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On the Generalized Springer Correspondence
for Exceptional Groups

N. Spaltenstein

Let G be a connected reductive algebraic group defined over an
algebraically closed field k. Let B¢ be the variety of Borel subgroups of
G, and for x e G let BS={B e BB > x}. Springer [28] has shown that the
Weyl group W of G acts naturally on the ¢-adic cohomology groups
H{®B¢; Q,) (¢ a prime, £schar(k)). We shall consider here the action
of W defined by Lusztig [13] rather than that defined originally by Springer
(they agree up to tensoring by the sign representation of W [10]; moreover
no restriction on the characteristic is needed in [13]).

If H is a finite group, let H™ be the set of all isomorphism classes of
irreducible Q,-representations of H. For x ¢ G the finite group A(x)=
C,(x)/C%(x) acts on H*(BE) (we shall omit the Q,), and this action com-
mutes with that of W. Letd,=dim 8% The action of WX A4,(x) in
H**+(B8%) turns out to be particularly interesting. For any pe W there
exist a unipotent element u ¢ G and ¢ € Az(u)” such that p®¢ occurs in
H**+(8%). Moreover the pair (¥, ¢) is unique up to G-conjugation, and
0®¢ occurs with multiplicity one in H*?(BS). We write then p=pg ,.
This injective map from W™ to the set 4", of conjugacy classes of pairs
(u, ¢) (u e G unipotent, ¢ € A5(1)") is explicitly known in most cases. If
the characteristic is good, it is described by Shoji [22] [23] (G classical, F,),
Springer [28] (G,), Alvis, Lusztig and the author [3] (E,, n=6, 7, 8). Clas-
sical groups in characteristic 2 are treated in [17]. We shall consider
here exceptional groups in bad characteristic.

We shall also be concerned with Lusztig’s generalization of Springer’s
correspondence [14]. Consider a pair (1, ¢) (u € G unipotent, ¢ € A5(u)").
Lusztig attaches to (4, ¢) a 4-tuple (L, v, ¢, p) (or rather a G-conjugacy
class of such objects), where L is a Levi factor of some parabolic subgroup
of G, ve L is unipotent, ¢ € 4,(v)", p € (Ns(L)/L)". If L=G, then (v, V)
is conjugate to (u, ¢) and p is automatically trivial, and we say that (u, ¢)
is cuspidal for G. Lusztig’s construction has in particular the following
properties. It defines a bijection between ./"; and the set Z'; of G-con-
Jjugacy classes of 4-tuples (L, v, +, p) as above for which (v, 4) is cuspidal
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for L. When L=T is a maximal torus, we have v=1, ¢»=1 and pe
(N(T)/T)". The subset of &, corresponding to L=T can therefore be
identified with W, and the restriction of Lusztig’s bijection to this subset
is precisely Springer’s correspondence. In general, we shall write p=p% ,
if (u, ¢) corresponds to (L, v, ¥, p).

We shall compute the generalized Springer correspondence for groups
of type G,, F,, E,, E,, E;. The results will however not be complete. In
the case where Ny (L)/L is dihedral of order 12 there are two irreducible
representations of degree 2 and the methods used in this paper do not
allow to distinguish them.

Most of the theoretical results which we shall need concerning
Springer’s correspondence and its generalization are proved by Lusztig in
{14] (without any assumption on the characteristic).

I wish to thank G. Lusztig for helpful conversations.

§1.

We shall proceed essentially as in [3]. As the characteristic is now
arbitrary, we must however be more careful. We shall use the following
properties.

1.1. The Weyl group W can be considered in a natural way as a re-
flection group in a Q,-vector space ¥, and it acts on the space of all poly-
nomial functions on ¥. For pe W™, let a,=min{d e N|p occurs in the
space of homogeneous polynomial functions of degree d on V}. Suppose
p=p% 4 Then

(I) a,>d,; moreover a,=d, if $=1.

This follows from the results of Borho and MacPherson [6]. Here we
have to use the identification of the action of W on H*(8Y) with the clas-
sical action of W on H*(B%). This identification is stated and used in [6],
but the proof is left to the reader. For completeness a proof is given in
paragraph 2.

1.2. Let P be a parabolic subgroup of G with unipotent radical U,
and let M be a Levi factor of P. Let ue G, w' ¢ M be unipotent and
let ¥, . ={xeGx'uxew’U}. Itisknown that dim Y, ., <} (dim C,(»)
+dim Cy () +dim U [29]. The group C,(u) X Cy(«/)U acts on Y, ,. by
(g, m)-x=gxm='(ge Cy(u), me C,(W)U,xe Y, ,). In particular 4,()
X Ay acts on the set X, ,. of all irreducible components of Y, ,. of
dimension %(dim C,(u) + dim C, («)) + dim U, affording a permutation
representation ¢, .. (over Q,). Let L M be a Levi factor of some parabolic
subgroup of M (or equivalently of G). Let ve L be unipotent and + &
A (v)” be such that (v, ) is cuspidal for L. Let W,=NyL)/L, W)=



Generalized Springer Correspondence 319

Ny (D)L, pe Wg, p' e Wi, g Ag(u)”, ¢’ € A,(u)”. Suppose that (u, 4),
@/, ¢") correspond respectively to (L, v, 4, p) (for G) and (L, v, ¥, p’) (for
M). Then

(II) <Pl5 Res%g'(P»Wo': <¢®¢,*: 5u,u’>Aa(u>><Au(u’)’ where ¢/* is the
dual of ¢’. Moreover the irreducible representations of A ()X A4,
which oceur in ¢, ,- are all of the form described above.

