Advanced Studies in Pure Mathematics 8, 1986 Complex Analytic Singularities pp. 273-279

Sheaf Theoretic L^2 -Cohomology

Masayoshi Nagase

If M is a compact manifold, then we have the famous de Rham isomorphism: $H_i(M) \cong \text{Hom}(H^i_{DR}(M), R)$. In this paper, we show that this isomorphism can be generalized to the case of the so-called Thom-Mather's stratified spaces by replacing the simplicial homology by the intersection homology and the de Rham cohomology by the L^2 -cohomology. This assertion has already been verified in [1] and [6]. Here we reconstruct the proof from the sheaf theoretic viewpoint developed by Goresky-MacPherson ([4]) and Cheeger ([1]).

§ 1. L^2 -cohomology and intersection homology: Main Theorem

From now on, X is an *n*-dimensional compact stratified space without boundary. We will fix a stratification

$$X = X_n \supset X_{n-1} = X_{n-2} (= \Sigma) \supset X_{n-3} \supset \cdots \supset X_1 \supset X_0,$$

and a tubular neighborhood system and, moreover, the *PL*-structure compatible with these structures.

Let g be a metric on $X-\Sigma$, and let d_i be the exterior derivative on $X-\Sigma$ with domain

dom
$$d_i = \{ \omega \in \Lambda^i(X - \Sigma) \cap L^2 \Lambda^i(X - \Sigma) \mid d\omega \in L^2 \Lambda^{i+1}(X - \Sigma) \}.$$

The *i*-th cohomology group of the cochain complex $\{\text{dom } d_i\}$ is called the *i*-th L^2 -cohomology group and denoted by $H^i_{(2)}(X-\Sigma)$.

Next, taking account of the *PL*-structure of *X*, we define the intersection homology. Let $\bar{p} = (p_2, p_3, \dots, p_n)$ be a *perversity*, i.e., a sequence of non-negative integers satisfying $p_2=0$ and $p_k \le p_{k+1} \le p_k+1$ for all *k*. The perversities which are of particular importance are as follows:

 $\overline{0} = (0, \dots, 0)$, the zero perversity,

 $\overline{m} = (0, 0, 1, 1, 2, 2, \dots), m_k = [k/2] - 1$, the (lower) middle perversity, $\overline{i} = (0, 1, 2, 3, \dots)$, the top perversity.

Received December 14, 1984. Revised April 20, 1985. We write $\bar{p} \leq \bar{q}$ when $p_k \leq q_k$ for all k. We also set

$$\overline{p}+\overline{q}=(p_2+q_2,p_3+q_3,\cdots).$$

The perversity \bar{q} is said to be the *complementary perversity* of \bar{p} if $\bar{p}+\bar{q}=\bar{t}$. Then, take an integer *i*. A subspace *Y* of *X* is called (\bar{p}, i) -allowable if dim $Y \leq i$ and dim $(Y \cap X_{n-k}) \leq i-k+p_k$ for all *k*. For example, *Y* is $(\bar{0}, \dim Y)$ -allowable means that *Y* and the strata are in general position. Now, let's set

$$IC_i^p(X) = \left\{ \xi \in C_i(X) \middle| \begin{array}{l} |\xi| \text{ is } (\bar{p}, i) \text{-allowable and} \\ |\partial \xi| \text{ is } (\bar{p}, i-1) \text{-allowable.} \end{array} \right\}.$$

Then, the *i*-th homology group of the chain complex $\{IC_i^p(X)\}$ is called the *i*-th *intersection homology group* with the perversity \overline{p} and denoted by $IH_i^p(X)$.

Now we may remark that the perversities which are interesting here or which we wish to treat here are the perversities which are smaller than the middle perversity, i.e., $\bar{p} \leq \bar{m}$. This restriction seems to be not essential (see the remark following Definition 1.1).

We now return to the L^2 -cohomology and define the metric associated to a given perversity and then state the main theorem.

For a non-negative real number c and a Riemannian manifold Y with metric g, we set

 $C^{c}(Y) =$ "the Riemannian manifold $(0, 1) \times Y$ with metric $dr \otimes dr + r^{2c}g$ ".

