Advanced Studies in Pure Mathematics 6, 1985 Algebraic Groups and Related Topics pp. 231-254

The Generalized Poincaré Series of a Principal Series Representation

Akihiko Gyoja*

Dedicated to Professor Hirosi Nagao on his 60th birthday

Introduction

In [2], we defined a matrix valued function $L(t, W, \rho)$ for a representation ρ of the Hecke algebra $H_q(W)(q>1)$ associated to a Coxeter group W. And we showed that this function is similar, in property, to the congruence zeta function of an algebraic variety, i.e.,

(1) matrix components of $L(t, W, \rho)$ are rational functions,

(2) under some assumptions on W, the function $L(t, W, \rho)$ satisfies a functional equation,

(3) the zeros of det $L(t, W, \rho)$ are of the forms ζq^{-a} with some roots of unity ζ and some rational numbers $0 \le a \le 1$ and

(4) if W is finite, the zeros on the boundary of "the critical strip" can be described explicitly in terms of vertices of a W-graph affording ρ . (See [2, introduction] for "the critical strip.")

The purpose of this paper is to determine the denominator of det $L(t, W, R_{2})$ explicitly for an affine Weyl group W and the "generic principal series representation" R_{2} . (See (4.5) for the "generic principal series representation.")

Let us describe our result more explicitly. Let R be an irreducible root system, $\{\alpha_i | 1 \le i \le l\}$ a basis of $R, \{\omega_i | 1 \le i \le l\}$ the fundamental weights of R^{\vee} (= the inverse root system of R), $Q(R^{\vee})$ (resp. $P(R^{\vee})$) the root lattice (resp. weight lattice) of R^{\vee} , $\Phi(R^{\vee})$ the quotient group $P(R^{\vee})/Q(R^{\vee})$, $\Phi(R^{\vee})^{\vee}$ = Hom ($\Phi(R^{\vee})$, \mathbb{C}^{\times}), Ω_0 the Weyl group of R, $\Omega = \Omega_0 \ltimes Q$ (= the affine Weyl group), and $R_i = \{\alpha \in R | \langle \alpha, \omega_i \rangle = 0\}$. Define the length function lon $\Omega_0 \ltimes P$ as usual (cf. [5; 3.2.1]). Suppose that R_i is a direct sum of irreducible root systems $R_{i,\nu}$ ($\nu = 1, 2, \cdots$). Let $f_i = \prod_{\nu} (\# \Phi(R_{i,\nu}^{\vee}))$. (For a

Received February 29, 1984.

^{*)} The author would like to thank The Institute for Advanced Study at Princeton and IHES at Bures-sur-Yvette for providing him with the opportunity to pursue this research. This research was supported in part by Grant-in-Aid for Scientific Research, Ministry of Education.

set X, #X denotes its cardinality.) Let Ω_i be the stabilizer of ω_i in Ω_0 . We have

Main Theorem. The denominator of det $L(t, W, R_{\lambda})$ is equal to

$$\prod_{\substack{\omega_i \mod \mathcal{Q}_0\\\gamma \in \mathcal{Q}_i \setminus \mathcal{Q}_0\\\gamma \in \mathcal{Q}(R^{\gamma})^{\vee}}} (1 - (\lambda \chi)(\omega_i \gamma)(q^{1/2}t)^{l(\omega_i)})^{\# \mathcal{Q}_i/f_i}.$$

(Ssee (4.5) for λ .)

This paper consists of four sections. In the first section, we give the Taylor expansion of

(#)
$$\det(1+A_1t^{l(1)}+A_2t^{l(2)}+\cdots),$$

where A_1, A_2, \cdots are square matrices of the same size and $\{l(i)\}$ is a sequence of positive integers such that every number appears only finitely many times in it. (See (1.5) for the exact form of the Taylor expansion of (#).) In the second and third sections, we define the concepts of S-graphs and S-digraphs, and construct some special S-digraphs. (See the beginning of Section 2 for the definitions of S-graphs and S-digraphs.) We study these S-digraphs closely and get an equality (3.22) as a consequence. This equality, together with the Taylor expansion of (#), proves our main theorem (Section 4).

Notations. For a set X, #X denotes its cardinality. For a Coxeter group W, \leq denotes the usual Bruhat order.

1.

The purpose of this section is to prove the equality (1.5) below.

