
Advanced Studies in Pure Mathematics 8, 1986 
Complex Analytic Singularities 
pp. 241-272 

An Upper Semicontinuity Theorem for 
some Leading Poles of 1/128 

Ben Lichtin 

Introduction 

In this paper an application is made of certain numerical invariants 
introduced by Libgober [9], called "quasi-adjoint characters". To each 
germ of an analytic function f at a singular point p and to any other germ 
of an analytic function rp at p one may define the quasi-adjoint character 
IC/p) by studying the family of cyclic covers over f and the adjointness 
properties to these cyclic covers of canonical differentials with rp as a coef­
ficient (for precise definitions see (2. 4)). Each Kip) value is in [0, 1). 

The main result of this paper is the 

Theorem (3.1). Let {Ie} be any I-parameter family of germs of analytic 
functions at the common singular point 0 e cn. Let rp be a germ of an 
analytic function at O. Let IC~(t) be the quasi-adjoint character associated to 
Ie and rp at O. Then, if KiO) e (0, 1), one has 

ICi t)::::;; K~(O) 

for all t sufficiently close to 0. 

This is of particular interest because of the following. For each t, 
let Ute. U~ be two Milnor balls for a representative of Ie (denoted by ft). 
Let p be a Coo function which is 1 on Ut and ° off U~. Define the gener-

alized functions on Coo(U~, C) It(s, 't)=J IleI281't12pdxdx. This is often 
u; 

denoted by lie 128 for short. Let fjit) be the largest pole of 1M, rp). Then 
there is a simple relation between ICit) and fjit) given by IC~(t)+ 1 =fj~(t) 
if Kit) e (0, 1). Thus, (3.1) implies as a corollary 

CoroHary (3.8). If ICP(O) e (0, 1) then fjp(t)<fjp(O) for t near 0. 
To understand this condition it is helpful to remark that if rp is a local 

unit at 0, then K~=O iff 0 is a rational singular point off More generally, 
IC~ =0 iff rp is adjoint to f at O. 
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(3.1) and (3.8) when combined with results of Loeser and Varcenko 
provide an extension of Steenbrink's result on the lower semi-continuity of 
the spectrum (and of the Arnol'd Index) of a hypersurface singularity 
which is not a rational singularity. If w=ifJdx is a hoi om orphic n-differ­
ential in an open neighborhood U, U => U t U;, there is associated to w an 
initial exponent at(w) of significance in the mixed Hodge structure on the 
vanishing cohomology of the hypersurface f,. Theorem (4.6) shows that 
for if,} as above, if ao(w) E (-1,0) then a/w»aiw) for t near O. In 
particular, when the Arnol'd index (J(Io) oflo is in (0,1), this gives the lower 
semi continuity of the (J(ft) at O. 

This in turn leads to an alternative basis for Loeser's proof of a con­
jecture of Teissier. This conjecture states a general property for the largest 
pole of the generalized function Iff' by connecting it to the polar invari­
ants off and its restrictions to generic linear planes of codimension i = 1, 
2, ... , n-l. (3.8) can be used to extend this conjecture to obtain esti­
mates for other at(w) with values in (-1,0) (cf. (4.16)). Nonetheless, the 
conjecture is only an approximation, formulated by a pair of inequalities. 

On the other hand, recent efforts have provided precise results on the 
poles of the distribution Iflk where I IK is the norm in any local field K of 
characteristic 0 and f is a function of two variables defined over K. These 
results are summarized in Section (1) and serve as a standard to which the 
results in Sections (4), (5) should be compared. Improvements in the 
conclusions from Section (4) can hopefully lead to results of analogous 
precision. 

The last section extends Igusa's theory somewhat. It uses the results 
in Sections (3), (4) to obtain upper bound estimates (lower bounds can not 
be shown in general, as yet) for the largest poles of the extended zeta func­
tion over a local field K, when these poles lie in (-1,0). The estimates 
have the same form as those given in Section (4) and are shown by using 
any complex embedding of K. 

Conversations with Profs. Kashiwara, Blass, Laufer, and M. 
Spivakovsky have been very helpful and much appreciated. 

Section 1. 

Let K be either (A) a finite extension of Qp for some prime p, (B) R 
or (C) C. These different possibilities are denoted by cases (A)-(C) in the 
following. 

Let f: (K2, O)---+(K, 0) be a germ of a K-analytic function which is 
irreducible in the ring K{xl> x2}. To f is associated a finite sequence of 
positive integers (n, (31' .. " (3g) (the characteristic sequence) with n = multi­
plicity of f at O. The ratios (3jn are the Puiseux ratios of the branch 
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determined by fin ](2. We assume n>2. 
In all three cases, a distribution Iflk determined by f can be defined 

on an appropriate space of "test functions" and has been studied in [7]. 
[10, 11], [12, 17]. We summarize here the conclusions of these investiga­
tions all of which are based on the explicit canonical resolution of the 
singularity 0 [10]. 

The space of test functions. Let U C K2 be an open neighborhood of 
o containing no other singularity of {f= O} in a and on which f is K­
analytic. 

Case (A). YU(K2) is the Schwartz-Bruhat space of complex valued 
functions which are locally constant. 

Cases (B, C). Define Y U(K2)={9: U~K: supp(gI) is compact in U 
and gI is a C= function}. 

Definition (Ll). (A) For x E K, define IxIK=q-OrdK(X) where q=pc, 
c=[K: Qp] and ord(x)=min{.e: x E £1ii}. Here, £1i is the unique maximal 
ideal of the valuation ring !!licK consisting of the elements with K-norm 
at most 1. If x*O, x ~ !!Ii, ordK (x) = -ordK (l/x). ordk (0) = + 00. 

(B) IxlR is the standard absolute value in R. 
(C) Ixlc=x.x=mod (X)2. 

Remark (1.2). K2 is a locally compact additive group with norm the 
supremum norm I (x, Y)IK=SUP {lxIK, lylK} and a unique Haar measure dfl 
for which 

f dfl=1. 
((x,y): I (X,y) IK5:1j 

Remark (1.3). For Re (s) >0 and gI E Y U(K2) lis) = f K.lflkgldfl is 

analytic. 
The results of the papers referred to above have investigated the 

analytic continuation to C of l;(s) , subject to the property that gI(O) * ° 
(cf. Remark (1.7) below however). 

The poles and residues of l~(s), 9(0)*0, have been determined as 
follows. 

Let e(O) =n, e(i) = g.c.d. (e(i-I), ~e). 

Set 

r.= ~e +n 
, e(i) 

~ie(i-l)+~i_l(e(i-2)_e(e-I»)+ ... +~l(e(O)-e(l») 
Re= 
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Set fil(i) = max {fii+l-fii' e(i)} for i=l, 2, ... , g-1. Define el' ez, ea, 
so that 

and 

+ 1- Ri - rie(i) 
ea ------"'~--"---

Ri 
for i=2, 3, ... , g. 

Theorem (1.4). The numbers -rI/RI, -rzIRz, ... , -r glRg are non­
integral poles of order 1 of lis) in cases A, C and, if i:2::2 and g.c.d. (ri' R i ) 

= 1, -rjlRi is a pole in case B. 

Theorem (1.5). Up to a non-zero positive constant factor which de­
pends only on J, 

8~~~/is)=~(O) Ini Ixl~II-XI~dx=FO 
R, 

if g.c.d. (ri' R i) = 1 and ~ E Su(KZ). Here Di is the divisor in the canonical 
resolution 7r: Xres~U such that Ri =multD.(f· 7r), ri -1 =multD , (det d7r). 
Di is a PI(K) in all cases. 

Remark (1.6). As in [10, II], [17], one can either explicitly evaluate 
the integral in all three cases to show it is non-zero or, as shown in [7], one 
can derive that such an integral (when correctly interpreted) is a product 
of three non-zero gamma functional values (the gamma function in case 
(A) is that defined by Sally and Taibleson [21]). As such, in all cases, the 
value of the integral can even be shown to be positive if i = 1 and negative 
if i > l. Note that this is a conclusion that cannot be obtained from [10] 
in case (B) but can be from the representation of the value for the residue 
in [11] in case (C). 

Remark (1.7). For an extension of these results to those involving 
lis) when ~(O)=O is allowed, see [II]. 

