Cells in Affine Weyl Groups

George Lusztig*

Table of Contents

1. The basis C_{w} of the Hecke algebra 256
2. The function $\boldsymbol{a} \quad 258$
3. Positivity 259
4. Left cells and two-sided cells 260
5. Cells and the function $\boldsymbol{a} \quad 261$
6. The case of a finite Weyl group 265
7. An upper bound for $\boldsymbol{a}(w)$ for w in an affine Weyl group 268
8. The subset $W_{(\dot{)})}$ of an affine Weyl group 272
9. Construction of n-tempered representations 273
10. Left cells and dihedral subgroups 280
11. Left cells in the affine Weyl groups $A_{2}, B_{2}, G_{2} \quad 281$

Let W be an affine Weyl group and let H be the corresponding Hecke algebra, as defined by Iwahori and Matsumoto [IM]. This paper arose from an attempt to find a procedure which associates a representation of H to an irreducible representation of W. Such a procedure is known for finite Weyl groups $\left[\mathrm{L}_{2}, \mathrm{~L}_{3}\right.$] and we generalize it to the case of affine Weyl groups. Since the representations of W are relatively well understood, it may be hoped that this will help us understand better the representations of H. The main tool we use is a function $a: W \rightarrow \mathbf{N}$ which is constant on two-sided cells and is an analogue of the function on a finite Weyl group which essentially measures the Gelfand-Kirillov dimension of $\mathrm{U}(\mathrm{g}) / \mathrm{I}_{w}$, where $\mathrm{U}(g)$ is the corresponding enveloping algebra and I_{w} is a primitive ideal corresponding to the Weyl group element w. The function \boldsymbol{a} is constructed in a purely combinatorial way in terms of multiplication of elements in the C_{w}-basis ($\left[\mathrm{KL}_{1}\right]$) of the Hecke algebra. To establish its properties we need, however, some positivity properties which follow from deep results on perverse sheaves [BBD].

[^0]In another direction, we describe explicitly the left cells and twosided cells of affine Weyl groups of type $\widetilde{A}_{2}, \widetilde{B}_{2}, \widetilde{G}_{2}$.

§ 1. The basis C_{w} of the Hecke algebra

1.1. Let $q^{1 / 2}$ be an indeterminate and let $\mathscr{A}=\mathbf{Z}\left[q^{1 / 2}, q^{-1 / 2}\right]$ be the ring of Laurent polynomials in $q^{1 / 2}$. We shall set $\mathscr{A}^{+}=\mathbf{Z}\left[q^{1 / 2}\right]$.

Let W be a Coxeter group and let S be the corresponding set of simple reflections. We shall denote by H the Hecke algebra (over \mathscr{A}) corresponding to W. As an \mathscr{A}-module, H is free with basis $T_{w},(w \in W)$. The multiplication is defined by

$$
\begin{aligned}
& T_{w} T_{w^{\prime}}=T_{w w^{\prime}}, \quad \text { if } l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right) \\
& \left(T_{s}+1\right)\left(T_{s}-q\right)=0, \quad \text { if } s \in S
\end{aligned}
$$

here $l(w)$ is the length of w.
It will be convenient to set

$$
\tilde{T}_{w}=q^{-l(w) / 2} T_{w}
$$

We then have

$$
\left\{\begin{array}{l}
\widetilde{T}_{w} \tilde{T}_{w^{\prime}}=\tilde{T}_{w w^{\prime}}, \quad \text { if } l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right) \tag{1.1.1}\\
\widetilde{T}_{s}^{2}=1+\left(q^{1 / 2}-q^{-1 / 2}\right) \widetilde{T}_{s}, \quad \text { if } s \in S
\end{array}\right.
$$

1.2. Let \leq be the standard partial order on W. In $\left[\mathrm{KL}_{1}\right]$, Kazhdan and the author showed that for any $w \in W$, there is a unique element $C_{w} \in H$ such that

$$
\begin{aligned}
C_{w} & =\sum_{y \leq w}(-1)^{l(w)-l(y)} q^{(l(w)-l(y)) / 2} P_{y, w}\left(q^{-1}\right) T_{y} \\
& =\sum_{y \leq w}(-1)^{l(w)-l(y)} q^{(l(w)+l(y)) / 2} P_{y, w}(q) T_{y^{-1}}^{-1}
\end{aligned}
$$

where $P_{y, w}(q)$ is a polynomial of degree $\leq \frac{1}{2}(l(w)-l(y)-1)$ if $y<w$ and $P_{w, w}(q)=1$.

Note that

$$
\begin{equation*}
C_{w} \in \tilde{T}_{w}+q^{1 / 2} \sum_{y<w} \mathscr{A}^{+} \cdot \tilde{T}_{y} \tag{1.2.1}
\end{equation*}
$$

from which by induction on $l(w)$, it follows that

$$
\begin{equation*}
\widetilde{T}_{w} \in C_{w}+q^{1 / 2} \sum_{y<w} \mathscr{A}^{+} \cdot C_{y} \tag{1.2.2}
\end{equation*}
$$

In particular, the elements C_{w} form a basis (called the C-basis) of H as an \mathscr{A}-module.
1.3. Following $\left[\mathrm{KL}_{2}\right]$ we define polynomials $Q_{y, w}(q)$ for $y \leq w$ by the identities

$$
\sum_{y \leq z \leq w}(-1)^{l(z)-l(y)} Q_{y, z}(q) P_{z, w}(q)= \begin{cases}1 & \text { if } y=w \tag{1.3.1}\\ 0 & \text { if } y<w\end{cases}
$$

It is clear that $Q_{y, w}(q)$ is a polynomial of degree $\leq \frac{1}{2}(l(w)-l(y)-1)$ if $y<w$ and $Q_{w, w}(q)=1$. For any $y \in W$, we define

$$
\begin{equation*}
D_{y}=\sum_{\substack{w \\ y \leq w}} Q_{y, w}\left(q^{-1}\right) q^{(l(w)-l(y)) / 2} \tilde{T}_{w} \tag{1.3.2}
\end{equation*}
$$

this is an element in the set \hat{H} of formal (possibly infinite) \mathscr{A}-linear combinations of the elements $\widetilde{T}_{w},(w \in W)$. We have

$$
\begin{equation*}
D_{y} \in \tilde{T}_{y}+q^{1 / 2} \sum_{\substack{w \\ y<w}} \mathscr{A}^{+} \cdot \widetilde{T}_{w} \tag{1.3.3}
\end{equation*}
$$

hence

$$
\begin{equation*}
\tilde{T}_{y} \in D_{y}+q^{1 / 2} \sum_{\substack{w \\ y<w}} \mathscr{A}^{+} \cdot D_{w} . \tag{1.3.4}
\end{equation*}
$$

(Both sums are, in general, infinite sums). Note that $H \subset \hat{H}$ in an obvious way and that the left H-module structure on H extends naturally to a left H-module structure on \hat{H}. For example, we have

$$
\tilde{T}_{s}\left(\sum_{w} \alpha_{w} \tilde{T}_{w}\right)=\sum_{\substack{w \\ s w>w}} \alpha_{s w} \widetilde{T}_{w}+\sum_{\substack{w \\ s w<w}}\left(\alpha_{s w}+\left(q^{1 / 2}-q^{-1 / 2}\right) \alpha_{w}\right) \widetilde{T}_{w}
$$

($\alpha_{w} \in \mathscr{A}, s \in S$, and the sums are infinite, in general). Similarly, \hat{H} is in a natural way a right H-module; the left and right H-module structures on \hat{H} commute with each other: $\left(h_{1} \hat{h}\right) h_{2}=h_{1}\left(\hat{h} h_{2}\right)$ for $h_{1} \in H, \hat{h} \in \hat{H}, h_{2} \in H$.
1.4. Let $\tau: \hat{H} \rightarrow \mathscr{A}$ be the \mathscr{A}-linear map defined by $\tau\left(\sum_{w} \alpha_{w} \widetilde{T}_{w}\right)=\alpha_{e}$ where e is the neutral element of W. It is easy to check that

$$
\tau\left(\widetilde{T}_{x} \cdot \widetilde{T}_{y}\right)= \begin{cases}1, & \text { if } x=y^{-1} \tag{1.4.1}\\ 0, & \text { if } x \neq y^{-1}\end{cases}
$$

It follows that

$$
\begin{equation*}
\tau\left(h_{1} \hat{h}\right)=\tau\left(\hat{h} h_{1}\right) \quad \text { for all } h_{1} \in H, \hat{h} \in \hat{H} \tag{1.4.2}
\end{equation*}
$$

and

$$
\tau\left(C_{x} D_{y}\right)=\tau\left(D_{y} C_{x}\right)= \begin{cases}1, & \text { if } x=y^{-1} \tag{1.4.3}\\ 0, & \text { if } x \neq y^{-1}\end{cases}
$$

§ 2. The function a

2.1. Given $w \in W$, consider the set

$$
\begin{align*}
\mathscr{S}_{w} & =\left\{i \in \mathbf{N} \mid q^{i / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} D_{w}\right) \in \mathscr{A}^{+}\right. & \text {for all } x, y \in W\} \\
& =\left\{i \in \mathbf{N} \mid q^{i / 2} \tau\left(C_{x} C_{y} D_{w}\right) \in \mathscr{A}^{+}\right. & \text {for all } x, y \in W\} . \tag{2.1.2}
\end{align*}
$$

(The last equality follows immediately from (1.2.1), (1.2.2.). If \mathscr{S}_{w} is non-empty, we denote by $\boldsymbol{a}(w)$ the smallest number in \mathscr{S}_{w}. If \mathscr{S}_{w} is empty, we set $\boldsymbol{a}(w)=\infty$. We have thus defined a function

$$
\boldsymbol{a}: W \longrightarrow \mathbf{N} \cup\{\infty\}
$$

An equivalent definition is the following one. We consider the coefficient with which C_{w-1} appears in the product $\widetilde{T}_{x} \widetilde{T}_{y}$ (expressed in the C-basis of $H)$. We consider the order of the pole at 0 of this coefficient (in the parameter $q^{1 / 2}$). When x, y vary, the order of this pole may be bounded above and then $\boldsymbol{a}(w)$ is the largest such order, or it may be unbounded and then $\boldsymbol{a}(w)=\infty$. We have

Proposition 2.2. $\quad \boldsymbol{a}(w)=\boldsymbol{a}\left(w^{-1}\right)$
Proof. Consider the antiautomorphism of the algebra H defined by $T_{w} \rightarrow T_{w-1}$ for all w. Applying it to the equality $\tilde{T}_{x} \tilde{T}_{y}=\sum_{w} \alpha_{w} C_{w}$, ($\alpha_{w} \in \mathscr{A}$), we find $\tilde{T}_{y-1} \tilde{T}_{x-1}=\sum_{w} \alpha_{w} C_{w-1}$. From this, the proposition follows immediately.

We have
Proposition 2.3. $\boldsymbol{a}(w)=0$ if and only if $w=e$.
Proof. First we show that $Q_{e, w}=1$ for all $w \in W$. In view of the definition (1.3.1) this is equivalent to the identity

$$
\sum_{y \leq w}(-1)^{l(y)} P_{y, w}=0 \quad \text { for all } w \neq e
$$

which follows from the fact that $P_{y, w}=P_{s y, w}$ where s is any element of S such that $s w<w$. See $\left[\mathrm{KL}_{1},(2.3 . g)\right]$. It follows that

$$
D_{e}=\sum_{w} q^{l(w) / 2} \widetilde{T}_{w} .
$$

For any $s \in S$, we have $\tilde{T}_{s} D_{e}=q^{1 / 2} D_{e}$. By induction on $l(x)$ it follows that $\widetilde{T}_{x} D_{e}=q^{l(x) / 2} D_{e},(x \in W)$, and therefore

$$
\tau\left(\widetilde{T}_{x} \widetilde{T}_{y} D_{e}\right)=q^{(l(x)+l(y)) / 2} \tau\left(D_{e}\right)=q^{(l(x)+l(y)) / 2} \in \mathscr{A}^{+}
$$

for all $x, y \in W$. It follows that $\boldsymbol{a}(e)=0$.

Assume now that $w \neq e$ and let $s \in S$ be such that $s w<w$. Then

$$
\tilde{T}_{s} \tilde{T}_{w}=\tilde{T}_{s w}+\left(q^{1 / 2}-q^{-1 / 2}\right) \tilde{T}_{w},
$$

and by (1.2.2) this is of the form $\left(q^{1 / 2}-q^{-1 / 2}\right) C_{w}+\mathscr{A}$-linear combination of elements $C_{w^{\prime}}, w^{\prime}<w$. As $\tau\left(C_{w^{\prime}} D_{w-1}\right)=0$ for $w^{\prime}<w$, we have

$$
\tau\left(\widetilde{T}_{s} \widetilde{T}_{w} D_{w-1}\right)=\tau\left(\left(q^{1 / 2}-q^{-1 / 2}\right) C_{w} D_{w-1}\right)=q^{1 / 2}-q^{-1 / 2}
$$

so that $0 \in \mathscr{S}_{w-1}$. Thus, $\boldsymbol{a}\left(w^{-1}\right) \geq 1$, and the proposition is proved.
The last part of the previous proof can be generalized as follows.
Proposition 2.4. Let J be a subset of S which generates a finite subgroup of W and let w_{J} be the longest element in this subgroup. Let w, w^{\prime}, $w^{\prime \prime} \in W$ be such that $w=w^{\prime} w_{J} w^{\prime \prime}, l(w)=l\left(w^{\prime}\right)+l\left(w_{J}\right)+l\left(w^{\prime \prime}\right)$. Then $\boldsymbol{a}(w)$ $\geq l\left(w_{J}\right)$.

Proof. Note that $\widetilde{T}_{w_{J}} \cdot \widetilde{T}_{w_{J}}=\left(q^{-l\left(w_{J}\right) / 2}+\right.$ higher powers of $\left.q^{1 / 2}\right) \widetilde{T}_{w_{J}}+$ \mathscr{A}-linear combination of elements $\tilde{T}_{y}, y<w_{J}$. It follows that

$$
\begin{aligned}
\tilde{T}_{w^{\prime} w_{w}} \tilde{T}_{w_{J} w^{\prime \prime}}= & \tilde{T}_{w} \tilde{T}_{w_{1}} \widetilde{T}_{w_{J}} \tilde{T}_{w^{\prime \prime}} \\
= & \left(q^{-l\left(w_{J}\right) / 2}+\text { higher powers of } q^{1 / 2}\right) \widetilde{T}_{w}+\mathscr{A} \text {-linear } \\
& \text { combination of elements } \widetilde{T}_{z}, z<w \\
= & \left(q^{-l\left(w_{J}\right) / 2}+\text { higher powers of } q^{1 / 2}\right) C_{w}+\mathscr{A} \text {-linear } \\
& \text { combination of elements } C_{z}, z<w,(\text { cf. }(1.2 .2)) .
\end{aligned}
$$

As $\tau\left(C_{z} D_{w-1}\right)=0$ for $z<w$, and $\tau\left(C_{w} D_{w^{-1}}\right)=1$, we have $\tau\left(\widetilde{T}_{w^{\prime} w_{J}} \widetilde{T}_{w_{j} w^{\prime \prime}} D_{w^{-1}}\right)$ $=q^{-l\left(w_{J}\right) / 2}+$ higher powers of $q^{1 / 2}$. This shows that $\boldsymbol{a}\left(w^{-1}\right) \geq l\left(w_{J}\right)$. The proposition follows.

