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§ 1. Introduction 

Let V denote a non-singular projective variety of dimension n em­
bedded into a projective space of dimension N. Let L be a generic linear 
subspace of CpN of dimension N -n-2. The projection with center at 
L defines a map p: v-----+cpn+l. The purpose of this note is to prove the 
following: 

Main Theorem. If V is a simply-connected non-singular variety of 
dimension greater than one then 1r2(cpn+l_p(V))@Q is trivial. 

Several comments are in order to explain our interest in such kind 
of a result. The variety p(V) is a singular hypersurface having singularities 
which are fairly well understood (at least in the case of small dimensions) 
[RI]. For example ifn=2 thenp(V) has singularities along certain curve 
(double curve) near which p(V) given by xy=O. Moreover it has finitely 
many triple points given locally by equation xyz=O and finite number 
of pinch points locally given by x2_yzZ=O. In particular this implies that 
if H is a generic plane in cpn+l then Hnp(V) is an irreducible plane curve 
which has as singularities only nodes. Therefore 'lC1(H - H n p(V)) is iso­
morphic to ZjdZ where d is the degree of V ([D]). According to Zariski's 
theorem [Z], this implies that 'lCl(cpn+l_p(V))=ZjdZ. Similarly if His 
a generic linear 3-space, then 'lCz(H-Hnp(V)) is isomorphic to 'lCz(cpn+l 
- p(V)) and hence it is enough to prove our theorem only in the case 
n=2. 

For a surface in CP3 with isolated singularities the second homotopy 
group of the complement has properties similar to the properties of the 
Alexander modules attached to the fundamental groups of the comple­
ments to plane algebraic curves ([Ll], [L2]). If S is a non-singular surface 
in CP3 then 'lCZ(Cp3_S) is trivial, but in general 'lCzCCp3_S) is affected by 
the degree of the surface, by the type and by the position in CP3 of the 
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singular points of S. Our theorem says that the singularities of the hyper­
surfaces which are generic projections are too mild to produce a non-trivial 
nzCcpn+l_p(V»®Q. In this sense it can be viewed as a higher dimen­
sional analog of the theorem of Fulton-Deligne [D]. Our arguments are 
inspired by Nori's proof of a generalization of aforementioned Deligne­
Fulton theorem to the case of nodal curves on arbitrary surfaces. 

Let us explain now the main points in the proof comparing it with the 
case of plane curves. The isomorphism between the fundamental group 
of the complement to a plane irreducible nodal curve C with Z/dZ, where 
d is the degree of the curve, is usually deduced in two steps. The first one 
(which is rather trivial computation) shows that H1(CP2-C, Z)=Z/dZ 
and the second (the major one) shows that nl(Cp2-C) is abelian. Simi­
larly the major step in the proof of the theorem stated above is the 
following 

Theorem'. The action of nl(Cpa-p(V»=Z/dZ on n2(CPS-P(V» 
®Q is trivial. 

The action of n1 here is the usual action of the fundamental group on 
higher homotopy groups (which on fundamental group itself amounts to 
conjugation). For our purposes the action on n2 can be thought of as the 
action of the fundamental group on H2 of the universal cover (the latter 
group of course can be identified with n2). 

Actually, for technical reason we work in affine situation and we 
prove the following 

Theorem". If H is a generic hyperplane in Cpa then the action of 
nl(CPS- (p(V) U H»=Z on n2CCPS-(p(V) U H»®Q is trivial. 

The relationship between the "affine" and the "projective" one is 
given by the following lemma, proof of which will be given in [L2]. 

Lemma. Let S be a surface in Cps such that nl(CPS-S) is a cyclic 
group of order equal to the degree of S. Let H be a generic hyperplane 
in Cps. Then nl(CPS-(SUH»=Z and n2(CP S-S) is isomorphic as 
nl(CpS-S)-module to the submodule of nzCCpS-SUH) of elements in­
variant under the action of Ker(nlCCPS-(SUH»--+nl(CPS-S», which is 
also considered as nl(CpS-S)-module. 

