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Introduction

In [2], we defined a matrix valued function L(z, W, p) for a represen-
tation p of the Hecke algebra H (W) (¢>>1) associated to a Coxeter group
W. And we showed that this function is similar, in property, to the con-
gruence zeta function of an- algebraic variety, i.e.,

(1) matrix components of L(z, W, p) are rational functions,

(2) under some assumptions on W, the function L(z, W, p) satisfies
a functional equation,

(3) the zeros of det L(z, W, p) are of the forms g~ with some roots
of unity  and some rational numbers 0<<a<{1 and

(4) if W is finite, the zeros on the boundary of “the critical strip”
can be described explicitly in terms of vertices of a W-graph affording p.
(See [2, introduction] for “the critical strip.”)

The purpose of this paper is to determine the denominator of
det L(z, W, R,) explicitly for an affine Weyl group W and the “generic prin-
cipal series representation” R,. (See (4.5) for the “generic principal series
representation.”)

Let us describe our result more explicitly. Let R be an irreducible
root system, {«, |1 <{i<(/} a basis of R, {w;|1<{i</} the fundamental weights
of RV (=the inverse root system of R), Q(R") (resp. P(R")) the root lattice
(resp. weight lattice) of RV, @(R") the quotient group P(R")/Q(R"), D(R")”
=Hom (&(R"), C¥), £, the Weyl group of R, 2=0,X Q (=the affine
Weyl group), and R,={x ¢ R|{«, w,>=0}. Define the length function /
on £, P as usual (cf. [5;3.2.1]). Suppose that R, is a direct sum of irre-
ducible root systems R, , (v=1,2, ---). Let f,=][[, #O(R;,)). (Fora
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set X, #X denotes its cardinality.) Let £, be the stabilizer of w, in £2,.
‘We have

Main Theorem. The denominator of det L(t, W, R,) is equal to

[T s moa a0 (1 — (A0 (@:7) (g'*2)"@2) 24175,

TE€0:\Dg
2€0(E")

(Ssee (4.5) for 2.)
This paper consists of four sections. In the first section, we give the

Taylor expansion of
#) det (14 4,2 + 4,81® 4. . ),

where A,, 4,, - -- are square matrices of the same size and {/()} is a
sequence of positive integers such that every number appears only finitely
many times in it. (See (1.5) for the exact form of the Taylor expansion
of (#).) In the second and third sections, we define the concepts of S-
graphs and S-digraphs, and construct some special S-digraphs. (See the
beginning of Section 2 for the definitions of S-graphs and S-digraphs.)
We study these S-digraphs closely and get an equality (3.22) as a conse-
quence. This equality, together with the Taylor expansion of (§), proves
our main theorem (Section 4).

Notations. For a set X, X denotes its cardinality. For a Coxeter
group W, < denotes the usual Bruhat order.

1.

The purpose of this section is to prove the equality (1.5) below.

Let e, be the n-th elementary symmetric function in “infinitely many
variables” x,, x,, - - -. (See[4; Chap. 1, Section 2] for the justification of
“infinitely many variables.”) Put p,=>7,xF. For a partition p= (>
Y>> - - >0), define

IAEDIST

o) = [T s (— D™D
z()= [l iz1™ -m,!
P(#)':Pmppg Sty

where m,=m,(y) is the number of parts of p equal to i. Then we have

1.1 en=ZI,L]=n6(ﬂ)Z(u)"P(ﬂ)
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[4; Chap. 1, (2.14")]. Let A be a square matrix. We shall denote by tr™ 4
the n-th elementary symmetric function of the eigenvalues of 4. As a
consequence of (1.1), we get

.2 Y T 2 O CR I C D
lel=n

where m,=m, (). (Note that tr®4=1.)

Let A4,, A,, - - - be a sequence of square matrices of the same size and
I(D), 1(2), - - - a sequence of positive integers such that any integer appears
only finitely many times in it. Then, we have the following identity.

1.3) det (144, 8"+ A0 .. 0)
=exp (tr log (14 4,£*® _|_ )

—exp( ( “( ) (Atl“)—l- )))

=[] exp (ﬂtr (At 4 .. .)n)
n

_1)(

= [17=1 2= (tr (A 'O . Ymyen,

Put N={1,2, ---}. The automorphism (i, - - -, i,))—>{s i}, - -+, 4-,) Of
N¢ generates a group G(d) of automorphisms. An element I=(i,, - - -, ;)
of N is said to be primitive if {g e G(d)|gI=1}={1}. We shall denote by
P(d) the set of primitive elements in N% Put P=]],s; P(d)/G(d). For
an element I'=(i,, - - -, i) of N¢/G(d), put

trA;=tr (AilAiz e Aid)’

||=d,

l(I)=l(i1)+ s +l(id)'
Then

(tr (A, 119 4 A1 . yryen
= ain Zzer(.z)m(d) tr (dA7/* g/ O1D))en

=2ty lLfn(I)' T] . (tr (1] A3/ ¢ AIDEDY) 0D

the last summation being taken over the mappings f,: [[4.P(d)/G(d)—
NU {0} such that >, f,(I)=a,. Hence
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- 1)<n a

Za,.—o (t (41O .. ym)an

(—D)m=07nd
— 1)r/1TD =D facD)

= 5. (11 P e

(HI t(n/|1|)l(1)fn(1))’

= Z“(HI )(Hz (tr AP/ Y2 DY(T] ;¢ P/HDUD D)

)(HI(_ 1)(n—nllll)fn(1))(nI(trA}l/IIl)fn(I))

the second and the third summations being taken all over the mappings
fur Hain P(@)/G(@)—NU{0} such that 3, f.(I)<oco. This equality, to-
gether with (1.3), implies

(L4 det (144,14 A"@4...)