This is a reformulation of a result of Lusztig [14, Thm 8.3]. It gener-
alizes a formula of Springer [29].

Property (II) is especially useful in two cases where we have a good
grip on the set X, ..

1.3. Suppose first that in (1.2) we are in the situation where the class
C of u in G is obtained by the process of induction from the class of ¢’ in
M [16], that is, C contains a dense open subset of w'U. Without loss of
generality we may then assume that # € &’U. Then C3(u)=Ciw)C C, U
and C.(u) meets all irreducible components of C,(u)U[16]. Let N=
Crw)|Cow)C Ag(), H=Co (uny(W)/Ceu)CN. Then H is normal in N
and N/H is naturally isomorphic to 4,u’). Now A,u) X (N/H) acts on
Agw)/H by (a,nH)-(xH)=axn"'H (a, x € Ay(u), ne N) and this defines
also an action of Ag(u) X A, (') on Az(u)/H. We have then:

(III) In this case X, ., and A.(u)/H are isomorphic as sets with
Ag(u) X Ay (u')-actions.

This follows from results in [16] (this was already used in [3]).

1.4. Suppose now that in (1.2) we have u=u'. Let S be the con-
nected centre of M. Then M = Cy(S) and therefore C,(u)=C,4.,,(S). As
the centralizer of a torus in a connected group is connected, we find that
Ch()=Crow)(S). This implies that 4,(x) can be considered in a natural
way as a subgroup of 44{(u), and Ag(u) X Ay(u) acts on A.(u) by (a, b)-x
=axb-' (a, x € A(u), b e A,(u)). We have then:

(IV) In this case A4 () and X, ,. are isomorphic as sets with A,(u)
X A (u)-actions.

This follows immediately from:

Lemma. In the situation above, we have:

(i) Yuu=ColwU.

(ii) Cu() U isof pure dimension £(dim Cy(u)+dim Cy(v))+dim U.

(iii) Cy(u) is connected.

The connectedness of Cy(u) is proved in [25]. It is known that
dim C;(u) = dim Cp(u)+-2 dim Cy(u) [14], [25]. Therefore dim Cy(y)U=
dim Cy¥)+dim U—dim Cy (1) = & dim Cz(u)+ (& dim Cy(v) — dim C,(u)) +
dim U=3dim Cy(u)+3 dim Cy(u)+dim U. Thus Cg(u)U has the required
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dimension, as well as each of its irreducible components since it is a homo-
geneous space for C4(u)X U. This proves (ii). It remains to prove (i).
Clearly C,w)UC Y, . As Cg(u)U is a single Cy() X U-orbit in Y, , and
dim Ci(w)U=dim Y, ,, we see that Cz(u)U is open in Y,, ,. Let C be the
conjugacy class of u in G. The morphism z: G—C, g—g~'ug is open, and
so is therefore its restriction to Y, ,—#'UNC. In particular #(Cy(w)U) is
open in w’UN C. Notice also that Cz(u)U is a union of fibres of z. Let
now xe Y, ,. We must show that x e Co(u)U. We have n(x)=uy for
some ye U. Let S be the connected centre of M. Then xSCY,,.
Moreover n(xS)=/{us"'ys|s e S}, and therefore ue n(xS). Thus =z(xS)
meets n(Cy(u)U). Therefore xse Co(u)U for some seS. So Y, ,=
Co()US=Czu)SU=C,u)U.

1.5. Let Q be a parabolic subgroup of G with unipotent radical U,
and let L be a Levi factor of Q. Suppose that there exists a unipotent
element v € L and + € 4,;(v) such that (v, ) is cuspidal for L. Then the
conjugacy class of Q is determined by L [14]; it follows that N4(L)/L can
be considered in a natural way as a Coxeter group [15] and we can there-
fore talk about its sign representation e. Let now p e (Ny(L)/L)” and let
(L, v, 4, p) correspond to (4, #). Let C be the conjugacy class of # in G.
We have then:

(V) If p=e¢, then Cov. If p=1, then C is induced from the class
of vin L, i.e. C contains a dense open subset of vU,,.

This is proved in [14].

Remark. Property (V) is very important in the case where | Ng(L)/L|
=2. It is the starting point to apply (II) in a non-trivial way.

§2. Action of ¥ on H*(L°)

This paragraph is devoted to a proof of the result of Borho and Mac-
Pherson referred to in (1.1). We have two actions of W on H*(8). One
of them is the action of W on H*(B¢) in the case where x=1. The other
one, which we shall call the classical action of W on H*(B), has been
studied quite extensively and has the properties required in (1.1) (see e.g.
[28, 7.1]).

Theorem. (Borho-MacPherson). These two actions of W on H*(B°)
coincide.

