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Du Bois Singularities on a Normal Surface 

Shihoko Ishii* 

Introduction 

The purpose of this paper is to investigate Du Bois singularities on 
normal analytic surfaces. Du Bois introduced the concept of what we 
call Du Bois singularity by means of his differential complex ([2]). A 
normal isolated singularity (X, x) is Du Bois if and only if the canonical 
maps Rij*(1Jg---+Hi(E, (!}E) are bijective for all i>O, where f: X~X is a 
good resolution meaning that the divisor E= j-I(x)red is of normal cros­
sings. 

In this paper, a Du Bois singularity is characterized by the property 
that any holomorphic 2-form on X - E has poles on E of order at most 
one (Theorem 1.8). Then, we show that any resolution of a Du Bois 
singularity is a good resolution. We also show that any connected sub­
divisor of the fibre E= f-I(x)red of a Du Bois singularity (X, x) is con­
tracted to a Du Bois singularity. 

In Theorem 3.2, we get a numerical sufficient condition for a con­
nected configuration of curves with normal crossings on a non-singular 
surface to be contracted to a Du Bois singularity, which gives examples of 
Du Bois singularities with arbitrary geometric genus. However, Du Bois' 
condition is not completely determined by numerical conditions on E. In 
Section 4, we have examples of Du Bois and non-Du Bois singularities 
with the same numerical conditions on E (Proposition 4.2). 

In this paper, we work only on surface singularities, so, "a singularity" 
always means a normal singularity on an analytic surface. 

The author would like to thank K. Watanabe for providing many 
examples which helped her to prepare this paper and would also like to 
express her gratitude to the referee for constructive suggestions. 

§ 1. General 2-forms around a Du Bois singularity 

In this section, we introduce the concept of a general 2-form around 
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a singularity on a normal surface and characterize a Du Bois singularity 
by means of a general 2-form. 

Definition 1.1. Let (X, x) be a singurality. For a holomorphic 2-
form {} on X -{x}, denote the associated Weil divisor to {} by De. In 
other words, De is the closure of the set {zeros of {} on X -{x}} in X. 

(1.2) Fix a resolutionf: X~X of the singularity (X, x). Let E be 
the reduced divisor f-l(x)red and decompose E into irreducible components 
E1, •• " E. (s> 1). We can regard a holomorphic 2-form {} on X -{x} as 
a meromorphic 2-form on X with the poles on E by the isomorphism 
rex - {x}, (!J(Kx))::: rex - E, (!J(Kg)). Since dim rex - E, (!J(Kg))/ rex, (!J(Kg)) 
is finite, the order of the pole of {} E reX - E, (!J(Kg)) at each Ei is bounded. 
Let mi be the minimal value of V Ei({}) for all {} E rex -{x}, (!J(Kx)), where 
VEi is the valuation associated to the divisor E i • 

Definition 1.3. A holomorphic 2-form {} on X -{x} is called a 
general holomorphic 2-form if vEi({})=m i for every i. We can easily check 
that the subset LI consisting of all general holomorphic 2-forms is a dense 
subset of reX -{x}, (!J(Kx)). 

Proposition 1.4. Let us use the notation of (1.2) and (1.3). Then,for 
a holomorphic 2-form {} on X - E, a canonical divisor is represented as 

where [Do] is the proper transform of the Wei! divisor Do. 

Proof The 2-form {} induces an isomorphism 

Definition 1.5. For a resolutionf: LY~Xwith E=f-1(x)red' we define 
the index sets I, J as I={i!mi~O}, J={j!mi<O} and denote the reduced 
divisors L.;iE[ Ei , L.;JEJ EJ by E[, EJ respectively. We call E J the essential 
part of E. 

The configuration of E[ and EJ of a singularity will be discussed in 
Section 3. 

Now we are going to investigate Du Bois singularities. To this end, 
we define a good resolution of a singularity first. 

Definition 1.6. A resolutionf: X~X of a singularity (X, x) is called 
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a good resolution if the reduced divisor E=f-I(x)red crosses normally with 
itself. 

We take the following characterization of Du Bois singularity as its 
definition. 

Proposition 1.7 (Steenbrink [4]). A normal singularity (X, x) of di­
mension two is Du Bois if and only if the canonical map R1*(2g~HI(E, (2E) 
is an isomorphism, where f: X~X is a good resolution. 