Clearly the theorem" implies the theorem'. The rest of this introduc­
tion explains how our main theorem follows from the theorem'. Recall 
(cf. for example [B)) that for any topological space X, one has the following 
exact sequence. 

H2(ntCX), Z)~n2(X)",~HzCX, Z)~Hl(nl(X)' Z)--O 
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where 1t'Z(X)~l(X) denotes the factor group of 1t'z(X) by the subgroup gener­
ated by the elements of the form m-mg where m e 1t'z(X) and g e 1t'I(X). 
Now let us apply this to X=CP3_p(V). The theorem' then implies that 

The latter group is zero as is shown in Lemma 2.3 of Section 2. This 
proves the main theorem. 

§ 2. Preliminaries 

2.1. Lemma. Let f: X --+ Y be a branched covering of a complex 
manifold Y offinite degree. Then the induced map Hi(X, Q)--+Hi(Y, Q) is 
surjective. 

Proof Let B x C X and By C Y be closed subsets of X and Y such 
that X-Bx is an unbranched covering of Y-By. Thenf*(1t'I(X-Bx)) is 
a subgroup of finite index of 1t'1( Y - By). Let us consider a subgroup S of 
f*(1t'I(X - B x)) which is a normal subgroup of finite index of 1t'1( Y - By) 
(e.g. the intersection of conjugates off*(7r1(X -Bx)) in 1t'I(Y -By)). Let X 
be the branched covering of Y corresponding to the subgroup S (cf. [F]). 
Then the quotient space X/Scan be identified with Y and the projection 

- - 'P f map 1t': X--+Y can be factored as X----+X----+Y. The map (ffP)*: Hi(Y, Q)--+ 
Hi(K, Q) is injective because its composition with the transfer Hi(X, Q)--+ 
Hi(Y, Q) is the multiplication by the index of S. Therefore f* Hi(y, Q) 
--+Hi(X, Q) is injective. But this fact is just dual to our lemma. 

2.2. Let X --+C be a dominant map with connected generic fibre F. 
Then the map 1t'1(F)--+1t'I(X) induced by inclusion of F into X is surjective. 

Proof This follows from the exact sequence 

(cf. [N], Lemma 1.5). 

2.3. Lemma. Let V be a simply connected algebraic surface in CpN 
and p: V --+p(V) C CP3 be a generic projection. Let H be a generic hyper­
plane in CP3. Then HZ(CP3_p(V)-H, Q)=O. 

Proof First let us fix sufficiently small regular neighbourhood of 
p(V) and H, which we shall denote by Tv and T H respectively. Let a~ be 
the intersection of the boundary of T H with Tv and let a denotes the comple­
ment to THin the boundary of Tv. Next note that the following isomor-
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phism H2(CpSp(V)-H,Q)=HS(p(V),p(V)nH, Q) takes place. Indeed 
it follows from the exact sequence 

Hs(CpS-H, Q)~Hs(CpS-H, CpS-p(V)-H, Q) 

~H2(CPS-p(V)-H, Q)~H?(CpS-H, Q) 

combined with excision isomorphism Hs(CpS-H, CPS-p(V)-H, Q)= 
Hs(Tv - T H n Tv. G, Q), the Lefshetz duality HsCTv - T H, G, Q) = HS(Tv-
T H , G~, Q) and the retraction isomorphism HS(Tv-Tm G~, Q)=HS(p(V), 
p(V)nH, Q). 