Z (l_[ (__ 1)(("/|1|)"1)fn(1) )
— A il £ I

([T (=D O) [T, (oo A711Y0)

Hlin

([1z1,0 tEHEDEDIAD),
1Zlin

Put g,(I)=f,;;,(I) for I ¢ P and m e N. Define a partition x(I) by p(I)=
(1exh e, .4),  (See [4; Chap. 1] for this expression.) Let @ be the set
of mappings ¢: P—NU {0} such that ¢(I)=0 except for finitely many I’s.
Then (1.4) can be rewritten as

det (1+A4,8' 0+ 41104 ..0)
(—1)m-Dend)
:Z(ghga. (nr,m )

(D) mEnD

'(Hz,m (tr Am)gm(l))(n tml(I)gm(I))
=2co Z(gl X >(ﬂ15(#(1)z(/,z(1)) N[ (= Droani-y

(ITzym (tl' A}")g’"(’))(n L 1OUD),

Then by (1.2), we get

>(ﬂ1,m(— mizi-bendy

(L.5) det (14 A, 11O 4 A,1'® 4 .. 0)
=D e (— 1EEDUI=D (T tr D) 4,) g ZeDUD,

1.6. Example. Let det(l + A,t+A4,t*+ .- )= 1+4at+at?4---
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Then

a,=tr A,
ay=tr A, +({Ur® A4, +(tr 4))%
ay=tr A+ (—tr A, 4, +tr A, tr A)+(tr® A, +tr® A4, tr A, -+ (tr 4))Y)
a,=tr A, (—1tr A, A, +tr A tr )+ (P A, +(tr 4,)%)
+(tr A ] —tr A, A tr A, +1tr A, 11D A, +tr 4, (tr 4,)?)
+(trOA, HtrO4, tr A, +(trP A, +tr® A, (tr A, +(tr 4,))
ete.

In this section, we define the notions of S-graphs and S-diagraphs,
and study them.

Let (W, S) be a Coxeter system. We define an S-graph to be a
(pseudo-) graph together with the following datum: for each edge x—y,
we are given an element s of S. (We write x-2y). This datum is subject
to the following requirement. . If

§1 §1 Sn
X, X, e X,

is a path such that s;5,- - -5,=1, then x,=x,.

An S-digraph (=directed S-graph) I" is a directed (pseudo-) graph
together with the following datum: for each directed edge x—y, we are
given an element s of S. (We write x> y.) This datum is subject to the
following requirements.

(1) If we forget the directions of edges, I" becomes an S-graph, which
is denoted by f(I).

(2) If xiy, then s+t.
t

A morphism between S-graphs (resp. S-digraphs) is a morphism ¢ of
graphs (resp. digraphs) such that x—s—y implies go(x)iga( ¥) (resp. x—s>y im-
plies <p(x)i>go( ¥)). Thus the totality of the S-graphs (resp. the S-digraphs)
becomes a category. The automorphisms, the injections, etc. of S-graphs
(resp. S-digraphs) can be defined as usual. (A morphism of S-digraphs
is injective (resp. epimorphic) iff it induces an injection between vertices

(resp. iff it induces an epimorphism between the connected components).)
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An S-graph is said to be simply connected if for any closed path

S1 S2 Sn
Xo Xy tee X7 =Xos

we have s,8,: - -5,=1.

If a morphism ¢ of S-digraphs induces epimorphisms of vertices and
edges, then ¢ is called a covering map. Let I',, I', be S-digraphs. If
there exists a covering map I',—I",, I', is called a covering of I',. If I',
is a covering of I',, f(I',) is connected and f(I',) is simply connected, then
I''—T, is an isomorphism.

2.1. An S-digraph I' is said to be complete if the following con-
dition is satisfied. If I" has a path of the form

sy s s(m)
X. .

(%) Xo 1 e Xms

where

s, if iis odd
s(i)= o

t, if iiseven,

s,t€ S,

m=ord (st),

1<m< oo,

then I has also a path from x,, to x, such that

s(0) s(1) ) v s(m—1)
1

/
0 —X] . - Xpne

(We call a path of the form (}) a dihedral path.)

2.2. Let I' be an S-digraph. A pair (I, ¢) of a complete S-digraph
I' and an injection ¢: I'—I" is, by definition, a completion of I, if the
following condition is satisfied. If /™ is an arbitrary complete S-digraph
- and ¢ is a morphism of I" into I, then there exists a unique morphism &
such that the following diagram becomes commutative:

I'/
)| N
I"f-—‘->i*

B 2.3. Lemma. For any S-digraph I, there exists a unique completion
(I, ¢) up to isomorphism.
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Proof. 1t suffices to show the existence. Let

xlls(z) .. S X, (m<oo)

s(1)
xol

be a dihedral path. ~Assume that I” contains paths

s(0) , s(1) stk—1)_,
Xy X1 6—— + + €——Xp,
and
x;ls(l) L i(m—Z) X i(m—l) ”

and that I" does not contain edges of the form

, s(k)

’ ’ sU—1) ’
X, <——Xp,, O

X]_1<——X].

