument here will be done similarly to the one in part A. 

5. First, take an element cp E .r (tffnd Ex) and we set CPi = CPiNt (i= 0, 
1). Then we have the 'matrix representation' of CPi as follows: 

(4.5.1-1) 

and we obviously have the following relation: 

(4.5.1-2) {
rCrffnd Ex) = {AJ E M/NJ' Ox) such that: 

Ao:=hoJ ·AJ .hJO is extended to Mr(No, Ox)}. 

Now, let ai/k) denote the (i,j)-component of Ak (k=O, 1) and 1 ;;;'i,j;;;'r). 
Then, from a simple computation, we see easily that the relation between 
Ao and AJ just above is equivalent to the following: 

(4.5.2) 

ariO) = arj(I)/fr (1 <j 5:,r-l), arr(O) = arr(1)+ L:j:i aril)(h/fr) 

and ai/O) = aiP)-(/t/fr)aril) (I 5:,i,j <r-l), 

air(O) = L:j:i (aill)- (/t/fr)ar/l))h+(air(1)- (fjfr)arr(l))fr 

(1 ;;;'i;;;'r-l). 

From this, we easily have: 

Proposition 4.5. We have a C-morphism asfollows: 

(4.5.3) r(rffnd Ex):1 cp-----+Mr(X, Lx):1 B=[bij] (l'SJ,j;;;'r) 

where the element bij E rex, Lx) is given by the following manner: Setting 
biJiNk= gk. bi/k) with biik) E T(Nk' Ox) (k= 0, 1), the element bilk) is 
defined to be: 
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(4.5.4-1) biiO)=aiiO) (15:.i,j~r), 

(4.5.4-2) bij(1)=j,. X (right hand side in the equality (4.5.2) for the index 
(i,j)). 

Next we set: 

(4.5.5-1) 

Then we obviously have the commutative diagram: 

(4.5.5-2) 

Moreover, we define a C-morphism x: r(rffnd Ex)-.?r(Xt, L 1) by the 
following commutative diagram: 

r(rffnd Ex)~Mr(X, Lx) 9 B 

(4.5.5-3) x"\ /wp 

rr-'I(XI, L 1) 9 b= (b~I' .. " brr _l ) 

where p is the projection: Mr(X, Lx) ;) B-.?rr-l(X, Lx) 9 (br1 , .. " brr -1) 
= (r, 1), .. " and (r, r-1)-components of B. In order to analyze X, we 
define C-subspaces r' and r" of rr-I(Xt, L1) by: 

bj (1 <j <r-1) and the following elements of r(xt, L1) are j b= (b1> .. " br_1) e rr-I(Xt, L1) is in r', if and only if: 

(4.5.6-1) extendable to reX, Lx): 

and by 

JJj (1 <i,j <r-1), JiC'L,j:t!jb;) (1 ~i~r-1) and 
\ 'L.j:Ujbj 

(4.5.6-2) b=(b1>"" br_1) e rr-I(xt, L1) is in r", if and only if bj 
(l <j<r-1) and all the elements formed in the manner in (4.5.6-1) are 
extended to r(X1, £1)' Similarly to (4.1.4), we have: 

(4.5.6-3) r'={b=(bl,· .·,br_l)er"; b} (1 <j::::;r-l) and all the 
elements Jib;, ... in (4.4.6-1) are extendable to reX, Lx)}. 

Lemma 4.5.1. (1) We have the following: 

(4.5.7-1) r(rffndx)cT'cr" and (kernel ofx)=rc(rffnd Ex). 

(2) r(rffnd Ex)~C, if: 

(4.5.7-2) 
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Proof This follows easily from (4.5.5-1)-(4.5.6-3). 
Next we determine the image of X explicitly. For this take an ele-

ment b=(bl , ;", 6r _ l ) e rr-I(X\ LI)' . 

Lemma 4.5.2. The element 6 is in the image of X, if and only if there 
are elements bij e r(Lx) (1 <i,j~r) such that 

(4.5.8-1) w(br,j)=bj (1 <j ~r-l) and w(bi,j) = jJ}j, ... for the other 
indices (i,j). Moreover, the elements jibj in the right hand side and the 
element 

(4.5.8-2) bir - L:i=1 bij ·h-j;. brr (1 <i ~r-l) are in reX, ;5ILx). 

Proof The first condition is the consequence of that be r'. In 
order to see the second, for the elements bij as in (4.5.8-1), we define 
elements aij(O) e reNo, Ox) by (4.5.2). Then we have unique elements 
aii1) e r(NI, Ox) by (4.5.2) except for the indices (i, r) (1 <i ~r-l). 
Finally, from the last equation in (4.5.2), we get (4.5.8-2). q.e.d. 

6. Here we determine the structures of r" and rc(tffnd Ex). As in 
Part A, we assume here (4.2.0) and (4.3.2-1,2). First we give a corres
ponding fact to Theorem 4.1. For this take an element b=(bl , "', br_l) 
e rr-I(X\ L I) and we write bj =bll),sr with bil) e r(X\ 0 1), We then 

define: 

(4.6.1) {:~i~'a»}=the order of the pole of {L:j;{~~I)jJ along 

Y I a (cf. (4.3.1». 
, Moreover, letn(bj , [3) be the order of the pole of bil) along Yp (cf. 