Now let Ce V denotes the double curve of projection p: V~Cps. 
In the following diagram 

the maps a and [3 are isomorphisms. Indeed H3(V, C, Q)=HS(V, T(C), Q) 
= Hl(V - c, Q), where T( C) is a regular neighbourhood of C; on the other 
hand similarly H3(p(V), p(C), Q)=Hl(p(V)-p(C), Q). Hence [3 is an 
isomorphism. We will see below that a is an isomorphism and therefore 
r is an isomorphism as well. Because V is simply-connected this implies 
that H3(p(V), Q)=O. Clearly the map H2(p(V), Q)~H2(Hnp(V), Q) is 
surjective. Hence we can infer from the exact sequence 

H2(p(V), Q)~H2(Hnp(V), Q)~H3(p(V),p(V)nH, Q) 

~H3(p(V), Q) 

that HS(p(V), p(V) n H, Q)=O and the lemma follows. We will deduce 
that a is an isomorphism by showing that preimage of each irreducible 
component D t of the double curve p( C) is an irreducible. This in turn will 
follow from the fact that each irreducible component of double curve of 
p(C) contains pinch points. Indeed if rl(D;) is reducible then p is an 
isomorphism on each irreducible component and P!P-'(Di) does not have 
ramification points i.e. D; does not contain pinch points. Existence of 
pinch points on each irreducible component follows from the following 
argument due to Lawrence Ein. Let Sec V be the subvariety of the Gras­
smannian Gr (N- 3, N) consisting of (N - 3)-subspaces of CP N containing 
at least two points of V. Let Ie Sec VxGr(N-4, N) be the incidence 
correspondence consisting of pairs (L1> Lo) where Ll is a secant (N - 3)­
subspace of CpN containing a (N - 4)-subspace Lo. Denote by P2 projec­
tion of I on the second factor. Clearly I is an irreducible variety and the 
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fibre of lover Lo E Gr (N -4, N) is the double curve of projection of V 
from Lo. Over a Zariski open set U the map P2 is a locally trivial fibration. 
Irreducibility of I implies that 1'1(U) acts transitively on irreducible com­
ponents of a double curve of projection from a generic center. Therefore 
all irreducible components Di contain the same number of pinch points 
and our claim follows. Note that if N"2.5 then according to Severi's 
Theorem ([M], p. 72) the double curve is irreducible with single exception 
of Veronese surface of degree 4 in Cp5. In this case the double curve 
consists of 3 lines each containing 2 pinch points (cf. [RD. 

2.4. Let cp: X --+ Y be a continuous map of topological spaces. Let 
G and H be subgroups of 1'1(X, x) and 1'1(Y' cp(x» respectively. Denote by 
KG and Y H the covering spaces of X and Y respectively corresponding to 
the subgroups G and H. Assume that cp*( G) C H. Then cp induces the 
map CPG,H: KG--+Y H· 

This can be easily seen for example by interpreting KG (resp. Y H) as 
the space of equivalence classes of paths starting at the base point, where 
two paths considered to be equivalent if and only if they have the same end 
point and the class of the loop generated by union of those paths belongs 
to G (resp. H). 

2.5. Let Y be a subspace of a topological space X and let cp: Z--+X 
be an unbranched covering of X. Assume that 1'1(Y' a) acts trivially on 
cp-I(a). Then cp-I(y) is a disjoint union of copies of Y. 

2.6. Lemma. Let U be a complex manifold. Let S be a non-singular 
hypersurface in U and T(S) be a tubular neighbourhood of S in U. Assume 
that S is simply connected. Then 1'1(T(S)-S) acts trivially on 1'iCTCS)-S) 
for i> 1. 

Proof The exact homotopy sequence of fibration Ps: T(S)-S--+S 
identifies 1'iCT(S)- S) with a subgroup of 1'i(S) for i> 1. For a E 1'i(T(S) 
-S) and j3 E 1'1(T(S)-S) one has pAj3a)=pAj3) ps.(a) = ps.(a) because 
Ps.(j3)=l. Hence j3a=a. Q.E.D. 

