Advanced Studies in Pure Mathematics 8, 1986 Complex Analytic Singularities pp. 199-206

Regular Holonomic *D*-modules and Distributions on Complex Manifolds

Masaki Kashiwara

§ 0. Introduction

Let (X, \mathcal{O}_X) be a complex manifold and \mathcal{D}_X the sheaf of differential operators on X. The de Rham functor $\mathcal{DR}_X = \mathbf{R} \mathcal{H}_{om_{\mathcal{D}_X}}(\mathcal{O}_X, *)$ gives an equivalence of the category $\mathbf{RH}(\mathcal{D}_X)$ of regular holonomic \mathcal{D}_X -modules and the category $\mathbf{Perv}(\mathbf{C}_X)$ of perverse sheaves of C-vector spaces on X ([K], [M], [B-B-D]).

To a perverse sheaf F' on X we can associate its complex conjugate \overline{F}' . Then it is easily checked that \overline{F}' is also perverse. We shall discuss here how to construct the corresponding functor $c: \mathbf{RH}(\mathscr{D}_X) \to \mathbf{RH}(\mathscr{D}_X)$ given by $\overline{\mathscr{DR}_x}(\mathscr{M}) = \mathscr{DR}_x(\mathscr{M}^c)$.

The solution to this problem is given as follows. Let \overline{X} be the complex conjugate of X and $\overline{\mathcal{M}}$ the complex conjugate of \mathcal{M} (See § 1). Denoting by $\mathscr{D}_{b_{X_R}}$ the sheaf of distribution on the underlying real manifold X_R of X, \mathscr{M}^c is given by

$$\mathcal{T}or_n^{\mathscr{D}_X}(\Omega^n_X \bigotimes_{\mathfrak{O}_X} \mathscr{D}b_{X_R}, \mathscr{M})$$

where $n = \dim X$ and Ω_X^n denotes the sheaf of the highest degree differential forms on \overline{X} .

I would like to thank D. Barlet for helpful conversation.

§ 1. The complex conjugate

Let \overline{X} be the complex conjugate of a complex manifold X. Hence $(\overline{X}, \mathcal{O}_{\overline{X}})$ is isomorphic to $(X, \mathcal{O}_{\overline{X}})$ as an **R**-ringed space but the isomorphism $-: \mathcal{O}_{\overline{X}} \rightarrow \mathcal{O}_{\overline{X}}$ is **C**-anti-linear, i.e. $\overline{af} = \overline{af}$ for $a \in C$ and $f \in \mathcal{O}_{\overline{X}}$.

Let \mathscr{D}_x and \mathscr{D}_x denote the sheaves of differential operators on Xand \overline{X} , respectively. Then they are isomorphic as a sheaf of **R**-rings. This isomorphism is also denoted by -. Through this isomorphism, we can associate the $\mathscr{D}_{\overline{X}}$ module $\overline{\mathscr{M}}$ to a \mathscr{D}_x -module \mathscr{M} . We call it the complex conjugate of \mathscr{M} . The \mathscr{D}_x -module $\overline{\mathscr{M}}$ is isomorphic to \mathscr{M} as a

Received August 2, 1984.

sheaf on X and if we denote this isomorphism by $-: \mathcal{M} \to \overline{\mathcal{M}}$ then we have $\overline{pu} = \overline{pu}$ for $p \in \mathcal{D}_x$ and $u \in \mathcal{M}$. By this terminology, we have $\overline{\mathcal{O}}_x = \mathcal{O}_x$ and $\overline{\mathcal{D}}_x = \mathcal{D}_x$.

We can see easily that

(1.1)
$$\mathfrak{DR}_{\overline{X}}(\overline{\mathcal{M}}) \cong \overline{\mathfrak{DR}_{X}(\mathcal{M})}$$

in the derived category of complexes of sheaves of C-vector spaces on X.

§ 2. Distribution solutions

Let us denote by X_R the underlying real analytic manifold of a complex manifold X. Then, by the diagonal map $X_R \longrightarrow X \times \overline{X}$, we can regard $X \times \overline{X}$ as the complexification of X_R . Hence we have $\mathscr{D}_{X_R} = \mathscr{D}_{X \times \overline{X}}|_{X_R}$, $\mathscr{A}_{X_R} = \mathscr{O}_{X \times \overline{X}}|_{X_R}$. Let $\mathscr{D}_{b_{X_R}}$ denote the sheaf of distributions on X_R in Schwartz's sense. Then $\mathscr{D}_{b_{X_R}}$ is a \mathscr{D}_{X_R} -module, and, in particular, this is endowed with the structure of a left $(\mathscr{D}_X, \mathscr{D}_X)$ -bi-module.