Open Question. It would be interesting to extend these results to a 
convenient class of analytically reducible functions. Are there classical 
analysis type identities which can be used to show that certain ratios arising 
via resolution data (that is, ratios of form (A)v = - (1 + multD det d7r)1 
mult D (f 0 7r), D an irreducible reduced component of the exceptional locus ) 
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are genuine poles of the I~(s)? In the irreducible case, and over R, the 
residue at s= -rilRi is a sum of three beta functional values associated 
to the three intersections of the divisors Di with other divisors. That the 
residue is always non-zero implies that these points of intersection do not 
affect the property that -rilRi is a pole of I~(s). In what way can one 
detect a non-trivial modification of this in the reducible case. That is, 
when would the positions of intersections of a divisor D with other divisors 
determine whether the ratio AD is or is not a pole of the lis) when sh(O):f:O 
or sh(O) =0. The phenomenon of jumping of roots of the local b-function, 
discovered by Yano [32] is presumably related to this. 

Section 2. 

Quasi-adjoint characters were introduced by Libgober [9] in his study 
of the Alexander module for plane curves. Nonetheless, they can be used 
in other settings. To state their definition we recall for the reader's con­
venience the definition of the adjoint ideal as given in [19]. 

Definition (2.1). Let X be a reduced complex analytic hypersurface 
of dimension n. Let p E X be an isolated singular point of X (isolatedness 
is not essential to the definition but in the following it is the only type of 
singularity that will be considered). Let f be a local defining function of 
X at p. This defines a local embedding of X into C n +1• In complex 
coordinates (XI' •.. , x n +1) centered at p, the n-differentials 

/'-. 

(-1)dx l dx2dxs " .dxn + 1 (-1)n- 1dx1 ••• dXn 
---_. - ~,'" 

fX2 fXn+l 

patch on the nonsingular part Xsp of X to give a meromorphic differential 
on X, denoted by (J x' As discussed in Section 3, (J x generates an (!) x module 
near p, called the dualizing sheaf and denoted W x' Let g be a local 
section of (!)x defined in an open neighborhood W of p in X. The germ 
of g at p is adjoint to X at p if the n-differential WI = (gdx2 • •• dXn +1)1 fXllw 
satisfies the L 2 condition 

(2.2) 

for any relatively compact open subset U of W with p E U. 

Remark. It follows from Lemma (1.3) of [19] that g is adjoint to X 
/'-. 

at p if one replaces WI by any of the Wi =( -1)i-l«gdx1 • •• dx i • • • dxn)lfxJ 
If (2.2) holds for one Wi. it will hold for all the Wi' 
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Now, let f: (Cn , 0)-+( C, 0) be the germ of a complex analytic function 
with isolated singular point at O. Let 0 E Uccn be an open neighbor­
hood of 0 over which f: U-{f=O}-+C-{O} is a Milnor fibration. Let 
mEN. We define the cyclic cover 2m of {f=0} of degree m by the local 
equation 

in an open neighborhood XoX Uccn+l of (0,0). Here, Xo is an open 
neighborhood of ° in C and is independent of m. Thus, 2m c Xo X U for 
all m. 

Let p E r(u, @u). The local section p determines a local section, 
also denoted by p, of @ :s m near (0, 0). 

Following Libgober we define the function tim)=min{k: x~'p is 
adjoint to 2m at (0, O)}. The basic theorem about t¢(m) is 

Theorem (2.3). Either tim) =0 (i.e. p itselfis adjoint to 2m at (0,0)) 
or there is a unique rational number K¢ in (0, 1) such that tim) = [m· K¢]. 

Definition (2.4). K¢ is the quasi-adjoint character associated to ¢. If 
the singular point of 2m also needs to be specified, we do so by writing 
Kip) (here K/O, 0)). For different singular points p the values of K¢(p) 
will be different in general. Similarly, when p is specified, we will use the 
notation tip, m). 

The interest in the K¢ comes from the 

Theorem (2.5). Let U' cUbe two Milnor balls for a representative 
off Let p be a C= function which is 1 on U' and ° off U. Let /3¢ be the 
largest pole of the analytic continuation of the generalizedfunction Ifl28 evalu­
ated at ¢, that is, 

Then, K¢ - 1 = /3¢ if K¢ E. (0, 1) or, equivalently, if /3¢ > -1. 

Proof For f, as above, introduce the set of triples .s1' ¢ = 
{(ordn (f 0 n), ordn (det drr), ordn (¢ 0 rr)): D is a component of the excep­
tionallocus rr- 1(0) where rr: Xres-+U is a local resolution of J. ¢' defined in 
a neighborhood Uij of O}. 

This is the evident generalization of the array of multiplicities [10] 
whose study is sufficient to detect the largest root of b f(S), corresponding 
to ¢ with the property ¢(0)::;t:0. However, when ¢ also vanishes at 0, it is 
necessary to include the data ordn (¢ 0 rr) in .s1'¢ as well. 
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Given 11:: Xres~ U a local resolution of f·if> in U, set 

Q _ {-(I+ordn(detd11:)+ordn(if>o11:)) . I"fI-maxn . 
ordn{fo11:) 

D is a component of 11:- 1(0)}. 

247 

From standard arguments in [11] one can immediately see that fi~ is 
a root of his), as well as a pole of IfI2., if fi9 e (-1,0). 

To prove (2.5), at least for all m~O (which evidently suffices), one can 
use any of three methods. The argument based on the V criterion of [19] 
can be found in a more general form in (2.13) below. Another short 
argument can be based on Hodge Theory (applied to the Thom-Sebastiani 
function defining the cyclic covers I m) and the characterization of ad­
jointness in terms of the values of the exponents in the spectrum of the 
singularity [14]. However, here we want to give a "classical" type argu­
ment, inspired from Zariski's original argument calculating, in effect, the 
quasi-adjoint character for the cusp [34]. 

Let (JIm be the generator for the dualizing sheaf of Im (in modern 
parlance). The criterion for adjointness is [19] that for any compact 
analytic n-chain r on Im 

(2.7) 

Let 0 be the fixed singular point of f Let U = Ua be a neighborhood of 
o containing no other singular points of f in its closure. One then may 
think of Im as branched over the hypersurface f!(o defined by fin U. 

Im 

~1 
f!(oCUCC n • 

Let 11:: Xres~Ube an embedded resolution of {/if>=0} in U. Let I;" 
=Xres X u Im and Im~I;" the normalization of the analytic space I;". 
One has the commutative diagram 

Observe first that if supp (n does not contain (0,0), then (2.7) is 
clearly satisfied. Next, because Im is normal and P2 is proper and onto, 
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it suffices to check (2.7) in the codimension:S;: 1 part of 1m. That is, if 
.o£=PIl({f0n=O}), a subvariety of 1m (non-reduced) it suffices to check 
(2.7) on 1m and for compact analytic n-chains t intersecting .o£'=.o£red in 
at most a co dimension 1 subvariety of .0£'. For if t lies in.o£' then P2 blows 
t down to the point (0, 0). Since 1m is normal, if t only intersects X' in a 
codimension :?:2 subvariety, then the pullbackpt(x~¢a.rJ can be extended 
holomorphically across t so that (2.7) is satisfied. 

Thus, it suffices to consider the following situation. Let %' be a chart 
in .0£ res with coordinates (uJ , ••• , un) such that 

¢ ° n(uj> ... , un) = urI ... u;:'n(unit) 

det dn(u j , ••• , Un) = urI ... u~n(unit). 

Thus, 

Set o/i =PIl(%,) n (1m)sp- From the above remarks, it suffices to assume 

that supp(t) lies in~. In o/i, x,;,=fon(u)=ufl ... u:n • Let {}: o/i(m)-+ 
pIl(%,) be an mn-fold cover of PIl(%,). Let (vl, ... , vn) be coordinates on 
o/i(m) so that ui = v;'. Liftingpt(x~-m+l¢a.rJ to o/i(m) one obtains 

p*(xk-m+l¢a )1- =mn[f1 (v.)kNi+m(mi+b;)+(m-l)(l-Nil(Unit)]dv .. ·dv 
2 0 Im %'(m)sp i=l 't 1 n" 

Since {} is proper and onto PI 1(%,), (2.7) can be verified for any chain 
t with support in pIl(%,) by verifying it in o/i(m). Using the argument in 
the proof of Lemma 1.3 (i)~(iii) [19], it follows that (2.7) will be satisfied 
if and only if 

fori=l,·· ·,n. 

This holds if and only if 

Thus, in PI l (%,), the smallest possible k for which 

for all m;?,>O is given by the expression 
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where i~a is that value at which -(1 +mi+bi)/Ni is largest. Since 1:m is 
covered by open sets of the form pII( Olt), Olt a coordinate chart of X res as 
above, we see that the smallest possible k for which x~ifJ is adjoint to 2m 
at (0, 0) is given by 

for m;}O 

where IC~ = f3~ + 1, f3~ defined in (2.6), if f3~ > -1 (or equivalently if IC~ e 
(0, 1)). 

Remark (2.8). It would be very interesting to know how to extend 
(2.5) to poles f3~ less than -1. 