Then k</—1. Construct an S-digraph I'* by adding to I" new vertices
Xgs15 -+, X,_; and new edges

s(k) s(l—1)
Xi< 1< R X7

Let ¢ be a morphism of I" into a complete S-digraph I”. Since I is
complete, there is a unique path of the form

0 1 —1
(So(xo):—') J’o‘S( ) J’1’S( ) s i(m )

Hence ¢: I'—I" can be uniquely extended to a morphism ¢*: I'*—I".
We make this operation to all the dihedral path of I" which satisfy our
assumption and construct a new S-digraph I";,. Then ¢: I'—I" can be
uniquely extended to ¢,: I',—I". In this way, we construct succesively
S-digraphs I, I',, - - - and put I'=lim I",. Then this I" with the natural
inclusion map ¢: I'—I" is a completion of I'.

Ym (= SO(Xm)).

24. Let I' be an S-graph. Let I'* be the two dimensional cell
complex which is obtained by attaching one 2-cell for each subgraph of
the form

X s(2) . s(m—1) Xt

Sm/ N

Xy Xn  (Mm<o0)

Sm y s(1) L s(m—2)y A’l—l)

1 m-1
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or
s

xl xz,

s

where s(i) and m are defined as in (2.1). (Here we do not assume that
x;’s and y,;’s are all distinct.) Let

Sn

Xo=0(0)——aw(l/p)—— . - —o(1— 1)1 ——a(l)=x,

be a closed path of I" and [w] its homotopy class of #;(I"*, x,). Then the
element s, - - - 5,5, depends only on the homotopy class [w]. We denote
this element by 4([w]).

2.5. Let w be an element of W such that /(w*)=kl(w) (k>0). Let
w=s, -+ 858 (5, € S)be a reduced expression of w. Consider the follow-
ing S-digraph

§1

v
[\
N
A
S —

where i=imodn. Denote this graph by I'(s,, - - -, 5,). We know that
any reduced expression of w can be obtained from one reduced ex-
pression by using the relation

SIS+ =15t - (m factors),
s, te S, m=ord (st).

(See [1; Chap. IV, § 1, Lemma 4]). Hence the completion I'(s,, - - -, 5,)
of I'(s;, - - -, s,) does not depend on the choice of the reduced expression.
(More precisely, let w=s,, - - - 57 be another reduced expression. There is
a unique path I (s{, - - -, s) of the form

51

X1 Xo e X, =n
5% Y 84

in (s, -+, 8,). (Here x;#x; ifi+j) And
TG, -« o5 S)="T(s], -+, ) =—>L (535 - -5 5,)

is a completion. Note that the point 0=7 is also independent of the choice
of the reduced expression. We denote this completion by I"(w).
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Let

S5 S%

o(0)—— w(1/N)—2— wQ/N)—o- - -

(1)

be a path of f(I"(w)). We count the edges contained in this path with
alternating signs; an edge w(i/N)—w(i-+ 1/N) is counted with +1 if w(i//N)
—o(i+1/N) in I'(w) and is counted ‘with —1 if w(i/N)<w(i+1/N) in
I'(w). The sum of these 41 over all the edges contained in this path is
denoted by i([o]). I w(0)=w(l)=x,, this number i([w]) depends only on
the homotopy class [w] € 7,((fT'(W))*, X,) of @ and defines an isomorphism

i: o, ((f T (W)*, x)—>nZ.

Hence the local system xy—»m,((fT(w))*, x,) is trivial and there is a
uniquely determined isomorphism

(ST W)*, x)—m(fT W), x0). (%, xp€ T(W)).

This isomorphism is compatible with the isomorphism i. Let a(x,) be the
element of z,((fI'(w))*, x,) which corresponds to n ¢ nZ by the isomorph-
ism i. Denote the element 6(c(x,)) by 8(x,). (See (2.4) for §.) Let

KA 54 Sh ,
Xo=Xo V1 te Vm ==Xy
be a path of fI'(w) connecting two vertices x, and xg. Put7=s), - 5.
Then
2.6) O(x) =7"10(x)7.

2.7. Let w be an element of W as in (2.5). Let S, be a subset of S
such that /(w)=1I(sws) (s € S;). Let W, be the parabolic subgroup gener-
ated by S,. Let ¥e W, and wr=7"'wr. If [(sw)=I(w"s) (s € Sy), sw'=
wrs. (In fact, for any elements s, ¢ € S and we W, “I(swt)=I(w) and I(sw)
I(wt)” implies sw=wt.) Hence if w*=£wr, I(sw") >I(w")>I(w's) or I(sw")
<Iwn<I(w's). Let I"(w) be the S,-digraph whose vertices are {w"|7 e W}
and such that two vertices w” and w'® (s € S,) are connected in the follow-

ing way. If l(wfs)<l(wf), ww.  And we assume that I'y(w) has no
other edges. The S)-graph fI"(w) is connected.

2.8. Let I',(w) be the S,-digraph which is obtained from I"(w) by
deleting all the edges corresponding to the elements in S—.S,. Let I"y(w)
be the connected component of I”;(w) which contains 0.
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Lemma. The S, -digraph I"y(w) is a covering of I"y(w). Especially,
if fI((w) is simply connected, the two S,-digraphs I'(w) and I'y(w) are
isomorphic.