Theorem 1.8. Let f: X~X be a good resolution of a normal singu­
larity (X, x) of dimension two, E the reduced divisor f-I(x)red and E= L: Ei 
the irreducible decomposition. 

Then, the singularity (X, x) is Du Bois if and only if a general holomor­
phic 2-form on X - E has poles of order at most one. 

Proof By taking X sufficiently small, we may assume that the 
singularity (X, x) is Du Bois if and only if 

HI(X, (2g)==-H I(E, (2E). 

The left hand side HI(X, (2g) is the dual of rex -E, Kg)/r(X, Kg) ([5]). 
For the right hand side, consider the exact sequence; 

Here, HI(X, (2(Kg)) =0, by the Grauert-Riemenschneider vanishing theo­
rem. By the duality for a compact Gorenstein variety E, HI(E, (2 E) is the 
dual of r(E, (2(KE)) = rex, (2(Kg+E))/r(X, (2(Kg)). Combining the rela­
tion rex, (2(Kg +E)) crex -E, (2(Kg)) and the isomorphism HI(X, (2g)==­
HI(E, (2E), we see that reX, (2(Kg+E))=r(X-E, (2(Kg)). Now the 
singularity (X, x) is Du Bois if and only if, for every holomorphic 2-form 
() on X - E has poles on E with order at most one. 

Corollary 1.9. Under the same notation as in Theorem 1.8, take a 
canonical divisor Kg as 

with an effective divisor D which does not contain any components of E. 
Then the singularity (X, x) is Du Bois if and only if, for any canonical 

divisor Kg as above, the inequality ri > -1 holds for any i. 

Proof This follows immediately from Theorem 1.8. 

Proposition 1.10~ If a singularity (X, x) satisfies 0m(X, x)< 1 for 
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every mEN, then (X, x) is Du Bois. In particular, for a Gorenstein singu­
larity (X, x), the converse holds. 

Proof Take a good resolution f: X---+X of the singularity (X, x). 
Assume that the singularity (X, x) is not Du Bois. Then there is a 
meromorphic 2-form 0 on X which is holomorphic on X - E and has a 
pole on E of order > 2. Hence, for a holomorphic 2-form Q) on X, the 
m-ple 2-form wnm - I has a pole on E of order >m-l, if we take m 
sufficiently large. Now, we obtain two elements om, wnm-I of reX -E, 
<!J(mKx))/r(x, <!J(mK+(m-l)E)) which are linearly independent over C. 
This implies that 0m(X, x»2. 

For the second assertion, see [3]. 

Note that the converse is not true, in general. Indeed, there is a Du 
Bois singularity with arbitrarily large geometric genus Pg (=01) (c.f. 
Corollary 3.3). 

§ 2. Resolutions of Du Bois singularities 

Lemma 2.1. Let f: X---+X be a good resolution of a singularity (X, x). 
Let g: X---+Y be a birational morphism contracting a connected divisor E' 
where E'<E=f-l(x)red' Denote E-E' by E*, the reduced Wei! divisor 
g(E*)red by E* and the number of points of E* corresponding to the point 
y=g(E') by p. 

Then, 

(1) 

Proof Because E is of normal crossings, we have the exact sequence 
of Mayer-Vietois type; 

(2) 

O---+r(E, <!JE)---+r(E', <!JE-}(J3r(E*, <!JE.)---+r(E'nE*, <!J) 

---+HI(E, <!JE)---+H1(E', <!JE,)(J3H1(E*, <!JE.)---+O. 

Then we have the equality 

hl(E, <!JE)=hl(E', <!JE,)+hl(E*, <!JE.)+P-q, 

where q is the number of the connected components of E*. 
Next consider the restricted morphism g' =gIE': E*---+E*. Then we 

have an exact sequence; 

o---+r(E*, <!JE.)---+r(E*, <!JE.)---+r(E*, g'*<!JE./<!JE') 

---+HI(E*, <!JE.)---+HI(E*, <!JE.)---+O. 
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Since 

(3) 

the exact sequence yields 

(4) 

Combining (2) and (4), we show that 

hl(E, (!JE)<hl(E', (!JE,)+hl(E*, (!JE') 

as desired. Clearly the equality of (1) holds if and only if the equality in 
(3) holds. 