(4.3.1». Thenlettingthemultiplicitiesm(sJ,a) and n(sj,[3)(l~j~r) be 
as in (4.3.1), we have: 

Theorem 4.3. An element b= (bl , •• " br-I) e rr-I(X1, Lx) is in r" 
if and only if the following holds for each YI,a and Yp: 

{
maXJ n(bj, [3)~n(s" [3) 

(4.6.2) ma:Jm(bj, a) <min (minJ m(sj, a), m(s" a» (I <j ~r-l) 

m(b)~minj m(sj,a)' 

The proof is similar to that of Theorem 4.1, and is omitted. 
Next, we define a C-subspace SJ of rr-I:=p-I(%;"g, 01[Y*]) as 

follows: 
(4.6.3) SJ= {b(1)= (bil» (1 <j ~r-l) e p-I; ji' (L:j:~ bi1) }j) is 

holomorphic along each YI,a} (cf. (4.3.1-1». 
Then, corresponding to Theorem 4.1, we have the following charac

terization of r. 
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Lemma 4.6.1. Assume that Xl is normal and that (4.3.2-1,2) and 
(4.4.0) hold. Then we have a C-isomorphism as/ollows: 

(4.6.4) r"::::::;fd. 
Proof Take an element b= (bl, ... , br -1) E rr-l(Xl, Ll), and we 

write bj=blI)sr over Xl (1 <S:.j <S:.r-l). Then the condition for Jibj in 
(4.5.6-:-1) implies: b/l) E F(X;'eg, Ol[Y*]) (cf. the proof of Theorem 4.1). 
Moreover, the condition for L:j:i b/I)Jj in (4.5.6-1) is equivalent to the 
one (4.6.2). Thus we see easily that the attachment: b-+b(I)=(b/l)j:i 
gives the C-isomorphism in this lemma. q.e.d. 

In connection with the condition (4.6.3), we make the following 
condition for an element b(l)= (blI») (1 <j ~r-l) E rr-l(X;'eg, OI[Y*]): 

(4.6.5) The condition in (4.6.1) for b(1)¢b/l) are in F(X;'eg, CXt) 
(I ~j:S;:r-l). 

The following will be useful as a condition for the vanishing of r". 

Lemma 4.6.2. Assume that X is compact, Xl is normal and that 
(4.3.2-1,2) hold. Then if(4.6.5) and 

(4.6.6) s!>···, sr are linearly independent over C 
holds, we have r/~o. 

Proof Remark that (4.6.5) implies L:j:ib/l)Jj=c, where the 
elements b/l) and c are in C. Then (4.6.5) implies that b/l)=O (1 <j< 
r-I), and we have this lemma. q.e.d. 

In arguments soon below, we will check that (4.6.4) (and so the 
vanishing of r") holds in a general situation. Here we give an explicit 
description of rcCEnd Ex). For this we define a C-submodule of Mr(C) 
as follows: 

(4.6.7) ~={(Cij) (1 <i,j~r); the elements Cij E C satisfy: 

Cir = L:j:i ciJj-Crr!i+ Ji(L:j:i crJj) (1 ~i :S;:r-l)}. 

Lemma 4.6.3. Assume that X is compact. Then we have: 

(4.6.8) 

Proof Take an element (jJ E F(rffnd Ex), and let ai/a) E r(N!> Ox) 
(l ~i,j:S;:r) have the similar meaning to (4.5.2). Then, from (4.5.2») we 
see that (jJ is in r c(rffnd Ex) if and only if: 

(a) ai/a) are in C and satisfy (4.6.7). 
Thus we have this lemma. q.e.d. 

We check that the condition rc(EndEx)~C holds in general. 
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Theorem 4.4. Assume that X is compact, XI is normal and (4.3.2-1,2) 
as well as (4.4.0) hold. Then if (4.6.6) holds, we have: 

(4.6.9) 

Proof Take an element (ciJ E (I (1 s'i,j~r). Then we have: 
L:j:i crJj E C. (Actually, checking the order of the each summand of 
the expression (4.6.7), we see that (4.4.0) implies that L:j:i crJj is holo
morphic along each YI,a' This and (4.3.3-2) imply that the assertion just 
above.) Because of (4.6.6), we see that crj=O (1 <j~r-l). Then, from 
(4.6.6), we also see that (4.6.7) implies: cij=O (i=/=j) and Cii=Crr (I~i 
<r), and we have this theorem. q.e.d. 

In this paper, we give a condition for the simpleness of Ex in the 
following form: 

Theorem 4.5.1. Assume that 
(4.7.1) X is compact, XI is normal, and (4.3.2-1,2) as well as (4.4.0) 

holds. 
Then, if (4.6.5) and (4.6.6) hold, we have: 

{4.7.2) 

(As in the case of Theorems 4.2.1 and 4.4, the assumption (4.7.1) does not 
loose generalities, when Ex is locally free.) 

Proof This is an immediate consequence of Lemma 4.6.2 and 
Theorem 4.4. q.e.d. 

The condition (4.6.6) for the linearly independence of 81, •• " 8r is 
quite mild. The key point is the validity of (4.6.5). Here we see that 
one can check (4.6.5) in a rather general condition. 