2.1. It is convenient here to define the Weyl group W of G as in [7].
The essential point is that for every pair BD T consisting of a Borel sub-
group and a maximal torus, there is a canonical isomorphism between W
and Ny(T)/T.
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2.2. The classical action of W on H*(B°) is obtained as follows.
Let B,DO T, be a Borel subgroup and a maximal torus of G. Then
B¢ = G/B, and the natural morphism G/T,—G/B, induces an isomorphism
H*(G/B)= H*(G/T,). Right multiplication gives a right action of
N (Tp)|T, on G/T,, hence a left action of W on H*(B¢). It is easily checked
that this action is independent of the choice of B, and T,,.

2.3. We describe now Lusztig’s construction [13]. For simplicity we
consider first the analogous situation in the Lie algebra case (as is done in
[6D.

Let g=Lie(G). We assume that the open subset g,,={x e g|x is
regular and semisimple} is dense in g (this is certainly the case if char (k)2
or if G is adjoint). If X is a subvariety of g, let X={(x, B)e XX B x ¢
Lie (B)} and let xz: XX, py: X% be the projections. Let also T=r,
p=p,, n,,=r,,. Forxeg, z7'(x) can be identified with Bf={B e B x e
Lie (B)}.

If x € g,,, W acts simply transitively on 8. Let Be B%, we W. As
xeg,, T=Cax) is a maximal torus of B. Let w e Ny (T)/T represent w.
The image of B under the action of w is by definition ®B. This defines a
right action. If g e Ny(7)/7, the image of £B under w is £%B.

This action turns §,, into a principal W-bundle over g,,. It follows
that W acts on the local system E=r,,..Q, over g,,, and hence also on the
intersection cohomology complex & on g which extends E. But one can.
show in this case that & is quasi-isomorphic to Rr,Q,. In particular
for every x e g the stalk at x of the cohomology %" is isomorphic to
H(B%), and this defines an action of W on H*(38%).

2.4. Following a suggestion of Lusztig, we shall use the following
obvious result.

Lemma. Let XCY be subvarieties of g. Then the natural map
H* (Y; ) —H* (X; &) is W-equivariant.

Notice that for any subvariety X of g we have H* (X; )= H*(X).
In particular this turns H *(X") into a I/I:-module, and in the situation of the
lemma the natural map H*(Y)—H*(X) is W-equivariant.

25. If X is a subvariety of g, let ix: X—§ be the inclusion map.
Let i,=i,. From (2.4) we get immediately:

Lemma. Let X be a subvariety of g. Then p%: H*(B%)—H*(X) is
W-equivariant.

Proof. Since py=poiy, we have pf=i}o p*. Butp turns § into a
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vector bundle over B¢. Thus p* is an isomorphism and p*=(@§)"'.
Therefore p¥=i%o (i)' is W-equivariant since by (2.4) both i¥ and i
are so. :

2,6. Ifxeg,geG,let g-x=Ad(g)(x). Choose x,¢g,, and B, e
B¢, and let C={g-x,|g € G} be the conjugacy class of x,. Let T,=CJ(x,)
C B,. Identify W with Ny(T)/T,. If we Ng(T,) represents w e W, write
» B, for ®B,.

Let W= Cy(x,)\W and for ve W let 0= Cy(x,)v. Using the fact that
7 : §—q is G-equivariant, one finds easily that for every ve W there is a
unique irreducible component C; of C which contains (x,, °B;), and that
C is the disjoint union of (C;)sew. Let ps: C;—B¢ be the projection.

Lemma. p¥: H*(B%)—H*(C,) is an isomorphism.

Proof. The fiber of p; over "B, is {b-x,|b e "B}. As x,¢€ g,, this is
isomorphic to an affine space. Combined with the G-equivariance of ps,
this gives the result.

2.7. Let p denote the representation of W in H*(B%) given by
Lusztig’s construction. For each w e W let t(w): C—C be the restriction
of the action of w on §,,. Letve W. Then C;={(g-x,, °B,)\g ¢ G}, and
.tSw)(g; X £°B))=(g - xy, £°°B,;). Let t;(w) be the restriction of #(w) to
C;—Corp.

Lemma. pi o o(w)=1t;(w)* o p.

Proof. Thisis arestriction of the formula p§ o p(w)=1(w)* o p§ which
expresses the fact that p¥% is W-equivariant.

2.8. We can now prove the analogue of the theorem in the Lie
algebra case.

Let ¢ be the right action of W on C; defined by o(w) (g-x,, By)=
{gw-x,, €“By). It is clear that Cy is isomorphic to G/T, and that ¢ corre-
sponds to the action of W on G/T, which gives rise to the classical action
of W on H*(BS).

It is therefore enough to prove that the isomorphism p¥: H*(8%—
H *(C~T) is W-equivariant with respect to the action p on H*(8%) and the
action induced by ¢ on H*(C5). That is, we must check that PEo p(w)=
o(w)* o p¥, and this follows from (2.7) and the fact that p; o t3(w)=pt o s(W).

2.9. We turn now to the proof of the theorem itself. The idea is
essentially the same. In particular one can define in a similar way G,,CG,
and for a subvariety X of G one can define X, 7y, py, etc. We mention
first two minor differences.
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a) G,, is always open dense in G.

b) G always contains strongly regular semisimple elements, that is,
elements s such that Cy(s) is a torus. If the class C is chosen carefully
enough in the analogue of (2.6), it is not necessary to introduce W. The
existence of strongly regular semisimple elements in g is discussed in [28].