Theorem 2.2. Letf: X---+X be a good resolution of a Du Bois singu­
larity (X, x). Let E' be a connected divisor in X with E'<E=f-l(x)red' 

Then the singularity (Y, y) obtained by contracting the divisor E' in X 
is also Du Bois and the equality of (1) in Lemma 2.1 holds. 

Proof First, consider the spectral sequence; 

Ef,q=HP(Y, Rqg*(!Jx)-::?Ep+q=Hp+q(X, (!Jx). 

Take the trivial edge sequence; 

O---+HI(y, (!Jy)---+HI(X, (!Jx)---+r(Y, Rlg*(!Jx)---+O. 

Then we have that hl(X, (!Jx)=hl(Y, (!Jy)+hO(Y, Rlg*(!Jx), where the left 
hand side is equal to hl(E, (!JE), since the singularity (X, x) is Du Bois. 

(6) 

(7) 

Since Y and X are of two-dimension, 

hl(y, (!Jy»hl(E*, (!JE')' 

hO(y, Rlg*(!Jx»hl(E', (!JE')' 

Therefore, by Lemma 2.1, all the equalities in (1), (6) and (7) hold. 
Particularly, hO(Y, Rlg*(!Jg)=hl(E', (!JE') which means the isomorphism 
r(Y, Rlg*(!J2)=HI(E', (!JE') because the map is always surjective. 

Theorem 2.3. Every resolution of a Du Bois singularity is a good 
resolution. 

Proof Let h: Y ---+X be a resolution of a Du Bois singularity (X, x). 
Then Y is obtained by contracting some exceptional divisors of X, where 
f: X---+X is a suitable good resolution. By Theorem 2.2, the equality 
hO(E*, g*(!JE./(!JE,)=p-1 holds. It is known that the singularity on a 
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curve of embedded dimension two is ordinary double if and only if the 
above equality holds. 

§ 3. Configuration of the exceptional curves of a Du Bois singularity 

Proposition 3.1. For a resolution f: X~X of a Du Bois singularity 
(X, x), let E J be the essential part of E=f- 1(x)red and let E[ be E-EJ. 

Then 
(i) H1(E, @E):::::.H1(EJ , @EJ)' and 
(ii) the singular points obtained by contracting E[ in X are all rational. 

Proof First, we note that for a divisor D on X, 

Because, in the exact sequence; 

the last term H1(X, @(Kg» vanishes by the Grauert-Riemenschneider 
vanishing theorem. 

For the assertion (i), apply (1) to the divisors E and EJ • Then, by 
the duality of a compact Gorenstein curve, we find that H 1(E, @E) and 
H 1(EJ> @EJ) are dual to 

rex, @(Kx+E»/r(X, @(Kg» and rex, @(Kx+EJ»/F(X, @(Kg» 

respectively. By the definition of EJ , we have 

Therefore the assertion (i) follows. 
Next, to show the assertion (ii), we have to remember the definition 

of E[. Since rex, @(Kg»=r(x, @(Kg+E[», we get H 1(E[, @Er)= 
reEl' @(KEr»*=O. By Theorem 2.2, the morphism g: X~Y which con­
tracts E[ satisfies r(Y, R1g*@g):::::.H1(E[, @Er)=O. This completes the 
proof of (ii). 

Theorem 3.2. Let f: X~X be a good resolution of a singularity 
(X, x), E the reduced exceptional divisor f-,(x)red and E= L: Ei the irreduc­
ible decomposition. 

Assume E; < - 2(Ei L:Ni E j + max {g(Ei) -1, OD for every i. 
Then, the singularity (X, x) is Du Bois. 

Proof Take a canonical divisor Kg as 
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where a i E Z and D is an effective divisor which does not contain any 
.component Ej. We may assume that al=mindaj}' Then, 

KX=aIEl+al I: Ej+ I: (aj-al)Ej+D. 
j# 3# 

By the adjunction formula, 

Since I:Ul (aj-al)EjEl>O and DEl>O, we have 

2g(EI)-2>(al+l)E~+al I: EjE1• 

i*l 

If al < -2, then 

E~>2{g(El)-I}/(al+l)-{al/(al+l)} I: EjEl 
j# 

This contradicts assumption of the theorem. So all a j must be > - 1. 
Consequently by Corollary 1.9, the singularity (X, x) is Du Bois. 

Brenton ([6]) obtained a results similar to Theorem 3.2. Although 
the detail is unavailable, his proof seems a little different from ours. 