Proof. In (2.5) we defined a mapping 6: I'(w)—W. Let us show that
this mapping induces a covering map I'j(w)—I"y(w). By (2.6), ([ (w)) is

contained in {w"|7 € W;}. Let x—iy be an edge of I'y(w). Let

§/ =g
n

x=wm—1/n)c—--- <s—’-w(1/n)<s—,-w(0)=y

Sh-1 2 i

be a closed path of I'(w) which contains x—s->y as an edge. Then

O(x) =541+ + 515,

0(y)=5Sp-1 *+* 51.

By the assumption on S, /(6(x))=1(6(y))=n. Hence

A
6(x)=0(y)'—6(»).
Thus 4 induces a morphism between S-digraphs.
Assume that 0(I",(w)) Z{w'|F € W,}. Then there exist x e ['y(w), ¥/ e

Ty(w)—6(T,(w)) such that 8(x)->y’ or 8(x)<-y (se Sp). If 6(x)>y, then
¥ =0(x)* and 1(8(x)s)<I(6(x)) (=n). Hence there is a reduced expression
of the form

0(x)=s, -+ - 5;5.
Hence there is a closed path of I'(w) of the form

. S
i I
P> e o s —>X.
S S
But then y e I'((w) and 6(y)=)’, which is absurd. The case H(x)es—y’ can
be treated in the same way. Hence 0(I'y(w))={w'|7 € W;}. Moreover, it
can be proved in the same way that every edge x’-iy’ of I'y(w) comes from

some edge x—s->y of I'y(w). Hence @ induces a covering map.

2.9. Let I'j(w) be any connected component of I',(w). If 8(I"y(w)) is
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contained in {w’|7 € W,}, by the same argument as in (2.8), we can show
that I"{(w) is a covering of I'y(w).

3.

In this section we construct some S-digraphs and study them. The
main purpose of this study is to get the equality (3.22), which will be used
in the next section.

3.1. First of all, let us fix some notations relative to affine Weyl
groups. The basic references are [1] and [3].

Let R be a reduced, irreducible root system of rank />1 and
{ay, - - -, a;} a set of simple roots. Let «, be the highest root of R. Let
V be the vector space spanned by R, V* the dual space of V, E the
underlying affine space of ¥* and R” the inverse root system of R. For
ae€ Rand ke Z, put

H, ,={x¢e E|{a, x)=k},

where {, ) is the natural pairing of ¥ and V*. Let & be the totality of
these hyperplanes. FEach hyperplane H € & defines an orthogonal reflec-
tion e—egy, in E with fixed point set H. Let Q2 be the group of affine
motions generated by ¢, (H ¢ &). It is known that this group {2 satisfies
the assumption in [3; 1.1], i.e., £ is an infinite discrete subgroup of the
group of affine motions of E, acting irreducibly on V* and leaving stable
the set &#. For each special point v, we put

Cr={xe E|0<{a,;, x—v) (1<i<)}.

These cones €; also satisfies the assumption in [3; 1.1], i.e., for any two
special points v and v/, ¥}, is a translate of ¥;. Thus we may use the
notations and definitions of [3; 1.1-1.4] without any change. For any un-
explained notation, the reader is referred to [3; 1.1-1.4].

Let {w,, - - -, @;} be the vectors in ¥* such that {a;, w,>=4,;. These
are the fundamental weights of RY. Let P=P(R") (resp. Q=Q(R")) be
the lattice of V'* generated by {w,, - - -, @;} (resp. {ay, -+ -, a/'}).

Let W be an affine Weyl group and S its canonical generator ([3; 1.1]).
This group W acts on the set of alcoves from the left. For an element
7 e 2 (resp. we W), there is a unique element 7 € W (resp. w € £2) such
that 745 = A7 (resp. Afw=wA;). For two elements 7,, 7, € £2, we have
7172A5‘=71A;’7’2=A3‘7‘17’2=T_1?’_2A5’. Hence 7—7 is a homomorphism of £
into W. The mapping w— is also a homomorphism of Winto 2. It
is clear that 7=7 (7 € 2) and w=w (we W). Especially £ is isomorphic
to W and (2, S) is a Coxeter system.
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3.2. Let ¢, be the smallest positive integer such that c,w, € Q. For
an element w of V*, #(w) denotes the translation by w. Let R, be the
intersection of R with the subspace spanned by {«,|j+#i} and R} =R, N
{x e Rla>0}. Put

Bi=1(c,0), lizl(ﬁi),
K,={xe E[0<{a,x)<1 (xe R})}

In the rest of this section, we fix i. So we write sometimes [ for /,, if
there is no fear of confusion.

We construct an S-digraph I'; as follows. The vertices are the
alcoves contained in K;. If 4, B are two alcoves contained in K, such
that they have a common face of type s(e .S) and s ¢ #(4), then two
vertices A, B are connected in the following way.

A—f—>B

And assume that I"; has no other edges. Then ['; is an S-digraph and
S(I'7) is simply connected. Let G, be the group generated by 8,. Then
G, acts on I'; as an automorphism group by

A——>Ar 7 e@G)).

Hence we can naturally construct a new S-digraph I",=1";/G,.
Let B,=s, - - - 5,5, (s; € S) be a reduced expression of ;. Then the
set of alcoves

A5 B?
5,45 B¢
Sp_y v AT (neZ)

defines a full subgraph I'; of I';,which becomes an S-digraph. Note
that I';” depends on the choice of the reduced expression. The action of
G, preserves I'; . Hence we can construct another S-digraph I";=1";/G,.