There is however one more serious difference. I don’t know if the
analogue of (2.5) holds for arbitrary subvarieties of G. However (2.5) is
used only in the case where X=C, and in order to prove the theorem the
following result is sufficient.

Lemma. Let X be a subvariety of G which is contained in a single
conjugacy class of G.  Then p%: H*(B%)—H*(X) is W-equivariant.

Proof. If Y is a subvariety of G, let py°™ be the restriction of p¥ to
Do HH (B —>P, 50 H*(Y). As B¢ has no odd cohomology, the method
used in (2.5) shows that p¥ is W-equivariant if X is contained in a sub-
variety Y of G for which pye® is bijective.

Let BD T be a Borel subgroup and a maximal torus of G, let U be the
unipotent radical of B and let ¢: B—T be the natural projection. Let
t ¢ T be conjugate to the semisimple part of some element of X. Let Z,
be an irreducible curve in T containing both ¢ and 1, let Z= U ..y *Z,
and let Y= U ,.,g(ZU)g™'. Then YDX. We need now only to show
that p&e® is an isomorphism.

Using the inclusion i: B°—Y given by {1}C Y and the fact that
pyoi: BB is the identity, we see that we need only to check that
H*(B°¢) and H*(Y) have the same dimension for all i>>0. The elements
of ¥ are all of the form (x, £B) with g-'xg € ZU. Consider the map §:7—
Z X B¢ given by d(x, £B)=(#(g"'xg), ¢B). It islocally trivial, with fibres
isomorphic to U. It follows that §*: H*(Z X 8%)—H*(Y) is an isomor-
phism. Now HY(Z)=Q, and HYZ)=0 for i>>2. Since B¢ has no odd
cohomology, Kiinneth formula shows that H?(B¢ and H*(Y) are
isomorphic vector spaces for all i>>0. This proves the lemma, and also
the theorem.

§3.
We need information about unipotent classes and characters of Weyl
groups.

3.1. The irreducible characters of the Weyl groups of type E,
(n=6, 7, 8) were computed by Frame [8], [9]. We shall denote an irredu-
cible representation p of one of these groups as d,, where d is the degree
of p and a=a, (1.1).
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For F, the characters of the Weyl group were obtained by Kondo [12].
In Kondo’s tables there are 3 “isolated” characters of degrees 4, 12, 16.
We shall denote them X,, X, X,, respectively. The remaining characters
occur in families and we label X, ; the j** character in the family of charac-
ters of degree 7 in Kondo’s table.

The integers a, are given in [5].

3.2. Let Wbea Weyl group of exceptional type and let W’ be a
parabolic subgroup of W. Let pe W, o’ e W’”. In order to use property
(I) we need to know {p’, Res};(o)>w.. This has been computed by Alvis
(2]

3.3. The results we shall need about the unipotent classes of groups
of exceptional types and about the groups A4(u) are all contained in the
papers by Mizuno [18] (E,), [19] (E,, E,), Shoji [24] (F,, char (k)+2),
Shinoda [21] (F,, char (k)=2). In characteristic O the groups A.(u) are
also described by Alekseevski [1].

We shall use Mizuno’s notation for the unipotent classes of groups of
type E, (n= 6,7, 8). For F, we shall use the Bala-Carter notation [4], [20]
when p£2. We adapt it to the case of characteristic 2 as in [26, p. 29].

3.4. We need also an explicit knowledge of induction of unipotent
classes in the case of exceptional group. It was computed by Elashvili in
characteristic 0. The results are listed in [26], together with the extra
cases occuring in bad characteristic. Another method to work out induc-
tion explicitly for exceptional groups is described in [25].

§4.

The computation of the generalized Springer correspondence involves
the same kind of computations as those done in [3]. The first step is the
determination of the representations of the form p%, e W”. This can be
used to get information on the sets X, ,. of (1.2) which is useful for the
remaining computations.

4.1. Suppose that the class of # in G is induced. We can assume
that we are in the same situation as in (1.3), with MG. Then p=p%,
can be determined from p)., by the generalized Macdonald construction
described in [16]. Indeed, by (II) and (III) we know that p occurs in the
representation ¢ of W obtained by inducing p’. But by (I) used in M and
G we have a,=a,, and it is known that p is the only component of ¢ with
this property.
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Remark. This relation between pf , and p)., was established in [16]
by a different method.

4.2. For the remaining cases (I) limits already strongly the possibili-
ties for p¢,. When (II) and (IV) are also taken into account, we are left
with only a very small number of cases. For E, we have to chose between
1344,, and 350, for the unipotent class 4,+4,, and between 1344, and
5600,, for the class Dy(a,)+ A4,.

We use the following consequence of (II). In the situation of (1.2),
let C be the conjugacy class of # in G and let W’ be the Weyl group of M.
If Y, .0, it is clear that u’ ¢ C.  Thus «’ ¢ C if for some ¢’ € 4,/(u') we
have o , € W™ and {p¥ ,., Res}y. (0S,,)>w #0. Notice that for x ¢ C we
must have d,>d,.