§ 3. Proof of the Main Theorem 

Let us consider the action t: C X Cps--+Cps of the additive group of 
C on Cps given by t(a). (zo, ... , zs) = (zo+ azs, Zl> Z2' zs). The orbits of 
this action are affine lines in C S = CP3 - H where H is given by equation 
Zg=O, such that they pass through the point (1,0,0,0). The points of 
hyperplane H are fixed by all elements in C. Denote also by jj the hyper­
plane in CpN which is taken by projection p: CP"v --+CP3 into H. 
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Let us consider the map ¢: VXC __ Cps given by ¢(v, a)=t(a)·p(v) 
where v e V and a e C. This map is a branched covering of Cps of degree 
equal to the degree of V. If P e CS=CpS-Hthen ¢-I(P) consists of the 
pairs (Vt' at) i = 1, ... , deg V, where P(Vi) (i = 1, ... , deg V) form the 
intersection of p(V) and the line passing through P and (1, 0, 0, 0). The 
branching locus Be C S consists of the union of the cone over the double 
curve of p(V) and the cone over the branching curve of the projection of 
p(V) from the point (1, 0, 0, 0). 

Lemma 1. The inverse image ¢-I(p(V)) has two irreducible com­
ponents one of which is VxOevxC. 

Proof Let us denote the union of. irreducible components of 
¢-I(p(V)) different from Vby V'. We claim that V'-¢-I(B) is connected. 
Because this space is non-singular (it is an unbranched covering of a mani­
fold) the lemma follows. 

In order to show the connectivity of V' -¢-I(B) for any triple of dis­
tinct points VO, VI' V2 belonging to p(V) and lying on a line of projection 
(i.e. on a line having (1,0,0,0) in its closure) we construct a path a l inp(V) 
connecting VI and V2 and a closed path aD with ends in Vo such that projec­
tion of Cps from the point (1,0,0,0) on CP2 takes a l and aD into the 
same loop. 

Then the path r(t) = (al(t), aCt)) where aCt) is defined from ao(t)= 
t(a(t))al(t) defines a path connecting (vo, a(1)) and (vo, a(2)). Both 
(vo, a(1)) and (vo, a(2)) belong to ¢-I(p(V)). Clearly the connectivity of V 
implies that any pair of points in V' can be deformed into a pair of points 
of such type and this gives the connectivity of V' -cp-I(B). 

The existence of the paths aD and al in turn follows from the fact that 
the Galois group of the covering defined by generic projection (and we do 
assume that the projection from (1, 0, 0, 0) is a generic projection of p(V)) 
is the full symmetric group. This group has the property that the stabilizer 
of any point of the covering acts transitively on other elements of the fibre, 
which implies the existence of aD and al" 

Corollary 1. Let k be the largest integer which divides the homology 
class hE HlV, Z) of hyperplane section fl. Denote by Vaff the affine part 
of V i.e. Vaff = V - fl. Then 

Proof Let us consider the cycles Vx 0, Vx 00, flx CPt, V', where 
00 denotes the point Cpl- C and by abuse of notation V'is the closure 
of the space V' considered in lemma 1 above. Let.e e H2(VX CPt, Z) be 
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the class of a X Cr(a e V). Denote the homology class defined by a cycle 
by the same symbol as the cycle itself. Note that we have the following 
intersection indices 

(VXO,e)=I; (VXoo,e)=I; (e,hXCpl)=O; (e, V')=d-l 

(d=deg V); 

and for any a e Hz (V, Z) considered as homology class in H 2(VX Cpl, Z) 
via embedding V-+Vx aC Vx Cpl for sufficiently generic a*O 

(a, VXO)=O, (a, Vx 00)=0, (a, hXCpl)=(a, h)v, 

(a, V')= #«v, a) I t(a)p(V) ep(aX a»=(a,p(V) n t(a)p(V») = d(h, a)v. 

Next the group Hz(Vaff XC-rp-l(p(V), Z) by Lefshetz duality is isomor­
phic to H4(VXOU Vx 00 UhXCr U V', Z) and hence is just Z+Z+Z 
+ Z (use irreducibility of V'). The image of the group Hz(VX CPt, Z) in 
Hz(VX CPt, Vaff X C-rp-l(p(V», Z) is the subgroup of Z4 generated by 
the vectors (1,1,0, d-l) and (0,0, k, dk) where k is the largest integer 
dividing h in Hz(V, Z). Indeed if h=kh' and h' is indivisible then by Poin­
care duality there is Ii such that (h', Ii) = 1. Hence (a, h) is a multiple of 
k. Clearly the factor of Z4 by the subgroup generated by this two vectors 
is isomorphic to Z+Z+Z/kZ. On the other hand H1(VXCPt, Z)=O 
and the corollary follows. 