Let us denote by $\operatorname{Mod}(\mathcal{D}_X)$ the category of left \mathcal{D}_X -modules, and by $\mathbf{D}(\mathcal{D}_X)$ its derived category. We denote by $\mathbf{D}_{rh}^b(\mathcal{D}_X)$ the full subcategory of $\mathbf{D}(\mathcal{D}_X)$ consisting of bounded complexes with regular holonomic cohomology groups. We denote by $\operatorname{RH}(\mathcal{D}_X)$ the category of regular holonomic \mathcal{D}_X -modules.

Theorem 1. (i) $C_X(*) = \mathbb{R} \mathcal{H}_{om_{\mathscr{D}_X}}(*, \mathscr{D}_{b_X})$ is the functor from $\mathbf{D}^b_{rh}(\mathscr{D}_X)$ into $\mathbf{D}^b_{rh}(\mathscr{D}_X)^\circ$. Here \circ denotes the opposite category.

(ii) C_x is an equivalence of categories and $C_x \circ C_x \cong id$.

(iii) $\mathscr{DR}_{\overline{X}} \circ C_{\overline{X}} \cong \mathscr{Sol}_{\overline{X}}$, where

$$\mathscr{G}ol_X(*) = \mathbf{R} \mathscr{H}om_{\mathscr{D}_X}(*, \mathcal{O}_X) \cong \mathbf{R} \mathscr{H}om_{\mathbf{C}}(\mathscr{D}\mathscr{R}_X(*), \mathbf{C}_X).$$

The statement (iii) is easily derived from Dolbeaut's lemma for distributions

(2.1)
$$\mathscr{DR}_{\mathfrak{X}}(\mathscr{D}b_{\mathfrak{X}\mathfrak{p}})\cong \mathscr{O}_{\mathfrak{X}}.$$

The property (ii) follows from (i), (iii) and the solution to Riemann-Hilbert problem ([K], [M]) for regular holonomic modules. In fact, in order to see (ii), it is enough to check

$$\mathcal{DR}_{X}(C_{\overline{X}} \circ C_{X}(\mathcal{M})) \cong \mathcal{DR}_{X}(\mathcal{M}).$$

The left-hand-side is isomorphic to

$$\mathcal{G}ol_{\bar{X}}(C_{X}(\mathcal{M})) = \mathbf{R} \mathcal{H}om_{\mathbf{C}}(\mathcal{D}\mathcal{R}_{\bar{X}}(C_{X}(\mathcal{M})), \mathbf{C}_{X}) = \mathbf{R} \mathcal{H}om_{\mathbf{C}}(\mathcal{G}ol_{X}(\mathcal{M}), \mathbf{C}_{X})$$
$$= \mathcal{D}\mathcal{R}_{X}(\mathcal{M}).$$

200

The proof of the assertion (i) is given in Sections 4-5.

Remark 2.1. Similarly we have $\mathscr{D}_{X}^{\infty} \otimes_{\mathscr{D}_{X}} C_{X}(\mathscr{M}) = \mathbb{R} \mathscr{H}_{om_{\mathscr{D}_{X}}}(\mathscr{M}, \mathscr{B}_{X_{R}})$. Here \mathscr{D}_{X}^{∞} denotes the sheaf of differential operators of infinite order on \overline{X} ([K-K]) and $\mathscr{B}_{X_{R}}$ denotes the sheaf of hyperfunctions on X_{R} . In fact, since $\mathscr{B}_{X_{R}} = \mathbb{R}\Gamma_{X_{R}}(\mathscr{O}_{X \times X})[2n]$, $n = \dim X$, we have

$$\boldsymbol{R}\mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M},\mathscr{B}_{X_{R}})[2n] = \boldsymbol{R}\Gamma_{X_{R}}(\boldsymbol{R}\mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M},\mathscr{O}_{X\times\bar{X}}))[2n].$$