Remark (2.9). Let! define a germ of a real analytic function at 0 in 
Rn. Assume 0 is a singular point for f Let ifJ be a real analytic function 
defined in a real neighborhood U of O. Let p be a C~ function which is 
identically 1 in a smaller open neighborhood of 0 and is ° off U. Define 

One can define f3~ and IC~ as in (2.4), (2.6). However now, one has 
the relation f3~ + 1 <IC~ if f3~ > -1. 

Let Ax .. be the adjoint ideal sheaf of 2m (cf. Section 3 for definition). 

Remark (2.10). Let C(O,~)(m)=«(fJx..lAx..)(o,fJ) be the conductor of 2m 
at (0, 0). C(o,aim) admits a C{xo} module structure by Xo multiplication. 

Let (fi denote the class of ifJ in C(o,aim) and N~ the C{xo} submodule 
N~=C{xo}' (fi generated by (fi. Then it is clear that 'l/rim)=lengthc{xo}N~. 

In this way, the information about the leading pole of lis) has been 
coded into the length of a certain C{xo} module. 

Ifpg(m)=dimc C(o"ii)(m) then we see that pg(m) = L:j'l/r~lm) for some 
finite subset of local sections ifJj of (fJu' 

K. Watanabe has used a notion of "Vld integrability" (introduced by 
Sakai [20]) for isolated normal singularities (X, x). When (X, x) is the 
germ of a cyclic covering of a hypersurface, (2m , (0,0)) in the prior nota­
tion) we can use the above considerations to help analyze this notion in 
more detail. 

Following the notation as above, let 0 e r(2m -(0, 0), (fJ(dwx .. )) be a 
section of the sheaf of d-fold tensor products of the dualizing sheaf of 2m. 

In local coordinates (xo, •• " x n) defined in a cn+! neighborhood Y 
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of (0, 0) (using the local embedding of Im into C n +' determined by the 
choice of defining function F m), o(x) can be written in the open subset 
{aFmlaxo:;i::O} n Im n Y (denoted from now on as {xo:;i::O} n Im!) as 

o(x) = Oe x) (dx /\ ... /\ dx )l8id = O(X)(Jl8id 
(aFmlaxo)d' n Xm 

where 0 is a section of (!J x .. defined (at least) in yn Im -{CO, O)}. 0 deter­
mines a section 0/\8 of (cox .. /\i'.iJ xmY8l d , defined in yn Im. 

Observe that 

(2.11) 0/\ 81{xo¢O}nxm =IOI2[«(JXm/\O' xm il. .. o¢o}nx..l'81d 

=\ 0 .1
2

• (dx, dx, . .. dx dx )l8id 

(aF mlaxo)d n n 

One interprets this last equality as follows. The smooth manifold 
(Im)sp is a real manifold of dimension 2n. On it, there is the sheaf of 
germs of complex valued Coo functions, denoted (!Jim' The sheaf .Q11:'.::l.p 
is an invertible (!Jim module. Similarly, cox .. /\i'.iJxm is an invertible (!Jim 

module. 0/\8, in the open set {xo:;i::O} n I m, determines a section of 
[.Q11:'.::lsp]l8id on this open set. This is written in (2.11). 

It is, of course, independent of which partial derivative of F m is used 
to represent (JXm in an open subset of Im. 

To 0/\8 is associated a section of the sheaf of continuous (n, n) dif­
ferentials on (Im)sp- This is written in {xo:;i::O} n Im as 

(0/\ 8)"d = I O(x) 12/d dx, dx, ... dXn dxn • 

(aF m/axo)d . 

That it is a section of this sheaf is left to the reader to check. To 
say 0 is Vld integrable at (0, 0) (i.e. (0/\ U)'/d is a section of the sheaf of 
Vld integrable (n, n) differentials on a punctured neighborhood of (0, 0) in 

(Im).p) is to say that f (0 /\U)l /d< 00 for each relatively compact 
U-Vn{xo~O) 

open set VcIm containing (0,0). 
In analogy to the functions vim), assume now 0 is a section of (!Ju' 

Define the function 

CD(d, m)= min {k: x~ O(x) (dx,' . . dXnY~d 
(aFm/axo)d 

= 0" is VIIl integrable at (0, O)}. 
Co(d, m) can be computed in the same way as is vim). 
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Consider the diagram 

where 71: is an embedded local resolution of {!·O=O} in U and Pt are the 
natural projections. 

Let {Va} be a finite open cover of X res for which there are coordi-
nates (xia) , ... , x~a» centered at a point p(a) in 71:- 1(/-"1(0» such that 

! 0 71: = (xia»Ml(a) .•. (x~a»M,,(a). (local unit) 

00 71: = (Xia»b!(a) ... (x~a»b,,(a). (local unit) 

det d71:=(xia»m,(a) . .. (x~a»m,,(a). (local unit). 

Since x~=f in ~m' IXolk=I!lklm in ~m and IXolk=l!o 71:lklm in ~mX u 

X res • 

Consider the pullback of (Od,Jj k)l l d on P2"l(Va). One checks that it 
is given by 

where 

2 [k (d(m-l)] Cia) = - -Mia)+b;(a)+mj a)- Mj(a) . 
d m m 

0k/\0i< is VIa integrable iff its pullback to each P2"l(Va) is Vld integrable. 
This will be so iff k satisfies the inequality 

(2.12) kMia)~d(m-l)M;(a)-m(bia)+mia»-dm 

forj=I,. ··,n. (That is, Cla)~-2forallj.) 

Rearranging, one has that k must satisfy 

k~m{dMla)-(d+bia)+mla» _ d } for allj=l, ... , n. 
Mia) mM;(a) 

The least k must therefore be 

k(a) = max [(d- (d+bla)+mj(a» ).m]. 
j Mia) 

Hence, 
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t;o(d) =max k(a) = [m. !lid)], 
a 

where 

,uo(d)=d+max [ 
",J 

(d+b/a)+mi(a» ]. 
M/a) 

Define f3o( d) = ,uo( d) - d. 
When d= 1, we evidently recover the formula of Theorem (2.5) for 

1> =0. For d?; 1, f3o(d) is not so easily related to a pole of the analytic 
continuation of 

Io(s) = f u Ifl281012pdxjdxj' . ·dxndxn· 

For this depends on derivatives of 00 7r of order d-I (as well as other 
factors which need not be detailed here) along the divisors in X res • 

Nonetheless we have shown by the above discussion the 

Theorem (2.13). For (2m' (0,0» the germ of a cyclic cover of an iso­
lated hypersurface singularity the function, introduced by K. Watanabe, [31] 

(defined for a neighborhood of (0, 0) in 2m) admits an expression 

where the summation is over some finite subset of sections 0 of (!) J: m whose 
classes modulo D 1d(2m) are distinct and non-zero. 

Remark. It would be interesting to know if for each d one had an 
upper semi-continuity property for the ad' in the sense that if It is a one­
parameter family of germs of hypersurfaces at a common singular point 0, 
then the function aaCt)=ai2m(t), (0, 0» is upper semi-continuous at t=O 
for each d and m. 

Section 3. 

This section will state and prove the upper semi-continuity theorem 
described in the Introduction. 

Let U c en be an open neighborhood of 0 as in Section 2. Let Tc e 
be an open neighborhood of 0 in e. We are given a I-parameter family 
of representatives of germs It: (en, 0)--+( e, 0), defined in U for each t E T. 
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We interpret this to mean that there is a complex analytic function F: Ux 
T ~c so that if tr: {F=O}~Tis the projection to t, the fiber tr- l (t)=ft-1(O) 
lies in U. We assumefhas an isolated singularity at ° and then by shrink­
ing U, if necessary, we may assume, by the Preparation theorem, that when 
It also has an isolated singularity at ° for each 1=1=0 the fiber tr-I(t) has only 
finitely many critical points of {1t=0} in U. Let x 1(t), ... , xR(t) be these 
critical points. Let flxJ(tllt) be the Milnor number of the germ at xit). 
It follows that flo (f) > 2::=1 flxJ(t)(ft). [24]. 

To each t, xit), and each cp e r(U, (!Ju), there are quasi-adjoint charac­
ters, denoted by ICixit)), as defined in Section 2. For the critical point 
0, we use the notation Ot resp. ° to denote ° as a critical point of It resp. j;, 
=f 

Upper semi-continuity will take the following form 

Theorem (3.1). For It: (Cn, O)~(C, 0) a 1 parameter family of germs 
of complex analytic functions with isolated singular point at ° for each t, then 
for t=l=O and t sufficiently close to 0, one has for all cp e r(U, (!Ju) 

ICII(Ot) < IC/O) , 

where U is an open neighborhood of ° satisfying the properties described in 
the second paragraph of the section. 