Next we shall consider the infinite abelian covering of Vaff xC­
rp-l(p(V» corresponding to the kernel of the composition of homomor­
phisms 

where the last homomorphism is taking quotient by the torsion subgroup. 
~ 

Denote it by (VaffXC-rp-l(p(V»)"b and the corresponding covering map 
denote by c. Aforementioned kernel consists of elements in n"tCVaff X C­
rp-l(p(V») for which the linking number with Vx 0 U V'is zero. The 
infinite cyclic covering corresponding to the subgroup of 7('1 (Vaff X C­
rp-lp(V» consisting of paths having zero linking number with V' we shall 

~ 

denote by (VaffXC-rp-l(p(V») and the infinite cyclic cover of C 3-V 
~ 

will be denoted by C 3 - V. According to 2.4 the map rp: Vaff XC-
- ~ 

rpl(p(V»)-+C 3 _p(V) induces the map rp: (Vaff X C-rp-l(p(V»)ab-+ 
~ -C 3 _p(V). Let Fa denote Vxa-rp-l(p(V» and Fa be the infinite cyclic 

cover of Fa corresponding to subgroup of 7('1(Fa) of paths having zero 
linking number with V'. 
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Lemma 2. The map 

induced by ;p is surjective. 

The proof of this lemmas requires the following 

Proposition. The fundamental group of Fa is finite. 
r--..J r--..J 

Proof of Lemma 2. The map (Vaff X C-ifJ-l(p(V»)-+C3 - p(V) is a 
map of finite degree. Hence according to 2.1 it is enough to show that 

r--..J r--..J 

the map H2«Vaff X C -ifJ-1(p(V»)ab)-+H2(Vaff X C-ifJ-l(p(V») is surjective. 
Note that (Vaff XC-ifJ-l(P(V))ab is an infinite cyclic cover of (Vaff X 

r--..J 

C-ifJ-l(p(V)). Denote by Ci(X) the group of i-chains of a topological 
space X with Q-coefficients. Then we have the following exact sequence 

r--..J r---./ 

Ci(Vaff X C-ifJ-l(p(V»)ab~C2«Vaff X C-ifJ- 1(p(V»)ab) 
r---./ r---./ 

~C2(V.ff XC-ifJ-l(p(V»)~Cl«Vaff X C-ifJ- 1(p(V»)ab) 
r---./ 

~Cl«Vaff X C-ifJ-1(p(V»)ab). 

This gives the exact homology sequence 
r---./ r---./ 

H2«Vaff XC-ifJ-l(P(V))ab' Q)~H2(Vaff XC-ifJ-l(p(V», Q) 
r---./ 

~Hl«Vaff X C-ifJ-l(p(V»)ab' Q) 

Now 2.2 and the proposition imply that the last group in this 
sequence is trivial and therefore our lemma follows. 

Proof of the proposition. Let Ca denote ifJ-l(p(V) n tea) ·p(V». Ca 

is an irreducible curve on V which for generic a has as singularities only 
nodes. Fa can be identified with V -(Ca U H) where H is the chosen 
earlier hyperplane section. From the exact homology sequence 

H 2(V, Z)~HlV, V - Ca U H, Z)~Hl(V - Ca U H, Z)~Hl(V, Z) 

combined with the fact that the last group is trivial and the Lefshetz 
Duality isomorphism we obtain H2(V, V-Ca UH,Z)=H2(Ca UH,Z)= 
Z+Z. The homology classes of Ca and H are linearly dependent. There­
fore from the fact that the subgroup of Z consisting of integers (h, a), a E 

H 2(V, Z) is generated by k we infer that Hl(V-Ca U H, Z)=Z+Z/kZ (k 
is defined in Corollary 1). 