By Proposition 1.4.3 [K-K], we have $R \mathscr{H}_{om_{\mathscr{D}_X}}(\mathscr{M}, \mathscr{O}_{X \times \overline{X}}) = \mathscr{G}ol_X(\mathscr{M}) \hat{\otimes} \mathscr{O}_{\overline{X}}$, where $\hat{\otimes}$ denotes the external tensor product. Hence Proposition 1.4.2 [K-K] implies

$$\begin{split} & R\Gamma_{X_{R}}(R\mathcal{H}om_{C}(\mathcal{DR}_{X}(\mathcal{M}), C_{X})\hat{\otimes}\mathcal{O}_{X})[2n] \\ &= R\mathcal{H}om_{C}(\mathcal{DR}_{X}(\mathcal{M}), \mathcal{O}_{X}) = R\mathcal{H}om_{C_{X}}(\mathcal{S}ol_{X}(C_{X}(\mathcal{M})), \mathcal{O}_{X}) \\ &= \mathcal{D}_{X}^{\infty} \bigotimes_{g_{X}} C_{X}(\mathcal{M}). \end{split}$$

Here the last identity follows from Theorem 1.4.9 [K-K].

Theorem 2. (i) For any regular holonomic \mathcal{D}_x -module \mathcal{M} , we have

$$\mathscr{E}_{xt_{\mathscr{D}_x}^j}(\mathscr{M}, \mathscr{D}_{b_{X_p}}) = 0 \quad for \ j \neq 0$$

and $C_{\mathcal{X}}(\mathcal{M}) = \mathcal{H}_{om_{\mathscr{D}_{\mathcal{X}}}}(\mathcal{M}, \mathscr{D}_{b_{\mathcal{X}_{R}}})$ is a regular holonomic $\mathscr{D}_{\mathcal{X}}$ -module. (ii) $\mathscr{D}\mathcal{R}_{\mathcal{X}} \circ C_{\mathcal{X}} = \mathscr{G}ol_{\mathcal{X}}$.

(iii) C_x gives an equivalence of the categories $\mathbf{RH}(\mathcal{D}_x)$ and $\mathbf{RH}(\mathcal{D}_x)^\circ$. Here $\mathbf{RH}(\mathcal{D}_x)$ denotes the category of regular holonomic \mathcal{D}_x -modules.

Proof. By Theorem 1, if \mathscr{M} is a regular holonomic \mathscr{D}_X -module, then $C_X(\mathscr{M}) = \mathbb{R} \mathscr{H}_{om_{\mathscr{G}_X}}(\mathscr{M}, \mathscr{D}_{b_{X_R}})$ belongs to $\mathbf{D}_{rh}^b(\mathscr{D}_X)$. In order to see $H^j(C_X(\mathscr{M})) = 0$ for $j \neq 0$, it is necessary and sufficient to show that $\mathscr{DR}_X(C_X(\mathscr{M})) = \mathscr{Sol}_X(\mathscr{M})$ is perverse on \overline{X} . Since the set of analytic subsets of \overline{X} is equal to that of X, the perversity on X is equivalent to the perversity on \overline{X} . Hence the perversity of $\mathscr{DR}_X(C_X(\mathscr{M}))$ on \overline{X} follows from the perversity of $\mathscr{Sol}_X(\mathscr{M})$ on X. The other statements follow immediately from (i) and the preceding theorem. Q.E.D.

Together with (1.1), we have

Corollary 3. The functor c:

$$\mathscr{M} \mapsto \mathscr{H} om_{\mathscr{D}_{X}}(\overline{\mathscr{M}}^{*}, \mathscr{D} b_{X_{R}}) = \mathscr{T}or_{n}^{\mathscr{D}_{X}}(\Omega_{X}^{n} \bigotimes_{\mathscr{D}_{X}} \overline{\mathscr{M}}, \mathscr{D} b_{X_{R}})$$

is an automorphism of $\mathbf{RH}(\mathcal{D}_X)$, which satisfies $\mathcal{DR}_X(\mathcal{M}^c) = \overline{DR_X(\mathcal{M})}$. Here $n = \dim X$ and * denotes the dual system.

M. Kashiwara

§ 3. Applications

Proposition 4. Let u be a distribution on X_R . Then the following conditions are equivalent.