§ 3. Positivity

3.1. The Coxeter group (W, S) is said to be crystallographic if for any $s \neq s^{\prime}$ in S, the product $s s^{\prime}$ has order $2,3,4,6$ or ∞. We shall need the following result.
(3.1.1) Assume that (W, S) is crystallographic and let $x, y \in W$. Then $C_{x} \cdot C_{y}=\sum_{z \in W} \alpha_{x, y, z} C_{z}$ where, for any $z \in W, \alpha_{x, y, z} \in \mathscr{A}$ is of the form $\sum_{i \in \mathbf{Z}} c_{i}(-1)^{i} q^{i / 2}$ with $c_{i} \in \mathbf{N}$.
3.2. Let $\Phi: H \rightarrow H$ be the ring homomorphism defined by $\Phi\left(q^{1 / 2}\right)=$ $-q^{1 / 2}, \Phi\left(T_{x}\right)=(-q)^{l(x)} T_{x}^{-1}, 1,(x \in W)$. Then $\Phi^{2}=1$ and $C_{x}=\Phi\left(C_{x}^{\prime}\right)$ where $C_{x}^{\prime}=q^{-l(x) / 2} \sum_{y \leq x} P_{y, x}(q) \cdot T_{y}$. Hence (3.1.1) is equivalent to the following statement.
(3.2.1) If (W, S) is crystallographic, then for any $x, y \in W$ we have $C_{x}^{\prime} C_{y}^{\prime}=$ $\sum_{z \in W} \beta_{x, y, z} C_{z}^{\prime}$ where $\beta_{x, y, z} \in \mathscr{A}$ has ≥ 0 coefficients for all $z \in W$.

In the case where (W, S) is a (finite) Weyl group, this statement is proved in [$\mathrm{S}, 2.12$. The ingredients of the proof are:
(a) interpreting $P_{y, w}$ in terms of local intersection cohomology of a Schubert variety corresponding to w, cf. [$\left.\mathrm{KL}_{2}\right]$.
(b) interpreting multiplication in the Hecke algebra in terms of operations with complexes of sheaves (inverse image, tensor product, direct image).
(c) applying the powerful decomposition theorem in the theory of perverse sheaves, due to Beilinson-Bernstein-Deligne-Gabber [BBD].

In the general case, the assumption that W is crystallographic, means that it arises from a Kac-Moody Lie algebra (or group); to each $w \in W$ one can again associate a "Schubert variety". (See $\left[\mathrm{KL}_{2}, \S 5\right],\left[\mathrm{L}_{4}, 11\right]$ for the case of affine Weyl groups and Tits [T] in the general case; see also Kac-Peterson [KP].) The proof of (3.2.1) can then be carried out essentially as in the finite case. For the proof of (a) it is simpler to use instead of $\left[\mathrm{KL}_{2}\right]$ the arguments in $\left[\mathrm{L}_{5}, \mathrm{Ch} .1\right]$. This avoids using the dual Schubert varieties (of finite codimension).

\S 4. Left cells and two-sided cells

4.1. We shall review some definitions and results from $\left[\mathrm{KL}_{1}\right]$. Given $y, w \in W$, we say that $y<w$ if the following conditions are satisfied: $y<w, l(w)-l(y)$ is odd and $P_{y, w}(q)=\mu(y, w) q^{(l(w)-l(y)-1) / 2}+$ lower powers of q, where $\mu(y, w)$ is a non-zero integer.

Given $y, w \in W$, we say that y, w are joined $(y-w)$ if we have $y<w$ or $w \prec y$; we then set $\tilde{\mu}(y, w)=\mu(y, w)$ if $y \prec w$ and $\tilde{\mu}(y, w)=\mu(w, y)$ if $w \prec y$. For any $x \in W$, we set $\mathscr{L}(x)=\{s \in S \mid s x<x\}, \mathscr{R}(x)=\{s \in S \mid x s<x\}$.
4.2. Given $x, x^{\prime} \in W$, we say that $x \frac{L_{L}}{} x^{\prime}$ if there exists a sequence of elements of $W: x=x_{0}, x_{1}, \cdots, x_{n}$ such that for each $i, 1 \leq i \leq n$, we have $x_{i-1}-x_{i}, \mathscr{L}\left(x_{i-1}\right) \not \subset \mathscr{L}\left(x_{i}\right)$. We say that $x \leq x_{L R}$ if there exists a sequence $x=x_{0}, x_{1}, \cdots, x_{n}=x^{\prime}$ of elements of W such that for each $i, 1 \leq i \leq n$, we have either $x_{i-1} \underset{L}{\leq} x_{i}$ or $x_{i-1}^{-1} \leq_{L} x_{i}^{-1}$. Let $\underset{L}{\sim}$ be the equivalence relation associated to the preorder $\underset{L}{\leq}$; thus $\underset{L}{\sim} x^{\prime}$ means that $x \underset{L}{\leq_{L}} x^{\prime}, x^{\prime}{\underset{L}{L}} x$. The corresponding equivalence classes are called the left cells of W. A right cell of W is a set of form $\left\{w \in W \mid w^{-1} \in \Gamma\right\}$ where Γ is a left cell. Let $\underset{L R}{\sim}$ be the equivalence relation associated to the preorder $\underset{L R}{\leq}$; thus $x \underset{L R}{\sim} x^{\prime}$
means that $x \underset{L R}{<} x^{\prime}, x^{\prime} \underset{L R}{<} x$. The corresponding equivalence classes are called the two-sided cells of W.
4.3. For any $x \in W$ and $s \in S$, we have (cf. [$\left.\mathrm{KL}_{1},(2.3 \mathrm{a}),(2.3 \mathrm{~b})\right]$):

$$
C_{s} C_{x}= \begin{cases}-\left(q^{1 / 2}+q^{-1 / 2}\right) C_{x}, & \text { if } s \in \mathscr{L}(x) \tag{4.3.1}\\ \sum_{\substack{y=x \\ s y<y}} \tilde{\mu}(y, x) C_{y}, & \text { if } s \notin \mathscr{L}(x)\end{cases}
$$

and

$$
C_{x} C_{s}= \begin{cases}-\left(q^{1 / 2}+q^{-1 / 2}\right) C_{x}, & \text { if } s \in \mathscr{R}(x) \tag{4.3.2}\\ \sum_{y=x} \tilde{\mu}(y, x) C_{y}, & \text { if } s \notin \mathscr{R}(x) .\end{cases}
$$

It follows that for any $x \in W$ we have

$$
\begin{gather*}
H \cdot C_{x} \subset \sum_{\substack{y \leq x \\
L}} \mathscr{A} \cdot C_{y} \tag{4.3.3}\\
C_{x} \cdot H \subset \sum_{\substack{y-1 \\
y-1 \leq x-1 \\
L}} \mathscr{A} \cdot C_{y} \tag{4.3.4}\\
H \cdot C_{x} \cdot H \subset \sum_{\substack{y \leq x \\
L R}} \mathscr{A} \cdot C_{y} . \tag{4.3.5}
\end{gather*}
$$

4.4. We shall need the following property, see $\left[\mathrm{KL}_{1}, 2.4(\mathrm{i})\right]$:
(4.4.1) If $x_{L}^{\leq} y$, then $\mathscr{R}(x) \supset \mathscr{R}(y)$. Hence, if $x_{L}^{\sim} y$ then $\mathscr{R}(x)=\mathscr{R}(y)$.

Lemma 4.5. Let $x, y \in W . \quad$ If $C_{x} D_{y} \neq 0$, then $y^{-1}{\underset{L}{L}} x . \quad$ If $D_{y} C_{x} \neq 0$, then $y \leq_{L} x^{-1}$.

Proof. Assume first that $C_{x} D_{y} \neq 0$. Then $C_{x} D_{y}$ can be written as a (possibly infinite) sum $\sum_{z} \alpha_{z} D_{z}, \alpha_{z} \in \mathscr{A}$, with $\alpha_{z} \neq 0$ for some z. For such z, we have $\tau\left(C_{z-1} C_{x} D_{y}\right)=\alpha_{z} \neq 0$. Let us expand $C_{z-1} C_{x}$ in the C basis of H. The coefficient of C_{y-1} in this expansion is equal to α_{z} hence it is non-zero. Using now (4.3.3), it follows that $y^{-1} \underset{L}{\leq} x$.

The proof of the second assertion of the lemma is entirely similar.

§ 5. Cells and the function a

5.1. Given $w \in W$ such that $\boldsymbol{a}(w)<\infty$, and two elements $x, y \in W$, we define the integer $c_{x, y, w}$ to be the constant term ($=$ coefficient of q°)
of $q^{\boldsymbol{\alpha}(w) / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} D_{w}\right) \in \mathscr{A}^{+}$.
Lemma 5.2. Assume that $\boldsymbol{a}(w)<\infty$.
(a) $c_{x, y, w}$ is equal to the constant term of $q^{a(w) / 2} \tau\left(C_{x} C_{y} D_{w}\right) \in \mathscr{A}^{+}$.
(b) There exist $x^{\prime}, y^{\prime} \in W$ such that $c_{x^{\prime}, y^{\prime}, w} \neq 0$.
(c) If $c_{x, y, w} \neq 0$, then $w{\underset{L}{L}}^{x^{-1}}$ and $w^{-1}{\underset{L}{L}}^{L} y$.
(d) If W is crystallographic, then for any x, y we have $(-1)^{a(w)} c_{x, y, w}$ ≥ 0.

Proof. We have $C_{x}=\sum_{x^{\prime} \leq x} \alpha_{x^{\prime}} \widetilde{T}_{x^{\prime}}, C_{y}=\sum_{y^{\prime} \leq y} \beta_{y^{\prime}} \widetilde{T}_{y^{\prime}}$ where $\alpha_{x}=\beta_{y}$ $=1, \alpha_{x^{\prime}} \in q^{1 / 2} \mathscr{A}^{+},\left(x^{\prime}<x\right), \beta_{y^{\prime}} \in q^{1 / 2} \mathscr{A}^{+},\left(y^{\prime}<y\right)$. Hence

$$
\begin{aligned}
q^{\boldsymbol{a}(w) / 1} \tau\left(C_{x} C_{y} D_{w}\right) & =\sum_{\substack{x^{\prime} \leq x \\
y^{\prime} \leq y}} \alpha_{x^{\prime}} \beta_{y^{\prime}} q^{\boldsymbol{a}(w) / 2} \tau\left(\widetilde{T}_{x^{\prime}} \tilde{T}_{y^{\prime}} D_{w}\right) \\
& =q^{\boldsymbol{\alpha}(w) / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} D_{w}\right)+\text { an element of } q^{1 / 2} \mathscr{A}^{+}
\end{aligned}
$$

and (a) follows.
(b) is clear from the definition of $\boldsymbol{a}(w)$.

Assume that $c_{x, y, w} \neq 0$. Then $\tau\left(C_{x} C_{y} D_{w}\right) \neq 0$ and, by (1.4.2), we have also $\tau\left(C_{y} D_{w} C_{x}\right) \neq 0$. In particular, $C_{y} D_{w} \neq 0$ and $D_{w} C_{x} \neq 0$. Hence (c) follows from Lemma 4.5.

Let $\pi_{x, y, w} \in \mathscr{A}$ be the coefficient of C_{w-1} in $C_{x} \cdot C_{y}$ (expressed in the C-basis of H). By (a), $c_{x, y, w}$ is the coefficient of $q^{-\boldsymbol{a}(w) / 2}$ in $\pi_{x, y, w}$. Hence, (d) is a special case of (3.1.1).

Lemma 5.3. Assume that W is crystallographic. Let $x, y \in W$.
(a) Let $z, z^{\prime} \in W$ be such that $z-z^{\prime}$ and let $s \in S$ be such that $s \in$ $\mathscr{R}\left(z^{\prime}\right)-\mathscr{R}(z)$. If $i \geq 0$ is an integer such that $q^{i / 2} \tau\left(C_{x} C_{y} D_{z}\right) \in \mathscr{A}$ has nonzero constant term, then there exists $x^{\prime} \in W$ such that $q^{i / 2} \tau\left(C_{x^{\prime}} C_{y} D_{z^{\prime}}\right) \in \mathscr{A}$ has non-zero constant term. Moreover, we have $\boldsymbol{a}\left(z^{\prime}\right) \geq \boldsymbol{a}(z)$.
(b) Let $z \in W$ be such that $a(z)<\infty$. Assume that $c_{x, y, z} \neq 0$. Then $\mathscr{R}(y)=\mathscr{L}(z)$ and $\mathscr{L}(x)=\mathscr{R}(z)$.

Proof. Let z, z^{\prime}, s, i be as in (a). We have $\tau\left(C_{x} C_{y} D_{z}\right)=\tau\left(C_{y} D_{z} C_{x}\right)$ $\neq 0$ hence $D_{z} C_{x} \neq 0$ so that $z \leq_{L} x^{-1}$, (Lemma 4.5). By (4.4.1), $z_{L} x^{-1}$ implies $\mathscr{R}(z) \supset \mathscr{R}\left(x^{-1}\right)$. Since $s \notin \mathscr{R}(z)$, it follows that $s \notin \mathscr{R}\left(x^{-1}\right)$, hence $s x>x$.