It follows easily from Nori's theorem [N] that 1L1(V - H) is abelian 
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and homology computations similar to above show that it is in fact just 
Z/kZ. The five term sequence of low dimensional homologies coming 
from Leray spectral sequence of extention (K denotes the kernel of the 
map of fundamental groups) 

gives Hl(K, Z)=ZfBZ/sZ where s is a divisor of k. Our lemma now 
follows from the fact that K is abelian. Indeed if so then K=Z+Z/sZ 
and the kernel of the map of K onto Z defined by linking with C is finite. 
Therefore i't"1(Fa)= Ker (i't"I(Fa)-+Z) is finite. 

The commutativity of K we shall deduce from Nori's theorem. The 
number of nodes of Ca is equal to 20 deg V where 0 is the degree of double 
curve C of p(V). On the other hand the self-intersection of Ca is equal to 
2( deg vy. Clearly the degree of C is equal to (deg V-I)( deg V - 2)/2 - g 
where g is the genus of image of generic hyperplane section of V under 
chosen projection p. Now the inequality 

2(deg V)3>4( deg V. (deg V -l~deg V -2) g)) 

according to [N] guaranties that Ker (i't"I(F)-+Z/kZ) is abelian. 

Lemma 3. For generic a the map 

is surjective. 

Proof First note that the map in the lemma is induced by the lifting 

1: Fa-+(Vaff XC-¢J-1(p(V)))ab of the natural inclusion map i: Fa~ 
Vaff _¢J-l(p(V)) which existence follows from 2.4 because i*(Ker (i't"I(Fa)~ 
Z)) belongs to Ker(i't"l(Vaff XC-¢J-l(p(V)))~Z+Z) (£ denotes the link­
ing coefficient with ¢J-l(p(V)). 

Next we lift the canonical projection Vaff XC-¢J-l(p(V))-+C* to the 
............, 

map s: (Vaff X C-¢J-l(p(V)))ab-+C which can be done according to 2.4. 
For sufficiently generic a the fibre of s can be identified with Fa as can be 
deduced from 2.5. The relevant maps fit in the following diagram 
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r--..J 

where (Vaff XC-~-l(p(V)))c is an infinite cyclic cover of Vaff XC-
~-l(p(V)) corresponding to the kernel of the homomorphism niVaff xC­
~.l(p(V)))-+Z defined by linking with Vaff X Oc Vaff X C or alternatively 
(Vaff XC-~-l(p(V)))c is a pull back of the exponential covering along the 
canonical projection pro In what follows we prove the dual statement to 

r--..J _ 

our lemma, namely that the map H2(Vaff X C-~·\p(V))ab' Q)-+HI(Fa, Q) 
is injective. 

Let us consider the Leray spectral sequence of the map s: 

ROs*Q is a constant sheaf, while Rls*Q has nonzero fibers only at isolated 
points because for generic a we have HI(Fa, Q) = 0 as follows from the prop­
osition above. Therefore E~,o=H2(C, ROs*Q) =0 and E~,I=HI(C, Rls*Q) 

r--..J 

=0. Hence H2«Vaff X C-~·I(p(V)))ab' Q) is isomorphic to E?;,2 and there-
fore injects into HO(C, R2s*Q). Next we show that for generic a the map 
i*: HO(C, R2s*Q)-+H2(Fa, Q) induced by embedding of the point a into C 
is injective. The sheaf R2s*Q is locally constant outside of a discrete set, 
say A. Therefore any section of R2s*Q vanishing at generic point a 
vanishes everywhere except possibly for points of A. Let De be a small 
disk about one of the points, say ai of A which does not contain any other 
point of A. Assume also that exp restricted on De is a homeomorphism. 
The injectivity of i* will follow from the injectivity of H 2(s-I(D,), Q)-+ 
H2(Fa, Q) because HO(D., R2s*Q)=H2(s·I(D,), Q). Note that s·I(D,) can 
be identified with the universal cyclic cover of pel (exp D,) because 
exp·l (pel (exp D,)) is a disjoint union of pel (exp D,) (cf. 2.5). Outside 
of a small ball Bin Vaff X C about a singular point of Vaff xa i n ~-I(p(V)) 
the map pr: pcl(expD,}=B-+D, is a locally trivial fibration while aB­
aBn ~.I(p(V)) is a deformation retract of B_~-I(p(V)). The same is true 