(a) $\mathscr{D}_x u$ is a regular holonomic \mathscr{D}_x -module.

(ā) $\mathscr{D}_{\mathbf{X}}u$ is a regular holonomic $\mathscr{D}_{\mathbf{X}}$ -module.

(b) Any point of X has a neighborhood U and a coherent left $(\mathscr{D}_X|_U)$ ideal \mathscr{J} such that $\mathscr{J}u=0$ on U and that $(\mathscr{D}_X|_U)/\mathscr{J}$ is regular holonomic (we say shortly that u solves locally a regular holonomic system on X).

(\overline{b}) u solves locally a regular holonomic system on \overline{X} .

Proof. The implication (a) \Rightarrow (b), (\overline{a}) \Rightarrow (\overline{b}) is evident. Hence it is sufficient to show (b) \Rightarrow (\overline{a}). Let $\mathscr{M} = \mathscr{D}_X/\mathscr{J}$ be a regular holonomic \mathscr{D}_X -module with $\mathscr{J}u=0$. Then u gives the \mathscr{D}_X -linear homomorphism $\varphi \colon \mathscr{M} \mapsto \mathscr{D}b_{X_R}$, and hence φ is a section of $C_X(\mathscr{M}) = \mathscr{H}_{om_{\mathscr{D}_X}}(\mathscr{M}, \mathscr{D}b_{X_R})$. Since $\mathscr{D}_X u$ is isomorphic to the sub- \mathscr{D}_X -module of $C_X(\mathscr{M})$ generated by φ , $\mathscr{D}_X u$ is a regular holonomic \mathscr{D}_X -module. Q.E.D.

Remark 3.1. The conditions (a) \sim (b) for *u* are also equivalent to the conditions (a) \sim (b) for the complex conjugate \bar{u} of *u*.

Proposition 5. Let \mathcal{M} be a regular holonomic \mathcal{D}_x -module and φ a section of $C_x(\mathcal{M})$. Then the following conditions are equivalent.

(i) φ is an injective sheaf homomorphism from \mathcal{M} to $\mathcal{D}b_{X_R}$.

(ii) φ generates $C_{\mathcal{X}}(\mathcal{M})$ as $\mathcal{D}_{\mathcal{X}}$ -module.

Proof. Set $\mathcal{N} = \mathcal{D}_{\mathbb{X}} \varphi \subset C_{\mathbb{X}}(\mathcal{M})$. Applying the functor $C_{\mathbb{X}}$ to the exact sequence $0 \to \mathcal{N} \xrightarrow{\alpha} C_{\mathbb{X}}(\mathcal{M})$, we obtain the exact sequence $0 \leftarrow C_{\mathbb{X}}(\mathcal{N}) \xleftarrow{\beta} \mathcal{M}$. The homomorphism β is given by $\beta(u) \colon \mathcal{N} \ni P\varphi \mapsto P(\varphi(u)) \in \mathcal{D}b_{\mathbb{X}_R}$ for $u \in \mathcal{M}, P \in \mathcal{D}_{\mathbb{X}}$. Hence Ker $\beta = \text{Ker}(\varphi \colon \mathcal{M} \to \mathcal{D}b_{\mathbb{X}_R})$. The equivalence of $C_{\mathbb{X}}$ implies: φ is injective $\Leftrightarrow \beta$ is injective $\Leftrightarrow \alpha$ is surjective. Q.E.D.

Remark 3.2. If u satisfies (a) ~ (b) of Proposition 4, then $C_x(\mathscr{D}_x u) = \mathscr{D}_x u$. In particular, any distribution v which satisfies Pv=0 for any $P \in \mathscr{D}_x$ with Pu=0, can be written locally in the form Qu with $Q \in \mathscr{D}_x$.

Remark 3.3. The subsheaf of \mathscr{D}_{x_R} consisting of distributions satisfying (a) \sim (b) of Proposition 4 is not a \mathscr{D}_{x_R} -module. In fact, $e^{z\bar{z}}$, nor $1/(1+z\bar{z})$, does not satisfy any holomorphic linear differential equation on C; that is, $\mathscr{D}_C \ni P \mapsto P e^{z\bar{z}} \in \mathscr{D}_{x_R}$ is injective.

Corollary 6. Any regular holonomic \mathcal{D}_x -module is locally embedded into $\mathcal{D}_{b_{x_R}}$.