Theorem 4.5.2. Assume that (4.4.4-1) and (4.6.6) hold. (Namely: 
(4.8.0) nj!i (Sj,o)red=~' 81, .. " 8r are linearly independent over C, 

and (Sr+I)O,red is reduced and irreducible.) 
Then we have: 

(4.8.1) 

Remark 4.2. By Remark 3.2, the above theorem seems to be valid 
under the assumption that X is normal. 

Remark 4.3. In [Mar], Maruyama gave a condition for the sim
pleness of the bundles (constructed by the method of elementary trans
formation), by algebro-geometrical method. His result contains group 
theoretical (or invariant theoretical) studies of the endmorphisms (§ 2 and 
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§ 3, [Mar]), corresponding facts to which do not exist in the present paper. 
Our point in the investigations of end Ex (as hitherto in part B) is, as in 
part A, that the stratification theoretical data (attached to Ex) appears 
explicitly in our discussions. 

7. Here we quickly summarize our arguments for bundles of type 
(G) (in § 2 ~ § 4) and discuss some possibilities about generalizations of 
our arguments. The discussions here will be devided into three parts in 
a concordant manner to our basic diagram of the varieties in Figure II, 
Section 2.1. 

7.1. First from Theorem 4.5.2 and Theorem 3.1.3, we have: 

Theorem 4.6. Assume that X is smooth and compact. Also assume 
that (4.8.0) holds. Then Ex is locally free and is simple. 

Remark that, if dimX:2':2 and X is a projective variety, then one can 
find arbitrary many pairs (Lx, s=(sj)j!D (consisting of a line bundle Lx 
and sections s of Lx satisfying (4.8.0). (For example, taking an ample 
bundle Lx over X. Then a pair (Lx, s), where m~O and s= (Sl' .. " Sr+l) 
is a generic element of rr+I(L"i:) (r~dimX), satisfies (4.8.0).) This also 
insures: 

(*) For a smooth projective variety X of dimension ~2, there are 
arbitrary many simple bundles (whose rank:2': dim X) over X. At the 
present moment, we regard (*) as our analogue of the basic theorem of 
Maruyama (cf. Introduction), which was given for a smooth projective 
variety (of any characteristic) of dimension ~ 2 in an elegant manner. 

Remark 4.4. By Remarks 3.2 and 4.2, it seems that Theorem 4.6 is 
true if ¥ is normal. 

In the remainder of Section 4, we discuss about how to generalize 
(and sharpen) Theorem 4.6 and (*). 

7.2. Here, assume that, for our s-pre bundle Ex of type (G), the 
direct image Ex is locally free. Taking a 'generic' element e= (el, .. " er+l) 
E rr+I(Ex), we make the following: 

(4.9.1) The divisor (e1/\ ... /\er)o is smooth, but the variety Y:= nj~o 
(el/\ ... /\!'iT + l-j/\"'/\ en l)o,red = 1>. 

Question 4.2.1. Discuss general methods to find a bundle of type 
(G), which satisfies (4.9.1). 

Thirdly, using the similar notation to (4.9.1), we make: 
(4.9.2) the divisor Xl has singularities and the variety Y = 1>. 

Question 4.2.2. Discuss some general methods to find a bundle of 
type (G), which satisfies (4.9.2). 
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In connection with Questions 4.2.1 and 4.2.2, we like to make the 
following (rather vague) question. 

Question 4.2.3. Give interpretations (from our view points of s-pre 
bundles of type (G)) of known examples of bundles (as in [Har-2], [Mu
Ho], [Ta] and [Mar]). 

Finally, we like to add the following questiQns, which arise naturally 
from our arguments hitherto in the main body of the present paper. 

Question 4.3.1. Dif>CUSS the condition for the simpleness of Ex more 
closely (and discuss (4.6.3) in more general). (This seems to be much 
easier than the corresponding one in Question 4.1.1.) 

Question 4.3.2. Discuss structures of Hq(X, tffnd Ex) (q"21), hope
fully, by generalizing the arguments in Section 4. 

Also recall that the simpleness of a bundle implies the indecom
posability of it. But the simpleness fails for the case where X is a Stein 
variety, and we add the following to Question 4.1.1 : 

Question 4.3.3. Give some criterions for the indecomposability of 
bundles over a Stein variety. 

§ 5. A type of residue formula 

. In this section we will be concerned with some explicit representations 
of the characteristic class (in the sense of Atiyah ([At]). 

1. First we quickly recall the characteristic class of Atiyah (cf. [At] 
and [Bo-2]). Let M be a complex manifold and EM a bundle over it. 
Moreover, let.AI = {N.h be an open covering of M such that EMIN. has a 
frame, denoted by el . We denote by hlP E GL(N. n Np , ,oM) the transition 
matrix for (el , ep). Letting e denote the collection {e.h, we have an 
element: 

(5.1.1-1) {}={}(.AI, e) E ZI(N, tffnd EM®Q~), where Q~ is the sheaf 
of holomorphic differential one form over M and, for each Nl n Np (=I=CP) 
the component {}lp of {} is as follows: 

(5.1.1-2) {}ll'= dh11" hlpt E F(Nl n NI" tffnd (EM)®Q~). 
(For the intrinsic meaning of such an element f), see [At] and ([Bo-2]). 
Here we only recall the following two facts: 