We use this with M of type E,. The restriction of 350,, to W’ involves
189, € W'~. But 189,, corresponds to the class D,(a¢;)+4; of M. In G,
for x in the class D,(a,)+ 4,, we have d,=32<(38. Thus p§ 7350, if u is
in the class 4,+ 4, of G, and therefore p% ,=1344,,. In a similar way the
restriction of 5600,, involves 280, ¢ W’~. But in M, 280, corresponds to
the class Dg(a,)+A4,. Let x be an element of this class. In G the class of
x is denoted 4,4 A4, by Mizuno, and we have d,=17<{19. Thus for « in
the class Dy(a,)+ 4, of G we have p§ , #5600, hence p§ ,=1344,.

Remarks. a) The case of the class 4,-+4, in a group of type E, is
treated in a similar way in [3], but the argument is based on a formula, the
proof of which is only sketched. Unfortunately Lusztig’s proof of this
result uses Kazhdan’s theorem [11] and requires some restrictions on the
characteristic.  We shall therefore not use it here. The information we
could gain from it here can actually also be deduced from (II) and (IV).

b) In[3] a stronger form of (I) is used, namely it is stated also that
a representation of the form p¢; occurs with multiplicity one in the space
of polynomial functions of degree d, on V. In the case of E, this rules
5600,, out as a possible p§ ,.

This stronger property holds if and only if the closure of the orbit of
u_is not branched at the origin. The corresponding statement for nilpotent
orbits certainly holds since the closure of a nilpotent orbit is a cone, and
therefore it holds for unipotent orbits too when the characteristic is good.
It turns out eventually to be always true, but in bad characteristic there
doens’t seem to be such an a priori reason for it.

4.3. The determination of the representations p$ ; with =1 is also
carried out as in [3], where explicit examples of computations are given.
In our case there are some additional difficulties due to the fact that we
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can have many more conjugacy classes of pairs (u, ¢) than irreducible
representations of the Weyl group. But we dispose now of property (IV)
which was not used in [3], and it turns out eventually that we have enough
information to get the desired result.

Notice also that in (1.2) we can now decide whether X, . 18 empty.
This can be tested with $=1, ¢’=1 in property (II). When we look at
0% 5 with ¢ arbitrary, we can then use property (II) and the sets X, ,. which
are empty to rule out many possibilities.

Remark. In [3] an argument related to the characteristic 0 theory is
used for the class Dy(a,) when G is of type E;. This can be avoided as
follows. Let C be this conjugacy class and let # € C. The difficulty occurs
only when char (k)3. In this case 45(u)=S,. Let ¢ (resp. ) be the sign
representation (resp. the 2-dimensional irreducible representation) of A, (u).
Then {o% ., p5 o} ={840,;, 175,,}, and we must find the right bijection.

Take a parabolic subgroup of G with a Levi factor M of type D;+ 4,.
Then C is induced from the class (4,; §) of M. We can therefore use (III).
This gives subgroups H<]N of A(u) with NNH=A4,w)=Z, Up to con-
jugation there are only two possibilities. If N=A44u), then p% ,=840,,.
The characteristic 0 theory was invoked to eliminate the case where N
Ag (). But this second case gives multiplicities which do not work (in
particular because the restriction of 175,, to the Weyl group of M has no
component of the form pY. ;) and this can also be used to reject it.

§5.
We review now the various groups under consideration and state the
results. We start with some notation.

5.1. Let Q be a parabolic subgroup of G, L a Levi factor of Q and
U a unipotent element of L. Suppose there exists +» € A,(v)” such that
(v, ) is cuspidal for L. Let Q’DQ be a parabolic subgroup of G which
is minimal among those containing Q strictly. The group Ny(L)/L has
order 2. Let s, be its non-trivial element. Then Ny(L)/L, together with
the set of its elements of the form s,,, is a Coxeter group [15].

We shall use the following kind of notation. If G, L are respectively
of types F,, B,, we write s(B,), s(C,) for the two generators of N,(L)/L.
This notation is somewhat ambiguous for example when G is of type E;"and
L of type (34,)”, that is when L corresponds to the following subdiagram:

° |
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In this case N4(L)/L is isomorphic to a Weyl group of type F,. Of the four
generators, two are of the form s(44,) and two of the form s((4,+ 4,)").
But it still makes sense to decide that s(44,) corresponds to a short root.
and s((4,+4,)"”) to a long root. We can then consider Kondo’s tables [12]
as the character table of Ny(L)/L.

Let p=char (k). The cases where L isneither G nor a maximal torus.
are listed in the table below. The third column gives the conditions under
which there exists a unipotent element ve L and - e 4,(v)” with (v, ¥)
cuspidal for L.

conditions
G L on G and p Ng(L)/L  longroots  short roots
F, B, p=2 B, s(By) s(Cy)
E, 24 simply connected G, s(4y) 524, + A)

p#3

E, D, p=2 4, — —
E @y CPYOORERd R s deay)  séd)
E, D, p=2 B, s(Dy) s(D,+4,)
E, E, p=3 A, — _—
E, D, p=2 F, s(Dy) s(D,+Ay)
E, E, p=2 4, —_ —
E, E; p=3 G, s(E) s(Es+Ay)

5.2. In addition to that introduced in (3.1), we use the following
notation tor (Ng(L)/L)".

If Ng(L)/L is of type B,, we use pairs of partitions to parametrize
(Ng(L)/L)", with (3, 0) for the trivial representation and (0, 1°) for the sign
representation.