In fact, for a regular holonomic \mathcal{D}_x -module \mathcal{M} , $C_x(\mathcal{M})$ is locally generated by one section ([B]).

Example 3.4. (1) X = C, $u = (z + \bar{z})^n$. Then $\mathscr{D}_X u \cong \mathscr{D}_X / \mathscr{D}_X \partial^{n+1}$ and $\mathscr{D}_X u \cong \mathscr{D}_X / \mathscr{D}_X \bar{\partial}^{n+1}$.

(2) X = C, u = 1/z. Then $\mathscr{D}_X u \cong \mathscr{D}_X / \mathscr{D}_X (z\partial + 1)$ and $\mathscr{D}_X u \cong \mathscr{D}_X / \mathscr{D}_X \overline{z}\overline{\partial}$. Remark that $\overline{\partial} u = \pi^{-1} \delta(\operatorname{Re} z) \delta(\operatorname{Im} z)$.

Remark 3.5. We conjecture that Theorem 2 is still true for arbitrary holonomic \mathcal{D}_x -modules.

Example (D. Barlet). When X = C, $\mathcal{M} = \mathcal{D}_X / \mathcal{D}_X (z^2 \partial_z + 1)$, let us take $u = e^{1/z - 1/\overline{z}}$. Since *u* is a bounded function outside the origin, *u* can be considered as a distribution on *X*. Then, we have

$$\mathscr{H}om_{\mathscr{D}_{\overline{X}}}(\mathscr{M}, \mathscr{D}b_{X_{\overline{P}}}) \cong \mathscr{D}_{\overline{X}}u = \mathscr{D}_{\overline{X}}/\mathscr{D}_{\overline{X}}(\overline{z}^2\partial_{\overline{z}} - 1).$$

The vanishing $\mathscr{E}_{xt^{0}_{\mathscr{D}_{x}}}(\mathscr{M}, \mathscr{D}_{b_{x_{R}}})=0$ follows from the solvability of the constant-coefficient differential operator $-\partial_{t}+1$ $(=z^{2}\partial_{z}+1, t=1/z)$ on the space of tempered distributions on C_{t} .

§ 4. Proof of Theorem 1

We shall prove Theorem 1 (i) by reducing it to a simple case (Lemma 7) by using Hironaka's desingularization theorem ([H]).

Lemma 7. Let $X = \mathbb{C}^n$, $f = x_1 \cdots x_l$ $(l \leq n)$ and let \mathcal{M} be a regular holonomic right \mathcal{D}_X -module such that $\mathcal{M}_f = \mathcal{M}$ and that the characteristic variety of \mathcal{M} is contained in the zero section outside $f^{-1}(0)$. Here $*_f$ denotes the localization by f. Then we have $\mathcal{T}_{or_j^{\oplus X}}(\mathcal{M}, \mathcal{D}_{b_{X_R}}) = 0$ for $j \neq n$ and $\mathcal{T}_{or_m^{\oplus X}}(\mathcal{M}, \mathcal{D}_{b_{X_R}})$ is a regular holonomic \mathcal{D}_X -module.

Proof. The assertion being closed under extension of \mathscr{D}_x -modules, we may assume from the beginning that

$$\mathcal{M} = \mathcal{D}_{X} / \sum_{j=1}^{l} (x_{j}\partial_{j} - \lambda_{j}) \mathcal{D}_{X} + \sum_{j=l+1}^{n} \mathcal{D}_{X}\partial_{j}$$

with $\lambda_j \in \mathbb{C} \setminus \{-1, -2, \cdots\}$. We have $\mathscr{M} \otimes_{\mathscr{G}_X}^{\mathbb{L}} \mathscr{D}_{b_{X_R}} = \mathscr{M} \otimes_{\mathscr{G}_X}^{\mathbb{L}} (\mathscr{D}_{b_{X_R}})_j$. Hence this is isomorphic to the Koszul complex

$$(4.1) \quad (\mathscr{D}_{b_{\mathcal{X}_{R}}})_{f} \xrightarrow{} (\mathscr{D}_{b_{\mathcal{X}_{R}}})_{f}^{n} \xrightarrow{} \cdots \rightarrow (\mathscr{D}_{b_{\mathcal{X}_{R}}})_{f}^{n} \xrightarrow{} (\mathscr{D}_{b_{\mathcal{X}_{R}}})_{f} \xrightarrow{} 0$$