Write $C_{x} C_{y}=\sum_{w} \alpha_{w} C_{w}, \alpha_{w} \in \mathscr{A}$. Using (4.3.1), we get

$$
C_{s} C_{x} C_{y}=\alpha_{z-1} C_{s} C_{z-1}+\sum_{w \neq z-1} \alpha_{w} C_{s} C_{w}=\sum_{w^{\prime}} \beta_{w^{\prime}} C_{w^{\prime}}, \quad\left(\beta_{w^{\prime}} \in A\right)
$$

where

$$
\beta_{z^{\prime-1}}=\alpha_{z-1} \tilde{\mu}\left(z^{\prime-1}, z^{-1}\right)+\delta
$$

$$
\delta=\sum_{\substack{w \neq z-1 \\ \text { s. } \\ z^{\prime}-1-w}} \alpha_{w} \cdot \tilde{\mu}\left(z^{\prime-1}, w\right)-\alpha_{z^{\prime}-1}\left(q^{1 / 2}+q^{-1 / 2}\right) .
$$

Let a_{i}, b_{i}, d_{i} be the coefficient of $q^{-i / 2}$ in $\alpha_{z-1}, \beta_{z^{\prime}-1}, \delta$, respectively. Then $b_{i}=\tilde{\mu} a_{i}+d_{i}$ where $\tilde{\mu}=\tilde{\mu}\left(z^{\prime-1}, z^{-1}\right)=\tilde{\mu}\left(z^{\prime}, z\right)$. From (3.1.1) it follows that $(-1)^{i} a_{i} \geq 0,(-1)^{i} d_{i} \geq 0, \tilde{\mu} \geq 0$. Our assumptions are that $a_{i} \neq 0, \tilde{\mu} \neq 0$. It follows that $(-1)^{i} a_{i}>0, \tilde{\mu}>0,(-1)^{i} b_{i} \geq \tilde{\mu}(-1)^{i} a_{i}>0$ so that $b_{i} \neq 0$. Thus, the coefficient of $q^{-i / 2}$ in $\tau\left(C_{s} C_{x} C_{y} D_{z^{\prime}}\right) \in \mathscr{A}$ is non-zero. By (4.3.1) we have

$$
\tau\left(C_{s} C_{x} C_{y} D_{z^{\prime}}\right)=\sum_{\substack{x^{\prime}, x \\ s x^{\prime}<x^{\prime}}} \tilde{\mu}\left(x^{\prime}, x\right) \tau\left(C_{x^{\prime}} C_{y} D_{z^{\prime}}\right)
$$

with $\tilde{\mu}\left(x^{\prime}, x\right) \neq 0$ for all x^{\prime} in the sum. It follows that there is at least one x^{\prime} in the sum such that the coefficient of $q^{-i / 2}$ in $\tau\left(C_{x^{\prime}} C_{y} D_{z^{\prime}}\right)$ is non-zero. Hence the first assertion of (a) is proved. We now show that we have an inclusion

$$
\mathscr{S}_{z} \supset \mathscr{S}_{z^{\prime}}
$$

(see (2.1.2)). If this were not true we could find $j \in \mathscr{S}_{z^{\prime}}$ such that $j \notin \mathscr{S}_{z}$. Since $j \notin \mathscr{S}_{z}$, there exists $x_{1}, y_{1} \in W$ such that $q^{j / 2} \tau\left(\widetilde{T}_{x_{1}} \widetilde{T}_{y_{1}} D_{z}\right) \notin \mathscr{A}^{+}$; hence there exists $j^{\prime}>0$ such that $q^{\left(j+j^{\prime}\right) / 2} \tau\left(\widetilde{T}_{x_{1}} \widetilde{T}_{y_{1}} D_{z}\right)$ has non-zero constant term. By the first assertion of (a) it follows that $q^{\left(j+j^{\prime}\right) / 2} \tau\left(\widetilde{T}_{x_{2}} \widetilde{T}_{y_{1}} D_{z^{\prime}}\right)$ has non-zero constant term for some $x_{2} \in W$, so that $q^{j / 2} \tau\left(\widetilde{T}_{x_{2}} \widetilde{T}_{y_{1}} D_{z^{\prime}}\right) \notin \mathscr{A}^{+}$. Thus $j \notin \mathscr{S}_{z^{\prime}}$, a contradiction.

From $\mathscr{S}_{z} \supset \mathscr{S}_{z^{\prime}}$, and the definition of the function a, it follows that $a\left(z^{\prime}\right) \geq a(z)$.

We now prove (b). With the assumption of (b), we have $z_{L} \leq x^{-1}$ and $z^{-1}{\underset{L}{L}}^{L}$. Using (4.4.1), it follows that $\mathscr{R}(z) \supset \mathscr{R}\left(x^{-1}\right)=\mathscr{L}(x), \mathscr{L}(z)=$ $\mathscr{R}\left(z^{-1}\right) \supset \mathscr{R}(y)$. Assume that there exists $t \in S$ such that $t \in \mathscr{L}(z), t \notin \mathscr{R}(y)$. Write again $C_{x} C_{y}=\sum_{w} \alpha_{w} C_{w},\left(\alpha_{v} \in \mathscr{A}\right)$. From this we have

$$
\begin{aligned}
\sum_{\substack{y^{\prime}-y \\
y^{\prime} t<y^{\prime}}} C_{x} C_{y^{\prime}} \tilde{\mu}\left(y^{\prime}, y\right) & =C_{x} C_{y} C_{t}=\alpha_{z-1} C_{z-1} C_{t}+\sum_{w \neq z^{-1}} \alpha_{w} C_{w} C_{t} \\
& =\sum_{w^{\prime}} \beta_{w^{\prime}} C_{w^{\prime}}, \quad\left(\beta_{w} \in \mathscr{A}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{z-1}=-\left(q^{1 / 2}+q^{-1 / 2}\right) \alpha_{z-1}+\delta, \\
& \delta=\sum_{\substack{w, z=1 \\
w^{\prime} t>w^{\prime}}} \tilde{\mu}\left(z^{-1}, w^{\prime}\right) \alpha_{w^{\prime}} .
\end{aligned}
$$

Let m_{i}, n_{i}, p_{i} be the coefficient of $q^{-i / 2}$ in $\beta_{z_{-1}}, \alpha_{z-1}, \delta$, respectively. Then
$m_{i}=-n_{i-1}-n_{i+1}+p_{i}$. We now take $i=\boldsymbol{a}(z)+1$. Then $n_{i+1}=0$, by the definition of $\boldsymbol{a}(z)$ and $n_{i-1} \neq 0$ since $c_{x, y, z} \neq 0$. Moreover, by (3.1.1), we have $(-1)^{i-1} n_{i-1} \geq 0,(-1)^{i} p_{i} \geq 0$. It follows that $(-1)^{i-1} n_{i-1}>0$ and $(-1)^{i} m_{i}=(-1)^{i} p_{i}+(-1)^{i-1} n_{i-1} \geq(-1)^{i-1} n_{i-1}>0$. In particular, we have $m_{i} \neq 0$. Thus

$$
q^{a(z) / 2} \sum_{\substack{y^{\prime}=y \\ y^{\prime} t<y^{\prime}}} \tilde{\mu}\left(y^{\prime}, y\right) \tau\left(C_{x} C_{y^{\prime}} D_{z-1}\right) \notin \mathscr{A}^{+} .
$$

Hence for some y^{\prime} in the last sum we have

$$
q^{a(z) / 2} \tau\left(C_{x} C_{y}, D_{z-1}\right) \notin \mathscr{A}^{+} .
$$

This contradicts the definition of $\boldsymbol{a}(z)$. Thus we have proved that $\mathscr{L}(z)$ $-\mathscr{R}(z)$ is empty, so that $\mathscr{L}(z)=\mathscr{R}(y)$. From the proof of 2.2 , we see that $c_{x, y, z}=c_{y-1, x-1, z-1}$. Hence we must also have $\mathscr{L}\left(z^{-1}\right)=\mathscr{R}\left(x^{-1}\right)$, and therefore $\mathscr{R}(z)=\mathscr{L}(x)$. The lemma is proved.

We can now prove:
Theorem 5.4. Assume that (W, S) is crystallographic. Let $z, z^{\prime} \in W$ be such that $z^{\prime} \leq z$. Then $\boldsymbol{a}\left(z^{\prime}\right) \geq \boldsymbol{a}(z)$. In particular, the function \boldsymbol{a} is constant on the two-sided cells of W.

Proof. To show that $\boldsymbol{a}\left(z^{\prime}\right) \geq \boldsymbol{a}(z)$ we may assume that either

$$
\text { or } \begin{array}{lll}
z^{\prime}-z & \text { and } & \mathscr{R}\left(z^{\prime}\right) \not \subset \mathscr{R}(z) \\
z^{\prime}-z & \text { and } & \mathscr{L}\left(z^{\prime}\right) \not \subset \mathscr{L}(z) .
\end{array}
$$

In the first case, we have $a\left(z^{\prime}\right) \geq a(z)$ by Lemma 5.3(a). In the second case, Lemma 5.3(a) is applicable to $z^{\prime-1}, z^{-1}$. (We have $z^{\prime-1}-z^{-1}$ and $\mathscr{R}\left(z^{\prime-1}\right) \not \subset \mathscr{R}\left(z^{-1}\right)$.) It follows that $\boldsymbol{a}\left(z^{\prime-1}\right) \geq \boldsymbol{a}\left(z^{-1}\right)$, hence, by Proposition 2.2, we have $\boldsymbol{a}\left(z^{\prime}\right) \geq \boldsymbol{a}(z)$. The theorem follows.

Corollary 5.5. Assume that (W, S) is crystallographic. Let $z, z^{\prime} \in W$ be such that $z^{\prime}-z, \mathscr{R}\left(z^{\prime}\right) \not \subset \mathscr{R}(z)$ and $\mathscr{L}\left(z^{\prime}\right) \not \subset \mathscr{L}(z)$. Assume that $a(z)<\infty$. Then $\boldsymbol{a}\left(z^{\prime}\right)>\boldsymbol{a}(z)$. In particular, z and z^{\prime} are not in the same two-sided cell.

Proof. From 5.4 it follows that $\boldsymbol{a}\left(z^{\prime}\right) \geq \boldsymbol{a}(z)$. Assume now that $\boldsymbol{a}\left(z^{\prime}\right)=\boldsymbol{a}(z)$. Let $x, y \in W$ be such that $c_{x, y, z} \neq 0$. Then the coefficient of $q^{-a(z) / 2}$ in $\tau\left(C_{x} C_{y} D_{z}\right)$ is non-zero. By 5.3(a), we can find $x^{\prime} \in W$ such that the coefficient of $q^{-\boldsymbol{a}(z) / 2}$ in $\tau\left(C_{x^{\prime}} C_{y} D_{z^{\prime}}\right)$ is non-zero. Since $\boldsymbol{a}(z)=\boldsymbol{a}\left(z^{\prime}\right)$, we have $c_{x^{\prime}, y, z^{\prime}} \neq 0$. Using now $5.3(\mathrm{~b})$ it follows that $\mathscr{R}(y)=\mathscr{L}\left(z^{\prime}\right)$ and also that $\mathscr{R}(y)=\mathscr{L}(z)$. Thus, we have $\mathscr{L}\left(z^{\prime}\right)=\mathscr{L}(z)$, a contradiction. The corollary is proved.

This result was proved in $\left[\mathrm{L}_{2}, 4\right]$ in the special case where W is a finite Weyl group, using the known connection between $\underset{L}{ }$ and the order relation on the primitive ideals in an enveloping algebra. The present proof is quite different and applies in more general circumstances.

§6. The case of finite Weyl groups

Theorem 6.1. Assume that (W, S) is a finite Weyl group. For any $x, y, z \in W$ we have

$$
c_{x, y, z}=c_{y, z, x}=c_{z, x, y} .
$$

Proof. We set $c=c_{x, y, z}$. Assume first that $c \neq 0$. Then $q_{-}^{a(z) / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} D_{z}\right) \in \mathscr{A}^{+}$has constant term c. For any $x^{\prime} \in W, x^{\prime}>x$, we have $\left[q^{a(z) / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} D_{z}\right) \in \mathscr{A}^{+}\right.$. Since

$$
D_{x}=\widetilde{T}_{x}+\sum_{\substack{x^{\prime} \\ x^{\prime}>x}} \alpha_{x^{\prime}} \widetilde{T}_{x^{\prime},} \quad\left(\alpha_{x^{\prime}} \in q^{1 / 2} \mathscr{A}^{+}\right)
$$

it follows that $q^{\alpha(z) / 2} \tau\left(D_{x} \widetilde{T}_{y} D_{z}\right) \in \mathscr{A}^{+}$has constant term c, hence that $q^{a(z) / 2}\left(\widetilde{T}_{y} D_{z} D_{x}\right) \in \mathscr{A}^{+}$has constant term c. (Since W is finite, we have $H=\hat{H}$, hence the products $D_{x} \widetilde{T}_{y} D_{z}, \widetilde{T}_{y} D_{z} D_{x}$ are defined.) We now substitute

$$
D_{z}=\widetilde{T}_{z}+\sum_{\substack{z^{\prime} \\ z^{\prime}>z}} \beta_{z^{\prime}} \widetilde{T}_{z^{\prime}}, \quad\left(\beta_{z^{\prime}} \in q^{1 / 2} \mathscr{A}^{+}\right)
$$

Note that for $z^{\prime}>z$, we have

$$
q^{a(z) / 2} \tau\left(\widetilde{T}_{y} \widetilde{T}_{z^{\prime}} D_{x}\right) \in \mathscr{A}^{+}
$$

since $\boldsymbol{a}(z) \geq \boldsymbol{a}(x)$ (by 5.2 (c) and 5.4). It follows that

$$
q^{a(z) / 2} \tau\left(\widetilde{T}_{y}\left(\sum_{z^{\prime}>z} \beta_{z^{\prime}} \widetilde{T}_{z^{\prime}}\right) D_{x}\right) \in q^{1 / 2} \mathscr{A}^{+}
$$

so that $q^{a(z) / 2} \tau\left(\widetilde{T}_{y} D_{z} D_{x}\right) \in \mathscr{A}^{+}$has the same constant term as

$$
q^{a(z) / 2} \tau\left(\widetilde{T}_{y} \widetilde{T}_{z} D_{x}\right) \in \mathscr{A}^{+} .
$$

Hence the constant term of $q^{a(z) / 2} \tau\left(\widetilde{T}_{y} \widetilde{T}_{z} D_{x}\right) \in \mathscr{A}^{+}$is c. By the definition of $\boldsymbol{a}(x)$, this implies $\boldsymbol{a}(z) \leq \boldsymbol{a}(x)$. Combining with $\boldsymbol{a}(z) \geq \boldsymbol{a}(x)$, we get $\boldsymbol{a}(z)=$ $\boldsymbol{a}(x)$, hence $q^{a(x) / 2} \tau\left(\widetilde{T}_{y} \widetilde{T}_{z} D_{x}\right) \in \mathscr{A}^{+}$has constant term c. Thus, $c_{y, z, x}=c$, as required. The same argument applied to y, z, x instead of x, y, z shows that $c_{z, x, y}=c$.

Thus, if one of the three numbers $c_{x, y, z}, c_{y, z, x}, c_{z, x, y}$ is non-zero, then these three numbers are equal. If all three numbers are zero, they are again equal. The theorem is proved.
6.2. Remark. Although the conclusion of the theorem may be true also for infinite W, I don't see how to carry out the proof. If W is an affine Weyl group of type $\tilde{A_{1}}$ or \tilde{A}_{2}, then the elements $D_{x} \in \hat{H}$ are "square integrable" in the following sense: the coefficient of \widetilde{T}_{u} in D_{x} tends to zero for $l(u) \rightarrow \infty$ in the topology of formal power series in $q^{1 / 2}$. It follows that the products $D_{x} \widetilde{T}_{y} D_{z}, \widetilde{T}_{y} D_{z} D_{x}$ are defined (they are infinite sums of \widetilde{T}_{u} with coefficients formal power series in $q^{1 / 2}$) and the proof can still be carried out. However, if W is an affine Weyl group of type \widetilde{B}_{2}, there exist elements $D_{x} \in \hat{H}$ which are not "square integrable".

Corollary 6.3. Assume that (W, S) is a finite Weyl group.
(a) Let $x, y, z \in W$ be such that $c_{x, y, z} \neq 0$. Then $x \underset{L}{\sim} y^{-1}, \underset{L}{y \underset{\sim}{z}} z^{-1}$, $z \underset{L}{\sim} x^{-1}$.
(b) If $z^{\prime} \underset{L}{\leq} z$ and $\boldsymbol{a}\left(z^{\prime}\right)=\boldsymbol{a}(z)$, then $z^{\prime} \underset{L}{\sim}$.
(c) If $z^{\prime} \underset{L}{\leq} z$ and $z^{\prime} \underset{L_{R}}{\sim} z$, then $z^{\prime} \underset{L}{\sim} z$.
(d) For any $y \in W$, there exists $x \in W$ such that $c_{x, y, y-1} \neq 0$.
(e) If y belongs to a standard parabolic subgroup W^{\prime} of W then $a(y)$ computed with respect to W is equal to $a(y)$ computed with respect to W^{\prime}.
(f) For any $y \in W$, we have $\boldsymbol{a}(y) \leq l(y)$.