Let e_n be the *n*-th elementary symmetric function in "infinitely many variables" x_1, x_2, \cdots . (See [4; Chap. 1, Section 2] for the justification of "infinitely many variables.") Put $p_n = \sum_{i=1}^{\infty} x_i^n$. For a partition $\mu = (\mu_1 \ge \mu_2 \ge \cdots \ge 0)$, define

$$|\mu| = \sum_{i \ge 1} \mu_i$$

$$\varepsilon(\mu) = \prod_{i \ge 1} (-1)^{m_i(i-1)}$$

$$z(\mu) = \prod_{i \ge 1} i^{m_i} \cdot m_i!$$

$$p(\mu) = p_{\mu_1} p_{\mu_2} \cdots,$$

where $m_i = m_i(\mu)$ is the number of parts of μ equal to *i*. Then we have

(1.1)
$$e_n = \sum_{\substack{\mu \\ |\mu| = n}} \varepsilon(\mu) z(\mu)^{-1} p(\mu)$$

[4; Chap. 1, (2.14')]. Let A be a square matrix. We shall denote by $tr^{(n)}A$ the *n*-th elementary symmetric function of the eigenvalues of A. As a consequence of (1.1), we get

(1.2)
$$\operatorname{tr}^{(n)} A = \sum_{\substack{|\mu| = n}} \varepsilon(\mu) z(\mu)^{-1} (\operatorname{tr} A)^{m_1} (\operatorname{tr} A^2)^{m_2} \cdots,$$

where $m_i = m_i(\mu)$. (Note that $tr^{(0)}A = 1$.)

Let A_1, A_2, \cdots be a sequence of square matrices of the same size and $l(1), l(2), \cdots$ a sequence of positive integers such that any integer appears only finitely many times in it. Then, we have the following identity.

(1.3)
$$\det (1 + A_1 t^{l(1)} + A_2 t^{l(2)} + \cdots)$$

= exp (tr (log (1 + A_1 t^{l(1)} + \cdots)))
= exp (tr $\left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (A_1 t^{l(1)} + \cdots)^n \right)$)
= $\prod_{n=1}^{\infty} \exp \left(\frac{(-1)^{n-1}}{n} \operatorname{tr} (A_1 t^{l(1)} + \cdots)^n \right)$
= $\prod_{n=1}^{\infty} \sum_{a_n=0}^{\infty} \frac{(-1)^{(n-1)a_n}}{a_n! n^{a_n}} (\operatorname{tr} (A_1 t^{l(1)} + \cdots)^n)^{a_n}.$

Put $N = \{1, 2, \dots\}$. The automorphism $(i_1, \dots, i_d) \rightarrow (i_d, i_1, \dots, i_{d-1})$ of N^d generates a group G(d) of automorphisms. An element $I = (i_1, \dots, i_d)$ of N^d is said to be primitive if $\{g \in G(d) | gI = I\} = \{1\}$. We shall denote by P(d) the set of primitive elements in N^d . Put $P = \coprod_{d \ge 1} P(d)/G(d)$. For an element $I = (i_1, \dots, i_d)$ of $N^d/G(d)$, put

$$\operatorname{tr} A_{I} = \operatorname{tr} (A_{i_{1}}A_{i_{2}}\cdots A_{i_{d}}),$$

$$|I| = d,$$

$$l(I) = l(i_{1}) + \cdots + l(i_{d}).$$

Then

$$(\operatorname{tr} (A_{1}t^{l(1)} + A_{2}t^{l(2)} + \cdots)^{n})^{a_{n}}$$

= $(\sum_{d \mid n} \sum_{I \in P(d)/G(d)} \operatorname{tr} (dA_{I}^{n/d} t^{(n/d)l(I)}))^{a_{n}}$
= $\sum_{f_{n}} \frac{a_{n}!}{\prod_{I} f_{n}(I)!} \prod_{I} (\operatorname{tr} (|I|A_{I}^{n/|I|} t^{(n/|I|)l(I)}))^{f_{n}(I)},$

the last summation being taken over the mappings $f_n: \prod_{d|n} P(d)/G(d) \rightarrow \mathbb{N} \cup \{0\}$ such that $\sum_I f_n(I) = a_n$. Hence

$$\sum_{a_{n}=0}^{\infty} \frac{(-1)^{(n-1)a_{n}}}{a_{n}! n^{a_{n}}} (\operatorname{tr} (A_{1}t^{l(1)} + \cdots)^{n})^{a_{n}}$$

$$= \sum_{f_{n}} \left(\prod_{I} \frac{(-1)^{(n-1)f_{n}(I)}}{f_{n}(I)! (n/|I|)^{f_{n}(I)}} \right) (\prod_{I} (\operatorname{tr} A_{I}^{n/|I|})^{f_{n}(I)}) (\prod_{I} t^{(n/|I|)l(I)f_{n}(I)})$$

$$= \sum_{f_{n}} \left(\prod_{I} \frac{(-1)^{((n/|I|)-1)f_{n}(I)}}{f_{n}(I)! (n/|I|)^{f_{n}(I)}} \right) (\prod_{I} (-1)^{(n-n/|I|)f_{n}(I)}) (\prod_{I} (\operatorname{tr} A_{I}^{n/|I|})^{f_{n}(I)})$$

$$\cdot (\prod_{I} t^{(n/|I|)l(I)f_{n}(I)}),$$

the second and the third summations being taken all over the mappings $f_n: \coprod_{d\mid n} P(d)/G(d) \rightarrow \mathbb{N} \cup \{0\}$ such that $\sum_I f_n(I) < \infty$. This equality, together with (1.3), implies