M. Kashiwara

where $P_j = \begin{cases} x_j \partial_j - \lambda_j & (j \leq l) \\ \partial_j & (j > l). \end{cases}$

The map $\varphi: u \mapsto |x_1^{\lambda_1} \cdots x_n^{\lambda_n}|^2 u$ gives an isomorphism of $(\mathscr{D}b_{X_R})_f$ and φ transforms (4.1) to the Koszul complex

(4.2)
$$(\mathscr{D}b_{X_{R}})_{f} \xrightarrow{Q_{1}} (\mathscr{D}b_{X_{R}})_{f}^{n} \xrightarrow{\longrightarrow} (\mathscr{D}b_{X_{R}})_{f} \xrightarrow{\longrightarrow} 0$$

where $Q_j = \begin{cases} x_j \partial_j & (j \leq l) \\ \partial_j & (j > l). \end{cases}$

By Dolbeaut's lemma, its homology group is concentrated at the degree n and the *n*-th homology group is isomorphic to $(\mathcal{O}_{\overline{x}})_{\overline{j}}$. Here we used the following

$$(4.3) \qquad \qquad (\mathscr{D}b_{\mathcal{X}_{\mathcal{B}}})_f = (\mathscr{D}b_{\mathcal{X}_{\mathcal{B}}})_j.$$

Hence $\mathcal{T}or_{j}^{g_{X}}(\mathcal{M}, \mathcal{D}b_{X_{R}}) = 0$ for $j \neq n$ and $\mathcal{T}or_{n}^{g_{X}}(\mathcal{M}, \mathcal{D}b_{X_{R}})$ is isomorphic to $(\mathcal{O}_{\overline{X}})_{\overline{j}}$ with the structure of $\mathcal{D}_{\overline{X}}$ -module by

(4.4)
$$\bar{\partial}_{i} \circ u = \bar{x}_{i}^{\lambda_{j}} \bar{\partial}_{j} \bar{x}_{i}^{-\lambda_{j}} u = (\bar{\partial}_{i} - \lambda_{j} \bar{x}_{i}^{-1}) u.$$

Hence this is a regular holonomic \mathcal{D}_{X} -module.

Lemma 8. Let Y be a smooth submanifold of a complex manifold X, H a normally crossing hypersurface of Y and \mathcal{M} a regular holonomic \mathcal{D}_X -module satisfying

0.E.D.

(4.6)
$$\mathscr{H}^{j}_{[H]}(\mathscr{M}) = 0 \quad for \ any \ j,$$

(4.7) Ch $\mathcal{M} \subset T_Y^* X \cup \pi^{-1} H$, where Ch denotes the characteristic variety and π is the projection from $T^* X$ to X. Then $\mathcal{T}or_j^{\mathscr{G}_X}(\mathcal{M}, \mathscr{D}b_{X_R})$ is a regular holonomic \mathcal{D}_X -module for any j.

Proof. There exists a regular holonomic \mathscr{D}_{Y} -module \mathscr{N} such that $\mathscr{M} = \mathscr{N} \bigotimes_{\mathscr{D}_{Y}} \mathscr{D}_{Y} \longrightarrow x$. We can easily show the following

Lemma 9. $\mathcal{T}_{or_j}^{\mathscr{D}_X}(\mathscr{D}_Y \longrightarrow x, \mathscr{D}_{b_X}) = 0$ for

$$j \neq \operatorname{codim} Y$$
 and $\cong \mathscr{D}_{\mathbb{X}} \underset{a \neq \mathcal{D}}{\longrightarrow} \mathscr{D}_{\mathbb{Y}_R} \quad for j = \operatorname{codim} Y.$

By this lemma, we have, denoting $c = \operatorname{codim} Y$,

204

$$\mathcal{T}or_{j}^{g_{X}}(\mathcal{M}, \mathcal{D}b_{X_{R}}) \cong \mathcal{D}_{X} \longrightarrow_{\overline{Y}} \bigotimes_{g_{R}} \mathcal{T}or_{j-c}^{g_{Y}}(\mathcal{N}, \mathcal{D}b_{Y_{R}}).$$

On the other hand, Lemma 7 implies the regular holonomicity of $\mathcal{T}_{or_{j}^{g_{Y}}}(\mathcal{N}, \mathcal{D}_{b_{Y_{p}}})$ and the lemma follows. Q.E.D.