Proof. (a) We have seen in 5.2(c) that $c_{x, y, z} \neq 0$ implies $z \underset{L}{ } x^{-1}$, $z^{-1} \frac{\leq}{L} y$. By 6.1, it also implies $c_{y, z, x} \neq 0$ (hence $x \underset{L}{\leq} y^{-1}, x^{-1} \leq z$) and $c_{z, x, y}$

(b) We must only show that from $z^{\prime}-z, \mathscr{L}\left(z^{\prime}\right) \not \subset \mathscr{L}(z), a\left(z^{\prime}\right)=a(z)$ it follows that $z^{\prime} \underset{L}{\sim}$. Let $x, y \in W$ be such that $c_{x, y, z-1} \neq 0$. Applying 5.3(a) to $z^{-1}, z^{\prime-1}, x, y$ and $i=a(z)$ we see that there exists $x^{\prime} \in W$ such that $q^{\boldsymbol{a}(z) / 2} \tau\left(C_{x} C_{y} D_{z^{\prime}-1}\right) \in \mathscr{A}$ has non-zero constant term. Since $\boldsymbol{a}(z)=\boldsymbol{a}\left(z^{\prime}\right)$, by assumption, it follows that $c_{x^{\prime}, y, z^{\prime-1}} \neq 0$. From $c_{x, y, z-1} \neq 0, c_{x^{\prime}, y, z^{\prime}-1} \neq 0$ and (a) it follows that $y \underset{L}{\sim} z, y \underset{L}{\sim} z^{\prime}$, hence $\underset{L}{\sim} z^{\prime}$, as required.
(c) follows immediately from (b) and 5.4.
(d) Given $y \in W$, we can find $x, z \in W$ such that $c_{z, x, y} \neq 0$, see 5.2(b). By 6.1, we then have $c_{x, y, z} \neq 0$. We have $y \underset{L}{\sim} z^{-1}$, hence there exists a sequence $z^{-1}=y_{0}, y_{1}, \cdots, y_{n}=y$ such that for each $j, 1 \leq j \leq n$, we have $y_{j}-y_{j-1}, \mathscr{L}\left(y_{j}\right) \not \subset \mathscr{L}\left(y_{j-1}\right)$. We show that there exists a sequence
$x_{0}, x_{1}, \cdots, x_{n}$ in W such that $c_{x_{j}, v, y_{\bar{j}}} \neq 0$ for $0 \leq j \leq n$. We can take x_{0} $=x$. Assume that for some $j \geq 1$, we have found x_{j-1} such that $c_{x_{j-1}, y, y-1}$ $\neq 0$. We apply 5.3(a) with z, z^{\prime} replaced by y_{j-1}^{-1}, y_{j}^{-1} and with $i=a(y)=$ $\boldsymbol{a}\left(y_{j-1}^{-1}\right)$. It follows that there exists $x^{\prime} \in W$ such that $q^{a(y) / 2} \tau\left(C_{x^{\prime}} C_{y} D_{y_{j}^{-1}}\right)$ $\in \mathscr{A}$ has non-zero constant term. Since $\boldsymbol{a}(y)=\boldsymbol{a}\left(y_{j}^{-1}\right)$, it follows that $c_{x^{\prime}, y, y_{j}^{-1}} \neq 0$, hence we may take $x_{j}=x^{\prime}$. Thus, the required sequence $x_{0}, x_{1}, \cdots, x_{n}$ is constructed. We have $c_{x_{n, y}, y-1} \neq 0$ and (d) is proved.
(e) By (d), we can find $x \in W$ such that $c_{x, y, y^{-1}} \neq 0$ (with $c_{x, y, y-1}$ defined in terms of W). Then we have also $c_{y, y-1, x} \neq 0$. Hence, if α is the coefficient of C_{x-1} in the product $C_{y} C_{y-1}$ (expressed in the C-basis of H) then $q^{\alpha(x) / \gamma^{2}} \alpha \in \mathscr{A}$ has non-zero constant term. (We shall write $\boldsymbol{a}()$ (respectively $\left.\boldsymbol{a}^{\prime}()\right)$ for the \boldsymbol{a}-function computed in terms of W (respectively W^{\prime}).

Note that $C_{y} C_{y-1}$ belongs to the subalgebra H^{\prime} of H spanned by the $\tilde{T}_{u}\left(u \in W^{\prime}\right)$ or, equivalently, by the $C_{u},\left(u \in W^{\prime}\right)$. (For $u \in W^{\prime}, C_{u}$ defined in terms of W^{\prime} is the same as that defined in terms of W.) It follows that $x \in W^{\prime}$ and $\boldsymbol{a}^{\prime}(x)$ is defined. Since $q^{\boldsymbol{a}(x) / 2} \alpha$ has non-zero constant term, we have $\boldsymbol{a}(x) \leq \boldsymbol{a}^{\prime}(x)$. The reverse inequality $\boldsymbol{a}^{\prime}(x) \leq \boldsymbol{a}(x)$ is obvious, hence $\boldsymbol{a}(x)=\boldsymbol{a}^{\prime}(x)$. From this it follows that $q^{a^{\prime}(x) / 2} \alpha$ has non-zero constant term, hence $c_{y, y-1, x}$ (computed in terms of W^{\prime}) is non-zero. By (a) applied to W^{\prime} it follows that y^{-1}, x^{-1} are in the same left cell of W^{\prime} (hence also in the same left cell of W). From 5.4, we see then that $\boldsymbol{a}^{\prime}(y)=\boldsymbol{a}^{\prime}(x)$, $\boldsymbol{a}(y)=\boldsymbol{a}(x)$, so that $\boldsymbol{a}(y)=\boldsymbol{a}^{\prime}(y)$.
(f) Let again $x \in W$ be such that $c_{x, y, y-1} \neq 0$. If β is the coefficient of C_{y} in the product $C_{x} C_{y}$ (expressed in the C-basis of H), then $q^{a(y) / 2} \beta$ has non-zero constant term. From (4.3.2), we see by induction on $l\left(y_{1}\right)$ that for any $x_{1}, y_{t} \in W$, we have $C_{x_{1}} \cdot C_{y_{1}}=\sum_{z} \gamma_{z} C_{z}$ where $\gamma_{z} \in \mathscr{A}$ satisfy $q^{l\left(y_{1}\right) / 2} \gamma_{z} \in \mathscr{A}^{+}$. In particular, we have $q^{l(y) / 2} \beta \in \mathscr{A}^{+}$, hence $l(y) \geq \boldsymbol{a}(y)$, as required.

The following result relates (for finite Weyl groups) the function $\boldsymbol{a}(w)$ to the function a_{E} defined in $\left[\mathrm{L}_{5}, 4.1\right]$ for any irreducible representation E of W over Q. For such E, we shall denote $E(q)$ the corresponding representation of $H \otimes Q\left(q^{1 / 2}\right)$.

Proposition 6.4. Let \mathscr{C} be a two-sided cell in a finite Weyl group W. Let a be the constant value of the function $w \rightarrow a(w)$ on \mathscr{C}. Let E be an irreducible representation of W appearing in the left W-module carried by \mathscr{C}. Then $a_{E} \leq a$ and, for at least one such E, we have $a_{E}=a$.

Proof. For any $x \in W$, the trace $\operatorname{Tr}\left(\tilde{T}_{x}, E(q)\right)$ can be expressed as a Q-linear combination of elements $\tau\left(\widetilde{T}_{x} C_{z} D_{z^{\prime}-1}\right)$ with $z, z^{\prime} \in \mathscr{C}$, (see $\left[\mathrm{L}_{3}\right.$, 1.3]). From the definition of a, it follows that $q^{a / 2} \tau\left(\widetilde{T}_{x} C_{z} D_{z^{\prime}}\right) \in \mathscr{A}^{+}$
hence $q^{a / 2} \operatorname{Tr}\left(\widetilde{T}_{x}, E(q)\right) \in Q\left[q^{1 / 2}\right]$. It follows that

$$
q^{a} \sum_{x} \operatorname{Tr}\left(\widetilde{T}_{x}, E(q)\right)^{2} \in Q\left[q^{1 / 2}\right]
$$

hence, by the definition of a_{E}, we have $a_{E} \leq a$.
To prove the second assertion, it is enough to show that for some E appearing in \mathscr{C} and some $x \in W, q^{a / 2} \operatorname{Tr}\left(\widetilde{T}_{x}, E(q)\right) \in Q\left[q^{1 / 2}\right]$ has non-zero constant term. This would follow from the following statement: there exists $x \in W$ such that $q^{a / 2} \operatorname{Tr}\left(\widetilde{T}_{x},[\mathscr{C}]\right) \in Q\left[q^{1 / 2}\right]$ has non-zero constant term, where [\mathscr{C}] is the left H-module carried by \mathscr{C}. Since

$$
C_{x}=\widetilde{T}_{x}+\sum_{x^{\prime}<x} \alpha_{x^{\prime}} \tilde{T}_{x^{\prime}} \quad\left(\alpha_{x^{\prime}} \in q^{1 / 2} \mathscr{A}^{+}\right),
$$

and $q^{a / 2} \operatorname{Tr}\left(\widetilde{T}_{x^{\prime}},[\mathscr{C}]\right) \in Q\left[q^{1 / 2}\right]$ for $x^{\prime}<x$, we are reduced to proving that $q^{a / 2} \operatorname{Tr}\left(C_{x},[\mathscr{C}]\right) \in Q\left[q^{1 / 2}\right]$ has non-zero constant term for some $x \in W$. This is proved as follows.

Fix $y \in \mathscr{C}$ and choose $x \in W$ such that $c_{x, y, y-1} \neq 0$ (see 6.3(d)). We have $C_{x} C_{z}=\sum_{z^{\prime} \in \mathscr{\mathscr { C }}} \alpha_{z, z^{\prime}} C_{z^{\prime}}(z \in \mathscr{C})$, where $\alpha_{z, z^{\prime}} \in \mathscr{A}$. Let n_{z} be the constant term of $q^{a / 2} \alpha_{z, z}(z \in \mathscr{C})$. Then $\operatorname{Tr}\left(C_{x},[\mathscr{C}]\right)=\sum_{z \in I} \alpha_{z, z}$ and it is enough to show that $\sum_{z \in \mathscr{\mathscr { C }}} n_{z} \neq 0$. By (3.3.1), we have $(-1)^{a} n_{z} \geq 0$ for all $z \in \mathscr{C}$. Since $c_{x, y, y-1} \neq 0$, we have $n_{y} \neq 0$, hence, $(-1)^{a} n_{y}>0$. It follows that

$$
(-1)^{a} \sum_{z \in 母} n_{z}>0 .
$$

The proposition is proved.
6.5. Remark. It is known (see $\left[\mathrm{L}_{5}, 5.27\right]$) that a_{E} is in fact constant when E runs through the irreducible W-modules appearing in \mathscr{C}. However, this can be proved at present only through case by case checking.

§ 7. An upper bound for $a(w)$ for w in an affine Weyl group

7.1. In this section, (W, S) denotes an irreducible affine Weyl group. Let ν be the number of positive roots in the corresponding root system. We shall prove:

Theorem 7.2. For any $x, y, z \in W$, we have $\tilde{T}_{x} \tilde{T}_{y}=\sum_{z \in W} m_{x, y, z} \widetilde{T}_{z-1}$ where $m_{x, y, z}$ is a polynomial in $\xi=\left(q^{1 / 2}-q^{-1 / 2}\right)$ with integral, ≥ 0 coeffcients, of degree $\leq \nu$.

Before giving the proof, we note:

Corollary 7.3. For any $z \in W$, we have $\boldsymbol{a}(z) \leq \nu$.
Proof. From 7.2, we see that $q^{\nu / 2} m_{x, y, z} \in \mathscr{A}^{+}$for all x, y, z. On the other hand, $\tilde{T}_{z-1} \in \sum_{u} \mathscr{A}^{+} C_{u}$, (see (1.2.2)). It follows that

$$
q^{\nu / 2} \tilde{T}_{x} \widetilde{T}_{y} \in \sum_{u \in W} \mathscr{A}^{+} \cdot C_{u}
$$

and the corollary follows.
For the proof of the theorem we shall need the following.
Lemma 7.4. For any $x, y, z \in W, m_{x, y, z}$ is a polynomial in $\xi=\left(q^{1 / 2}-\right.$ $\left.q^{-1 / 2}\right)$ with integral ≥ 0 coefficients, of degree $\leq \min (l(x), l(y), l(z))$ in ξ.

Proof. From (1.1.1) we see immediately, by induction on $l(x)$ that $m_{x, y, z}$ is a polynomial with integral ≥ 0 coefficients of degree $\leq l(x)$ in ξ. Similarly, by induction on $l(y)$ we see that $m_{x, y, z}$ has degree $\leq l(y)$ in ξ. We have $m_{x, y, z}=\tau\left(\widetilde{T}_{x} \widetilde{T}_{y} \widetilde{T}_{z}\right)=\tau\left(\widetilde{T}_{y} \widetilde{T}_{z} \widetilde{T}_{x}\right)=m_{y, z, x}$. By what we have proved so far, we have then $\operatorname{deg}\left(m_{y, z, x}\right) \leq l(z)$ hence $\operatorname{deg}\left(m_{x, y, z}\right) \leq l(z)$. The lemma is proved.
7.5. The affine Weyl group (W, S) can be obtained as follows (cf. [$\left.\mathrm{L}_{1}, 1.1\right]$). Let E be an affine euclidean space with a given set of hyperplanes \mathscr{F}. Let Ω be the group of affine motions in E generated by the orthogonal reflections in the various hyperplanes P in \mathscr{F}, regarded as acting on the right on E. We assume that Ω is an infinite discrete subgroup of the group of all affine motions of E acting irreducibly on the space of translations of E and leaving stable the set \mathscr{F}. Let X be the set of alcoves ($=$ connected components of the set $E-\bigcup_{P \in \mathscr{F}} P$). Then Ω acts simply transitively on X. Let S_{1} be the set of Ω-orbits in the set of codimension 1 facets of alcoves. Each $s \in S_{1}$ defines an involution $A \rightarrow s A$ of X, where, for an alcove $A, s A$ is the alcove $\neq A$ which has with A a common face of type s. The maps $A \rightarrow s A$ generate a group of permutations of X. This group, together with its subset S_{1} is a Coxeter group (an affine Weyl group). We shall assume that (W, S) is this particular Coxeter group, (thus $S=S_{1}$).