3.3. Lemma (1) The S-digraph I'; is a completion of I'; .
(2) The S-digraph I, is a completion of I',.

Proof. (1) Let I' be a complete S-digraph and ¢: I'; —I" be a
morphism. Let x be a vertex of I7;. Then there is a path of I'; of the
form

Xy X_j—X, =X Xy—r - X115
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X_n-1s xMel7

(Take alcoves x_y_;, X, far enough from the alcove x. Take points a_ ¢

X_y-1, @€ x and a, € x,, in general pesition. Since any face contained
in K is transversal to o, it is also transversal to the vectors a.a, and a,a-.

Let x,, - - -, X, (resp. Xy, - -+, X_y_,) be the alcoves which intersect the
—_—

segment Za: (resp. a,a_). We may assume that these segments do not
intersect with any facets of codimension greater than one and that x, and
X;., have a common face. Thus we get a path of the above form.) Then
I'; has a path connecting x_,_; and x,,

7 s/

S_n M
Xy =Y-yag$— < Yy=Xy.

Then [ has the path

5" S
So(y-zv—x)"— T <—‘S0(J’M)~
Since I" is complete, I" has a path of the form

SN So S1 Sy
Py D=2y g Zy=(Vy).
Put @(x)=z, Since I'; is simply connected, this is well defined and an
extension of ¢. Hence I7; is a completion of ;.
(2) Let ' be a complete S-digraph and ¢: I';—I" be a morphism.
Then there is a uniquely determined morphism «: I'; —I" such that the
following diagram becomes commutative.

r
o

r, \+
']

Since + is uniquely determined, + is G,-invariant and induces a morphism
g: [, —T,
which is an extension of ¢.

3.4. The element B; satisfies the assumption of (2.5), i.e., /(B))=
kI(B;) (k=>0). (See[5;3.2.3]). Hence we can use the results of (2.5). If
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Bi=s; -+ 5,5 (s, € S) is the reduced expression used to construct I';,
then I, is isomorphic to I'(s,, - - -, s). Hence I, is isomorphic to I'(3;).
(See (2.5) for the definition of I'(5;).)

For an alcove A4, define an element 6(4) of W by

0(A) A= Ap,.

Then 6: I'; —W is G,-invariant and induces §: I";,—W. Then the diagram

r—sw
|
iy

is commutative. (See (2.5) for the definition of §.) Any alcove can be
expressed uniquely as A=w='45t(p) (we W,,pe Q). Since w'AFt(p)p;
=w-'B,w. w'4;1(p), we have 0(4)=p?. Hence

(3.5) T B={BrIwe Wy}

3.6. Let 2, be the stabilizer of w, in £2,, where £, is the stabilizer of
0in £. For a natural number f and an element w of W, put

N(f, wy={I=(w,, - -, wolw; e W—{1}, 31 I(w)=1(w),
Wy e wow=wlh
Let G(f) be the group generated by the automorphism
(Wl, MY wf)"—_)(wﬁ LTI wf—l)
of W/, Put
N(f)z UTGQi\ﬂoN(.f’ ;32:—)’
N=]] r<t N(NIG(f).
A subgraph of I'(8,) of the form
s/

4

3.7 l )
X (—/——' . -<——/—x1
Si-1 51

is called a global section. Let J be a set of vertices of I'(f;) which is
contained in some global section. Let M be the totality of such a set J.
Put M(f)={Je M|4J=f}. Assume that J(e M(f), #¢) is contained
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in the global section (3.7) and put J={x,,, - -, x;,} (;,-<<---<i;). Put

W Shyos v Sho Womm Sy <o Sy ooy Wy =Sl e S8 e .
Then (w;, - --.w,) defines an element of N(f)/G(f). Let Aut, be the
automorphism group of I'(8;). Then the mapping M(f)—N(f)/G(f) is
Aut,-invariant and induces a mapping

§: M(f)/Aut,—>N(f)/G(f).

Assume that two elements J, J’ of M(f) correspond to the same element
of N(f)/G(f). Let I'(resp. I'"') be a global section containing J (resp. J').
By the assumption, we may assume that /" is isomorphic to I”. Moreover
we may assume that there is an isomorphism f: I"—I" such that f'(J)=J".
As is easily verified, '(8,) is a completion of any global section. Hence f
can be extended to an automorphism of I'(3;). Hence & is injective. By
(2.8), for any 7 € £2,, there is a global section of the form (3.7) such that
§;---s{=p. Assume that (w,, - - -, w;) is an element of N(f, p;) and
that w,=s{_, - - - s, wy=s{/_, - - - 5{., - - - be reduced expressions. Since
I'(B;) is complete, there is a global section of the form

/7
Sl

’ Y
X R
Put J={x,, X,,, - -, X,,}. Then &) is the class of (w;, <+ -, w,). Hence
(3.3) &: M(f)/Aut,——=>N(f)/G(f).
Put M'=M—{g}. Then
(3.9 §: M'[Aut,—=>[[ <, N(N)/G().