§ 5. End of Proof of Theorem 1

We shall show the following statement (5.1) by the induction of dim Supp \mathcal{M} ;

(5.1) $\mathcal{M} \otimes_{\mathscr{D}_{X}}^{L} \mathscr{D}_{b_{X_{R}}} \in \mathbf{D}_{rb}^{b}(\mathscr{D}_{X})$ for any bounded complex \mathcal{M} of right \mathscr{D}_{X} -modules with regular holonomic cohomology groups.

Here $S = \text{Supp } \mathcal{M}$ is, by definition, the union of Supp $\mathcal{H}^{j}(\mathcal{M})$.

There exists a nowhere dense closed analytic subset S_0 of S which satisfies the following two conditions.

(5.2) S_0 contains the singular locus of S.

(5.3) Ch $\mathscr{H}^{j}(\mathscr{M}) \subset T^{*}_{S}X \cup \pi^{-1}(S_{0}).$

The question being local, we may assume further

(5.4)
$$S_0 = S \cap \varphi^{-1}(0) \text{ for a } \varphi \in \Gamma(X; \mathcal{O}_X).$$

Let us consider a distinguished triangle $\mathcal{M} \to \mathcal{M}_{\varphi} \to \mathcal{N} \xrightarrow{+1} \mathcal{M}$. Since Supp $\mathcal{N} \subset S_0$, $\mathcal{N} \otimes_{\mathscr{D}_X}^L \mathscr{D}_{b_{X_R}}$ belongs to $\mathbf{D}_{rh}^b(\mathscr{D}_{\overline{X}})$ by the hypothesis of induction. Hence in order to see $\mathcal{M} \otimes_{\mathscr{D}_X}^L \mathscr{D}_{b_{X_R}} \in \mathbf{D}_{rh}^b(\mathscr{D}_{\overline{X}})$, it is enough to show $\mathcal{M}_{\varphi} \otimes_{\mathscr{D}_X}^L \mathscr{D}_{b_{X_R}} \in \mathbf{D}_{rh}^b(\mathscr{D}_{\overline{X}})$. Hence, replacing \mathcal{M} with \mathcal{M}_{φ} , we may assume further

$$(5.5) \qquad \qquad \mathcal{M} = \mathcal{M}_{\varphi}.$$

Now, by Hironaka's desingularization theorem ([H]), there exists a smooth manifold X' a projective morphism $f: X' \rightarrow X$ and a non-singular submanifold S' of X' which satisfy the following properties:

(5.6) f gives an isomorphism from $X' \setminus f^{-1}(S_0)$ onto $X \setminus S_0$ and f(S') = S.

(5.7) $S'_0 = S' \cap f^{-1}(S_0)$ is normally crossing hypersurface of S'.

Set $\varphi' = \varphi \circ f$, and

(5.8)
$$\mathcal{M}' = f^{-1} \mathcal{M} \bigotimes_{f^{-1} \mathscr{D}_{X}} \mathscr{D}_{X \leftarrow X'}.$$

Since $(\mathscr{D}_{X-X'})_{\varphi} = (\mathscr{D}_{X'})_{\varphi'}$, we have

(5.9)
$$\mathscr{M}' \cong \mathscr{M} \bigotimes_{\mathscr{D}_{X'}} (\mathscr{D}_{X'})_{\varphi'} \cong \mathscr{M}'_{c}.$$

M. Kashiwara

Lemma 8 implies $\mathscr{M}' \otimes^{L}_{\mathscr{D}_{X'}} \mathscr{D}_{\mathscr{D}_{X'}} \in \mathbf{D}^{\flat}_{\mathrm{rh}}(\mathscr{D}_{X'})$. Therefore its integration

$$Rf_*\left(\mathscr{D}_{\bar{X}-\bar{X}'}\bigotimes_{\mathscr{D}_{\bar{X}'}}^{L}\left(\mathscr{M}'\bigotimes_{\mathscr{D}_{\bar{X}'}}^{L}\mathscr{D}b_{X'_{R}}\right)\right)$$

also belongs to $\mathbf{D}^{b}_{\mathrm{rh}}(\mathscr{D}_{\mathbb{X}})$ (Theorem 6.2.1 [K-K]).