(*-1) The element e E HI(M, tffnd EM®Q~), which is determined 
by f), is the obstruction for the existence of the holomorphic connection 
for EM' 

(*-2) Through the Dolbeaut isomorphism, the element e corres
ponds to the curvature form tC( E HI,I(M, tffnd (EM))) of a suitable c~

differentiable connection of EM' 
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Now, let I~: Mr(C)~C be the basic invariant symmetric polynomial 
of degree p. (Thus I~ gives the (r-p)-th coefficients of the characteristic 
polynomial of each element of Mr(C).) Then, letting Ip be the corres
ponding () M-morphism: 

(5.1.2) 
P 
~ 

Crui E,v@",@CYldEM---*()M, 

one attaches to an element wP = wP(N, e) E ZP(N, Q~) as follows: 

(5.1.3) 

Z'(N, Cnd EM@Qk)~ZP(N, Cnd E~p@(Qky8>P) 
11' \ J I I p0f\P 

Zp(N,Q~) 

where UP and /\ I' are the p-th cup and exterior products. Then the 
characteristic class of Atiyah is defined to be: 

(5.1.4) wI' E HP(M, Q~), which is determined by wp=Ip(O). In our 
context, the pair (.A', e) is a basic stratification theoretical datum for 
investigations of EM' and our interest is the element wI' E Zp(N, Q~) rather 
than its class wI'. 

2. Now we return to our original situation: We start with a 
stratification !/ of M and its neighborhood system .A' = {Nl ; Sl E !/}, 
where Nl is an open neighborhood of Sl' We then assume that EMINA is 
a product bundle and we fix a frame el of it. Setting e= (el )., we have an 
element wI' E Zp(N, Q~), which is an invariant of (!/, .A', e). Now we let 
Nv~ (=nerve of!/) to be: ''It=(Sp, "', So); Sj E!/ (O~j<p) such that 
Sp -< ... -< So, where S, -< So, . .. means that S, c So - So, . . . . We then 
take an element ''It = (Sp, ... , So) E N~ such that 

(5.2.1) 

and we will concentrate our attention to the lowest stratum Sp: We set 
.A'fI={Nj}}=o, with Nj=Nsj' Then letting ifl be the injection: .A'fI=------+.A', 
we define: 

(5.2.2) . w~=i:wP E Zp(NfI,Q~) E FCI.A'fll, Q~), where l.A'fll=n}=o Nj 

(For the open set .A' fI' see Figure I, Section 0 for the case of p= 1. The 
general case of p>2 will be figured, by extending Figure I). Now we 
introduce a condition for the element w~, which may be regarded as a 
'boundary value' of w~ around the lowest element SP of U. For this 
we set: .A'~:=.A'fI-{Nsp}, and we define a relative cochain complex 
C~p(.A' fI' Q~) by the following exact sequence: 
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Remarking that Nfl consists of (p+ I)-elements, we have: 

q;p(NfI' Q)e)-----+CP(NfI , Q)c) 

(5.2.4) 11 11 
Z~p(NfI' Q)e)-----+Zp(NfI' Q)c) 

and we regard w~ as the relative p-cocyc1e: 

(5.2.5) 

Now assume that there are elements /= U;, ... ,fr,)cr(Nsp, OM) such that 
(5.2.6-1) SP (eNsp) is the (set theoretical) locus of / 

and 
(5.2.6-2) ~ (1 ~j < p) does not vanish in 1%",1:= nf=o Nj • 

Then setting d log 1= d 10ghA ... A dlogfr, e Z~p(N"" Q)c), we make: 

Definition 5.1. We ~ay that w~ satisfies residue condition with res
pect to I, if one can write: 

(5.2.7) ~=a.dlogf+ow~-l, with an element a e C and an element 
W~-l e C~;l(% fI' Q)c). 

Thus, as we said earlier, the residue condition concerns a boundary 
behavior of w~ along the stratum SP. Remark that, from its construction, 
we may regard that w~ is an invariant of (9", %, e), and we may regard: 

(*) The residue condition is a basic condition for (9", %, e). 
Besides the above naive interpretation of the residue condition, we remark 
that it also insures a topological meaning to w~. Actually, let Q)c be the 
(abelian) sheaf of d-closed holomorphic differential forms over M. Then 
we have the following diagram: 

HP(%"" Q)c) 3 a.dlog/~H2P(%"" Q~) 
(5.3.1) la 

HP(% "" Q)c) 3 w~ 

where H denotes the symbol of 'hyper cohomology'. Note that the two 
cohomology groups in the top line (5.3.1) are of topological nature, while 
the one in the bottom is of complex analytic nature. Now, letting ~ e 
HP(NfI , Q)c) be the element defined by w~, the residue condition implies: 

(5.3.2) w~ e image of (X (and w~ is endowed with (at least one) 
topological meaning. 

Moreover, if the condition: 
(5.3.3) kernel of aekernel of fo 
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holds, then one can attach to w~ the unique element of H1,,(.;V 'II' Q~), 
and w~ is endowed with a true topological meaning. (We like to make 
clear (5.3.3) in another place.) In this connection, we remark that the 
Atiyah characteristic class is, in general, of complex analytic nature ([At] 
and [Bo-l, 2]), and the insurance of the topological meaning is given by 
using some global properties (like Kahlerian property) (cf. [At]). We like 
to emphasize that our residue condition concerns only the local behaviors 
of (})~ (or, tracing back to the definition, of the pair (Sf', e). The above 
fact would justify our emphasize of the residue condition (5.2.7). 