Proof Following notation of (2.3), recall that tiXj(t), m) = 
[m. IC/xlt))] =inf{k: x~cp is adjoint to the germ of{x~-ft(X1> .. " xn)=O} 
at (0, xlt))}. Set ..Em(t)={x~-ft(X1> "', xn)=O}. To show the theorem, 
it suffices to show tll(Ot. m)<t/O, m) for t near to O. This follows from 
the fact that if IC/Ot)=a(t)/fj(t) and IC;(0)=a/b, then for fixed t not zero, 
set m=8(t). b. If t~(Ot' m)=ba(t)< t/O, m)=afj(t) then a(t)/ fj(t)-:;;'a/b 
as wanted. 

Remark (2.10) says that the inequality involving values of til would 
follow if there was a theorem which showed that lengthc{Xol N/t) < 
lengthc{Xol N/O), where for any t, NII(t) denotes the C{xo} submodule of 
«(!Jx",(t)/Ax",(t))(O,O,) generated by cpo . 

Such a theorem was essentially proved by Elkik [3]. Here we sum­
marize those parts of her results pertaining to Theorem (3.1). Necessarily, 
we use the analytic (derived) category. 

Given the open neighborhoods Tof t=O in C, Xo of xo=O in C and 
U of ° in cn, set Z = TX Xo X U. In Z, there is a closed analytic sub­
variety X defined by the equation x~-F(t, XI' .. " xn)=O. Let tr: X~ 
T be the projection to t. Having chosen U as above, tr has "finite relative 
singular locus" ("lieu singulier relatif fini"). That is, tr !xsing is a finite map 
by the Preparation Theorem. Also, tr is flat with fiber dimension n. 
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To discuss properties of the relative dualizing complex for an analytic 
morphism h: X -+S is helpful at this point. To any such h one can con­
struct in a functorial way a complex R"x/ s (or hi ((I) s) in Verdier's notation 
[30]) satisfying these properties. (All of which will hold in the bounded 
below derived category DC";,h«(I)X) of complexes with coherent cohomology 
sheaves). 

(3.2) (a) (Base change). Let r: W-+S be any analytic morphism. 
In the diagram 

Y=XXW~X 

1 1 
W ~S 

r 
Ry/w=Li*R"x/s 

(b) If h: X -+S is a flat morphism with fibers of dimension d then 
R"x/s is a bounded complex of S flat (I) x coherent sheaves with (Tor) ampli­
tude [-d, 0]. 

(c) If each fiber of h in (b) is a Cohen-Macaulay variety (i.e. local 
rings are Cohen-Macaulay rings) then 

H-j(R"x/s) =0 ifj*d. 

(d) For ¢: X'-+X a projective morphism R¢* R :Yl'oYrlmx.(F, Rx'/s) = 
R :Yl'OYrlmx (R¢*F, Rx /s), for any coherent (l)x,module F. 

When S is a point, denote R"x/s by R"x. 
When X is a hypersurface defined by an equation Gin C m +1, the sheaf 

H-m(Rx)=wx is an (l)x module generated on X8p by the differential ax 
which, in a cm+l neighborhood of a point p at which (oG/ozj)(p) *0, is 
written in the local coordinates (zo, .. " zm) as 

/'.. 

ax=( _l)j-l dzo' •• dZj" .. dZm+1 \ [1,2,8]. 
. oG/ozj x 

Let p: X' -+X be a resolution of singularities of the analytic variety X 
equidimensional of dimension d (equidimensional for simplicity). X' is 
smooth so (l)x',x' is Cohen-Macaulay at x'. The Grauert-Riemenschneider 
Theorem asserts that Rip*(R"x,) =0 for i>O [4]. 

Construct the distinguished triangle in D;;Oh((I)X) 
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where the horizontal arrow is that dual to the natural morphism in 
Dioh«(I)X) 

by application of duality «d) above). 
Consider the homology of N"x;. By the long exact sequence of coho­

mology applied to the triangle, 
i) H-i(N"x;)=H-i(R"x;) if i=l=d 

ii) H-a(N"x;)=H-a(R"x;)/p*H-¢(R"x;,)=cok (p*wx,-+wx) where wx= 
H-a(R"x;), wx,=H-a(R"x;,). 

iii) Hi(N"x;) is a coherent (l)x module with support in X.ing for all i. 
From [2], the adjoint ideal sheaf of X is defined as Ax = 

ann~x[cok(p*wx'-+wx)]. Thus, (l)x/Ax-:::::..H-d(N"x;) as (l)x modules sup­
ported on X.ing with stalks which are finite dimensional C vector spaces. 
(It is also well known that if x is an isolated singular point of X for which 
(l)x,x is normal and Cohen-Macaulay of dimension d then dimc«(I)x/Ax).,,= 
dimcRa-lp*«(I)x')x [33].) 

The discussion needs to be relativized now by consideration of the 
analogous objects in the fibers of a flat morphism h: X -+S of fiber dimen­
sion d (and equidimensional for simplicity) as above. Assume first that 
h: X -+S admits a simultaneous resolution. Thus, there is a projective 
morphism rfi: X'-+X such that i) X, is smooth; ii) (h 0 rfi)-l(t) is smooth 
for each t e S, and iii) h 0 rfi is flat. 

We can then construct two distinguished triangles by considering 
this diagram 

(3.3) 

At first we have the triangle 
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By property (3.2) (a) we have that R"x,=LjtR"x/s and R"x;= 
L(j;)* R"x, / s· So, (1t)*R"x, = L(1t)*(ji)* R"x, / s = LjN*R"x, / s· 

The triangle in D:Oh(X) 

(where N"x/s is the mapping cone for 1*R"x';s---+R"x/s) induces by applica­
tion of It, the triangle 

(3.4) 

in D;;;'h(Xt ). 

From the above identifications, however, and by the isomorphism of 
mapping cones in a derived category [5], we therefore have that 

(3.5) 

In general, a simultaneous resolution of h only will exist off a proper 
analytic subvariety of S. By (3.2) (a), we may then reduce the analysis of 
the comparison of the complexes N"x, (and in particular their homology 
sheaves H--d(N"x,)) to the situation where S is an analytic curve in a neigh­
borhood of a distinguished point s such that for S-{s}, h: X _h--l(S)-+ 
S-{s} admits a simultaneous resolution but the fiber h--l(S) possesses an 
obstruction to the simultaneity. 

Let 1: X'-+X be a resolution of singularities of X. For t E S - {s}, 
we may assume 1-- 1(Xt=h-- 1(t))=X; is a desingularization of Xt. To (3.3) 
we again refer. 

We now consider only the fibers of h for t=/=s. Again, we obtain that 
N"x,=LjtNx/s for t=/=s. However, we cannot yet extend this to N"x,. 

If t: Z-+Xs is a desingularization of Xs we of course have the triangle 

N"x, 
(3.6) +1/ ~ 

t*R~~R"x. 

(using the absolute dualizing complexes for X" Z). 
We observe that the fiber X; of (h 0 1) can contain a desingularization 
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Z of X. as follows. If the fiber (h 0 p)-l(S) in the smooth variety X' is not 
already smooth, one can construct an embedded desingularization of X~ 
eX' that is, a smooth variety X' and a proper bimeromorphic map (): X' 
~X' so that () is an isomorphism off X~ and so that (}-l(X:) is locally in 
normal crossing form. The strict transform of X: in X' is a desingulari­
zation of X:. Let Z be this strict transform. Then +=p 0 (): Z~X. can 
be used in (3.6). So, this says that one can always find a desingularization 
p: X, ~X of X for which the strict transform Z of X. is a desingularization 
of X. and such that pz: ZeX:=p-l(X.). Moreover, +: Z~X. equals 
P. 0 pz where p.=plx;: X~~X •. 

There is a natural morphism R"z~R"x; [5] which induces a morphism 
a: +*R"z~(p.)*R"x; in D:Oh(X.) so that one has a commutative diagram of 
complexes 

(3.7) 

Now consider the analogue of (3.3) 

X'X{s}=X:~X' 
S l~'. l~ 

XX{s}=X.~X 
S 1. lh 

{s}~S 

As before, we have by (3.2) (a) that R"x; = LU:)* R"x,s, so that (p.)*R"x; 
= LjN*R"x;. Also, R"x.=LjtR"x,s' 

Thus, we have two distinguished triangles in D:oh(X.). 

and 

with morphisms 

and 

LjtN"xls 

+1/ "" 
L '*,r.. ~R" L '*R' J. Y'* X'IS~). XIS u 
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,8=id: R"x.~LI:R"x,s 

commuting with u and 11. 
Since Dcioh(X) is a triangulated category, there is a morphism 

so that (a, ,8, r) is a morphism of (Al) to (Az). 