Now, fix a sequence of non-negative real numbers $\overline{c} = (c_2, c_3, \dots, c_n)$. The metric g on $X - \Sigma$ is said to be *associated to* \overline{c} if, for any point x of any non-empty stratum $X_{n-k} - X_{n-k-1}$, there exists a neighborhood $x \in U \subset X$ such that

$$U \cap (X-\Sigma) \underset{\text{quasi-isometry}}{\sim} C^{c_k} (\text{(the link of } X_{n-k} - X_{n-k-1}) \cap (X-\Sigma) \text{ with } g) \\ \times (U \cap (X_{n-k} - X_{n-k-1}) \text{ with Euclidean metric}).$$

Definition 1.1. The metric g on $X - \Sigma$ is said to be associated to the perversity \overline{p} ($\leq \overline{m}$) if g is associated to $\overline{c} = (c_2, c_3, \dots, c_n)$:

$$\begin{cases} (k-1-2p_k)^{-1} \le c_k < (k-3-2p_k)^{-1}; & 2p_k \le k-3, \\ 1 \le c_k < \infty & ; & 2p_k = k-2. \end{cases}$$

If we want to treat the perversities which are larger than \overline{m} or which are not comparable with \overline{m} , it will suffice to change (certain) c_k 's to

suitable negative numbers.

It is noteworthy here that, if $1 \le c_k < \infty$ for all k and the metric g is associated to \bar{c} , then the metric g is associated to the middle perversity \bar{m} . This case was studied by J. Cheeger ([1]).

We will use the notation $(X-\Sigma)_{\bar{p}}$ in order to make it explicit that the metric under consideration is associated to \bar{p} . Then we can state the following.

Main Theorem. If $\bar{p} < \bar{m}$, then

$$IH_i^{\overline{p}}(X) \cong \operatorname{Hom} (H^i_{(2)}((X - \Sigma)_{\overline{p}}), R).$$

The following two sections are preparations for the proof of Main Theorem from the sheaf theoretic viewpoint.

§ 2. Sheaf theoretic L^2 -cohomology and intersection homology

As above, the non-singular part $X-\Sigma$ is endowed with metric g. Let Ω be the complex of sheaves on X which is defined by

with the sheaf maps $d: \Omega^i \to \Omega^{i+1}$ induced by the exterior derivative on $X-\Sigma$. In order to indicate that the metric g is associated to a given perversity \bar{p} , we will use the notation Ω_p .

Next, paying attention to the *PL*-structure of X, we will define a complex of sheaves $\mathscr{IC}_{\overline{v}}$. We first define the sheaf \mathscr{C}_i by

 $\Gamma(U, \mathscr{C}_i) =$ "the group of locally finite *i*-dimensional simplicial chains with respect to the induced *PL*-structure of *U*".

For convenience, we set $\mathscr{C} = \mathscr{C}_{-}$ and regard this as a complex of sheaves, being induced by the simplicial boundary operator. Then we define its subcomplex \mathscr{IC}_{p} by

$$\Gamma(U, \mathscr{IC}_{\bar{p}}^{-i}) = \begin{cases} \xi \in \Gamma(U, \mathscr{C}^{-i}) & |\xi| \text{ is } (\bar{p}, i) \text{-allowable and } |\partial \xi| \text{ is} \\ (\bar{p}, i-1) \text{-allowable with respect} \\ \text{to the induced stratification of } U. \end{cases}$$

Now $\Omega_{\bar{p}}^{\bullet}$ and $\mathscr{IC}_{\bar{p}}^{\bullet}$ are fine sheaves. Therefore we have

Lemma 2.1.

$$\mathcal{H}^{i}(X, \mathcal{Q}_{\bar{p}}^{\bullet}) \cong H^{i}_{(2)}((X - \Sigma)_{\bar{p}}),$$

$$\mathcal{H}^{-i}(X, \mathscr{IC}_{\bar{p}}^{\bullet}) \cong IH^{\bar{p}}_{i}(X).$$

Here $\mathcal{H}^*(X, \cdot)$ denotes the hypercohomology.

§ 3. Key Theorem due to Goresky and MacPherson

Let \mathscr{S} be a complex of sheaves on X which is constructible with respect to the given stratification $\{X_k\}$ (that is, for any j, $\mathscr{S}'|_{X_j-X_{j-1}}$ is cohomologically locally constant).