We regard W as acting on the left on X. (It acts simply transitively and commutes with the action of Ω on X.) A special point in E is a O-dimensional facet v of an alcove such that the number of hyperplanes $P \in \mathscr{F}$ passing through v is maximum possible (it is equal to ν). For such v, we denote by W_{v} the subgroup of W which is the stabilizer of the set of alcoves containing v in their closure. Then W_{v} is a standard parabolic subgroup of W generated by $|S|-1$ elements of S. We denote by w_{v} the longest element of W_{v}; we have $l\left(w_{v}\right)=\nu$. We choose for each
special point, a connected component C_{v}^{+}of the set $E-\underset{\substack{P \in F_{F} \\ P \ni v}}{ } P$ in such a way that for any two special points v, v^{\prime} in $E, C_{v^{\prime}}^{+}$is a translate of C_{v}^{+}. Let A_{v}^{+}be the unique alcove contained in C_{v}^{+}and having v in its closure, and let $A_{v}^{-}=w_{v} A_{v}^{+}$.

To any alcove A we associate a subset $\mathscr{L}(A) \subset S$, as follows. Let $s \in S$ and let P be the hyperplane in \mathscr{F} supporting the common face of type s of A and $s A$. We say that $s \in \mathscr{L}(A)$ if A is in that half space determined by P which meets C_{v}^{+}for any special point v.
7.6. Following $\left[\mathrm{L}_{1}, 1.6\right]$ we consider the free \mathscr{A}-module \mathscr{M} with basis corresponding to the alcoves in X. It can be regarded as a left H-module:

$$
T_{s} A= \begin{cases}s A, & \text { if } s \in S-\mathscr{L}(A) \\ q(s A)+(q-1) A, & \text { if } s \in \mathscr{L}(A)\end{cases}
$$

Let $\delta: X \rightarrow \mathbf{Z}$ be a length function on X in the sense of $\left[\mathrm{L}_{1}, 2.11\right]$; we have $\delta(A)=\delta(s A)+1$, if $s \in \mathscr{L}(A)$ and $\delta(A)=\delta(s A)-1$, if $s \in S-\mathscr{L}(A)$. It follows that if we set $\tilde{A}=q^{-\delta(A) / 2} A$, then

$$
\tilde{T}_{s} \tilde{A}= \begin{cases}\widetilde{s A}, & \text { if } s \in S-\mathscr{L}(A) \tag{7.6.1}\\ \widetilde{s A}+\left(q^{1 / 2}-q^{-1 / 2}\right) \tilde{A}, & \text { if } s \in \mathscr{L}(A)\end{cases}
$$

From this it follows by induction on $l(w)$ that

$$
\tilde{T}_{w} \tilde{A}=\sum_{B} M_{w, A, B} \widetilde{B}, \quad \text { (finite sum) }
$$

where $M_{w, A, B}$ are polynomials in $\xi=\left(q^{1 / 2}-q^{-1 / 2}\right)$ with integral, ≥ 0 coefficients.

Lemma 7.7. $\operatorname{deg}_{\xi} M_{w, A, B} \leq \nu$.
Proof. Given w, A, we choose a special point v in the closure of A. We can uniquely write $w=w^{\prime} \cdot w_{1}$ where $w_{1} \in W_{v} \in w^{\prime}$ has minimal length in $w^{\prime} W_{v}$ and $l(w)=l\left(w^{\prime}\right)+l\left(w_{1}\right)$. We have $A=w_{2}\left(A_{v}^{-}\right)$for some $w_{2} \in W_{v}$ and $\tilde{A}=\tilde{T}_{w_{2}} \tilde{A}_{\bar{v}}^{-}$. We have

$$
\tilde{T}_{w_{1}} \tilde{A}=\tilde{T}_{w_{1}} \tilde{T}_{w_{2}} \tilde{A}_{v}^{-}=\sum_{w_{3} \in W_{v}} m_{w_{1}, w_{2}, w_{3}-1} \tilde{T}_{w_{3}} \tilde{A}_{v}^{-}=\sum_{w_{3} \in W_{v}} m_{w_{1}, w_{2}, w_{3}-1} \widetilde{w_{3}\left(A_{v}^{-}\right)}
$$

and $m_{w_{1}, w_{2}, w_{3}^{-1}}$ has degree at most $l\left(w_{3}\right)$ in ξ, (see 7.4). For a fixed w_{3}, let $C=w_{3}\left(A_{v}^{-}\right)$, and let $s_{k} \cdots s_{2} s_{1}$ be a reduced expression for $w^{\prime},\left(s_{i} \in S\right)$. It is clear from (7.6.1) that

$$
\tilde{T}_{w^{\prime}} \tilde{C}=\sum_{I}\left(q^{1 / 2}-q^{-1 / 2}\right)^{p_{I}} \tilde{C}_{I}
$$

where I ranges over all subsets $i_{1}<i_{2}<\cdots<i_{p_{I}}$ of $\{1,2, \cdots, k\}$ such that

$$
s_{i_{t}} \cdots \hat{s}_{i_{t-1}} \cdots \hat{s}_{i_{2}} \cdots \hat{s}_{i_{1}} \cdots s_{1}(C)<\hat{s}_{i_{t}} \cdots \hat{s}_{i_{t-1}} \cdots \hat{s}_{i_{1}} \cdots s_{1}(C)
$$

for $t=1, \cdots, p_{I}$, and $C_{I}=s_{k} \cdots \hat{s}_{i_{p}} \cdots \hat{s}_{i_{1}} \cdots s_{1}(C), p=p_{I}$.
According to $\left[\mathrm{L}_{1}, 4.3\right]$ we have $p_{I}=|I| \leq \nu-l\left(w_{3}\right)$. Hence

$$
\begin{aligned}
\widetilde{T}_{w} \tilde{A}=\widetilde{T}_{w^{\prime}}, \widetilde{T}_{w_{1}} \tilde{A} & =\sum_{w_{3} \in W_{v}} m_{w_{1}, w_{2}, w_{3}^{-1}} \widetilde{T}_{w^{\prime}}\left(\widetilde{w_{3} A_{v}^{-}}\right) \\
& =\sum_{w_{3}} m_{w_{1}, w_{2}, w_{3}^{-1} \xi^{p_{I}}} \tilde{C}_{I}
\end{aligned}
$$

with $\operatorname{deg}_{\xi}\left(m_{w_{1}, w_{2}, w_{3}^{-1} \xi^{p}}\right) \leq \operatorname{deg}\left(m_{w_{1}, w_{2}, w_{3}{ }^{-1}}\right)+p_{I} \leq l\left(w_{3}\right)+\nu-l\left(w_{3}\right)=\nu$. The lemma is proved.

Lemma 7.8. Given $y \in W$, there exists an alcove A such that $\widetilde{T}_{y} \tilde{A}=$ $\tilde{y_{A}}$.

Proof. Let v be a special point in E. Write $y=y^{\prime} \cdot y_{1}$ with $y_{1} \in W_{v}$ and y^{\prime} of minimal length in $y^{\prime} W_{v}$. Let $A=\left(y_{1}^{-1} w_{v}\right) A_{v}^{-}$. Then $y_{1} A=A_{v}^{+}$, $\delta\left(y_{1} A\right)=\delta(A)+l\left(y_{1}\right)$ and $\delta\left(y^{\prime} A_{v}^{+}\right)=\delta\left(A_{v}^{+}\right)+l\left(y^{\prime}\right)\left(\left[\mathrm{L}_{1}, 3.6\right]\right)$ hence A has the required property.
7.9 Proof of Theorem 7.2. Given $x, y \in W$, we select A as in Lemma 7.8. Then

$$
\begin{aligned}
\widetilde{T}_{x} \widetilde{T}_{y} \tilde{A} & =\widetilde{T}_{x} \widetilde{y A}=\sum_{B \in X} M_{x, y A, B} \widetilde{B}=\sum_{z \in W} m_{x, y, z-1} \widetilde{T}_{z} \tilde{A} \\
& =\sum_{z, B} m_{x, y, z-1} M_{z, A, B} \widetilde{B}
\end{aligned}
$$

hence

$$
\sum_{z \in W} m_{x, y, z-1} M_{z, A, B}=M_{x, y A, B}
$$

for any $B \in X$. By Lemma 7.7, $M_{x, y A, B} \in \mathbf{Z}[\xi]$ has degree $\leq \nu$. Since $m_{x, y, z-1} \cdot M_{z, A, B} \in \mathbf{Z}[\xi]$ have ≥ 0 coefficients it follows that $m_{x, y, z-1} \cdot M_{z, A, B}$ has degree $\leq \nu$ in the variable ξ, for any z, B. We take $B=z A$; then $M_{z, A, B}$ is $\neq 0$ (its value for $\xi=0$ is equal to 1). It follows that $m_{x, y, z-1}$ has degree $\leq \nu$ in ξ for any $z \in W$. This completes the proof.

For future reference we state
Corollary 7.10. For any $x, y, z \in W$, the elements $q^{\nu / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} \widetilde{T}_{z}\right)$, $q^{\nu / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} D_{z}\right)$ are in \mathscr{A}^{+}and have the same constant term.

Proof. The fact that they are in \mathscr{A}^{+}is just a reformulation of Theorem 7.2 and Corollary 7.3. Let us write

$$
D_{z}=\tilde{T}_{z}+\sum_{z^{\prime}>z} \alpha_{z^{\prime}} \tilde{T}_{z^{\prime}} \in \hat{H}, \quad\left(\alpha_{z^{\prime}} \in q^{1 / 2} \mathscr{A}^{+}\right) .
$$

It remains to prove that

$$
q^{\nu / 2} \sum_{\substack{z^{\prime} \\ z^{\prime}>z}} \alpha_{z^{\prime}} \tau\left(\tilde{T}_{x} \widetilde{T}_{y} \widetilde{T}_{z^{\prime}}\right) \in q^{1 / 2} \mathscr{A}^{+}
$$

(Note that all but finite terms in the sum are zero.) But this follows from $\alpha_{z^{\prime}} \in q^{1 / 2} \mathscr{A}^{+}$and from $q^{\nu / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} \widetilde{T}_{z^{\prime}}\right) \in \mathscr{A}^{+}$. The corollary is proved.

§ 8. The subset $W_{(\nu)}$ of an affine Weyl group

8.1. In this section, we preserve the notations from the previous section. Let $W_{(\nu)}=\{w \in W \mid \boldsymbol{a}(w)=\nu\}$. Consider an element w in our affine Weyl group with the following property: there exists a special point $v \in E$ and a decomposition $w=w^{\prime} w_{v} w^{\prime \prime}$ of w such that $l(w)=l\left(w^{\prime}\right)+l\left(w_{v}\right)$ $+l\left(w^{\prime \prime}\right)$. (Recall that w_{v} is the longest element in W_{v}.) By 2.4, we have $\boldsymbol{a}(w) \geq \nu$, and by 7.3 , we have $\boldsymbol{a}(w) \leq \nu$. Hence $w \in W_{(\nu)}$.
8.2. This argument shows that almost all elements of W are in $W_{(\omega)}$. (More precisely, let B be a large ball in E with center v (a fixed special point) and let $B_{(\nu)}$ be the set of points of B which belong to an alcove $w A_{v}^{-}\left(w \in W_{(\nu)}\right)$. Then $\operatorname{vol}\left(B_{(\nu)}\right) / \operatorname{vol}(B)$ tends to 1 when the radius of B tends to ∞.)

Proposition 8.3. (a) If $x, y, z \in W_{(\nu)}$ then $c_{x, y, z}=c_{y, z, x}=c_{z, x, y}$.
(b) If $x, y \in W, z \in W_{(\nu)}$ and $c_{x, y, z} \neq 0$, then $x \in W_{(\nu)}$ amd $y \in W_{(\nu)}$.

Proof. (a) By 7.10, $c_{x, y, z}$ is equal to the constant term of $q^{\nu / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} \widetilde{T}_{z}\right)$. It is therefore sufficient to check that $q^{\nu / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} \widetilde{T}_{z}\right)$ is invariant under cyclic permutations of x, y, z. This follows from (1.4.2).
(b) Our assumptions and 7.10 imply that $q^{\nu / 2} \tau\left(\widetilde{T}_{x} \widetilde{T}_{y} \widetilde{T}_{z}\right)$ has non-zero constant term. If follows that $q^{\nu / 2} \tau\left(\widetilde{T}_{y} \widetilde{T}_{z} \widetilde{T}_{x}\right)$ has non-zero constant term. Using again 7.10, it follows that $q^{\nu / 2} \tau\left(\widetilde{T}_{y} \widetilde{T}_{z} D_{x}\right)$ has non-zero constant term, hence $\boldsymbol{a}(x) \geq \nu$. On the other hand, $\boldsymbol{a}(x) \leq \nu$ by 7.3. Thus $\boldsymbol{a}(x)=\nu$. The proof of the equality $\boldsymbol{a}(y)=\nu$ is similar.

Corollary 8.4. (a) Let $x, y, z \in W_{(\nu)}$ be such that $c_{x, y, z} \neq 0$. Then $\underset{L}{\sim} y^{-1}, \underset{L}{\sim} z^{-1}, \underset{L}{\sim}{ }^{-1}$.
(b) If $z, z^{\prime} \in W_{(\nu)}$ and $z^{\prime} \underset{L}{\leq} z$, then $z^{\prime} \underset{L}{\sim}$.
(c) For any $y \in W_{(\nu)}$ there exists $x \in W_{(\nu)}$ such that $c_{x, y, y-1} \neq 0$.
(d) For any $y \in W_{(\nu)}$, we have $l(y) \geq \nu$.

Proof. The proof is the same as that of 6.3 , once 8.3 is known.
Corollary 8.5. Let v be a special point in E. The set

$$
\Gamma_{v}=\left\{w \in W \mid l(w)=l\left(w w_{v}\right)+l\left(w_{v}\right)\right\}
$$

is a left cell in W.
Proof. The function $w \mapsto \mathscr{R}(w)$ from W to the set of subsets of S is constant on left cells, cf. (4.4.1). The set Γ_{v} is one particular fibre of this function, hence it is a union of left cells. Note also that by the discussion in 8.1, we have $\Gamma_{v} \subset W_{(\nu)}$.

We shall prove by induction on $l(w)$ that $\underset{L}{\sim} w_{v}$ for any $w \in \Gamma_{v}$. The induction starts with the case $l(w)=\nu$; in this case the result is clear since $w=w_{v}$. Assume now that $l(w) \geq \nu+1$. We can find $s \in S$ such that $w=s w^{\prime}, w^{\prime} \in \Gamma_{v}, l(w)=l\left(w^{\prime}\right)+1$. We have clearly $w \leq_{L} w^{\prime}$. As $w, w^{\prime} \in \Gamma_{v}$ $\subset W_{(\nu)}$, we may apply $8.4(\mathrm{~b})$ and conclude that $\underset{L}{\sim} w^{\prime}$. By the induction hypothesis, we have $w^{\prime} \underset{L}{\sim} w_{v}$. It follows that $\underset{L}{\sim} w_{v}$. Thus, we have proved that $\underset{\sim}{\sim} w_{v}$ for all $w \in \Gamma_{v}$, hence that Γ_{v} is exactly one left cell.

§ 9. Construction of \boldsymbol{n}-tempered representations

9.1. In this section, (W, S) denotes again an irreducible affine Weyl group. Given a commutative ring R, and an integer $i \geq 0$ we define E_{R}^{i} to be the free R-module with basis $\left(e_{w}\right), w \in W_{(i)}=\{w \in W \mid \boldsymbol{a}(w)=i\}$. Similarly, we define $E_{R}^{>_{i}^{i}}$ to be the free R-module with basis $\left(e_{w}\right), w \in$ $W_{(i)} \cup W_{(i+1)} \cup \cdots$.