Let J={x,,, - - -, x;,} be an element of M(f) which is contained in the
global section (3.7). Define an element I=(w,, - - -, w;) of N(f) as before.
Let ¢ be an element of Aut, such that ¢(J)=J. Puty,=x;,. Here we
consider the index j as an element of Z/fZ. Then o(y,)=y,;,. with some
7 & Z[fZ. Define an element ¢’ of G(f) by a’(wy, - - - , W) =(Wise, - -+, Wril).
Here also we consider the index j of wj as an element of Z/fZ. Then ¢’ is
an element of the stabilizer G(I) of I in G(f). Conversely, assume that
o' (W, -, W (Wi, - - -, W) stabilizes the element 1. Then Jis con-
tained in a global section which admits an automorphism ¢ such that
o(¥;)=y;+. This g can be extended to an automorphism of 7'(3,), which
we shall denote by the same letter . Then ¢ is an element of the stabilizer
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G(J) of Jin Aut,. Thus we get
(3.10) G(H=G().
From (3.9) and (3.10), we have the following equality.
i<t (=D Y4 G =2 e wyaus (— D' B G(T)
(3.11) IENUBU)
= Aut) ' e (=D
3.12. Let I’y (n=2) be the graph of the form

/ \

X, X, ces Xy

Let I' be a finite graph and p: I'—I", a morphism. We define the admis-
sibility of such a pair (I, p) as follows:

(3.12.1) (T, id) is admissible.

(3.12.2) Assume that (I, p) is admissible.. Take two vertices x} and x}
of I such that p(x7/)=x, and p(x})=x,. Construct a graph [’ by adding
to I" new vertices x}.,, « - -, xX;", and new edges

27 s ,7 s
X% Xi+1 s X7-1 Xy .

Define an extension p’: I—I", of p: I'—I", naturally. Then (I”,p) is
admissible.

(3.12.3) A pair (I', p) is admissible iff it can be obtained in this way.

Assume that (I, p) is admissible. A subgraph C of [ is called a
global section if p|,: C—I, is an isomorphism. Let J be a set of vertices
of I" which is contained in some global section. Let M= M([") be the
totality of such a set J. Let | M| be the simplicial complex whose vertices
are the vertices of I" and whose simplices are the nonempty set belonging
to M.

Let us show that | M| is contractible. If (I, p)=(",, id), [M]| is a
simplex, hence contractible. Assume that | M (I")] is contractible and that
({7, p’) is obtained from (I, p) by the procedure (3.12.2). Let {C;} be
the totality of the global sections of (”, p’) which contains {x},, « -, x{_;}.
Let | C;| be the simplex of | M(I™)] corresponding to C,. Then |M(I")|=
U | C;|U]M (). Since each simplex | C, | contains the vertices {x},- - -, x}'},
U;|C;] is contractible. Since each [C;|N |M(I")|is a simplex and contains
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the vertices x/ and x}/, (U,|C;)N|M(I")| is contractible. Since, by the
induction hypothesis, | M(I")| is also contractible, | M (I"")| is contractible.

Thus we have shown that | M| is contractible. Especially the Euler
characteristic of | M| is equal to one, in another word,

ZJeM(r) (—‘1)”‘:0'
3.13. By (3.11) and (3.12), we get

Tyer (=R GU=( Aut)™

NIG)

Let us give an explicit formula for # Aut;. Since an element ¢ of Aut, is
determined by ¢(0), it suffices to determine the cardinality of Aut;-orbit
of 0. (See (2.5) for 0.)

3.14. Let S,=SNW, Then S, satisfies the assumption of (2.7)
with w=f,, i.e., we have I(8,)=1(s B, 5) for s € S,. Thus we can define the
Sy-digraph I'(,).

Lemma. The So-graph ST'\(B,) is simply connected. (It follows that
the two Sy-digraphs I'\(B,) and I'y(B;) are isomorphic. See (2.8).)

Proof. Asssume that
(3.15) By <«—fF (e seSy).

Let H, , («>0) be the fixed point set of the reflection 5. Then (3.15) is
equivalent to

(3.16) (e, w}><0.

Since W= 2, 2 is a Coxeter group. Let 7, be the minimal element in the
coset 2,7. Then (3.16) is equivalent to

(3.17) a0,

In fact (3.16)=>(3.17) is trivial. Assume that a’s' <0 and (&, o}y >0.
Then {(a" ", ;> =0. Hence a’s ‘can be expressed as

-1
Qo= 1521 €105

Since a5 *<<0, ¢;<0. Since 7, is the minimal element of 2,7, a7*>0
(j#i). Hence

=72 ;000 <0.
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This is absurd. Hence (3.16)4:(3.17). It is easy to see that (3.17) is
equivalent to

(3.18) 10 <,

where ¢=35 (=the reflection with respect to H,,). Let g, be the reflection
with respect to H,, o, 2y={0;|1<j<I} and X';={o; € 2,|j#i}. Let ', be
the S,-digraph whose vertices are the (2';, ¢)-reduced element of 2, (see[l;
Chap. 1V, § 1, Ex. 3]) and two vertices are connected in the following
way. Let 7 be a vertex of I, and ¢ an element of 3, such that 7¢<7.
Then 7¢ is-also a vertex of I';, and we set

7’0(6—7’.

Since 7—p; defines a bijection between the vertices of I", and I'y(3;) and
(3.15) is equivalent to (3.18), these two S,-digraphs I", and I'y(B;) are iso-
morphic.

Let

51 83 SN

7’0 7’1 e TN
be a path of fI";. Then

ToS1Ss =+ Sy=Tn.
Hence f1I”; is simply connected and f1",(8;) is also simply connected.