3. Now assume that EM is of type (G). (In other words, there is 
an s-pre bundle D of type (G) such that EM is the direct image of the 
prebundle appearing in D.) We assume that EM (or the s-pre bundle D) 
comes from the (local) geometric situation as in (2.2.0). Namely, we start 
with elements S~EF(OM) (l:Sj<r+l) satisfying (2.2.0-1,2,3). We 
then assume the following generic condition for the sections s~ : 

(5.4.0) XJ+I:=(S~+" ... , Sr+I-J) (O~j~d), with d=min (r, dim M), 

is of codimension j + I. Setting 

(5.4.1) 

we have a stratification of Sf':={XJ}~~o of M. Also take a neighborhood 
N J of XJ suitably (O~j ~d). (We take No= XO.) Moreover, letting 
e= (e" ... , en,) be the sections of the bundle EM of type (G) (as in 
(2.1.1) and (2.3.1-4)), we take eJ:=(e" ···,er+'-J' ···,er+') to be a 
frame of EMiNj" Now, for each p= 1, ... , d, we set OZt'(p)=(XO, ... , XP). 
Then, setting N(p):= n~~o N k , we have the element 

(5.4.2) (})p E F(N(p), Q~) 

as in (5.2.2). Recall that the residue condition for (})p concerns the main 
part of the boundary value of (})p around the subvariety XP (cf. Definition 
5.1). 

Theorem 5.1. For each p= I, ... , d, the element (})p satisfies the 
residue condition with respect to (s~+" ... , S~+2_P). 

The proof takes some pages, and will be given elsewhere. 

Remark 5.1. In the main part ap.dlog(s~+,;\ ... ;\s~+2_p) of QJ~ (cf. 
(5.2.7)), the element ap E C is actually in Z, and is interpreted as a certain 
multiplicity of the (r+ I-p)-vector: eU\··· !\e~+I_p" (This will be also 
given elsewhere.) 
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Question 5.1. To globalize the definition for the residue condition 
(in Definition 5.1) and the result in Theorem 5.1. If M is a Grassmann 
variety and EM is its universal quotient bundle then Definition 5.1 and 
Theorem 5.1 are checked to be applied only to the generic open part of 
the Schubert subvariety (representing the Chern class of E_tI)' Thus a 
good answer to Question 5.1 must be applied to the singular part of the 
Schubert varieties. We finish Section 5, by adding the following (naive) 
question to Question 5.1 : 

Question 5.2. Generalize Definition 5.1 and Theorem 5.1 for an 
element (Si(O)' •. " Si(P)) E Nv,,,, where the stratification 51' is as in Defini
tion 5.1, where we do not assume: (i(O), "',i(p))=(O, "',p). (For 
Question 5.2, it seems to be necessary to drop the (set theoretical) com
plete intersection condition from Definition 5.1 and Theorem 5.1. 

Appendix. Grassmannian computations 

Here we summarize explicit computations for the quotient universal 
bundle over a Grassmann variety, which correspond to the ones for 's-pre 
bundles of type G' (cf. § 2 and § 3). 

Standard facts for Grassmann variety will be found in Bott ([BoD 
Griffiths-Harriths ([G-H]), Hodge-Pedoe ([H-P]), Kleiman ([KI-I,2]) 
Kleiman-Lundoff ([KL-Lu]), Laskov ([La]) and Musili ([Mu-I, 2]). 

1.1. Let the complex euclidean space F (of dimension n), the Gras
smann variety V of d-dimensional subspaces of F(l<d<n), the exact 
sequence of the universal bundles: 

(I. 1.0) 
_ (J) 

0-------+ G v -------+ F v ( = F X V)-------+ E v -------+ 0 

and the basis e' = (e~, .. " e~) of F be as in Section 2.3. As in that place, 
we write e~, .. " also for the corresponding sections of Fv and we set 
ei=(tJ(e~) (l~i~n). A most theoretical approach to the Grassmann 
variety may be the one from the group theoretical view point (cf. [Bo] and 
[Mu-l]). Here we do not enter into this view point. Instead, for purpose 
of explicit computations, we work with the Stiefel variety W corresponding 
to V: 

(I. 1.1) 

Recall that V is the quotient variety of W by the right action of the general 
linear group GLd(C): 

(I. 1.2) 
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where p= 7C(f) is also characterized by that the tautological subspace Gv,p 
for p(CF) (=the fiber of Gv atp) is spanned by f. 

For the Stifel variety W, the corresponding exact sequence to (1.1.0) 
takes the form: 

(1.1.3) 

where the fiber Gw,j of Gw at Ie W is the subspace of F spanned by f. 
(Note that Gw has a tautological frame: W3/-"'1, and Gw is a product 

d 
~ 

bundle.) Next identify Fd with cnd(=cnX'" XCn) by the basis 
e': Fd 3/(= (/" ... ,fd» = e'· Yj-",C nd 3:r;. For an index 1= (i(I), .. " 
i(d»: 1 ;:;;;;i(1) < ... <i(d)':5:n, let PlY); Ye cnd be the Pliicker function 
for I: 

(1.1.4) PI(Y)=det YJ, where yJ=J-submatrix of MnaCC), with 
J=(n+l-i(d), "', n+l-i(1». 