If one now constructs the mapping cone over r 

E' 

+V~ 
N"x.~Lj:N"xls 

r 

one finds that only H-(l-1(E') can be non-zero (d=dimX.). 
Hence, H-d (N"x.)~H-d (Lj: N"x,s) is a surjection. 
Applied to the situation of interest here this says that for 1':: X ~ T, 

the family of hypersurfaces {x~-F(t, Xl> •• " xn)=O}c TXXoX U one has 
i) For t*O, tBf=l (fJ x".(t)/Ax,,.Ct»xJ(t):=' it Rd1':*(N"x,T) with 

xl(t), .. " xR(t) the singular points of 2m(t), and it: {t}~T the inclusion 
as a morphism in the category of analytic spaces. 

ii) For t=O, (fJxm(O)/AXm(O»(o.o)~i'3'Rd1':*(N"x'T) is a surjection. 
The observation that is necessary to make now is that the sheaves 

Ht(N"x'T) are coherent and supported on XSlng' Thus, since 1':: XSlng~Tis 
finite, 1':* is an exact functor on the category of fJ x modules with support 
contained in XS1ng, Moreover, 1':* (a coherent fJx module with support 
in XS1ng) is a coherent fJ T module. Thus, the sheaves RJ1':iN"x'T) = 
H'('1':*(NR"x,T» are actually of the form 1':*HJ(N"x,T) and are therefore fJ T 
coherent modules. 

This discussion has sketched Elkik's argument that proved the upper 
semi-continuity of the dimensions of the conductor Cx(t) at isolated singu­
lar points x(t) in fibers Xt of a flat equidimensional morphism X~S. 

It is also the discussion that allows one to extend her argument to 
give a proof of Theorem (3.1) as follows. 

This is based on the main conclusion from her argument. That is, 
for each t E T, if xl(t), .. " x R(t) are the singular points of 1':-l(t) there is 
a C-vector space surjection 

Ht: EB(fJxm(t)/Axm(t)xJ(t)~[1':*H-d(N"x'T)]t. 
j 

Let C= Ut(tB,[fJxm(t)AXm(t)]xJ(t» be a bundle over T. C can be made 
into a sheaf on T as follows. Think of 1':*H-d(N"x,T) as the total space of 
the fJ T sheaf 1':*(H-d(N"x,T» constructed in the above discussion. We then 
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have 11:*(H-d(N"x/T» = Ut11:iH-d(N"x/T»t. The C-linear surjections Ht: 
Ct~11:*(H-d(N"x/T»t induce a topology on C via the topology on the total 
space 11:*H-d(N"x/T)' It is the weakest topology which makes H= U H t 

C linear and continuous. In this way, C is provided with a topology which 
also makes it into a sheaf of C vector spaces over T. (That is, if 11:1: C~ T 
and 11:2: 11:*H-d(N"x/T)~T are the projections then 11:1 =11:2 0 H is continu­
ous.) 

Given a fixed section ifJ E r(u, cPu), there is an evident section of C 
corresponding to ifJ. That is, q9: t~(f)j Ip"J(t). where Ip"J(t) is the class of ifJ 
in (cPxm(t)/AXm(t)"J(t). Then H 0 q~ gives a section of 11:*(H-d(N"x/T»' We 
denote this section as s(ifJ). 

To obtain an cPxo module structure on the stalks of 11:*(H-d(N"x/T» 
consider the diagram 

Vt U 
y X {t}XXo-~Y=XX(TXXo)---+X 

TxXo li Vt 1ft u lIT 
{t}XXo~ TxXo )T 

u(t, xo)=t. 
The morphisms u and u are flat. Hence, u* H-d(N"x/F) is a coherent 

cPy module and ft*u* (H-d(N"x/T»=U*11:* (H-d(N"x/T» is a coherent cP TXXo 
module. Its support is contained in TX {O} since for Xo *0 and to in T, 
let W be an open neighborhood of (to, xo) lying outside TX {O}. Now, 

(ft*u*)(H-d(N"x/T»(W)=r(ft- 1(W), U*H-d(N"x/T)!t-.(W)' 

Since H-d(N"x/T) is a sheaf with support in X sing and XSingC TX {O} xU 
by the defining equation of the variety X in TXXoX U, U*H-d(N"x/T) is 
zero when restricted to ft- 1(W). So, the stalk of (ft*U*)(H-d(N"x/T) at 
(to, xo) must also be zero. 

Denote this (!)TXXo module by M. Then the module vrM is an cPxo,o 
=C{xo} module and is the result of the base extension u. Since M is 
(!)TXXo coherent, it also follows that 

lengthc{Xol (vr M) < lengthc{Xol (vt M). 

We now only need to replace M by a coherent (!)TXXo submodule as­
sociated to the section ifJ of (!)u' 

This is accomplished by using the section s(ifJ). The base change 
morphism u lifts s(ifJ) to a section s(ifJ) of M. As such, we obtain an (!)TXXo 
submodule of M by setting P4>=(!);XXo' (s(ifJ»· It is clearly of finite type. 
Thus, P is a coherent (!)TXXo submodule of M. It then follows that for t 

in T 
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lengthC{Xol (vrP¢):::;:lengthc{Xol (vtP¢). 

To complete the proof of Theorem (3.1), we need only note that the 
base change u extends the C-linear sheaf homomorphism H: C-+ 
J1:*H-d(N"x/T)) to a C{xo} module homomorphism H so that H t : N/t)-+ 
vrP¢ is a C{xo} module isomorphism for t*O and Ho: NiO)-+vtP¢ is a 
C{xo} module epimorphism. This completes the proof of (3.1). 

We state the desired corollary. 

Corollary (3.8). Let f, be a I-parameter family of germs of a analytic 
functions at the common isolated singular point 0. Let Ut C U; be a pair of 
Milnor neighborhoods for a representative offt. (Thus, each fiber f,-l(W) is 
transverse to the boundary of u; andUt for all w near to 0 and f, is a Coo 
fibration off the singular fiber containing the unique singular point 0.) Let 
Pt be a Coo function which is I on Ut and 0 off U;. Define the generalized 
functions on coo(U;, C) 

ItCs, 1/1') =f If, 128 11/1' 12pt dx1dx1 ... dxndxn· 
u' t 

Let ifi be an analytic function defined in an open set containing Ut U;. Let 
~/t) be the largest pole of the analytic continuation of ItCs, ifi). Then if ~/t) 
> - 1 for all t, one has that for t sufficiently close to 0 

~/t):::;:~/O). 

Remark (3.9). Clearly, it suffices to require only ~¢(O) to be in (-1,0) 
in order to conclude (3.8) from (3.1). 

Remark (3.10). Although the above proof applies to show an upper­
semicontinuity of the K/O t ) if f, is a I-parameter family of real-analytic 
germs, each of which having a singular point at ° ERn, it does not imply 
that the corresponding ~¢(t) are upper semicontinuous. From Remark 
(2.9), one only knows that ~/t)+ 1 :::;:K/O t) for each t. Indeed, Varcenko's 
example [26] indicates that the ~/t) need not have any type of semi­
continuity behavior in general if one works only over R. 

Section 4. 

There are two applications of Theorem (3.1) we wish to describe in 
this section. We will need to state first some definitions and results of 
Arnol'd and Varcenko. In the following, the open neighborhoods U of ° 
in cn and T of 0 in C should satisfy the properties of the neighborhoods 
U, Tconsidered in Section 3. As there,!: U-+T is a defining representative 
of an isolated hypersurface singularity. 
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Let w E r(u, Q';;-) be a section of the sheaf of holomorphic n-differen­
tials in U. Let 

y'fn-I = U Hn_I(f-I(t), e) and y'fn-I= U Hn-I(f-I(t), e) 
teT-{O) teT-{O) 

be the homology and cohomology bundles associated to the Milnor fibra­
tionf: U-f-I(O)-+T-{O}. The Leray residue wldf=Res(wl(t-f))lu=t) 
determines a section of y'fn-I 

ifJ: t~[wldflf-I(t}]=cohomology class of wldfl f -I(t). 

Let o(to) be a fixed cycle representative in Hn_I(f-I(t), C). By means 
of the fibration f on U - {I-I(O)}, o(to) can be transported in a possibly 
multi-valued manner to a cycle in each smooth fiber f-I(t) in U. Denote 
this class by oCt). 

Define I(t, 0, w) =f wid! It is a classical theorem that in any 
6(t) 

angular sector a<arg(t)<b, O<b-a<2rr, one has a series expansion [16] 

(4.1) 

where i) A is the set of eigenvalues of monodromy action on Hn -I. 
ii) L(A)={a>-I: exp(-2rria)=1}. 

iii) The right hand side in (4.1) is single valued and converges in 
each sector, for It I sufficiently small, to the function I defined in 
that sector. 