Definition 3.1 ([4]). We say that \mathscr{S}^* satisfies the axiom $[AX1]_p$ provided:

(a) $\mathscr{G}'|_{X-\Sigma} \cong \mathbf{R}[n]$ (the isomorphism in the derived category),

(b) $\mathscr{H}^{i}(\mathscr{G})=0$ for all i < -n,

(c) $\mathscr{H}^{m}(\mathscr{G}'|_{X-X_{n-k-1}})=0$ for all $m > p_{k}-n$,

(d) the attaching maps (in the derived category)

$$\mathscr{H}^{m}(j_{k}^{*}\mathscr{G}^{\bullet}|_{X-X_{n-k-1}}) \longrightarrow \mathscr{H}^{m}(j_{k}^{*}\mathscr{R}i_{k}^{*}i_{k}^{*}\mathscr{G}^{\bullet}|_{X-X_{n-k-1}})$$

are isomorphisms for all $m \le p_k - n$.

Here $\mathscr{H}^*(\cdot)$ denotes the cohomology sheaf. Also $i_k: X - X_{n-k} \to X - X_{n-k-1}$ and $j_k: X_{n-k} - X_{n-k-1} \to X - X_{n-k-1}$ are the inclusion maps.

Then, according to [4], we have

Key Theorem (Goresky and MacPherson).

(1) The constructible complex of sheaves which satisfies the axiom $[AX1]_p$ is unique up to isomorphism in the derived category.

(2) \mathscr{IC}_{p} is constructible and satisfies the axiom $[AX1]_{p}$.

(3) If $\bar{p} + \bar{q} = \bar{t}$, then $\mathscr{IC}_{\bar{p}} \cong \mathscr{RH}_{om}(\mathscr{IC}_{\bar{q}}, \mathscr{D}_X)[n]^*$, where \mathscr{D}_X is the dualizing complex on X, i.e., $\mathscr{D}_X = f^{\dagger} \mathbf{R}_{vt}$ with $f: X \to (point)$.

§ 4. Proof of Main Theorem

It suffices to prove

Assertion. $\Omega_{\bar{p}}[n]$ is constructible and satisfies the axiom $[AX1]_q$, where \bar{q} is the complementary perversity, $\bar{p} + \bar{q} = \bar{t}$.

In fact, if we assume the above, we have

Proof of Main Theorem. From Key Theorem (1) and Assertion, we have

 $\Omega_p^{\boldsymbol{\cdot}}[n] \cong \mathscr{I} \mathscr{C}_p^{\boldsymbol{\cdot}}.$

Therefore, by substituting $\Omega_{p}^{\cdot}[n]$ for \mathscr{IC}_{p}^{\cdot} in Key Theorem (3), we get

$$\mathscr{IC}_{p} \cong \mathscr{RH}om(\Omega_{p}^{\bullet}, \mathscr{D}_{X})^{\bullet}.$$

Hence, by the Verdier duality theorem, we have

$$\mathcal{H}^{-i}(X, \mathscr{IC}_{p}) \cong \operatorname{Hom}(\mathcal{H}^{i}(X, \Omega_{p}), \mathbf{R}).$$

Thus, combined with Lemma 2.1, the proof is complete.

Now we will prove Assertion. It suffices to examine (a)-(d) of $[AX1]_q$. The constructibility of $\Omega_p^{\cdot}[n]$ will be shown on the way.

(a) Since $\Omega_{p}[n]|_{x-\Sigma}$ is the sheaf of C^{∞} -forms on $X-\Sigma$, we have $\Omega_{p}[n]|_{x-\Sigma} \cong \mathbf{R}_{x-\Sigma}[n]$ because of the usual resolution.

(b) If i < -n, then $(\Omega_p^{\cdot}[n])^i = \Omega_p^{i+n} = 0$. Therefore $\mathscr{H}^i(\Omega_p^{\cdot}[n]) = 0$ for all i < -n.

(Preparation for (c) and (d)) For a point x of $X_{n-k} - X_{n-k-1}$, take a suitable neighborhood U and the link L of the stratum at x. Then we have

(4.1)
$$\mathscr{H}^{j}(\Omega_{\bar{p}})_{x} \cong H^{j}_{(2)}(U \cap (X - \Sigma)).$$