~==+::~ 
Then one can identify Wwith the Zariski open set (Cnd-(nl(PI)O) of cnd. 

1.2. Next let Ai be the subspace of F spanned by (el> .. " ei) (1 <i 
<n). Recall that, for an element 1= (i(l)< ... <i(d», the closed 
Schubert variety SI (for I) is defined to be: 

(1.1.5-1) 

where Gv,p is the tautological subspace of F for p. In addition to the 
closed variety Sf> let V} be the Plucker divisor for I: V}= (/\ r eJ)o, where 
J=U(I)< . .. <j(r» is the complement of I in (1, .. " n) and eJ=(e j (!), 

•• " ej(T»' Then, setting VI = V - V}, the open Schubert variety Sl (for 
I) is defined to be: 

(1.1.5-2) 

Among very many important facts on the closed and open Schubert· 
varieties (as in the references in the beginning of this appendix), we recall 
here two facts as follows: First we have: 

Theorem 1.1. (1) The Chow group A(V) of V is isomorphic to 
EBl Z[C(SI)] as Z-module, where the element C(SI) e A(V) is defined by SI' 

(2) (Schubert-Bruhat stratification) The following expression gives a 
stratification of V: 

(1.1.5-3) 

, 
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(For the proof, see [H-P], [KI-l] and [Mu-I].) Next, letting O'k(A i ) denote 
the special Schubert variety ([KI-I]): 

(I. 1.6) O'k(A i )={pEV';dim(A i nGv,p)::2::k} (l::::i<r,k::2::I) 

(= Sr, with 1= (i+ l-k, .. " i, r+k+ 1, .. " n», we have: 

Theorem 1.2. (1) O'I(A i ) represents the (r+I-i)-th Chern class 
cT+I-t(Ev) of Ev, and O'k(A i ) (k:;;;;2) describe completely the singular locus 
of O'I(A t): 

(1.1. 7) 

where O'k(A t) is the singular locus of O'k_I(Ai) (k= 2, ... ). 
(2) The Chow ring A(V) of V is generated by the Chern classes ci(Ev) 

(1 ~i<r). (For the above, see [H-P], [La] and [KI-I].) 
Now, remark that the special Schubert varieties just above are defined 

in terms of the r-sections eO= (el , •• " eT) (and, for notational reason, we 
write O'iAi) also as O'i,k(eO». On the other hand, recall that a most basic 
property of our 's-pre bundle' is the existence of (r+ I)-sections (Defini
tion 2.1) (and that the basic varieties in our frame construction are formed 
from those sections. (cf. Figure II, § 2.1». Taking account into this, let 
us start with the (r+l)-sections e=(e j , "', er+I)Cr(Ev)' Then setting 
ei=(el, "', eT+l_j' ... , er +l) (O~j~r), we form a closed variety O't,k(e l ) 

(I;;;;;j;;;;;r) in the similar manner to O't,k(eO). Also we attach to e a closed 
subvariety of V, which may be an analogue of O't,k(eO) for e: 

Recall that, in our arguments in Section 2 - Section 4, the corresponding 
variety Y to the above one (cf. (2.2.9» plays very basic roles. In light of 
this the fact that 

(1.1.8-2) O'I,T(e) is the Schubert variety (more precisely, = Sr, with 
I=r-k+I,···, r+I, r+p+2,·· ·,n), 
may be worthwhile pointing out (because that the variety like Y has a 
corresponding fact in the Schubert calculus is an encouraging support for 
our present experimental stage.) Next, in comparison with the main part 
of this paper, we write here the corresponding diagram to the one in 
Figure II, Section 2.1 for the universal bundle Ex (cf. also Lemma 2.2): 

tJ 
O'r_l,l(el ) (j=O,2, ... , r) 

Figure I. 
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where we write: O'T,I=O'T,I(eO) ••• and O'~,I=O'T'I(e). (That this corres
ponds to Figure II, Section 2.1 is checked from the definition of O'~,I as in 
(1.1.8-1) and (1.1.10-1, 2) soon below: 

(1.1.10-1) O'T,I n O'T,I(el)=O'T_I,1 U O'~,I and the Schubert varieties in 
the right hand side are of co dimension two in V (cf. [Mu-l]). 

(1.1.10-2) O'T,2= the singular locus of O'r,l' and O'~,I = ni=o O'T,I (e l ) 

(cf. (1.1.8». 
In connection with the above arguments, we quickly check the 

validity of Lemma 2.2: From its formulation, it is clear that it suffices 
to see the following for the check: 

(1.1.10-3) The divisors (/\eJ)o is reduced and irreducible (O<j~r), 
and (/\ eO)o n (/\ el)o is of codimension two. 

But this is well known from the Schubert calculus (cf. [KI ~ 1, 2] and 
[Mu-I,2]). 

2. Next recall that a main result in the present paper is the explicit 
construction of the frames as in Section 3 (Theorem 3.1 ~3.3). Here we 
will check that the corresponding fact for the universal bundle Ex is 
obtained in a very clear form from the Schubert calculus. 