Following Varcenko, define now the index a(w) associated to w. 

Definition (4.2). Set a(w)=min {a: for some k, Ak,a(o, w) * 0 for 
some family {oCt)} of cycles constructed as above}. 

Also define the Arnol'd exponent q(f) of the germ offat 0 to be 

Definition (4.3). q(f)=min {a(w) + 1: wE r(u, Q';;-)}. 
Basic results proved by Varcenko [27] allow one to connect the lead­

ing poles f3~ of the generalized function If12• and the indices a(w) in a 
precise manner. We state this in the 

Theorem (4.4). Let (XI> ... , xn) be a system of holomorphic coordi­
nates in the open neighborhood U of 0 in en. Let w=ifJ(XI> ... , xn)dxl • •• 

dXn be an element of r(u, Q';;-). Then, if f3~> -1, one has a(w) + 1 = -f3~. 

Remark. This is independent of the coordinates since f3~ = f3~.G if G 
is a local unit in U. 

From (4.4), there is an immediate corollary 
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Corollary (4.5). If /31 = /3~ then a(f)= - /31 (where /31 = /3~ for tjJ any 
local analytic unit in U). 

We now apply Corollary (3.8) and Remark (3.9) to obtain the first 
application of (3.1). 

Theorem (4.6). 1) (Steenbrink-Varcenko) If {ft} is any I-parameter 
family of germs of analytic functions at the same isolated singular point 0 in 
en, then one has 

a(ft) > a(lo) 

for t sufficiently close to 0, if aCfo) < 1. 
2) In the situation of (1), let Ut be a neighborhood of 0 on which there 

is defined a representative of ft satisfying the property that ft: Ut~ Tt is a 
Milnor fibration. Let U be an open neighborhood of 0 containing Ut Ut and 
let w e r(U, Qr;,). Assume w=tjJ(x)dx. Let w(t)=wlu, and define at(w(t» 
to be the initial exponent of w(t) for ft. Then, if /3~(0» -1, one has the 
inequality 

a.(w(t» >ao(w(O», for all t sufficiently near O. 

Proof This is immediate from (3.8), (3.9), (4.4). Note that 2) is a 
distinct extension of the lower semi-continuity theorem of Steenbrink, 
stated in 1), although the version proved by Steenbrink does not require 
that a( 10) < 1. Note that in the non-rational singularity situation Varcenko 
also used Elkik's theorem to prove the semicontinuity of the Arnol'd index 
[29]. (2) is however a distinct refinement both of [22] as well as [29]. 

Theorem (4.6) can be used to give a proof of an extension of a con­
jecture of Teissier using the same idea as Loeser did to prove the con­
jecture [13]. A sketch of [13] follows first and then we present our 
extension of the conjecture. 

Letf: (en, O)~(e, 0) be a germ of an analytic function with isolated 
singularity at O. Let U, Tbe as above and f: U~T a representative of 
the germ. Teissier associated [23] a finite set of numbers {Ceq, mq)} to f 
These form the polar multiplicities for f in U. The ratios eq/mq are called 
the polar invariants. 

Let H be a generic plane of codimension i through 0 in U. The defi­
nition of generic is given in [23]. One of its consequences is that the set of 
polar invariants offlB' a representative in Hn U of the germ at 0 of fiB, 
is independent of H. Denote this set by {e~t)/m~j)}. 

The original form of the conjecture was [25] 

(4.7) 
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For I a germ at 0 E C 2 of an analytically irreducible plane curve with 
characteristic sequence (n, (3j, ... , (3g), one knows the following. 

a) a(f) = ~ + _1_ if aU) ~ 1 
. n (3j 

b) l+sup{eimq}=--&_-- where 
nj • • ·ng _ j 

PI = (31) ~q=nq_j~q_j +«(3q - (3q-j) for q=2, ... , g, and if e(q) =g.c.d. (e(q-ll, 
(3q), then nq=e(q-l)/e(q). 

One can show [18] that ftg/(n j .. ·ng_j) = (f1. + (3g-1)/n, where f1. is 
the Milnor number of I at O. Thus, the lower bound in (4.7) for this I 
can be considerably smaller than the value for aU). 

On the other hand one also has that 

1 1 
~---c--

(3j 1 +inf {eq/mq} 

This suggests an improvement of (4.7) can be made by conjecturing 

(4.8) 
n-l 1 n-l 1 

~l+inf{e(i)/m~i)} >a(f»~ l+sup{e~i)/m~i)}· 

Loeser [13] has proved the following version of (4.8) 

(4.9) 

He does so by using Steenbrink's theorem (4.6) (1), valid without any 
restrictions a( 10) [22]. 

Given I: (cn, O)---*(C, 0), choose coordinates (x j, ... , xn) in a neigh­
borhood of 0 so that Xj =0 defines a generic hyperplane for I in the sense 
of Teissier [23]. 

Define the two pairs of families of functions as follows. 
I) Set a=inf{eq/mq} and A = [a] + 1. 

Define F t (x1> ... , xn) = l(tx1> X2 , ••• , xn) +xt and GtCxj, ... , xn) = 
I(x j, ... , xn) + txt· 

II) Set (3= sup {eq/mq} and B= [(3] + 1. 
Define Ft(x j, ... ,xn)=/(txj,x2, • •• ,xn)+xf and Gt(Xj, ... ,xn)= 

l(xH ••• , xn) + txf. 
(4.10) implies (cf. [13] for the proof of the equality part of (4.11.i» 
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(4.11) i) q(GI)=q(Gt)":?q(Go) 

ii) q(FI) = q(Ft) >q(Fo) 

for t=l=O 

for t*O. 

In addition, one also has by the invariance of the Arnol'd exponent 
in a ,a-constant deformation [28] that 

(4.12) i) q(FI) =q(Ft) =q(Fo) 

ii) q( GI ) = q( Gt) = q( Go), 

as well as the equality in (4.11.ii). (The {Ft}, t =1= 0, form a ,a-constant 
deformation [23]) 

Remark (4.13). Under the assumption that! does not define a rational 
singularity at 0, theorem (4.6) can be used to prove (4.9) in the same way. 

To see this it suffices to observe the following. 
Let HI be a generic plane of codi~ension 1 [23]. Set j<1) =!IH,. 

Choose coordinates in U such that XI =0 defines HI in U. Let B be the 
integer in II above. By the additivity of the Arnol'd exponent with 
respect to the Thom-Sebastiani operation one has 

(4.11) implies that 

q(j(l)=q(j(I)+xf)- ! s;.q(j(I)+xf)<q(f). 

Now let OCHn_IcHn_2c ... CHI be a generic flag in U of planes 
such that codim Hi = i. Here generic should mean that Hi +1 is a generic 
hyperplane for the germ ofj<i)=!IH, at the isolated singularity 0i in en-I 
in the sen"se of [23]. Let Xu ... , Xn be coordinates in U such that for each 
i, UnHi={xl=···=xi=O}. Set O,to be the origin in UnH,. 

Let a,=inf{e~i)/m~i)}, 

fii=SUP {e~i)/m~i)}, 

A,=[a,]+l; 

B, = [fid + 1. 

Define for each i, the functions 

Fli)(X" .. " xn) =j<')(tx" X,+u .. " xn)+xt, 

Gli)(Xi, .. " xn) = j<')(x" Xi +u •. " Xn) + txt, 

Fli)(Xi, .. " Xn)=!(i)(tx" Xi+l, .. " Xn}+Xfi 

Gli)(Xi, "', Xn}=j<')(X" Xi+U "', xn}+txf' 
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Repeating the above reasoning shows that each J<i) defines a non­
rational singular point at Oi. Thus, one has the inequalities (4.11), (4.12) 
for each i. This gives (4.9) by a simple manipulation. 

On the other hand the fact that (4.6) applies to exponents other than 
the smallest implies that (4.9) can be extended. Let p(x) = xi t ••• x~n be a 
monomial in the coordinates (XI' ... , xn) defined in (4.13). Set w = p(x)dxI 

... dxn • If the exponent a(w) lies in (-1,0), one can use Varcenko's 
description of the Mixed Hodge Structure on the vanishing cohomology 
of Thom-Sebastiani polynomials [27] to estimate a(w) as follows. 

Set WI =xftdxI and W2=X~2 . . . X~ndX2· .. dxn, so that W=W I /\W2. Then, 
when one considers w to be a holomorphic section of the cohomology 
bundle for the functionJ<I)+xf'=Fo resp. of the cohomology bundle for 
the functionJ<l) +xft=Fo, one has that a(w) =a(w l ) + a(w2) + I where a(w l ) 

equals (iJ AI) - I resp. (iJ BI) -I, and a( ( 2) is the exponent of the section 
w2/df(1) for the cohomology bundle for the functionf(1). 