(1.4) det
$$(1+A_{1}t^{l(1)}+A_{2}t^{l(2)}+\cdots)$$

$$=\sum_{\substack{(f_{1},f_{2},\cdots)}} \left(\prod_{\substack{I,n\\|I||n}} \frac{(-1)^{((n/|I|)-1)f_{n}(I)}}{f_{n}(I)! (n/|I|)^{f_{n}(I)}}\right)$$

$$\cdot (\prod_{\substack{I,n\\|I||n}} (-1)^{(n-n/|I|)f_{n}(I)}) (\prod_{\substack{I,n\\|I||n}} (\operatorname{tr} A_{I}^{n/|I|})^{f_{n}(I)})$$

$$\cdot (\prod_{\substack{I,n\\|I||n}} t^{(n/|I|)l(I)f_{n}(I)}).$$

Put $g_m(I) = f_{m|I|}(I)$ for $I \in P$ and $m \in \mathbb{N}$. Define a partition $\mu(I)$ by $\mu(I) = (1^{g_1(I)} 2^{g_2(I)} \cdots)$. (See [4; Chap. 1] for this expression.) Let Φ be the set of mappings $\varphi: P \to \mathbb{N} \cup \{0\}$ such that $\varphi(I) = 0$ except for finitely many *I*'s. Then (1.4) can be rewritten as

$$\det (1 + A_1 t^{I(1)} + A_2 t^{I(2)} + \cdots)$$

= $\sum_{(g_1, g_2, \cdots)} \left(\prod_{I, m} \frac{(-1)^{(m-1)g_m(I)}}{g_m(I)! m^{g_m(I)}} \right) (\prod_{I, m} (-1)^{m(|I|-1)g_m(I)})$
 $\cdot (\prod_{I, m} (\operatorname{tr} A_I^m)^{g_m(I)}) (\prod_{I, m} t^{ml(I)g_m(I)})$
= $\sum_{\varphi \in \Phi} \sum_{\substack{(g_1, g_2, \cdots) \\ |\mu(I)| = \varphi(I)}} (\prod_{I} \varepsilon(\mu(I) z(\mu(I))^{-1}) (\prod_{I} (-1)^{\varphi(I)(|I|-1}))$
 $\cdot (\prod_{I, m} (\operatorname{tr} A_I^m)^{g_m(I)}) (\prod_{I} t^{\varphi(I)l(I)}).$

Then by (1.2), we get

(1.5)
$$\det (1 + A_1 t^{I(1)} + A_2 t^{I(2)} + \cdots) = \sum_{\varphi \in \mathscr{Q}} (-1)^{\Sigma_{\varphi(I)}(|I| - 1)} (\prod_I \operatorname{tr}^{(\varphi(I))} A_I) t^{\Sigma_{\varphi(I)}(I)}.$$

1.6. Example. Let det $(1 + A_1t + A_2t^2 + \cdots) = 1 + a_1t + a_2t^2 + \cdots$.

Then

$$\begin{aligned} a_1 &= \operatorname{tr} A_1 \\ a_2 &= \operatorname{tr} A_2 + (\operatorname{tr}^{(2)} A_1 + (\operatorname{tr} A_1)^2) \\ a_3 &= \operatorname{tr} A_3 + (-\operatorname{tr} A_2 A_1 + \operatorname{tr} A_2 \operatorname{tr} A_1) + (\operatorname{tr}^{(3)} A_1 + \operatorname{tr}^{(2)} A_1 \operatorname{tr} A_1 + (\operatorname{tr} A_1)^3) \\ a_4 &= \operatorname{tr} A_4 + (-\operatorname{tr} A_3 A_1 + \operatorname{tr} A_3 \operatorname{tr} A_1) + (\operatorname{tr}^{(2)} A_2 + (\operatorname{tr} A_2)^2) \\ &+ (\operatorname{tr} A_2 A_1^2 - \operatorname{tr} A_2 A_1 \operatorname{tr} A_1 + \operatorname{tr} A_2 \operatorname{tr}^{(2)} A_1 + \operatorname{tr} A_2 (\operatorname{tr} A_1)^2) \\ &+ (\operatorname{tr}^{(4)} A_1 + \operatorname{tr}^{(3)} A_1 \operatorname{tr} A_1 + (\operatorname{tr}^{(2)} A_1)^2 + \operatorname{tr}^{(2)} A_1 (\operatorname{tr} A_1)^2 + (\operatorname{tr} A_1)^4) \end{aligned}$$

etc.