Suppose now that Ny(L)/L is of type 4,, 4,, B, or G,. The sign re-
presentation is denoted e. If there are long roots and short roots, let s,, s,
€ N4(L)/L be the generators corresponding respectively to a long root and
to a short root. Let then ¢, ¢, be the representations of degree 1 defined
by e,s,)=¢,(5.)=—1, e,(s.)=¢.(s)=1. If Ng(L)/L is of type 4, or B,, let
0 be the irreducible representation of degree 2. If Ny(L)/L is of type G,,
there are two irreducible representations of degree 2. We shall denote
them ¢, ¢ without trying to distinguish them (and the ¢’ arising from
2A4,C E, doesn’t need to be the same as the ¢ arising from E,C E;).

5.3. Unless otherwise stated, we shall assume now that G is simple
and simply connected. This assumption holds in particular for the tables.
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The corresponding results for adjoint groups of type E, or E, can be easily
recovered.

5.4. We fix now the notation for A;(u)”. The possibilities for A4,(u)
are the following: ‘

\,Z,, 2, Z, Zy, Z,=Z, X Zy;, Z,XZ;, Sy Sy S5, Z3X Sy, Dy,

where Z, is cyclic of order n, S, is the permutation group of n letters and
D, is dihedral of order 8.

If A,(u) is cyclic of even order, let —1 be the unique irreducible re-
presentation which has {1, —1} as image (exceptionally this representation
will also be denoted ¢, when no confusion may arise).  For S, and D, lete
be the sign representation and 4 the unique irreducible representation of
degree 2. For D, there are two additional representations of degree 1.
We shall denote them &, ¢’ without trying to distinguish them further.
For S, (resp. S;) we use partitions of 4 (resp. 5) to parametrize 4,(u)”, with
1* (resp. 1°) for the sign representation.

When A,(u) is isomorphic to Z, X Z,, the action of 4,(u) on the set of
irreducible components of B¢ factors through Z,. This defines an irredu-
cible representation e. The remaining irreducible representations will be
denoted ¢, ¢”.

If A4(u) is cyclic of order 4, let 5 be a faithful irreducible representa-
tion of Ag(u). Then A,(u)"={1, —1, 5, —2}.

If A4(u) is isomorphic to Z, or Z, let { be a non-trivial irreducible
representation. Then Ay(w)"={1, ¢, ¥ or {1,{, &%, ¢} If A;(w=Z,
=7, X Z,, let { be a non-trivial irreducible representation which factors
through Z;. Then 4A,(w)"={1,{, % —1, —, —*}. Suppose now that
G is of type E; with char (k)=3. Then the centre Z of G is cyclic of order
3. Let G=G/Z, a=uZ. If A,(u)+Az@), then A,(u) is canonically iso-
morphic to A5(#) X Z (this is an empirical observation). This shows that
the choice of e A,(4)” can be done uniformly.

It remains the case where A,(u)=Z,x S;. Combining the notation
above, we have A,(u)"={l, 8, ¢, —1, —8, —e}. This description of 44(u)"
depends on the isomorphism with Z,x S,. The Z, factor is well defined,
but there are two possibilities for S,, and to interchange them has the effect
to permute —1 and —e. We have Ay ()= Z,X S, in two cases (G of type
E,, uin the class Dy(a,)-+- 4, p#2; G of type E,, u in the class E,(a,)+A4,,
p=2). In both cases there is a unique ¢ € 44()" for which (u, ¢) is cuspi-
dal, and the isomorphism A4,(u)= Z, X S, can be arranged to give g= —e.

5.5. When Ng(L)/L is of type A4,, the result is given directly by pro-
perty (V).
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Suppose now that G is of type E;, L of type E, and char (k)=3. Ifv
is a regular unipotent element of L, then 4,(v) is cyclic of order 3 and (v, £),
(v, £) are cuspidal for L. The group N,(L)/L is of type G,. Assuming
that in (5.4) the choice of £ € 44(u)™ is made carefully enough when A4,(1)
is cyclic of order 3 or 6, the part of the generalized Springer correspondence
pertaining to (v, {) is given by the following table.

class of u Ags(u) 1] 0%
E, Z, ¢ 1
Ey(ay) Z < Ee
E,+4, Z, ¢ v
E~, 23 C g’
EB "I- Al Z3 C &
E, Z, ¢ €

The remaining parts of the generalized Springer correspondence are
given by the tables below.

Remarks. a) In comparing with Shoji’s results [23] for F,, the reader
should remember to tensor the irreducible representations of W by the sign
representation.

b) For F,, char (k)=2, the properties listed in paragraph 1 are actu-
ally not sufficient to compute Springer’s correspondence. Let u be an
element of the class F,(a,). Then Ag(u)=S,, p, =211, %, is of the form
0% 4 for some ¢ e Ay(u)” and the remaining element of Ag(u)” gives a
cuspidal pair. We have to decide whether ¢=0 or g=e. A similar
problem was encountered in [27]. The same method works here. One
can start with the representative x;, given by Shinoda [21].