Corollary 3.3. Let Y be a non-singular surface and E be a reduced 
divisor on Y with normal crossings. 

Then, there exists a Du Bois Singularity (X, x) with a good resolution 
f: X-,;X with f-I(x)red '::::.E. 

In particular, if E is a tree of non-singular rational curves, then the 
singularity (X, x) is rational. 

Proof. By taking a blowing up g: X -'; Y of Y at sufficiently many 
general points on E, the proper transform [E] of E turns out to have the 
properties noted in Theorem 3.2. Then the singularity (X, x) obtained by 
contracting the proper transform [E] of E in X is Du Bois. For the second 
assertion, we have only to note that a Du Bois singularity with HI(E, (!'JE) 

= 0 is rational. 

§ 4. Elliptic Du Bois singularities 

It is well known that any rational singularity (i.e. a normal surface 
singularity (X, x) with piX, x) =0) is Du Bois (Steenbrink [4]). 
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In this section, we investigate Du Bois singularities (X, x) with 
P g(X, x)= 1, which we call elliptic Du Bois singularity. 

Letf: X-+X be a resolution of an elliptic Du Bois singularity (X, x). 
Then E=f-I(x)red is of normal crossings and hl(E, l!7E)=l. Therefore 
the divisor E is decomposed as E = Al + A2, where Al is either a non­
singular elliptic curve or a circle of r-rational curves with r?:.1 (a circle of 
I-rational curve means a rational curve with an ordinary double point), 
and A2 is void or a disjoint union of trees of non-singular rational curves. 
We note that each connected component of A2 intersects Al at only one 
point. 

However, the singularity which has such a configuration is not 
necessarily Du Bois. In fact, we have the following proposition. 

Proposition 4.1. Let f: X-+X be a resolution of an elliptic singularity 
(X, x). Assume the divisor E=f-l(x)red has a decomposition E=Al+A z 
as noted above. 

Then the following three conditions are equivalent: 
( i ) (X, x) is an elliptic singularity. 
(ii) (X, x) is a Du Bois singularity. 
(iii) Al is the essential part of E. 

Proof The equivalence between (i) and (ii) follows immediately 
from H1(E, l!7 E) = C. To show the implications (ii)++(iii), first we assume 
that the singularity (X, x) is Du Bois, and EJ is the essential part of E. 
Then, by Proposition 3.l, we see that Al~EJ' Assume that Al <EJ. By 
the definition of EJ , a general holomorphic 2-form on X - E has poles on 
each component of EJ. Therefore, rex, l!7(Kx+Al»~r(X, l!7(Kx +EJ». 
By an argument similar to (i) of the proof of Proposition 3.1, we can observe 
that reAl' l!7(KA,»~r(Eh l!7(KEJ»=C, However, this contradicts the 
definition of AI' 

Next, assume that Al =EJ • For a general holomorphic 2-form (j on 
X -{x}, take a canonical divisor on X; 

where L:JEJ Ej and L:iEI Ei are the irreducible decompositions of Al and 
A2 respectively. Then by the assumption, bi>O for each i E f. 

If A is irreducible, by the adjunction formula, 

(al + I)Ai+ L: biEiAl + [Do]Al =0. 

Since [Do]Al>O, L: biEiAl?:.O, al must be >-l. 
If Al is not irreducible, put a=minj {aj } and suppose that ai (i= 1, 
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... , s) attain the minimal value. Denote Ei=t Ej by B. Then, again by 
the adjunction formula, 

degKB= E aJEJB+Bz+ E biEiB+B[D,l 
jEJ 

=(a+ I)AtB+ E (aJ-a-l)EjB+ L: b;Ei B+[D,lB 
j;;';8+1 
jEJ 

2(a+ l)A~-(a+ l)(At-B)B+ L: (aj-a-l)EjB 

+ L: biE;B+[D,lB. 

j;;';8+1 
jEJ 

Note that (At-B)B>O, L: (aj-a- I)EJB>O, L: biE;B>O, and [D,lB>O. 
If a~ -2, then deg KB must be positive. This contradicts the fact that 
deg KB<O which followed from B<At. Therefore, a> -1. Now, by 
Corollary 1.9, we conclude that the singularity (X, x) is Du Bois. 

Next, we investigate the special case where both At and Az are irre­
ducible. 