r--..J 

for the cyclic covers i.e. s: s·I(D,)-B-~·I(p(V))-+D, is a locally trivial 
fibration and cyclic cover aB-~-I(p(V)) is a retract of B_~·I(p(V)). 

r--..J 

Here B_~·I(p(Jl)) denotes the cyclic cover of B_~-I(p(V)). Now let 
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us consider the Mayer-Vietories sequence of the union of the pairs (s-l(DJ 
r--/ ~ ~ r--/ 

_B_q>-l(p(V»), Fa -B) and (B_q>-I(p(V), Fa n B) intersecting along 
r--J 

(OB_q>-I(p(V), Fa noB). We have 
r--/ r--.,./ r--/ r-...J 

HI(S-I(D,)-B-q>-I(p(V)), Fa n B)tBHI(B-q>-I(p(V)), Fa n B) 
r--J r--J _ 

~Hl(oB-q>-I(p(V)), Fa n OB_q>-I(p(V)))~H2(S-I(D,), Fa) 
r--J r--J r--J 

~H2(S-I(D,)-B-q>-I(p(V), Fa n B)tBH2(B-q>-I(p(V)), Fa n B) 
r--J r--J 

~H2(oB-q>-I(p(V)), Fa n OB-q>-l(p(V»)). 

It follows that 

and 
r--J r--J r--J 

H\B-q>-I(p(V)), Fa n B)~HieoB-q>-I(peV)), Fa n B) 

is an isomorphism. Hence H 2(s-\D,), Fa)=O and the lemma follows. 
Now we are in position to conclude the proof of the theorem". Let U 

be a 3-dimensional submanifold of CpN which contains V and such that 
the cone of projection ponto CP3 is transversal to U. Let T(V) be a 
tubular neighbourhood of V in U. Let Uaff and T(V)aff be the affine por­
tions of U and TeV) respectively. For a sufficiently close to zero one can 
find a map V---+T(V)- V such that the following diagram commutes. 

T(V)aff- V Vaff X C-q>-I(p(V)) 

iv~l~ 
VafIXa-q>-lp(V) C 3 _ V 

Indeed q>-i(VafI X a) is just translation of p(V) bya. This translation of 
CP3 is induced by a linear transformation La which is close to identity. 
For a sufficiently closed to zero the intersection of the image of projecting 
cone under La and U is transversal and belongs to T(V). This intersec­
tion is a surface diffeomorphic to V. The vertical map v is restriction of 
this diffeomorphism. The points of Vaff X a which the map q>' i takes into 
p(V) are taken by the map v into VC U. The diagram above gives rise to 
the following diagram of the covering spaces. 
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__ r---.../ 

According to Lemmas 3.2 and 3.3 the map (r/Ji)*: H 2(VafI xa-rp-l(p(V))), 
r-..../ r-..../ 

Q)-+H2(C3 - p(V), Q) is surjective. Therefore H 2(T(V)afI- V, Q)-+ 
r-..../ 

H2(C 3 -P(V), Q) is surjective as well. It follows from 2.6 that the action 
r-..../ r-..../ 

of niT(V)afI- V) on H 2(T(V)afI- V) = niT(V)afI - V) is trivial which 
r-..../ 

implies that the action of tr1(C 3 -P(V» on H 2(C 3-P(V)=tr2(C 3 -P(V») 
®Q is trivial as well. This concludes the proof of the theorem" and there­
fore the proof of the main theorem. 
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