For g: U~C a Milnor fibration of a holomorphic function with iso­
lated critical point at 0, denote by ag(w) the value of the exponent associ­
ated to the section [w/dg] of the cohomology bundle ..Yt'~-1 for g. Then in 
the notation of I, II above, one deduces from (4.6) part 2 that 

(4.15.1) 

that is, 

(4.15.2) a/Cl,(w2)+ I + Bi1 ::;:aiw) + I::;: a/",(w2)+ I + ~I • 

I 1 

Thus, aiw)<O implies a/,,,(w2)::;:0. 
Applying this n-I times in the same way as (4.13), using [28] applied 

to the entire spectrum, not just the Arnol'd exponent, in the analogues of 
(4.11), (4.12), one has the 

Theorem (4.16). If w(x)=xi'·· ·x~ndXl·· .dxn is such that aAw) E 

( -I, 0), then in the notation of (4.13) one has the pair of estimates 

(4.17) 

Remark (4.18). The basis of (4.6) and (4.16) lies in theorem (4.4) as 
well as (3.1). How can one extend (4.4) to exponents greater than zero, 
in the sense of identifying the value of an exponent from the resolution 
data of multiplicities? A similar question is the content of Remark (2.8). 
In that it is also not clear how to describe the poles j3¢ from resolution 
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data once f3~ becomes smaller than -1. Perhaps the best candidates for 
such an extension would be the "leading" exponents, studied by Loeser 
[14]. 

Section 5. 

In this section we extend Igusa's theory of "Forms of Higher Degree" 
[6] to allow test functions which may vanish at the singularities of the 
form. We then apply (4.16) to obtain upper bound estimates for the lead­
ing poles in (-1,0) of the extended zeta function defined below. Such 
estimates as well as the precise formulae derivable from [11] in the case of 
two variables (cf. (5.11», therefore have a number theoretic interest. Un­
fortunately, there is as yet no p-adic cohomological interpretation to these 
results. 

We briefly recall the constructions at the base of [6]. 
Let K be a local field which for the purposes here is a finite algebraic 

extension of Qpo Letfe K[x j ••• X n]. On the additive group Kn there is 
an "additive" Haar measure p. denoted I dxjl· . ·1 dXn I = I dXj ... dXn I which 
is an n-fold product measure of the additive Haar measure. We normalize 
the measure by forcing p.(Rn) = 1 where R is the ring of integers in K. Let 
5f'(Kn) be the space of Schwartz-Bruhat functions on Kn. These are 
complex-valued functions which are locally constant with compact support. 
Compact refers to the metric topology on Kn defined via the sup norm on 
Kn. That is, I(vj, "', vn)IK=max IVilK where IvlK is the unique extension 
to K of the standard p-adic norm on Qp 

For f e K[x j , •• " xn], (fJ e 5f'(Kn) define 

For Re (s»O, Z(s, (fJ) is analytic in s for each (fJ e 5f'(Kn), as can be 
seen easily. Adapting the idea of the proof when K=R or C, 19usa 
showed that Z(s, -) has an analytic continuation to C with poles at a 
finite set of negative rationals. Examples of the explicit continuation may 
be found in [12, 17]. 

The use of 5f'(Kn) as the space of test functions is not absolutely neces­
sary for Igusa's theory. One can extend the space to include norms of 
polynomials cut off by a function in 5f'(Kn) to maintain the boundedness 
of the support of the test function. 

Such a test function need no longer be locally constant in a neighbor­
hood of a point on the zero locus of the polynomial. Its support in the 
metric topology, although bounded, need not be totally bounded. Thus, 
the support need not be compact, although it will be contained in a com-



Leading Poles of If 12, 267 

pact set. 
So, define Y(Kn)={r:: Kn~c: r:= L:i=l CPi ·!Pi(X)! where CPi e .9'(Kn), 

Pi e K[Xl' ... , xn]}. 
Define a zeta function for r: e Y(Kn) by 

Z(s, r:)= t,,_uc=ol!J!'r:!dx!. 

Note that if r: is in .9'(Kn), Kn-{fr:=O}=Kn-{J=o}-{r:=O}= 
supp (r:)-{J=O} is what one integrates over in any case and Z(s, r:)= 
Z(s, r:), as defined by Igusa. In this way Z is a generalization of the local 
zeta function of Igusa. 

We show 

Theorem (5.1). The zeta Junction Z(s, r:) admits an analytic Continu­
ation to C with poles at finitely many negative rationals. In general, Z(s, -) 
admits poles oj arbitrarily large absolute value in Q_. These poles lie in 
finitely many arithmetic progressions. 

Proof Unlike the situation in [6], if 1t': X~Kn is a resolution of 
singularities of {J=O}, as embedded in Kn, the preimage 1t'-1 (supp(r:» 
need not be compact. On the other hand, the analytic continuation of an 
integral of the form 

(5.2) 

where U is a compact open subset of ~r:) minus the locus {Xl· .. Xn =O}, 
can always be explicitly determined by the evaluation of (5.2) as 

/1 f R-{xi=Ol !xt !M';8+m; !dxi !· 

One can use the resolution theorem to arrive at a local situation as 
in (5.2) by applying it not to the ideal sheaf (f)lDK" but to (fP)lDK" if r: = 
cP !p!. Note that if r:= L: CPt !Pi!, and if r:i =CPi !Pi!,Z(S, r:) = L: Z(s, r:t), so 
that the analytic continuation of Z(s, r:) would be determined by that for 
the individual Z(s, r:i). 

If V=supp(cp), where r:=cP!p!, V is compact. Let 1t': X~Kn be a 
proper birational morphism between Kn and a smooth K variety X which 
is an isomorphism off the singular locus of {Jp=O} and for which in a 
neighborhood (in the K-analytic topology) of a point z in 1t'-l({Jp=O}), 
there are K rational coordinates Yt> •.. , Yn such that (5.3) holds: 

(5.3) 
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p 0 7C(Yl> .. " Yn)= Vz(y)llyr i 

det d7C()-\, .. " Yn)= V3(y)llyfi. 

Since the Vi are units in the neighborhood of z, by shrinking the 
neighborhood we may assume that I Vi(y) I = I Vi(z) I for all points (Yl> .. " 
Yn) in the neighborhood and i= 1,2, 3. 

Consider now 7C- 1(V). Because it is compact, it can be covered by 
finitely many compact open affine discs each of the form Di =Zi + (.'?l'g)<n) 
for some positive g. It is possible to find the Zi and g so that Di n Dj=f/J 
if i=Fj [6]. In each Di there are local K coordinates centered at Zi so that 
equations of the form given in (5.3) hold in D i . 

It is convenient to form the set of multiplicities of f 0 7C, P 0 7C, det d7C 
along the divisors in 7C- 1(JP- 1(O)). Let D1, ••• , D M be the irreducible 
components of 7C- 1(fp-I(O)). 

Form the set 

(5.4) Jfi rr = {(multDi(fo 7C), multDi(p 0 7C), multDi (detd7C)): i=l, "', M}. 

Evidently, (5.3) says that for each i=l, "', n, the triples (Mi' ri , hi) are 
elements of Jfirr • 

Consider now Z(s, (;): we then have 

Thus the analytic continuation of the term 

can be determined very easily. Indeed, this term equals 

(5.6) 

where q=pr. Here, p=char Pll/.'?l' and r=[K;Qp]. 
Each term admits poles at the n ratios 

(5.7) 

If Mj=O, one understands the analytic continuation of the term to be 
possible to all of C in a trivial way. 
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Thus, 2(s, C) is a sum of terms each of which admits a pole at at 
most n negative rationals. This gives the desired analytic continuation 
for 2(s, C) to C. Note too that one can force b j to grow arbitrarily large 
simply by setting p(x1, •• " xn) to equalfV for V= 1, 2, .. '. 

This proves theorem (5.1). 

Remark (5.8). Consider one of the ratios So in (5.7). Let Dil , •. " 

Dik be those divisors in which the value So arises as a fraction of the form 
-(1 +be+re)/Me where (Me, re, be) e 5. (defined in (5.4». Assume that 
So satisfies the following property 

(*) Let D j be a divisor in IT-1(fp-l(0» and DjnDiv=FifJ for some v=l, 
"', k. Let (Mj' r j , b j ) be the element of 5. corresponding to D j • Then 

so>-=-(!·t bj+1) .• 
M j 

Such a ratio So must be a pole of 2(s, C) if C>O in supp (C) and supp (0 
contains the singular locus of {fp=O}. For in this case the sign of the 
residue of any term of form (5.6), forming the contribution to Res 2(s, C) 

8=80 

in a neighborhood of a point which either lies in or intersects some Div' 
must be positive. So, the total value of Res 2(s, C) is just a finite sum of 

8=80 

positive quantities and cannot be zero. 
Let us agree to consider in the following only those C whose support 

satisfies the condition {fp = O},g C supp (C). 