¢) For E,, E, and E; the computations depend to a large extent on
Mizuno’s results[18],[19]. For E, in characteristic 2, Mizuno’s tables give
149 conjugacy classes of pairs (4, ¢), and following Lusztig there should be
only 146. For the class Ey(a,) (resp. D,+ 4,) Mizuno gives Z, (resp. Z,)
for A,(u), but one can show that actually A,(u)=2Z, (resp. Az(¥)=1). The
tables give the corrected values.

G,
lass of d, A g
class of u ) o o
G, 0 Zg, 11
Gya) 1 S (p#3) 1 ¢
Z,(p=3) 0 & (p#3)
4, 2 1 1 ¢
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4,
(4
g

3
3
6

1
1
1

1 e
1
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g (p=3)

1 e

Here ¢ is the standard representation of W.

F,
class of u

F,
F(a,)

F 4(a2)

Cyay)
B,

A+ 4,
Ca(ax)z
A4,
(4,+4)),
(B,

4,

—= o

w

Moo N BN B e

10
13

16
16
24

Ag(u)
Z 3, p%

Z,

Z, (p+2)
D, (p=2)

€]
(€29
(22)
(211)

|
e Q@

!
_

!

= e et et el e fed i ek ped ek el ek fued

0
X1

Zin
Zs,s (p#2)
X1
Xe1 (P#2)
Yo (p=2)
X0 (P=2)
Xs,1
Xe,s
X (P#2)
Xos (p#2)
Xe,o (P#2)
X5 (P#2)
X1z (P=2)
Xe,: (P=2)
X
Xis (P#£2)
Xo,2
% (p#£2)
Xo
xs,a (p=2)
X2
Xis(p=2)
X, (p=2)
Xs,s
Xl,a (p=2)
Yoy
L,
Xo,s
Xis
Xs2 (P#2)
Xz,z (P=2)
Yoy
X1

B, (p=2)
¢ o
—1 1
g @
—1 &
—1 ¢
— e

NEEEEEEE RN RN



E;
class of u

E,
Eya)
D
A+ A,

Ay
Dy(a)
A+ A,
D,

A,
D(a)

444,
24,+ A,
4,
A+24,
24,
4,+4,
4,

34,
24,
4,
g

E,

class of u
E,

E{a,)

Efa,)
D+ 4,

E,
E(a,)

10
11
12
13
15

16
20
25
36

d,

Generalized Springer Correspondence

Z2(3,p2—1)

e e e

W N~ O
N

Z2><Z(2,p—1)

W

Z(e,p>
4 Z,

4
1
1
1
1
—1
1
1
1
1
1
1
0
=3
1
1
1
1
1
1
1
—1
1
1
1
1

0

24, (p+3)
% o
¢ 1
¢ e
¢ ¢
C 0//
¢ &1
¢ €

331

D4 (P=2)
1% o

—1 1

—1 3

347 (p£2) D, (p=2)

4 o
o
-1 %,
= M

g XA,y
s// xl’z

o
—1 (3,0
~1 (0,3)
-1 @0
~1 (1,2)
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D,
D ﬁ(al) + Al

4

Dy(ay)
'D5 + Al
Dy(a,)+ A,

D,
(4s+4,)

Dy(a,)
A5+ 4)"
A;
Dy(a)+4,
Dy(a))

A, 44,
A4,

4
D,+4,
4,

Ayt Ayt 4,
A+ 4,

(4;+4,),
D,

D,(a,)+ A4,

A;+24,
D (a)

=)

[N

O 0 v O ®

10

12
12
13

13
14

15
15
15

16
16
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189,

105,

35,
189, ¢
15, (p#2) ¢’

Xo,1
x4,2
x8,3

—1 (21,0)

105,

15, (P = 2)
210,
168,
315,
280,

—1
-1
—1
—0

Xo.o
Xz
X1z

X,z

—1 (0, 21)
—1 (1 1)

35,

—1 Q, 19

405,

189,,

280,
70,

216,

—1
-1

378,
420,,

336,

210,
512,

512,
105,,
84,,

-1
—1

Xos
X9,3

-1 (1% 0)

420,

336,
210,
378,

84,5 (p#2)
8415 (p =2)

105,
405, 4

189,, e’

216,

X9,4
X2,4
x8,2

-1 (0, 19

315,
28013

35,



(A, + 4
24,44,
(A;+ A"
4,

24,
4,434,
A,+24,
A, 4,

44,
4,

34;
347
24,

=

E,
class of u

E,
Ey(a,)
Ey(ay)
E.+4,

E;
D,

E(a)+4,

E(a)
Dy(a))

D;,
Efa;)+ A4,

17
18
20
21
21
21
22
25

28
30

31
36
37
46
63

W N = o gQ‘

N

(o)
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Agw)

z (60, p2)

Z(12y ?)
Z(27 D)

Z,X Z,p

w
(%

2

28,
84,
210,
160,
560,
50, (p+#2)
567,
700,
300, (p#2)
300, (p=2)
50, (p=2)
1 400,
1 1400,

e e e e o e e Y

™,
~

™,
~
~

-1 %,
—1 %,
-1 X,
-1 X,
D, (p=2)