3.19. Asis noted in the proof of the above lemma, (3.15) is equiva-
lent to (3.16). Hence every edge goes in at f; iff o] is dominant, i.e.,
Bi=pB,. Since I'y(B,) is isomorphic to I'y(8;) and the vertex 0 corresponds
to f;, 0 is the unique vertex of I'y(B,) at which every edge goes in. By
(2.9) and (3.5), every connected component of ",(5;) is also isomorphic to
I'y(B;). Hence the cardinality of z,(I",(8,)) is equal to the cardinality of
the set ¥, of the vertices at which every edge goes in. Since Aut,-orbit of
0 is contained in V,,

fAut,=4 Aut,(0)<¢ V=4 ”o(r1(/§z))

3.20. Suppose that R, is a direct sum of irreducible root systems
R,,(»=1,2,-..). LetR{,=R,,NR; and &, the highest root of R,,.
Then

Ki={x e E|0< ay, x) (j#0), <G xp<10=1,2, - --)}.

Put @,=3 n, ;o;, J,={j|n, ;=1} and J,={j|a; € R,,}. Let J be a subset
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of U,J, such that $(JNJ,)<1 for every v. For a subset / of {j|1<j<I},
let 2 (I) be the group generated by {s,|j € I} and 7(J) the longest element
of 2(I). Put

(L Y)=1r(J)r(J,—J).
Lemma. We have
K (IL7 NI es0,+ro) =K, (re Z).
Proof. Let x be an element of K;. ForkeJNJ,
(i X([LTU, )+ 205es 05410 =1—{—a, 7 (J,—= DI (J), x) >O0.
ForkeJ,—J,
e, ([T T, v+ 25er 05 1oy = {a (T, — (), x) >0.
Finally, forv=1,2, -..
(@ (LU, D+ Zyes 0, +roy =@ =), xy +§I N 1)<,
3.21. Put
g ={J|JCUJ, $(JNJ,)<1}.
Since I, is isomorphic to I"(3;) (sée (3.4)) and
ONK=0N{Xjes0;+ro|le o, rel}

(3.20) implies that Aut; acts on x,(/",(8,)) transitively. (Note that, if one
deletes all the faces corresponding to S— S, from K; and denotes it by K’,
then there is a one-to-one correspondence 7,(K’)QNK,.) Hence

# Aut, =4 Aut, (6):# V=4 nO(FI(El)):# 0,
where
0:=QN{2jecs0;+ro|Je o, re L)L c,o,.

Then the equality in (3.13) can be rewritten as follows

(3.22) 2isst (=D EGD=(#F Q)"

TEN)/G)

The purpose of this section is to prove the main theorem. (See
introduction.)
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Let us introduce some notations. Put
II"={xe E|0<{a,, x)<c, 1<i<D}.
Let Q** be the set {3/, a,c,0,}a, € Z, a,>0}. For a subset E’ of E, put
W(EY={we W|wAf CE'}.

4.1. The following statement is easily verified. Every element w of
W can be expressed uniquely as w=ww, (w, ¢ W(%5), w, e W,). And,
then, I(w)=1(w)+1(w,).

4.2, For we W(%/), we have I(w)=d(A], wA;). Hence for w, e
W(ll) and p e Q**, we have
1w, 1(p)) =d(A5, w 1(p)A3)=d(AF, AT t(p)+d(45 1(p), w, A 1(p))
=1(t(p)+1(w,).

4.3. Let K be the quotient field of the group ring C[P]. Letg bea
positive real number. The Hecke algebra H (W) is the associative K-
algebra which has basis element T(w) (one for each we W) and multipli-
cation defined by the rules

(T®H+DIT()—g)=0  (se ),
Tw)T(w")=T(ww"), if I(ww=I(w)+I(w).
For a representation R of H (W), put
L(t, A)=> e R(T (W)t
(See [2] for its properties.)
4.4. As aconsequence of (4.1) and (4.2), we get the following iden-

tities.

2wew TW Y = wewmmT(W)EH™) (ZpeQHT(t—(_P—)) (11 @)
. (Zw e WoT(W)t L)
=Cwewa~ TW') [Ti. 1-T(@)1*9)™
“(wew, T(W)EH™).

Hene, for a representation R of H (W), the denominator of det L(z, R)
divides

f=1det (1—=R(T (BN
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4.5. Let X be the set of alcoves and M be the K-vector space with
basis X. There is a unique H (W )-module structure on M such that, for
Ae Xand se S, we have

T(s)A=sA4, if 5¢ 2(A).

Let 2 be the natural inclusion map PCK. Let M, be the K-vector
space spanned by all the infinite formal linear combinations

F(A)=2 peqA(—p)g* 4241 (p) (4 e X).

The Hecke algebra H (W) acts naturally on M,. This H (W)-module is
called a “generic principal series representation.” The set {F(wA;)|w e W}
is a basis of M,. This basis gives a matrix representation R,. Forpe Q,
we have

F(A4t(p))=(p)(P)F(4).
Here p(p)=q%4-4t™ 7 which is independent of the choice of the alcove 4.

4.6. 1t is known that the eigenvalues of R,(T(@)) (we Q**) are
(T D)(@)g @71 e 2} (I5; (4.3.3)]). Hence, by (4.4), the denominator of
det L(t, R,) divides

nzl'=1 H 7€ Qo A= D(c,0)(q' t)").