Remark (5.9). For given C=ifJlpl, peK[xl' "',x n], set {3,= 
sup {-(I +ri +bi)/Mi : (Mi' ri, bi) is an element of the set of multiplicity 
triples 5r. obtained by constructing a resolution defined over K, IT: X-+Kn, 
so that both (f 0 IT) and (p 0 IT) are locally in normal crossing form}. We 
then have that if ifJ has constant sign on V = supp (ifJ) and V contains the 
singular locus of {.fp=O} then {3, is the largest pole of 2(s, C) with the sign 
of the residue at s = {3, given by the sign of ifJ. The value {3, depends only 
on p then. We henceforth denote it by {3p. 

The value of {3p depends, a priori on the field K. This is because the 
set of divisors, rational over K and used to determine the set of ratios, the 
maximum of which is {3p, clearly may change if one works over an exten­
sion of K. To emphasize the dependence on K, denote the ratio as {3/K). 

On the other hand, there is a finite extension L of K with the property 
that if L' is any finite extension of L then for p E K[Xl' .. " x n ], {3iL') = 
{3p(L). One sees this by looking over K. 

Any resolution IT: x-+Kn obtained as in Theorem (5.1) is determined 
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as a composition of birational morphisms. Hence, '!C is defined over a 
finite extension, say L, of K obtained by adjoining to K all the coefficients 
used in the finitely many rational maps comprising '!C. Moreover, X itself 
is rational over L if we include the coefficients of all defining equations 
(polynomials over K) used to define X in its various affine neighborhoods. 
Thus, '!C descends to a resolution '!CL: Xc"*Ln of f-p as discussed above. 
The multiplicity data forming % L as determined by '!CL is therefore the 
same as the set %~ as determined by '!C. 

Clearly, one has fiiK)<fip(L). 
Now, over K or L one can also define the quasi-adjoint characters at 

a singular point ~ of {f=0} exactly as was done in section (2). Let tci~, K) 
resp. tci~, L) be these characters for the polynomial p. 

If ° is an isolated singular point of {f=0}, then one has fiiK)<fip(L) 
=tciO, L)-I if tciO, L) e (0, 1). This is because adjointness is a property 
defined purely algebraically. Thus, to evaluate tciO, L), one notes first 
that tciO, L) =tciO, K). Then observe that tcp(O, K) =tciO, C) because 
one can work within K or within C by "choosing" an embedding KC.C. 

Because ° is an isolated singular point in the complex hypersurface 
{f=0}, one now obtains an upper bound estimate for fiiK) in terms of 
the polar invariant data from section (4). Observe that this data is inde­
pendent of the embedding KC.C. Indeed, if p(X)=Xfl . . ·x~", then if 
tciO, C) e (0,1), one has tciO, C)= 1 + fiiC) , with fiiC) the largest pole 
of lis) (2.6). One also knows that when fiiC) e (-1,0) then fiiC) = 
-(a/pdx) + 1). From (4.16), one has under the assumption imposed 
there the inequalities stated in (4.17). Thus, one concludes 

(5.10) 

Loeser has also observed (5.10) independently [15]. 

Remark (5.11). If f defines a germ of an irreducible plane curve at ° in K2 with characteristic sequence (n, fit, .. " fig), one can show that for 
a monomial p(x, y) in coordinates centered at 0, the quantities fip in 
(-1, 0) are independent of the intermediate field L and depend only upon 
K. Moreover, the values of certain fip are computed in [11]. Indeed, from 
the analysis in [11], some of the smaller poles of 

<If I', shlpl) 

can also be determined. In this way, the results of [17] are extended. 



Leading Poles of If 128 271 

Bibliography 

[ 1] Blass, P., Zariski Surfaces, Thesis at Univ. of Michigan (1977). 
[2] --, and Lipman, J., Remarks on adjoints and arithmetic genera of 

algebraic varieties, Amer. J. Math., 9 (1979),331-336. 
[3] Elkik, R., Singularites rationnelles et deformations, Invent. Math., 47 (1978), 

139-147. 
[4] Grauert, H. and Riemenschneider, 0., Verschwindungssatze fur Analyti­

sche Kohomologiegruppen auf komplexen Raumen, Invent. Math., 11 
(1970), 263-292. 

[5] Hartshorne, R., Residues and duality, Lecture Notes in Math., 20 (1966), 
Springer-Verlag. 

[6] Igusa, J. I., Forms of higher degree, Lectures given at Tata Institute, 59 
(1978), Springer-Verlag. 

[ 7] --, Complex powers of irreducible algebroid curves, preprint. 
[ 8] Kunz, E., Holomorphe Differentialformen auf Algebraischen Varietaten mit 

Singularitaten I, Manuscripta Math., 15 (1975),91-108. 
[ 9] Libgober, A., Alexander invariants of plane algebraic curves, Proc. Sympo­

sium in Pure Math., 40 part 2 (1981), 135-143. 
[10] Lichtin, B., Some Algebro-geometric formulae for poles of If(x, Y)I', Amer. 

J. Math., 107 (1985), 139-162. 
[11] --, Poles of If128 , Roots of the b-function, to appear. 
[12] --, and Meuser, D., Poles of a local zeta function and Newton polygons, 

Compositio Math., 55 no. 3 (1985),313-332. 
[13] Loeser, F., Exposant d'Arnold et sections planes, Comptes Rendus des 

Academie Sciences, 298 (1984), 485-488. 
[14] --, Quelques consequences locales de la theorie de Hodge, Ann. Inst. 

Fourier, 35 (1985),75-92. 
[15] --, Fonctions If I', theorie de Hodge, et polynomes de Bernstein-Sato, to 

appear in 2nd Congress de Geometrie Algebrique de La Rabida 1984. 
[16] Malgrange, B., Integrales asymptotiques et monodromie, Annales Sci. Ec. 

Norm. Sup., 7 (1974), 405-430. 
[17] Meuser, D., On the poles of a local zeta function for curves, Invent. Math., 

73 (1983),445-465. 
[18] Merle, M., Invariants pol aires des courbes planes, Invent. Math., 41 (1977), 

103-111. 
[19] Merle, M. and Teissier, B., Conditions d'Adjonction d'apres duVal, Seminaire 

sur les Singularites des Surfaces, Lecture Notes in Math., 777 (1980),229-
246, Springer-Verlag. 

[20] Sakai, F., Kodaira dimensions of complements of divisors, International 
Conference on Complex Analysis and Algebraic Geometry in Honor of 
K. Kodaira (1977), 239-257. 

[21] Sally, P. J. and Taibleson, M. H., Special functions on locally compact 
fields, Acta Math., 116 (1966), 279-309. 

[22] Steenbrink, J., Semicontinuity of the singularity spectrum, Invent. Math., 
79 (1985), 557-566. 

[23] Teissier, B., Varietes polaires I: Invariants des singularites d'hypersurfaces, 
Invent. Math., 40 (1977),267-292. 

[24] --, Introduction to equisingularity problems, Proceedings of Symposium 
in Pure Mathematics-Algebraic Geometry, 29 (1974), 593-632. 

[25] --, Lectures given at Algebraic Geometry Symposium in Kyoto in 1978. 
[26] Varcenko, A. N., Newton polyhedra and estimation of oscillating integrals, 

Functional Anal. Appl., 10 (1976), 13-38. 
[27] --, Asymptotic mixed Hodge structure on vanishing cohomology, Izv. 

Akad. Nauk., 45 (1981), 540-591. 



272 B. Lichtin 

[28] --, Complex exponents of a singularity do not change along the stratum 
.u=constant, Functional Anal. Appl., 16 (1982), 1-9. 

[29] --, Semicontinuity of the complex singularity index, Functional Ana!' 
App!., 17 (1983), 307-308. 

[30] Verdier, J. L., Categories derivees, etat 0 in Etale Cohomologie (SGA 4112). 
Lecture Notes in Math., 569 (1970), 262-311. 

[31] Watanabe, K., cf. his article in these proceedings. 
[32] Yano, T., On the theory of b-functions, Pub!. Res. Inst. Math. Sci., 14 

(1978),111-202. 
[33] Yau, S. S. T., Two theorems on higher dimensional singularities, Math. Ann., 

231 (1977), 55-59. 
[34] Zariski, 0., On the irregularity of cyclic multiple planes, Ann. of Math., 

32 (1931),485-511. 

Department of Mathematics 
University of Rochester 
Rochester, N.Y. 14627 