On the other hand, we have

$$\mathcal{M}' \bigotimes_{\mathfrak{D}_{\mathbf{X}'}}^{\mathbf{L}} \mathcal{D}b_{\mathbf{X}'_{\mathbf{R}}} = \mathcal{M} \bigotimes_{\mathfrak{D}_{\mathbf{X}}}^{\mathbf{L}} (\mathcal{D}_{\mathbf{X}'})_{\varphi'} \bigotimes_{\mathfrak{D}_{\mathbf{X}'}}^{\mathbf{L}} \mathcal{D}b_{\mathbf{X}'_{\mathbf{R}}} \\ = \mathcal{M} \bigotimes_{\mathfrak{D}_{\mathbf{X}}}^{\mathbf{L}} (\mathcal{D}b_{\mathbf{X}'_{\mathbf{R}}})_{\varphi'} = (\mathcal{D}_{\mathbf{X}'})_{\varphi'} \bigotimes_{\mathfrak{D}_{\mathbf{X}'}}^{\mathbf{L}} \left(\mathcal{M} \bigotimes_{\mathfrak{D}_{\mathbf{X}}}^{\mathbf{L}} (\mathcal{D}b_{\mathbf{X}'_{\mathbf{R}}})_{\varphi'} \right),$$

and

$$\mathscr{D}_{\overline{X}-\overline{X}'} \bigotimes_{\mathscr{D}_{\overline{X}'}}^{L} (\mathscr{D}_{\overline{X}'})_{\overline{\varphi}'} = (\mathscr{D}_{\overline{X}'})_{\overline{\varphi}'}$$

Here we used $(\mathscr{D}_{b_{X'_{R}}})_{\varphi'} = (\mathscr{D}_{b_{X'_{R}}})_{\overline{\varphi'}}$. Hence, we obtain

$$Rf_*\left(\mathscr{D}_{\bar{X}\leftarrow\bar{X}'}\bigotimes_{\mathscr{D}_{\bar{X}'}}^{L}\left(\mathscr{M}'\bigotimes_{\mathscr{D}_{\bar{X}'}}^{L}\mathscr{D}_{b_{\bar{X}'_R}}\right)\right)\\=Rf_*\left(\mathscr{M}\bigotimes_{\mathscr{D}_{\bar{X}}}^{L}(\mathscr{D}_{b_{\bar{X}'_R}})_{\varphi'}\right)=\mathscr{M}\bigotimes_{\mathscr{D}_{\bar{X}}}^{L}Rf_*((\mathscr{D}_{b_{\bar{X}'_R}})_{\varphi'}).$$

Since $Rf_*((\mathscr{D}b_{X'_R})_{\varphi'}) = (\mathscr{D}b_{X_R})_{\varphi}$ we finally conclude

$$\mathscr{M} \bigotimes_{\mathscr{D}_{\mathcal{X}}}^{L} (\mathscr{D}_{b_{\mathcal{X}_{R}}})_{\varphi} = \mathscr{M} \bigotimes_{\mathscr{D}_{\mathcal{X}}}^{L} \mathscr{D}_{b_{\mathcal{X}_{R}}} \in \mathbf{D}_{\mathrm{rh}}^{b}(\mathscr{D}_{\mathcal{X}}).$$

This shows (5.1) and completes the proof of Theorem 1.

References

- [B] J-E. Björk, Rings of Differential Operators, 1979, North-Holland, Amsterdam-Oxford-New York.
- [B-B-D] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, analyse et topologie sur les espaces singuliers (1) Astérisque, 100 (1982), Soc. Math. de France.
- [H] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic 0, Ann. of Math., 79 (1964), 109–326.
- [K] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ., 20 (1984), 319-365.
- [K-K] —— and T. Kawai, On holonomic systems of microdifferential equations III, Publ. RIMS, Kyoto Univ., 17 (1981), 813–979.
- [M] Z. Mebkhout, Une equivalence de catégories, Compositio Math., 51 (1984), 51-62.
- [M] —, Une autre equivalence de catégories, ibid., 63-88

Research Institute for Mathematical Sciences Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606, Japan

206