We normalize the denominator so that its constant term equals 1. It is
also known that M,, (7 € £,) is isomorphic to M, ([5;(4.3.3)]). Hence the
denominator of det L(z, R,) is invariant under the change 2—71 (¥ € £2,).
Since each c,w; is not divisible in Q, the polynomial 1—(72)(c,w,)(g"/*t)"
is irreducible. Hence the denominator of det L(#, R,) is a product of the
factors 1— (7)) (c,w.)(q"* 1)  (1<i<, 7 e ). Hence it is of the form

4.7 H wg mod 2o I1 r€2:\% A=) (c;0:)g" )™,

with some non-negative integers #n,. Here [],,moa 0, means that o, runs
over a representative of £;,-conjugacy classes of the fundamental weights.

4.8. For an element a=>3,., a(p)A(p) (a(p) e C), put
[a: pl=a(p).

If the numerator of det L(z, R)) is of the form 1-ajt+ajt*4 - - -, then
[2;:p]=0(pec Q—{0}). (See[2;1.14.2].) Hence, if det L(t, R)=1-+at
+a,t*+ - - -, then
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“.9) [a,,: c;0,]=n,q" "

Thus to get an explicit formula of the denominator of det L(z, R)), it suf-
fices to calculate the value of [a,,: c,0,] using (1.5).
For x e Wand 7 e £2,, we have

T(X)F(AFT)= 2 <0 (X', DE(X" AST)

with some a(x’, 7} e Z[g] (CC). For each x’ € W, there are uniquely de-
termined p € Q and 7’ e £, such that x’A3 = A;t(p)r’. Then

T()F(A57)=2 <o alx’, VF(ATL(P)I'T)
= Zx’gx a(x,: 7)(2P)(pT,T)F(A8L7/IT)

Hence
tr R(T(x))= Z@Exa(@, No)(p7).
Let x, (1< j<n) be elements in W such that > 7_, I(x,)=1I,. Then
[15=1 tr R(T(x))= Z@ﬁj ([17-1a(t(y), T ))2p) T34 P47 ))-

Hence if [[]%_, tr R(T(x,)): c,w;]5=0, there exist p, e O, 7; & £, (1< j<n)
such that > 7_, p,7,=c,0, and {(p;)<x;. But then
L=1B)=I([15-1 t(p7 N< 231 1t (7))
=Z?:1 l(t(Tj))SZ?=1 I(x)=1,.

Hence #(p,)=x; and each p,7, is contained in the segment joining c¢;w;
and the origin of V*. But since p,7; € O, n must be equal to 1 and p,7,=
c,0w;. Hence, by (1.2), we get

(4.10) [a,;: C;0;]1=2 rep (— 1 a-Da/m [ere™ Ry>(T(wy « + + we)): €;0;]
:ZIGP (=D /L) [tr R(T(w, - - - w)'¥"): c;o0,],
where
P= HdSn,nIli P(d: n)/G(d):
P(d, n):{[:(wl, Ty wd)]wf € W—{I}’
?=1 l(wj)=n,
Wy - - w)'n e {BI]T € 2},

Wy, + -+, w,): primitivel
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and G(d) is the group generated by the automorphism (w, - - -, w,)—
(Was Wy, +++, We_r). Here I=(w,, - - -, w,) is called primitive iff G(I)={1},
where G(I) is the stabilizer of I in G(d).
By [5; 4.3.3], we get tr R(T(B))=tr R(T(B,)) (r € 2,) and
[tr Rz(T@)): co]=[tr R(T(B)): c,w;]= (4 2,) X g1
Hence (4.9) and (4.10) imply

“4.11) ni=rer (=DM 0/1)) X (4 2,).

Using the notations in (3.6), the above equality can be rewritten as

=2y (=D& G X (G Q)

N(NH/IG)

where G (/) is the stabilizer of I in G(f). Using (3.22), we get
4.12) ny=4% 2:/% Q..

4.13. Lemma. Let G be a finite commutative group and g its element
of order n. Then

[Trear (1=2X(g)x)=(1—x")*"",

where G¥ =Hom (G, C*).
By using (4.12) and (4.13), (4.7) can be rewritten as follows:
(4.14) T, ot 2o (1 — (X (@, 7)(g /1) @) es/n harean
AR
where @(R")=P(R")/Q(R") and f=#O(R"). Since we can check (case
by case) that

4.15) f-4Qi/ci=1,
(see Introduction for f;), we have proved the main theorem.

4.16. Remark. It is well known that @=®@(R") can be regarded as
an automorphism group of the Coxeter system (W, S). Consider the
semidirect product W=Wx®. We can define the length function / on
W, the Hecke algebra H, (W), the action R, of H, (W) on M, which is an
extension of R, etc. as usual. Put

L(t, W, R)=f"* Yuew R(T (W)™

and



254 A. Gyoja

e=f"1 Zzew ﬁx(T(x))

Then L(t, W, R,) stabilizes the subspace eM; of M, and the denominator
of det (L(t, W, R))|.x,) is equal to

[T s moa 0o (1 —A(@,7)(g*2)H @0)ra4/75,
T€2:\20

(Sketch of the proof. We can prove that the denominator of det (L(z,
W, R))\.x,) is of the form

H w; mod Qo (1 - Z(CDZT)(q 172 t)l (‘”i))mi
\Q

7€92:\20

with some non-negative integers m, (cf. (4.6)) and that the numerator is
“independent of 2 by the same argument as in [2]. Since

det L(t, Wa R2)= n 160‘/ det (L(ta VT/: ﬁz@:)lwﬂ;@;):

this fact and our main theorem imply the above statement.)
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