2.0. First take an open Schubert variety Sn I =(il < ... <i",). Then 
we give the explicit form of the standard frames of the universal bundles 
Gv and Ev over the ambient space VI of SI (cf. (1.1.5-2». For this we 
quickly recall the standard affine structure of VI ([KI-l] and [Mu-I]): 
Corresponding to Vn we set WI =1t"-I(V]) (= W-(PI)O). Then we easily 
have the following commutative diagram: 

(1.2.1) 

Here A is the projection, and we identify eTr! with the linear subspace 
of en'" defined by the following condition: The i(d), ... , i(1)-rows are: 

'" '" ~ ~ 

(1,0, ... ,0), ... , (0, .. ·,0, 1), and we write the coordinates X(l) of eTr! 
in the following form: 

(1.2.2) [ 
x(j(r» ] 

X(I) = . 1, 0, ... , ° .. ~(d) 
0, ..... , 1 . ·1(1) 

x(j(I» 

(=nXd-matrix whose i(1), ... , i(1)-rows are just as above, and we write 
j(1)-, ... , -rows as follows: x(j(1» = (x(j(1), d), ... , x{j(1), 1», .... 
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Next, recall that the exact sequence (1.1.0) turns out to be the direct 
sum over Vi[KI-l]): 

(1.2.3) Fvlr= Grlr+Erll> where Fvll> ... are the restriction of Fr 
to Vr, .•. 

and we take, as standard frames of EvlI and GvI I, the following: 

(1.2.4) eI:=(ej(l)"'" ej(r)) and P(=(;;, .. ·,fd)):=e'·X(I). 

2.1. Next we give an explicit form of the transition matrix hlO for 
the frames (eO, el) and some resulting sheaves (cf. § 2 and § 3). Our 
arguments will be done for the open Schubert varieties as follows: 

(I.3.0) {
SO:= Sr+l, ... ,,., SI:= Sr,r+2, ... ,n, S2:= Sr-l,r+2, ... ,n, 

SI2= Sr,r+ l,r+ 3,00.,n and S4:= Sr -1,r,r+3,00.,n' 

Remark that these open varieties are, respectively, the generic open parts 
of V, SI:=O'r,l(eO), S2:=O'r_l,l(eO), S/2:=O'r,l(i) and S4:=O'r,leO). (For the 
roles of the Schubert varieties, see Figure I and Theorem 1.2. We write V 
for the ambient affine space (cf. (1.1.5-2)) for each open Schubert variety 
in (1.3.0). Moreover, for each V, the standard coordinates xU, i) are the 
ones in (1.2.4). From the explicit form of the d and (d+ 1)-th components 
of the frame/r (cf. (1.2.4)), we have the following relation for el , •• " er + 2 

cT(Ev): 

{
er+l+ L;j~1 x(j, l).ej=O, for So, 

(I.3.I) x(r+l).er+l+er+~j:~x(j, l).ej=O, for Sl, 

x(r+l, 1)·er+l+x(r, 1)·er+er-l+L;j:ixU, l).ej=O, for S2. 

Moreover, for SI2 we have: 

(I.3.2) {
X(r+2, l)·er+z+er+ L;j:ixU, 1)·ej=O, 

x(r+2, 2)· er+2+ er+l + L;j:~ x(j, 2)· ej= 0, 

and for S4 we have: 

(I.3.3) 
x(r+2, i)·er +2+x(r+l, i).er+l+er-2+i+ L;j:ixU, i)·ej=O 

(i= 1, 2). 

In a concordant manner to the arguments in Section 2 ~ Section 4, we will 
be here concerned with S2, S'2 and S4. 

3.1. First, for 52, we have: 
(I.3.4-1) S2= locus of x(r+ 1, 1), x(r, 1), and the standard frame 

for S2 (cf. (1.2.4)) is (el , "', er _ 2, en er + l ). (Moreover, sin V=locus of 
xCr+ 1, 1).) 
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Thus the transition matrix hlO for (eO, e l ) is explicitly as follows: 

(1.3.4-2) [
lr_1 (-xU, 1)/x(r, 1» ] 

1110 = 0 (-x(r+ 1, l)/x(r, 1» 
(l~j~r-l). 

I x(r+ 1,1)/ 
x(r, 1) 

1/ 
This gives the explicit growth properties of the matrix hlO with respect to 
S2. 

3.2. Next we will be concerned with S/2, which corresponds to our 
basic variety Y in the frame construction (cf. § 3.1). First, from (1.3.3), 
we have the following relation for (e l , •• " er + I );; 

Also we have: 
(1.3.4-4) /\ reO = cox(r+2, 1)(/\ reI), /\ reI = cl x(r+2, 2)(/\ "el) and 

/\rej=cjs//\reI), wherecj=l or -1 andel=(el ,·· ·,er_H er+ 2). 