12 o

-1 X,

-1 %,

-1 %,

& X

5” xl’2

e

e R

—1 %,

0 T

-1 X,

-1 X,

333
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4

E(a)
E;4-4,
Dfa)
(D).
Dy(ay)
D+ A4,
Ey(a)+4,
4,
(4,
E,
Dfa,)

D,
E(a)

D,+4,

(D;+ 4,
Dy(a)+ 4,

A+ 4,
A,

Dy(a,)

24,

=]

10
10
10
11
11
12
12
12

12
13

13

14
14

14
15

15

16
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g 1008,
e 56,
S, 1 1400,
g 1575,
e 350,
Z o, » 1 1344,
AN 1 448,
Zop-v 1 3240,
—1 1050, (p#£2)
Z, 1 1050, (p=2)
Ss (P?b?’) 1 224010
Z,(p=3) 6 175,(p+#3)
e 840,
zZ, 1 2268,
—1 1296,
Z, 1 4096,,
—1 4096,,
1 1 1400,
1 1 175,(p=3)
Zs, 1 525,
Z, 1 4200,
—1 3360,
Z, 1 972,
Z, 1 2800;,
—1 2100,
Zy, 51 1 4536,
—1 840, (p+2)
Z, 1 84014 (p=2)
Z,p-1 1 6075,
—1 700, (p#2)
1 1 2835,
Z, 1 4200
—1 7004 (p=2)
Z, X Z o, 1 5600,
e 2400,
S (5) 4480,

(41) 5670,
(32) 4536,

XIG

X4



D+ 4,
A5+ 4,

Dy(a,)
As+24,

(4s+4,)
Dy(a)+ A4,
D,

A, +4,
(4,+4)7

D,+4,

Ay
Dya))+4,
A+ A,+ A4,
A+ A4,
(Di+4,).
A,-24,

Dy(a)
A+ 4,

24,
D,+-4,
Da)+ 4,

A+ A4,+ 4,
A,

A+ A,

16
17

18

18

19
19
20
20
21

21

22
22
22
23
24

24
25

26

26
28
28

29
30

31
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(312) 1680,
(2*1) 1400,,

(1) 70,

Zom 1 3200,
S, 1 7168,
8 5600,

e 448,

Z, 1 4200,
—1 2688,

Z, 1 3150,
—1 1134y,

1 1 2016,
1 1 1344,
Zom 1 2100,
1 1 420,
Z, 1 5600,
—1 2400,

Zenon 1 4200,
—1 168,

1 1 3200,
1 1 6075,
1 1 2835,
1 1 4536,
Z, 1 168,
Z, 1 4200,
—1 3360,

Z, 1 2800,
—1 2100,

Z, 1 4096,
—1 4096,

1 1 840,
Ze 1 700,
Z, 1 2240,
—1 840,

1 1 1400,
Z, 1 2268,
—1 1296,

Zoson 1 3240,

(p#2)

(r=2)

1 X
1 %,
1 X
1 X,

335
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-1 97232 (p;/:Z) -

(4;+4,), 32 1 1 972, (p=2) —

D(a)+4, 32 S, 1 1400, —_

6 1575, _

e 3504 —

A, 424, 34 1 1 1050, _—
D, 36 Zg, 1 525, 1 %,

24,424, 36 1 1 175, —_

DJ(a) 37 S, 1 1400, —_

6 1008,, _

e 56, —_—

A+ A, 38 1 1 1344, —

24,4+ A, 39 1 1 448, —_—

24, 42 Z, 1 700, —_—

—1 300, —_—

A, 434, 43 1 1 400, —_—

A, 46 1 1 567, —_

A,+24, 47 1 1 560, e

A+ A4, 52 Z, 1 210, e

—1 160, —_

44, 56 1 1 - 50, —_

A, 63 Z, 1 112, _

—1 28, —_

34, 64 1 1 84, _

24, 74 1 1 35, —_—

A, 91 1 1 81 _—

0 120 1 1 1.5 —_—

Unipotent cuspidal pairs (u, ¢)

G class of u As(w) © condition on p  condition on G
G, Gya,) S € p+3

G, G, Z, —1 p=2 —_—

Gz Gz Za g, Cz b= 3 —

G, Gya,) Z, —1 p=3 —

F, F(a) S, 1 pF2 _—

F, F Z, ¢ p=3 —_

F, F, Z, 7 =7 p=2 —

F, F(a) Zz, —1 p=2 I
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[31]
[91]
[10]
[11]
[12]
[13]
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F(a) D, € p=2 -
F(ay) S; € p=2 -
A+ A, Z, —¢, = p+3 simply connected
E, Z, -, - p=2 simply connected
E, Z, ;¢ p=3 E—
Dya)+A4, S,XZ, —c¢ p#2 simply connected
E, Z, -8, = p=3 simply connected
E, Z, 7 =7 p=2 -
24, S; 1 - -
EB Zs C9 Cz’ Ca’ C4 P=5 _—
E7+A1 Zs _C5 “'CZ P=3 -
Eyay) z, U/t /} p=2 —_—
Dya,) D, € p=2 —_
Ef(a)+4, S;XZ, —e¢ p=2 -
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