If $\phi: \mathscr{A} \rightarrow R$ is a ring homomorphism, we denote by H_{ϕ} the R-algebra obtained from H by extension of scalars, via ϕ. The elements \tilde{T}_{w} give rise to elements of H_{ϕ} denoted in the same way: \tilde{T}_{w}. The rule

$$
\tilde{T}_{s} e_{w}=\left\{\begin{array}{ll}
-e_{w}, & \text { if } s w<w \\
\phi\left(q^{1 / 2}\right) e_{w}+\sum_{\substack{y-w \\
s y<y}} \tilde{\mu}(y, w) e_{y}, & \text { if } s w>w
\end{array} \quad(s \in S, w \in W, a(w) \geq i)\right.
$$

makes $E_{R}^{\geq i}$ into a left H_{ϕ}-module. (For each y in the sum, we have
automatically $\boldsymbol{a}(y) \geq i$, (see 5.4).)
Similarly, if $\psi: \mathscr{A} \rightarrow R$ is a ring homomorphism, the rule

$$
\boldsymbol{e}_{w} \widetilde{T}_{s}=\left\{\begin{array}{ll}
-e_{w}, & \text { if } w s<w \\
\psi\left(q^{1 / 2}\right) e_{w}+\sum_{\substack{y=w \\
y \ll y}} \tilde{\mu}(y, w) e_{y}, & \text { if } w s>w
\end{array} \quad(s \in S, w \in W, \boldsymbol{a}(w) \geq i)\right.
$$

makes $E_{R}^{\searrow^{i}}$ into a right H_{ψ}-module.
The left H_{ϕ}-module structure on $E_{R}^{>i}$ doesn't commute, in general, with the right H_{ψ}-module structure. Since $E_{R}^{\geq i+1}$ is a left H_{ϕ}-submodule of $E_{R}^{\geq i}$ and a right H_{ψ}-module, we may regard $E_{R}^{i}=E_{R}^{\geq^{i}} / E_{R}^{\geq i+1}$ in a natural way both as a left H_{ϕ}-module and a right H_{ψ}-module.

Theorem 9.2. The left H_{ϕ}-module structure on E_{R}^{i} commutes with the right H_{ψ}-module structure on E_{R}^{i}.

Proof. It is enough to prove the following statement.
Let $w \in W_{(i)}, s, s^{\prime} \in S$, and consider the basis element e_{w} of $E_{R}^{>i}$. Then

$$
\begin{equation*}
\left(\widetilde{T}_{s} e_{w}\right) \tilde{T}_{s^{\prime}}-\widetilde{T}_{s}\left(e_{w} \widetilde{T}_{s^{\prime}}\right) \tag{9.2.1}
\end{equation*}
$$

is in $E_{R}^{>i+1}$. (Here \widetilde{T}_{s} is in H_{ϕ} and $\widetilde{T}_{s^{\prime}}$ is in H_{ψ}.) A simple computation (compare $\left[\mathrm{L}_{2}, 2\right]$) shows that (9.2.1) is zero unless $s \notin \mathscr{L}(w)$ and $s^{\prime} \notin \mathscr{R}(w)$ in which case it is an R-linear combination of elements $e_{w^{\prime}}\left(w^{\prime} \in W\right)$ such that $w^{\prime}-w, s \in \mathscr{L}\left(w^{\prime}\right), s^{\prime} \in \mathscr{R}\left(w^{\prime}\right)$. By 5.5 , (which is applicable since $\boldsymbol{a}(w) \leq \nu<\infty)$ all these elements w^{\prime} satisfy $\boldsymbol{a}\left(w^{\prime}\right) \geq i+1$. Hence (9.2.1) is in $E_{R}^{\geq i+1}$ and the theorem is proved.
9.3. From now on, we assume that $\psi: \mathscr{A} \rightarrow R$ is the ring homomorphism such that $\psi\left(q^{1 / 2}\right)=1$; in this case, H_{ψ} is the group algebra $R[W]$ of W over R; its basis \widetilde{T}_{w} becomes the standard basis of the group a lgebra. If $i \geq 0$, then E_{R}^{i} is a right $R[W]$-module. Let V be a right $R[W]$-module. We associate to V and $i \geq 0$ the R-module $\hat{V}_{R}^{i}=\left(E_{R}^{i}{\underset{R}{R}}_{\otimes} V\right)_{W}(=$ space of W-coinvariants on $\left.E_{R}^{i} \otimes V\right)$; here W acts on $E_{R}^{i} \otimes_{R} V$ by $(\varepsilon \otimes v) w=(\varepsilon w) \otimes$ ($v w$). With these definitions, we have

Lemma 9.4. Assume that R is noetherian and that V is finitely generated as an R-module. Then \hat{V}_{R}^{i} is finitely generated as an R-module.

Proof. Let T be the group of translations in W. Then \hat{V}_{R}^{i} is a quotient of the space $\left(E_{R}^{i} \otimes_{R} V\right)_{T}$ of T-coinvariants, which is a quotient of $\left(E_{R}^{\geq i} \otimes_{R} V\right)_{T}$. Thus it is enough to show that $E_{R}^{\geq i} \otimes_{R} V$ is finitely generated
as an $R[T]$-module. This is an $R[T]$-submodule of $E_{R}^{\geq_{R}^{0}}{\underset{R}{R}} V$. Since $R[T]$ is a noetherian ring it is enough to show that $E_{R}^{\geq 0}{\underset{R}{R}}^{\otimes} V$ is a finitely generated $R[T]$-module. This is clear, since $E_{R}^{\geq 0}$ is a free $R[T]$-module of finite rank (equal to the index of T in W).
9.5. Assume now that $\phi: \mathscr{A} \rightarrow R$ is a ring homomorphism. Then, as we have seen in 9.1, E_{R}^{i} is a left H_{ϕ}-module. It follows that, if V is a right $R[W]$-module, then $E_{R}^{i} \otimes_{R} V$ is a left H_{ϕ}-module: $h(\varepsilon \otimes v)=(h \varepsilon) \otimes v$, $\left(h \in H_{\phi}, \varepsilon \in E_{R}^{i}, v \in V\right)$. By 9.2 this left H_{ϕ}-module structure commutes with the right $R[W]$-module structure, hence the space \hat{V}_{R}^{i} of W-coinvariant s inherits a left H_{ϕ}-module structure.
9.6. In $9.6-9.7$ we shall assume that R is the quotient field of a discrete valuation ring \mathcal{O} and that $\phi: \mathscr{A} \rightarrow R$ is a ring homomorphism such that $\phi\left(q^{1 / 2}\right) \in \mathcal{O}$.
(9.6.1) A left H_{ϕ}-module M is said to be n-tempered, $(n \in \mathbf{N})$, if it is finite dimensional as an R-vector space and if there exists an \mathcal{O}-lattice \mathscr{L} in M such that $\phi\left(q^{n / 2}\right) \widetilde{T}_{w}$ maps \mathscr{L} into itself for any $w \in W$.
(Here, an \mathcal{O}-lattice means a finitely generated \mathcal{O}-submodule of M which generates M as an R-vector space.)

Let ω be a translation in $T \subset W$ such that $l(x \omega)=l(x)+l(\omega)$ for all $x \in W_{v}$ (for a fixed special point $v \in E$). It is known that for any integer $j \geq 0$, we have $l\left(\omega^{j}\right)=j l(\omega)$. It follows that $\widetilde{T}_{\omega j}=\left(\widetilde{T}_{\omega}\right)^{j}$ for all $j \geq 0$. If M is an n-tempered H_{ϕ}-module and λ is an eigenvalue of $\widetilde{T}_{\omega}: M \rightarrow M$ (in an extension of R) then λ is integral over \mathcal{O}. (This justifies the name "tempered"; in the usual definition of tempered representations (over C) one assumes that λ has always absolute value ≤ 1.) To prove this, we observe that $\phi\left(q^{n / 2}\right) \widetilde{T}_{\omega}^{j}$ preserves the lattice \mathscr{L} for all $j \geq 0$. Hence $\phi\left(q^{n / 2}\right) \lambda^{j}$ is integral over \mathcal{O} for all $j \geq 0$; hence λ is integral over \mathcal{O}.

Theorem 9.7. Let V_{0} be a right $\mathcal{O}[W]-m o d u l e$ which is free of finite rank as an \mathcal{O}-module and let $V=V_{0} \otimes R$ be the corresponding right $R[W]$ module. Then for any $n \geq 0$, the left $\dot{H}_{\dot{\phi}}$-module \hat{V}_{R}^{n} (see 9.5) is n-tempered.

Proof. By 9.4, the \mathcal{O}-module $\left(\hat{V}_{0}\right)_{o}^{i}=\left(E_{0}^{i} \otimes V_{0}\right)_{W}$ is finitely generated and the R-module $\hat{V}_{R}^{i}=\left(E_{R}^{i} \otimes{ }_{R} V\right)_{W}$ is finitely generated. It is clear that $\left(\hat{V}_{0}\right)_{0}^{i} \otimes_{0} R=\hat{V}_{R}^{i}$ as an R-module. Hence the image of $\left(\hat{V}_{0}\right)_{0}^{i}$ in \hat{V}_{R}^{i} is an \mathcal{O}-lattice \mathscr{L}, which is generated (as an \mathcal{O}-module) by the images of the
elements $e_{w} \otimes v \in E_{0}^{i} \otimes_{0}^{\otimes} V_{0}$. For any $y \in W$, and any $w \in W_{(i)}$, we have

$$
q^{n / 2} \widetilde{T}_{y} C_{w} \in \sum_{\substack{w^{\prime}=n \\ \boldsymbol{a}\left(w^{\prime}\right)=n}} \mathscr{A}^{+} \cdot C_{w}+\sum_{\substack{w^{\prime} \\ \boldsymbol{a}\left(w^{\prime}\right)>n}} \mathscr{A} \cdot C_{w^{\prime}}
$$

(identity in H), by the definition of the \boldsymbol{a}-function. Hence, we have

$$
\phi\left(q^{n / 2}\right) \widetilde{T}_{y} e_{w} \in \sum_{\substack{w^{\prime}=\\ \boldsymbol{a}\left(w^{\prime}\right)=n}} \mathcal{O} \cdot e_{w^{\prime}}+\sum_{\substack{w^{\prime} \\ \boldsymbol{a}\left(w^{\prime}\right)>n}} R e_{w^{\prime}}
$$

(identity in $E_{R}^{>n}$) and, therefore,

$$
\phi\left(q^{n / 2}\right) \widetilde{T}_{y} e_{w} \in \sum_{\substack{w w^{\prime} \\ a\left(w^{\prime}\right)=n}} \mathcal{O} \cdot e_{w^{\prime}}
$$

(identity in E_{R}^{n}). This shows that \mathscr{L} is stable under $\phi\left(q^{n / 2}\right) \widetilde{T}_{y}$ for all $y \in W$. The theorem is proved.
9.8. Remark. The same proof shows that in the case where the set $W_{(n)}$ is finite, the H_{ϕ}-module E_{R}^{n} itself is n-tempered.
9.9. In $9.9-9.11$ we shall assume that R is an algebraically closed field of characteristic zero and $\phi: \mathscr{A} \rightarrow R$ is a ring homomorphism such that $\phi\left(q^{1 / 2}\right)$ is not a root of 1 in R.

Let V be an irreducible right $R[W]$-module. The sequence of canonical surjective maps

$$
E_{R}^{\geq 0} \longrightarrow E_{R}^{\geq^{0}} / E_{R}^{\geq^{\nu}} \longrightarrow E_{R}^{\geq 0} / E_{R}^{>\nu-1} \rightarrow \cdots \rightarrow E_{R}^{\geq_{R}} / E_{R}^{\geq^{1}} \longrightarrow E_{R}^{\geq_{R}^{0}} / E_{R}^{>0}=0
$$

gives rise to a sequence of surjective maps

$$
\begin{align*}
\left(E_{R}^{\geq 0} \otimes_{R}^{\otimes} V\right)_{W} & \longrightarrow\left(\left(E_{R}^{\geq 0} / E_{R}^{\geq^{2}}\right){\underset{R}{*}}_{\otimes} V\right)_{W} \tag{9.9.1}\\
& \rightarrow \cdots \rightarrow\left(\left(E_{R}^{\geq 0} / E_{R}^{\geq^{1}}\right){\underset{R}{*}}_{\otimes} V\right)_{W} \longrightarrow\left(\left(E_{R}^{\geq_{0}^{0}} / E_{R}^{\geq 0}\right){\underset{R}{R}}_{\otimes} V\right)_{W}=0
\end{align*}
$$

(W-coinvariants are taken with respect to the right $R[W]$-module structure.) Each of the R-modules in this sequence is a left $R[W]$-module since $E_{R}^{2 i}$ is a left $R[W]$-module (replacing temporarily ϕ by the homomorphism ψ as in 9.3. The first $R[W]$-module in the sequence (9.9.1) is irreducible, since V is irreducible and $E_{R}^{\geq 0}$ is the two-sided regular representation of W. The last $R[W]$-module in (9.9.1) is zero. Since all maps in (9.9.1) are surjective maps of left $R[W]$-modules, it follows that there is a unique integer $n, 0 \leq n \leq \nu$ such that the map α_{i} in the natural exact sequence

is an isomorphism $(\neq 0)$ for $i \geq n+1$ and is zero for $i \leq n$. It follows for this n, the natural map

$$
\hat{V}_{R}^{n}=\left(\left(E_{R}^{\geq n} / E_{R}^{\geq n+1}\right){\underset{R}{*}}_{\otimes} V\right)_{W} \longrightarrow\left(\left(E_{R}^{\geq 0} / E_{R}^{\geq n+1}\right) \otimes_{R}^{\otimes} V\right)_{W}
$$

is surjective and $\left(\left(E_{R}^{\geq 0} / E_{R}^{>n+1}\right) \underset{R}{\otimes} V\right)_{W} \approx\left(E_{R}^{\geq 0}{\underset{R}{*}}_{\otimes} V\right)_{W}$. Thus, we have associated to V an integer $n \geq 0$ such that \hat{V}_{R}^{n} is non-zero (indeed $\operatorname{dim}_{R} \hat{V}_{R}^{n} \geq$ $\operatorname{dim}_{R} V$). We shall denote this \hat{V}_{R}^{n} simply as \hat{V}. It is a left H_{ϕ}-module (see 9.5). The integer n just defined will be denoted a_{V}.
9.10. We shall now state a number of conjectures.

Conjecture A. If V is an irreducible right $R[W]-m o d u l e$, then the left H_{ϕ}-module \hat{V} (see 9.9) has a unique irreducible quotient \tilde{V}. All other composition factors of \hat{V} are of form \widetilde{V}^{\prime} where V^{\prime} are irreducible $R[W]$-modules such that $a_{V},<a_{V}$. The correspondence $V \rightarrow \tilde{V}$ is a bijection between the set of isomorphism classes of irreducible right $R[W]$-modules and the set of isomorphism classes of irreducible left H_{ϕ}-modules.