Proposition 4.2. Let f: X~X be a good resolution of a singularity 
(X, x). Assume that E=f-t(x)red has a decomposition E=At+Az, where 
Al is either a non-singular elliptic curve or a rational curve with a node and 
Az is a non-singular rational curve. 

Then the singularity (X, x) is not Du Bois if and only if the normal 
bundle N All g is isomorphic to (!) Al (-AJ. 

Proof Suppose that the singularity (X, x) is not Du Bois. Then 
for a general holomorphic 2-form 0 on X -{x}, we can represent a can­
onical divisor as 

Kg=aA I +bAz+[D,l, 

with b<O by Proposition 4.1. By the adjunction formula on At, Az 
respectively, we get 

(I) 

(2) 

(a+ l)A~+b+[D,lAt =0, 

a+(b+ l)A~+[D,lAz= -2. 

Since [D,lA t, [D,lAz>O, from (1) and (2) we see that 

(1)' b< -(a+ l)A~, 

(2)' a< -(b+l)A~-2. 

Substituting (2)' into (I)', we obtain 

b(A~A~-l» -A~A~-A~. 
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Since the intersection matrix of E is negative definite, AiA~-I >0. 
Therefore, 

-1+ -Ai-I >-1. 
AiA~-I 

Since b is a negative integer, we have b = -1 and a= - 2. Then the equality 
must hold. So, Ai= -1, [Do]AI = [Dn]Az=O. Therefore, the singularity 
(X, x) is Gorenstein and (!)A,:::::(!)(KA'):::::(!)A,CKx+AI):::::NlllX@(!)A,(-A2). 

Conversely, assume NA,!x:::::(!) A,( -A2) and Al is a non-singular elliptic 
curve or a rational curve with an ordinary double point. If the singularity 
(X, x) is Du Bois, then the canonical map Pic (X)-+Pic (E) is bijective, by 
the commutative diagram; 

On the other hand, put F= -2AI-A2. Then (!)A,(F):::::Nlllx:::::(!)A,(Kx) 
and (!) A,(F)::::: (!)p,( -2)@Nl,!x:::::(!)A.(Kx)· Therefore, (!)E(Kx)::::: (!)ECF), 
which implies (!)x(Kx)=(!)x(F) by Pic (X):::::Pic (E). This contradicts the 
hypothesis that the singularity (X, x) is Du Bois. 

Remark 4.3. Under the notation of Proposition 4.2, if At is a 
rational curve with a node, the isomorphism N A,!x:::::(!)A,(-A2) is equiva­
lent to Ai= -1. 

On the other hand, for an elliptic AI, the isomorphism NA,!x::::: 
(!)A,(-Az) induces Ai= -1, however, the converse does not hold. There­
fore, the configurations Al +A2 with Ai= -1 and A~= -m (m> 1) is 
contracted to both of Du Bois and non-Du Bois singularities according to 
the choice of intersection point Al n Az on an elliptic curve AI. 

Corollary 4.4. Let f: X -+X be a good resolution of a singularity 
(X, x). Assume the jiber E=f-l(x)red contains a configuration AI+Az, 

where Al is either a non-singular elliptic curve or a rational curve with an 
ordinary double point with N A,! x::::: (!) A, ( - A2) and A I::::: pl. 

Then the singularity (X, x) is not Du Bois. 

Proof This is an immediate consequence of Theorem 2.2 and Pro­
position 4.2. 



DII Bois Singularities 163 

References 

[ 1] Dolgachev, I., Cohomologically insignificant degenerations of algebraic va­
rieties, Compositio Math., 42, 279-313 (1981). 

[2] Du Bois, P., Complexe de de Rham filtre d'une variete singuliere, Bull. Soc. 
math. France, 109, 41-81 (1981). 

[3] Ishii, S., On isolated Gorenstein singularities, Math. Ann., 270, 541-554 
(1985) . 

[ 4 ] Steenbrink, J., Mixed Hodge structures associated with isolated singularities, 
Proc. Sym. in Pure Math., 40 Part 2,513-536 (1983). 

[ 5] Watanabe, K., On plurigenera of normal isolated singularities I, Math. Ann., 
250, 65-94 (1980). 

[ 6 ] Brenton, L., On singular complex surfaces with vanishing geometric genus, 
and pararational singularities, Compositio Math., 43, 297-315 (1981). 

Department of Mathematics 
Tokyo Metropolitan University 
Fukazawa-2 
Setagaya, Tokyo 158 
Japan 