Remark that, from the explicit form of Sj' we have: x(r+2, 1)= 
x(r+2, 2)= O::}Sj= 0 (l::;:j::;:r-l), and, from (1.3.2-6) and (1.1.8,9), we 
have: 

(1.3.4-5) SI2 is the locus of (x(r+2, 1), x(r+2, 2». 
(Also note that SI n V is the locus of x(r+2, 1).) The explicit form of 
the matrix 1110: 

(1.3.4-6) [
lr_1 (Sj/X(r+2,2»] 

hlO= 0 (x(r+2, 1)/x(r+2, 2» 
(l <j ::;:r-1) 

also gives the explicit growth property of hlO with respect to the codimen
sion two subvariety SI2. Moreover, remark that the restriction of hlO to 
SI n V is of the form: 

(1.3.4-7) [
lr_1 xU, 1) ] 

1110= 0 (x(r+2, 1)/x(r+2, 2» 
(1 ~j~r-l) 

and the coefficients of it are holomorphic over SI n V except the (r, r)
component. The similar fact fails for S2 (cf. (1.3.4-2». 
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Remark. The explicit form of the matrix hlO for S2 and S'2 and the 
difference mentioned soon above are used in the explicit residue computa
tions (in the form of Theorem 5.1) for the universal bundle Ex. (This will 
be given elsewhere.) 

Now, define an (r-l)xr-matrix h' by h'=x(r+2, 2). [lr _1> xU, 1)] 
(1 <j <r-l). Then, corresponding to (2.2.5), we define an Ol-module 
{YI> where 0 1 is the structure sheaf of S\ to be the kernel of X: Or :I e--? 
or-I :I h'e. Then, corresponding to the basic fact for the frame construc
tion in Lemma 3.1 and Theorem 3.1, we easily have: 

(1.3.4-8) FI is an invertible sheaf and has i)= (ih) (1 <j:::;;;r), where 
i)r= 1, i)j=xU, 1) (1 <j <r-l) as its frame. 

Also defining an injection 'C': Evlv--?Of,. in the manner in (1.1), by a 
simple computation, we have: 

(I.3.4-9) co'C'(er+2)=i), where co is the quotient morphism: Oy--?OSl' 
Remarking that (el> .. " er _ l , er + 2) is the standard frame of Evlv (cf. 

(1.2.6», the two facts just above may be worthwhile pointing out in con
nection with our frame constructions in Section 3. 

Now, in the arguments as above for S2 and S'2, the singularity of 
the divisor SI does not appear. But, in the argument soon below for S\ 
the singularity will enter into. 

3.3. First from (I.3.3) we have: 

(I.3.5-1) So' [er+2] + [ x(r+ 1,2), -x(r+ 1, 1)]. [er-I] 
er+1 -x(r+2,2), x(r+2, 1) er 

+ .. =0, [Sr-2(1), .. " SI(1)] [e:_ 2] 
sr_2(2), .. " sl(2) . 

el 

where we set: 

so=det and sli)=det [
x(r+ 1, 1) x(r+ 1,2)] [ x(j, 1) X(j,2)] 

x(r+2, 1) x(r+2, 2) x(r+ 1, i) x(r+ 1, i) 

(1 <j~r-2, i= 1, 2). 

Also from a simple computation we have: 

(I.3.5-2) /\ T eJ=Ej ,sr+l_l2)(/\ reI) (3<j <r), and /\ rei =Ej .si/\ reI) 

(0<j<2), with sj=x(r+2,j) U= 1, 2). (Here Ej= 1 or -1.) 

From this we easily have: 

(1.3.5-3) sIn V=(so)o, s'2n V=(s(1), s(2»o and S4=(x(r+i,j»o 

(i,j= 1, 2). 



Construction of Vector Bundles 579 

Moreover, letting e~ be the (r-I)-sections: (el> ... , er+l_j, ... , er) 
(1 <j~r-I), we have (cf. [Mu-l]): 

(1.3.5-4) 

Now, define the imbedding!': Evlv~Dj, as in (Ll). Then, from (1.3.5-1), 
we have: 

(1.3.5-5) q(:=w!'(er+I»=(gj)(l~j:S:r), where gj=ws;(2) (1~j~r-2), 

gr_l=wx(r+2,2) and gr= -wx(r+2, 1). 

Moreover we define a meromorphic vector fj(j) in the manner (3.9.1): 

(1.3.5-6) 

Then, corresponding to Theorem 3.3, we have: 

Theorem 1.3. We have: 
(1.3.5-7) a·fj(1) is an element of ITI (cDi) for any a E ~I (:= the 

ideal oiU\ r-Ie~)o (COl), and 
(1.3.5-8) ([J: ~I ~ a~ITI ~ afj(l) is an DI-isomorphism. 

(Here the Ol-module ITI is defined similarly to the one in (1.3.4-8) (cf. 
also (2.2.5». 

Proof First, by a simple computation, we have: 

(a-I) eJ\··· Aer_1 

= (clx(r+2, 1)· er+1 +C2x(r+ 1, 1)·er + 2)J\eI A· .. Aer_z, 

where Ci= 1 or -1 (i= 1, 2). and: 

On the otherhand, we obviously have: 

(b-I) x(r+2, 1)·fj(1)=w!'(er+I), with the quotient m:)rphism: Dj,:usl. 

Also from (1.3.5-1) we easily have: 

(b-2) 

From (b-l, 2) we have (1.3.5-7). On the otherhand we have (cf. (3.4.4»: 

(c) 

and w'r(ej) = 0 (l:S:j<r) (cf. (2.2.6». From this and that (el, ... , er- z, 
er + l , er + z) is a frame of Evlv, we have (1.3.5-8). q.e.d. 
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The proof of Theorem 1.3 would show that the isomorphism: ,;s1 ~~ 
is natural and also would be a supporting fact for our frame constructions 
in Section 3.) 
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