Conjecture B. For any x, y, z in the affine Weyl group W, we have $c_{x, y, z}=c_{y, z, x}=c_{z, x, y}$ (see 6.1).

This would imply that all statements 6.3(a) to (f) hold for affine Weyl groups. It would also imply the following statement.
(9.10.1) W is a union of finitely many left cells (hence of finitely many two-sided cells).

We now show how (9.10.1) can be deduced from the statement 6.3(b) for the affine Weyl group W. For each right cell Γ contained in $W_{(i)}$, the R-subspace E_{R}^{Γ} of E_{R}^{i} spanned by the $e_{w}(w \in \Gamma)$ is a right $R[W]$-submodule of E_{R}^{i}; this follows from the assumption 6.3(b). Hence E_{R}^{i} is direct sum of its right $R[W]$-submodules E_{R}^{Γ} for the various right cells Γ in $W_{(i)}$. If T is the group of translations in W, then $R[T]$ is a noetherian ring, hence E_{R}^{i} is a finitely generated right $R[T]$-module (as a subquotient of $E_{R}^{>^{0}}$), hence also finitely generated right $R[W]$-module. It follows that there can be only finitely many summands E_{R}^{Γ} in E_{R}^{i}. Hence $W_{(i)}$ is a union of finitely many right cells. Hence $W=\bigcup_{0 \leq i \leq \nu} W_{(i)}$ is a union of finitely many right cells and (9.10.1) follows. This proof shows also that (assuming Conjecture B), for any irreducible right $R[W]$-module V, the corresponding H_{ϕ}-module \hat{V} has a canonical direct sum decomposition (as
an R-vector space): $\hat{V}=\underset{\Gamma}{\oplus} \hat{V}^{\Gamma}$ where Γ runs through the right cells in $W_{(. .)}$, ($n=a_{V}$), and

$$
\begin{equation*}
\hat{V}^{\Gamma}=\left(E_{R}^{\Gamma} \otimes V\right)_{W} . \tag{9.10.2}
\end{equation*}
$$

Conjecture C. If V is as above, then the union of all right cells $\Gamma \subset W_{(n)}$ such that $\hat{V}^{\Gamma} \neq 0$ (see (9.10.2)) is contained in a single two-sided cell $C=\mathscr{C}_{V}$.

Now let G be a simple (adjoint) algebraic group over R which has Hom (T, R^{*}) as a maximal torus and whose Weyl group is isomorphic to W / T (the action of the Weyl group of G on the maximal torus being that induced by the action of W / T on T by conjugation.)

Using Springer's correspondence between Weyl group representations and unipotent classes, S. Kato [Kt] has attached to each irreducible $R[W]$-module V a conjugacy class in G. (All classes in G arise from some V.) Let g_{V} be an element in this class and let u_{V} be the unipotent part of g_{V}. (For example, when V is a generic representation or the sign representation of W than $u_{V}=1$; if V is the unit representation of W, then u_{V} is a regular unipotent element in G.)

Conjecture D. Given two irreducible right $R[W]$-modules V, V^{\prime}, the following two conditions are equivalent: (a) the two-sided $\mathscr{C}_{V}, \mathscr{C}_{V}$, of W (see Conjecture C) satisfy $\mathscr{C}_{V} \leq \mathscr{C}_{V R}$, (b) u_{V}, is contained in the closure of the conjugacy class of u_{V} in G. Hence there is a canonical one-to-one correspondence $\mathscr{C}_{V} \leftrightarrow u_{V}$ between the set of two-sided cells in $W_{(i)}$ and the set of unipotent classes in G. If \mathscr{C} is a two-sided cell in $W_{(i)}$ and u is a corresponding unipotent element in G, then i is equal to the dimension of the variety \mathscr{B}_{u} of Borel subgroups of G containing u.

Conjecture E. Let g be an element of G and let ρ be an irreducible representation of the finite group $A(g)=Z_{G}(g) / Z_{G}^{0}(g)$ which appears in the permutation representation of $A(g)$ on the top homology of the variety \mathscr{B}_{g} of Borel subgroups in G containing g. Let $V_{g, \rho}$ be the irreducible $R[W]-m o d u l e$ associated in $[\mathrm{Kt}, 4.1]$ to (g, ρ). Then $\operatorname{dim} \hat{V}_{g, \rho}$ is equal to the sum

$$
\sum_{i} \operatorname{dim}\left(H_{2 i}\left(\mathscr{B}_{g}\right) \otimes \rho\right)^{A(g)}
$$

(space of $A(g)$-invariants). More precisely, the $R[W]$-module obtained from $\hat{V}_{g, \rho}$ by letting $q^{1 / 2} \rightarrow 1$ is equal (in the Grothendieck group of $R[W]$-modules to the $R[W]$-module $\underset{i}{\oplus}\left(H_{2 i}\left(\mathscr{B}_{g}\right) \otimes \rho\right)^{A(g)}$, (see $\left.[\mathrm{Kt}, 3.2]\right)$.

Let T^{++}be the semigroup of translations ω in $T \subset W$ satisfying the equality $l(x \omega)=l(x)+l(\omega)$ for all $x \in W_{V}$ (for a fixed special point v).

With the notations in Conjecture E, we consider a complete flag of subspaces in $\hat{V}_{g, \rho}$ stable under the commutative semigroup of transformations $\widetilde{T}_{\omega}\left(\omega \in T^{++}\right)$. Given any (one dimensional) subquotient of this flag, there is a unique homomorphism $\alpha: T \rightarrow R^{*}$, such that \widetilde{T}_{ω} acts on the subquotient as scalar multiplication by $\alpha(\omega)$ for all $\omega \in T^{++}$. Let s_{α} be the corresponding element of the maximal torus of G, (see Conjecture D). The following conjecture relates s_{α} to the Jordan decomposition $g=g_{s} \cdot g_{u}$ of g in G. (Here g_{s} is the semisimple part of g and g_{u} is the unipotent part.) Let $\chi: \operatorname{SL}(2, \mathbf{R}) \rightarrow Z_{G}^{0}\left(g_{s}\right)$ be a homomorphism such that $g_{u}=\chi\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

$$
\text { Conjecture F. The elements } s_{\alpha} \text { and } g_{s} \cdot \chi\left(\begin{array}{cc}
\phi\left(q^{1 / 2}\right) & 0 \\
0 & \phi\left(q^{-1 / 2}\right)
\end{array}\right) \text { are conju- }
$$ gate in G.

§ 10. Left cells and dihedral subgroups

10.1. In this section we shall give some methods which allow in certain cases to show that two elements in a Coxeter group are in the same left cell, or to construct new left cells from a given one. This method, which was inspired by Vogan's use of the "generalized τ-invariant" in [V], has been used in $\left[\mathrm{KL}_{1}, \S 5\right]$ to describe the left cells of the symmetric groups. We shall generally omit proofs since they are similar to those in $\left[\mathrm{KL}_{1}, \S 4\right]$.
10.2. Given the Coxeter group (W, S), we fix a subset $S^{\prime} \subset S$ consisting of two elements s, t such that $s t$ has order $m<\infty$ and we denote by W^{\prime} the subgroup generated by s, t. Each coset $W^{\prime} w$ can be decomposed into four parts: one consists of the unique element x of minimal length, one consists of the unique element y of maximal length, one consists of the $(m-1)$ elements $s x, t s x, s t s x, \cdots$ and one consists of the ($m-1$) elements $t x$, stx, tstx, \cdots. The last two subsets are called strings. We shall regard them as sequences (as above) rather than subsets.
10.3. We shall extend the definition of the function $\tilde{\mu}(y, w)$ (see § 4): in the case where two elements $y, w \in W$ do not satisfy $y-w$, we set $\tilde{\mu}(y, w)=0$.
10.4. We assume that we are given two strings $x_{1}, x_{2}, \cdots, x_{m-1}$ and $y_{1}, y_{2}, \cdots, y_{m-1}$ (with respect to S^{\prime}). We set

$$
a_{i j}= \begin{cases}\tilde{\mu}\left(x_{i}, y_{j}\right), & \text { if } S^{\prime} \cap \mathscr{L}\left(x_{i}\right)=S^{\prime} \cap \mathscr{L}\left(y_{j}\right) \\ 0, & \text { otherwise }\end{cases}
$$

The integers $a_{i j}$ satisfy a number of identities.
(10.4.1) Assume first that $m=3$.

Then: $a_{11}=a_{22}$ and $a_{12}=a_{21}$.
(10.4.2) Assume next that $m=4$.

Then: $a_{11}=a_{33}, a_{13}=a_{31}, a_{22}=a_{11}+a_{13}, a_{12}=a_{21}=a_{23}=a_{32}$.
(10.4.3) Finally, assume that $m=6$.

Then: $a_{11}=a_{55}, a_{13}=a_{31}=a_{35}=a_{53}, a_{15}=a_{51}, a_{22}=a_{44}=a_{11}+a_{13}$,
$a_{33}=a_{11}+a_{13}+a_{15}, a_{24}=a_{42}=a_{13}+a_{15}, a_{12}=a_{21}=a_{45}=a_{54}$,
$a_{14}=a_{41}=a_{25}=a_{52}, a_{23}=a_{32}=a_{34}=a_{43}=a_{12}+a_{14}$.
(In the case $m=3$, this is proved in $\left[\mathrm{KL}_{1}, \S 4\right]$. In the other cases, the proof is similar. An analogous result holds for arbitrary m.)
10.5. Note that $\left\{x_{1}, \cdots, x_{m-1}\right\}$ is contained in a left cell Γ. (Indeed, $x_{i-1}-x_{i}$ and $\mathscr{L}\left(x_{i-1}\right) \not \subset \mathscr{L}\left(x_{i}\right) \not \subset \mathscr{L}\left(x_{i-1}\right)$, hence $x_{i-1} \sim x_{i}$ for $i=2,3, \cdots$, $m-1$.) Similarly, $\left\{y_{1}, \cdots, y_{m-1}\right\}$ is contained in a left cell Γ^{\prime}. In certain cases it is possible to show using (10.4.1), (10.4.2) or (10.4.3) that $\Gamma=\Gamma^{\prime}$. Assume for example that we know that for some i_{0}, j_{0} we have $x_{i_{0}}=s_{1} y_{j_{0}}$, $s_{1} \in \mathscr{L}\left(x_{i_{0}}\right)-\mathscr{L}\left(y_{j_{0}}\right)$. Then $a_{i_{0}, j_{0}}=1$ and $x_{i_{0}} \leq y_{j_{0}}$. Using then (10.4.1), (10.4.2) or (10.4.3) we can deduce that several other $a_{i, j}$ are $\neq 0$. (In the cases $m=4$ or 6 , one gets stronger conclusions if one assumes that (W, S) is crystallographic since then $a_{i j} \geq 0$ and therefore $a_{i j} \neq 0, a_{i^{\prime} j^{\prime}} \neq 0$ imply $a_{i j}+a_{i^{\prime}, j} \neq 0$.) It may happen that for one of these i, j for which $a_{i j} \neq 0$ was have $\mathscr{L}\left(y_{j}\right) \not \subset \mathscr{L}\left(x_{i}\right)$; we then have $y_{j} \leq_{L} x_{i}$ and it follows that $\Gamma=\Gamma^{\prime}$.
10.6. The identities (10.4.1), (10.4.2), (10.4.3) can also be used in a different way. Let Γ be a subset in W such that for any $w \in \Gamma, \mathscr{R}(w) \cap S^{\prime}$ consists of a single element; an equivalent assumption is that for any $w \in \Gamma$, the element w^{-1} is contained in a string σ_{w-1} (with respect to S^{\prime}). We then define $\Gamma^{*}=\left(\bigcup_{w \in \Gamma}\left(\sigma_{w-1}\right)^{-1}\right)-\Gamma$.

In the case $m=4$ or 6 , we define $\tilde{\Gamma}$ as follows. For each $w \in \Gamma$, there is a well defined number $i, 1 \leq i \leq m-1$ such that w^{-1} is the $i^{\text {th }}$ element of the string σ_{w-1}; we define \tilde{w} to be the element such that \tilde{w}^{-1} is the $(m-i)^{\text {th }}$ element of the string σ_{w-1}. Then $\tilde{\Gamma}$ is the set of all \tilde{w}, where w runs through Γ.

Proposition 10.7. Assume that $m=3$ or that (W, S) is crystallographic, and let Γ, Γ^{*} be as above. If Γ is a union of left cells, then so is Γ^{*}. More precisely, if Γ is left cell, then Γ^{*} is a union of at most (m-2) left cells and, if $m=4$ or 6 , then $\tilde{\Gamma}$ is a left cell.

In the case $m=3$, this is proved in $\left[\mathrm{KL}_{1}, 4.3\right]$. The proof in the other cases is similar. It is based on (10.4.2), (10.4.3). The hypothesis that (W, S) is crystallographic is used in the same way as in 10.5 .

\S 11. Left cells in the affine Weyl groups $\tilde{A}_{2}, \widetilde{B}_{2}, \widetilde{G}_{2}$

11.1. In this section, (W, S) is an affine Weyl group of type $\widetilde{A}_{2}, \widetilde{B}_{2}$ or \widetilde{G}_{2}. We denote the elements of S by s_{1}, s_{2}, s_{3}. In the case \widetilde{B}_{2}, we assume $\left(s_{1} s_{3}\right)^{4}=\left(s_{2} s_{3}\right)^{4}=\left(s_{1} s_{2}\right)^{2}=1$. In the case \widetilde{G}_{2}, we assume that $\left(s_{1} s_{3}\right)^{3}=$ $\left(s_{2} s_{3}\right)^{6}=\left(s_{1} s_{2}\right)^{2}=1$. For any subset J of $\{1,2,3\}$ we denote by W^{J} the set of all $w \in W$ such that $R(w)$ consists of the $s_{j},(j \in J)$.
11.2. We shall define a partition of W into finitely many subsets, as follows.

$$
\begin{aligned}
\text { Type } \begin{aligned}
\tilde{A}_{2} & A_{13}=W^{13}, A_{12}=W^{12}, A_{23}=W^{23}, A_{2}=A_{13} s_{2}, A_{3}=A_{12} s_{3}, \\
& A_{1}=A_{23} s_{1}, B_{1}=W^{1}-A_{1}, B_{2}=W^{2}-A_{2}, B_{3}=W^{3}-A_{3}, \\
& C_{\phi}=W^{\phi} .
\end{aligned}
\end{aligned}
$$

Type $\widetilde{B}_{2}: A_{13}=W^{13}, A_{12}=A_{13} s_{2}, A_{1}=A_{3} s_{1}, A_{23}=W^{23}, A_{12}^{\prime}=A_{23} s_{1}$,
$A_{3}^{\prime}=A_{12}^{\prime} S_{3}, A_{2}=A_{3}^{\prime} S_{2}, B_{12}=W^{12}-\left(A_{12} \cup A_{12}^{\prime}\right), B_{3}=B_{12} S_{3}$,
$B_{1}=B_{3} s_{1}, B_{2}=B_{3} s_{2}, C_{1}=W^{1}-\left(A_{1} \cup B_{1}\right), C_{2}=W^{2}-\left(A_{2} \cup B_{2}\right)$,
$C_{3}=W^{3}-\left(A_{3} \cup A_{3}^{\prime} \cup B_{3}\right), D_{\phi}=W^{\phi}$.
Type $\widetilde{G}_{2}: A_{23}=W^{23}, A_{12}=A_{23} s_{1}, A_{13}=A_{12} s_{3}, A_{12}^{\prime}=A_{13} s_{2}, A_{3}=A_{12}^{\prime} s_{3}$,
$A_{2}=A_{3} S_{2}, A_{13}^{\prime}=A_{3} s_{1}, A_{12}^{\prime \prime}=A_{13}^{\prime} S_{2}, A_{3}^{\prime}=A_{12}^{\prime \prime} S_{3}, A_{2}^{\prime}=A_{3}^{\prime} S_{2}$,
$A_{3}^{\prime \prime}=A_{2}^{\prime} S_{3}, A_{1}=A_{3}^{\prime \prime} s_{1}$.
$B_{13}=W^{13}-\left(A_{13} \cup A_{13}^{\prime}\right), B_{12}=B_{13} s_{2}, B_{3}=B_{12} s_{3}, B_{2}=B_{3} S_{2}$,
$B_{3}^{\prime}=B_{2} s_{3}, B_{1}=B_{3} s_{1}$.
$C_{12}=W^{12}-\left(A_{12} \cup A_{12}^{\prime} \cup A_{12}^{\prime \prime} \cup B_{12}\right), C_{3}=C_{12} s_{3}, C_{2}=C_{3} s_{2}$,
$C_{3}^{\prime}=C_{2} s_{3}, C_{1}=C_{3}^{\prime} s_{1}, C_{2}^{\prime}=C_{3}^{\prime} s_{2}$.
$D_{1}=W^{1}-\left(A_{1} \cup B_{1} \cup C_{1}\right), D_{2}=W^{2}-\left(A_{2} \cup A_{2}^{\prime} \cup B_{2} \cup C_{2} \cup C_{2}^{\prime}\right)$,
$D_{3}=W^{3}-\left(A_{3} \cup A_{3}^{\prime} \cup A_{3}^{\prime \prime} \cup B_{3} \cup B_{3}^{\prime} \cup C_{3} \cup C_{3}^{\prime}\right), E_{\phi}=W^{\phi}$.
Each of the subsets in the partition is contained in some W^{J}, (with J indicated as a subscript.)