Strictly writing, the right hand side of (4.1) should be the inductive limit $\lim_{U} H^{j}_{(2)}(U \cap (X-\Sigma))$. But, for sufficiently small U, it is naturally isomorphic to $H^{j}_{(2)}(U \cap (X-\Sigma))$ because the L^{2} -cohomology is invariant under the quasi-isometric transformation. Hence, also, Ω_{p} can be regarded as constructible. Moreover, (4.1) is isomorphic to

$$\begin{aligned} H_{(2)}^{j}(C^{\circ_{k}}(L\cap (X-\Sigma))\times (U\cap (X_{n-k}-X_{n-k-1}))) \\ &\cong H_{(2)}^{j}(C^{\circ_{k}}(L\cap (X-\Sigma))) \\ &\cong \begin{cases} H_{(2)}^{j}(L\cap (X-\Sigma)); & j < \frac{1}{2} \left(k-1+\frac{1}{c_{k}}\right), \\ 0 & ; & j \geq \frac{1}{2} \left(k-1+\frac{1}{c_{k}}\right), \end{cases} \end{aligned}$$

through the natural extension maps ([6, Lemma 3.12]). Hence

(4.2)
$$\mathscr{H}^{j}(\Omega_{p}^{\cdot})_{x} \cong \begin{cases} H^{j}_{\langle 2 \rangle}(L \cap (X - \Sigma)); & j \leq q_{k}, \\ 0 & ; & j > q_{k}, \end{cases}$$

because

M. Nagase

$$q_k < \frac{1}{2} \left(k - 1 + \frac{1}{c_k} \right) \leq q_k + 1.$$

(c) This is equivalent to the assertion that, if $j > q_k$, then $\mathscr{H}^j(\Omega_p)_x = 0$ for any point x of $X_{n-k} - X_{n-k-1}$. Hence, by (4.2), this is true.

(d) This is equivalent to the assertion that, if $j \le q_k$, then the attaching maps

(4.3)
$$\mathscr{H}^{j}(\Omega^{\bullet}_{\bar{p}}|_{X-X_{n-k-1}})_{x} \longrightarrow \mathscr{H}^{j}(i_{k*}i_{k}^{*}\Omega^{\bullet}_{\bar{p}}|_{X-X_{n-k-1}})_{x}$$

are isomorphisms for any point x of $X_{n-k} - X_{n-k-1}$.

In order to prove this assertion, first remark that a cross section of $\Omega_p^*|_{X_{n-k-1}}$ resp. $i_{k*}i_k^*\Omega_p^*|_{X_{-X_{n-k-1}}}$ is a smooth form which and whose image by the exterior derivative are square-integrable near any point of $X - X_{n-k-1}$ resp. $X - X_{n-k}$. (For a cross section ω of $i_{k*}i_k^*\Omega_p^*|_{X_{-X_{n-k-1}}}$, it is not necessary to claim that ω and $d\omega$ are square-integrable near any point of $X_{n-k} - X_{n-k-1}$.) Therefore we have the natural sheaf map

$$\Omega_{\bar{p}}^{\bullet}|_{X-X_{n-k-1}} \longrightarrow i_{k} i_{k}^{*} \Omega_{\bar{p}}^{\bullet}|_{X-X_{n-k-1}}$$

And this induces the attaching map (4.3). Now, from the property of $i_{k*}i_k^* \mathcal{Q}_p^{\cdot}|_{X-X_{n-k-1}}$ mentioned above, we have

(4.4)
$$\mathscr{H}^{j}(i_{k} i_{k}^{*} \Omega_{p}^{*}|_{X-X_{n-k-1}})_{x} \cong \begin{cases} H^{j}_{(2)}(L \cap (X-\Sigma)); & j < k, \\ 0 & ; & j \ge k, \end{cases}$$

for any point x of $X_{n-k} - X_{n-k-1}$. Hence, for $j \le q_k$, the identity map from the right hand side of (4.2) to the right hand side of (4.4) is just the attaching map (4.3). Thus the proof of (d) is complete.

References

- J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Proc. Sym. Pure Math., 36 (1980), 91-146.
- [2] J. Cheeger, M. Goresky and R. MacPherson, L²-cohomology and intersection homology for singular algebraic varieties, Proceedings of year in differential geometry, I.A.S., S. Yau ed. (1981), Annals of Math. Studies, Princeton.
- [3] M. Goresky and R. MacPherson, Intersection homology theory, Topology, 19 (1980), 135–162.
- [4] M. Goresky and R. MacPherson, Intersection homology II, Invent. Math., 72 No. 1 (1983), 77-130.
- [5] R. Hartshorne, Residues and duality, Lecture Notes in Math., Springer, 20 (1966).
- [6] M. Nagase, L²-cohomology and intersection homology of stratified spaces, Duke Math. J., 50 No. 1 (1983), 329–368.

278

 [7] M. Nagase, The fundamental solutions of the heat equations on Riemannian spaces with cone-like singular points, Kodai Math. J., 7 No. 3 (1984), 382-455.

Department of Mathematics Tokyo Institute of Technology Meguro-ku, Tokyo 152 Japan