Theorem 11.3. The partition of W just described coincides with the partition of W into left cells.
(I have announced this result in a lecture at the Santa Cruz conference on finite groups in 1979. The proof was based on the techniques of strings in Section 10. However, in the case of \widetilde{G}_{2}, there was a gap in the proof which I can now overcome, using results on the \boldsymbol{a}-function.)

We shall sketch a proof. We start with the case of \widetilde{G}_{2}. By 8.5, A_{25} is a left cell. Using 10.7 with $\Gamma=A_{23}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$ we see that A_{12} is a left cell. Using 10.7 with $\Gamma=A_{12}, S^{\prime}=\left\{s_{2}, s_{3}\right\}$, we see that $A_{13} \cup A_{12}^{\prime} \cup A_{3} \cup A_{2}$ is a union of at most 4 left cells. Since $w \rightarrow \mathscr{R}(w)$ is constant on left cells, each of $A_{12} \cup A_{12}^{\prime}, A_{13}, A_{3}, A_{2}$ is a union of left cells. Moreover, by 10.7 with $\Gamma=A_{3}, S^{\prime}=\left\{s_{1}, s_{3}\right\}, A_{12}^{\prime}$ is a union of left cells. This forces each of $A_{12}, A_{12}^{\prime}, A_{13}, A_{3}, A_{2}$ to be a left cell.

The set A_{13}^{\prime} is contained in a left cell. (The proof is the same as that of 8.5 using the fact that $A_{13}^{\prime} \subset W_{(\nu)}, \nu=6$). The set B_{13} is also contained in a left cell. (This is proved easily by the technique of strings in 10.5). However, the sets A_{13}^{\prime}, B_{13} cannot be contained in the same left cell. Indeed, by 8.1 the \boldsymbol{a}-function is equal to 6 on A_{13}^{\prime}. On the other hand we cannot have $\boldsymbol{a}\left(s_{1} s_{3}\right)=6$ since this would imply $l\left(s_{1} s_{3}\right) \geq 6$ (see 8.4(d)), a contradiction. Since $s_{1} s_{3} \in B_{13}$ and the \boldsymbol{a}-function is constant on left cells, it follows that A_{13}^{\prime}, B_{13} are contained in distinct left cells. Since W^{13} is a union of left cells and A_{13} is a left cell, the difference $W^{13}-A_{13}=A_{13}^{\prime} \cup B_{13}$ is a union of left cells. It follows that each of A_{13}^{\prime}, B_{13} is a left cell.

Using 10.7 with $\Gamma=A_{13}^{\prime}, S^{\prime}=\left\{s_{2}, s_{3}\right\}$ we see that $A_{12}^{\prime \prime} \cup A_{3}^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime \prime}$ is a union of at most 4 left cells. It follows that each of $A_{12}^{\prime \prime}, A_{3}^{\prime} \cup A_{3}^{\prime \prime}, A_{2}^{\prime}$ is a union of left cells. Moreover, by 10.7 with $\Gamma=A_{12}^{\prime \prime}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$ the set A_{3}^{\prime} is a union of left cells. It follows that each of $A_{12}^{\prime \prime}, A_{3}^{\prime}, A_{3}^{\prime \prime}, A_{2}^{\prime}$ is a left cell.

Using 10.7 with $\Gamma=A_{3}^{\prime \prime}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$, we see that A_{1} is a left cell.
Using 10.7 with $\Gamma=B_{13}, S^{\prime}=\left\{s_{2}, s_{3}\right\}$, we see that $B_{12} \cup B_{3} \cup B_{2} \cup B_{3}^{\prime}$ is a union of at most 4 left cells. It follows that each of $B_{12}, B_{3} \cup B_{3}^{\prime}, B_{2}$ is a union of left cells. Using 10.7 with $\Gamma=B_{12}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$, we see that $B_{12} \cup$ B_{3} is a union of left cells. It follows that each of $B_{12}, B_{3}, B_{3}^{\prime}, B_{2}$ is a left cell.

Using 10.7 with $\Gamma=B_{3}^{\prime}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$ we see that B_{1} is a left cell.
Using the technique of strings in 10.5 one can show easily that C_{12} is contained in a left cell. Since W^{12} is a union of left cells and A_{12}, A_{12}^{\prime}, $A_{12}^{\prime \prime}, B_{12}$ are left cells it follows that C_{12} is a union of left cells, hence it is a left cell.

Using 10.7 with $\Gamma=C_{12}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$ we see that C_{3} is a left cell. Using 10.7 with $\Gamma=C_{12}, S^{\prime}=\left\{s_{2}, s_{3}\right\}$ we see that $C_{3} \cup C_{2} \cup C_{3}^{\prime} \cup C_{2}^{\prime}$ is a union of at most 4 left cells, hence $C_{2} \cup C_{3}^{\prime} \cup C_{2}^{\prime}$ is a union of at most 3 left cells. 10.7 shows also that $C_{2}^{\prime}=\widetilde{C}_{12}$ is a left cell. Hence C_{3}^{\prime}, C_{2} and C_{2}^{\prime} are left cells.

Using now 10.7 with $\Gamma=C_{3}^{\prime}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$, we see that C_{1} is a left cell. Since W^{1}, W^{2}, W^{3} are unions of left cells, so must be D_{1}, D_{2}, D_{3}. Using strings, we see easily that each of D_{1}, D_{2}, D_{3} is contained in a left cell hence each of them is a left cell. The set D_{ϕ} is clearly a left cell. This
completes the proof of the Theorem in case \widetilde{G}_{2}.
We now consider the case of \widetilde{B}_{2}. By 8.5, A_{13} is a left cell. Using 10.7 with $\Gamma=A_{13}, S^{\prime}=\left\{s_{2}, s_{3}\right\}$, we see that $A_{12} \cup A_{3}$ is a union of at most 2 left cells. Since $w \rightarrow \mathscr{R}(w)$ is constant on left cells, it follows that both A_{12}, A_{3} are left cells. Using 10.7 with $\Gamma=A_{12}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$ we see that $A_{3} \cup A_{1}$ is a left cell. Hence A_{1} is a left cell.

Since s_{1}, s_{2} play a symmetric role, it follows automatically that A_{23}, $A_{12}^{\prime}, A_{3}^{\prime}, A_{2}$ are left cells.

Since W^{12} is a union of left cells, we see that B_{12} is a union of left cells. Using the technique of strings 10.5 , we see easily that B_{12} is contained in a left cell. Hence B_{12} is a left cell. Using 10.7 with $\Gamma=B_{12}, S^{\prime}=\left\{s_{1}, s_{3}\right\}$, we see that $B_{3} \cup B_{1}$ is a union of at most 2 left cells. It follows that both B_{3}, B_{1} must be left cells. Since s_{1}, s_{2} play a symmetric role, the fact that B_{1} is a left cell implies that B_{2} is a left cell.

The sets C_{1}, C_{2}, C_{3} are left cells by the argument used for D_{1}, D_{2}, D_{3} in case \widetilde{G}_{2}. The set D_{ϕ} is clearly a left cell.

Finally, we consider the case \widetilde{A}_{2}. By $8.5, A_{13}$ is a left cell. Using 10.7 with $\Gamma=A_{13}, S^{\prime}=\left\{s_{1}, s_{2}\right\}$, we see that A_{2} is a left cell. By symmetry, $A_{23}, A_{12}, A_{3}, A_{1}$ are also left cells. The sets B_{1}, B_{2}, B_{3} are left cells by the argument used for D_{1}, D_{2}, D_{3} in case \widetilde{G}_{2}. The set C_{ϕ} is clearly a left cell. This completes the proof.
11.4. Remark. I understand that recently J. Y. Shi (a student of R. W. Carter at Warwick University) has described explicitly the left cells of the affine Weyl group of type \widetilde{A}_{n}.
11.5. We now consider the union of all left cells in W whose name contains a fixed capital letter; we denote this union by that capital letter. (For example, for type \widetilde{G}_{2}, we have $C=C_{12} \cup C_{3} \cup C_{2} \cup C_{3}^{\prime} \cup C_{2}^{\prime} \cup C_{1}$.) Thus we have a partition into pieces:

$$
\begin{aligned}
& W=A \cup B \cup C \text { (for type } \tilde{A}_{2} \text {), } \quad W=A \cup B \cup C \cup D \text { (for type } \widetilde{B}_{2} \text {), } \\
& W=A \cup B \cup C \cup D \cup E \text { (for type } \widetilde{G}_{2} \text {). }
\end{aligned}
$$

Proposition 11.6. The pieces in this partition of W are just the twosided cells of W.

We can check directly that each piece in our partition is stable under $w \rightarrow w^{-1}$ and that any left cell in a piece meets the image under $w \rightarrow w^{-1}$ of any left cell in the same piece. It follows that each piece is contained in a two-sided cell of W. The piece denoted A has the property that the \boldsymbol{a}-function on it has the constant value $\nu\left(\nu=3,4,6\right.$ for $\left.\widetilde{A}_{2}, \widetilde{B}_{2}, \widetilde{\widetilde{z}}_{2}\right)$, (see 8.1); all other pieces contain elements of length $<\nu$ hence the value of the
\boldsymbol{a}-function on them must be $<\boldsymbol{\nu}$, (see 8.4(d)). It follows that A is a twosided cell. The piece denoted C (respectively, D, E) for \tilde{A}_{2} (respectively, $\widetilde{B}_{2}, \widetilde{G}_{2}$) is clearly a two-sided cell. The piece denoted B (respectively, C, D) for \widetilde{A}_{2} (respectively, $\widetilde{B}_{2}, \widetilde{G}_{2}$) is a two-sided cell by [$\left.\mathrm{L}_{6}, 3.8\right]$. It follows that the piece B (for type \widetilde{B}_{2}) is a two-sided cell and that the union $B \cup C$ (for type \widetilde{G}_{2}) is a union of two-sided cells. It remains to show that $B \cup C$ (for type \widetilde{G}_{2}) cannot be a single two-sided cell. This is shown as follows. Let $x=S_{1} s_{3} \in B, y=S_{1} S_{2} S_{3} s_{2} s_{1} \in C$ (for type \widetilde{G}_{2}). It is easy to compute $P_{x, y}=1+q$. Ir follows that $x-y$. We have $\mathscr{L}(x) \not \subset \mathscr{L}(y), \mathscr{R}(x) \not \subset \mathscr{R}(y)$. Using now 5.5 , it follows that x, y belong to distinct two-sided cells. This completes the proof.
11.7. We shall describe the left cells and two-sided cells for W of type $\tilde{A}_{2}, \widetilde{B}_{2}, \widetilde{C}_{2}$ in three figures. We represent the elements of W by alcoves in E, (see 7.5): we choose a special point $v \in E$ and we attach to $w \in W$, the alcove $w \cdot A_{v}^{-} \subset E$. Then a left cell (or a two-sided cell) will be represented by a subset of E : the union of all closed alcoves corresponding to the elements in that cell. A two-sided cell is represented by the union of all closed alcoves of the same colour. If we remove from this union all facets of codimension ≥ 2, the remaining set will have finitely many connected components; the closures of these components will be the subsets of E corresponding to the various left cells.

References

[BBD] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque, vol. 100.
[IM] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rnig of p-adic Chevalley groups, Inst. Haute Études Sci. Publ. Math., 25 (1965), 237-280.
[KP] V. G. Kac and D. H. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Natl. Acad. Sci., 80 (1983), 1778-1782.
[Kt] S. Kato, A realization of irreducible representations of affine Weyl groups, Proc. Kon. Nederl. Akad., A 86 (2) (1983), 193-201.
[$\left.\mathrm{KL}_{1}\right]$ D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184.
$\left[\mathrm{KL}_{2}\right]$ D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Proc. Symp. Pure Math., vol. 36 185-203, Amer. Math. Soc. 1980.
[$\left.L_{1}\right] \quad$ G. Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Adv. in Math., 37 (1980), 121-164.
$\left[L_{2}\right] \quad$, On a theorem of Benson and Curtis, J. Algebra, 71 (1981), 490498.
$\left[L_{3}\right]$ - Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math., 64 (1981), 490-498.
$\left[\mathrm{L}_{4}\right] \quad$, Singularities, character formulas and a q-analog of weight multiplicities, Astérisque, vol. 101-102 (1983), 208-229.
[$\left.L_{5}\right]$ —— Characters of reductive groups over a finite field, Ann. of Math. Studies, 107 Princeton University Press, 1984.
[L_{6}] \quad, Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc., 277 (1983), 623-653.
[S] T. A. Springer, Quelques applications de la cohomologie d'intersection, Sém. Bourbaki, 589, Fév. 1982.
[T] J. Tits, Résumé du cours, Annuaire du Collège de France 1981-1982.
[V] D. Vogan, A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann., 242 (1979), 209-224.

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
U.S.A.
G. Lusztig

Fig. 1. \tilde{A}_{2}

Fig. 2. \tilde{B}_{2}

Fig. 3. \tilde{G}_{2}

[^0]: Received March 24, 1984.
 *) Guggenheim Fellow. Supported in part by the National Science Foundation.