2.

In this section, we define the notions of S-graphs and S-diagraphs, and study them.

Let (W, S) be a Coxeter system. We define an S-graph to be a (pseudo-) graph together with the following datum: for each edge x-y, we are given an element s of S. (We write x - y). This datum is subject to the following requirement. If

$$x_0 \xrightarrow{s_1} x_1 \xrightarrow{s_1} \cdots \xrightarrow{s_n} x_n$$

is a path such that $s_1s_2\cdots s_n=1$, then $x_0=x_n$.

An S-digraph (=directed S-graph) Γ is a directed (pseudo-) graph together with the following datum: for each directed edge $x \rightarrow y$, we are given an element s of S. (We write $x \xrightarrow{s} y$.) This datum is subject to the following requirements.

- (1) If we forget the directions of edges, Γ becomes an S-graph, which is denoted by $f(\Gamma)$.
- (2) If $x \stackrel{s}{\xrightarrow{t}} y$, then $s \neq t$.

A morphism between S-graphs (resp. S-digraphs) is a morphism φ of graphs (resp. digraphs) such that $x \stackrel{s}{\longrightarrow} y$ implies $\varphi(x) \stackrel{s}{\longrightarrow} \varphi(y)$ (resp. $x \stackrel{s}{\longrightarrow} y$ implies $\varphi(x) \stackrel{s}{\longrightarrow} \varphi(y)$). Thus the totality of the S-graphs (resp. the S-digraphs) becomes a category. The automorphisms, the injections, etc. of S-graphs (resp. S-digraphs) can be defined as usual. (A morphism of S-digraphs is injective (resp. epimorphic) iff it induces an injection between vertices (resp. iff it induces an epimorphism between the connected components).)

An S-graph is said to be simply connected if for any closed path

$$x_0 - x_1 - x_1 - \cdots - x_n = x_0,$$

we have $s_1s_2 \cdots s_n = 1$.

If a morphism φ of S-digraphs induces epimorphisms of vertices and edges, then φ is called a covering map. Let Γ_1, Γ_2 be S-digraphs. If there exists a covering map $\Gamma_1 \rightarrow \Gamma_2, \Gamma_1$ is called a covering of Γ_2 . If Γ_1 is a covering of $\Gamma_2, f(\Gamma_1)$ is connected and $f(\Gamma_2)$ is simply connected, then $\Gamma_1 \rightarrow \Gamma_2$ is an isomorphism.

2.1. An S-digraph Γ is said to be complete if the following condition is satisfied. If Γ has a path of the form

$$(\ddagger) \qquad \qquad x_0 \xleftarrow{s(1)} x_1 \xleftarrow{s(2)} \cdots \xleftarrow{s(m)} x_m,$$

where

$$s(i) = \begin{cases} s, & \text{if } i \text{ is odd} \\ t, & \text{if } i \text{ is even,} \end{cases}$$
$$s, t \in S,$$
$$m = \text{ord}(st),$$
$$1 \le m \le \infty.$$

then Γ has also a path from x_m to x_0 such that

 $x_0 \xleftarrow{s(0)} x'_1 \xleftarrow{s(1)} \cdots \xleftarrow{x'_{m-1}} \xleftarrow{s(m-1)} x_m.$

(We call a path of the form (#) a dihedral path.)

2.2. Let Γ be an S-digraph. A pair $(\overline{\Gamma}, \iota)$ of a complete S-digraph $\overline{\Gamma}$ and an injection $\iota: \Gamma \to \overline{\Gamma}$ is, by definition, a completion of Γ , if the following condition is satisfied. If Γ' is an arbitrary complete S-digraph and φ is a morphism of Γ into Γ' , then there exists a unique morphism $\overline{\varphi}$ such that the following diagram becomes commutative:

2.3. Lemma. For any S-digraph Γ , there exists a unique completion $(\overline{\Gamma}, \iota)$ up to isomorphism.

Proof. It suffices to show the existence. Let

$$x_0 \xleftarrow{s(1)}{x_1} \xleftarrow{s(2)}{\cdots} \xleftarrow{s(m)}{x_m} \quad (m < \infty)$$

be a dihedral path. Assume that Γ contains paths

$$x_0 \xleftarrow{s(0)} x'_1 \xleftarrow{s(1)} \cdots \xleftarrow{s(k-1)} x'_k,$$

and

$$x'_{l} \xleftarrow{s(l)} \cdots \xleftarrow{s(m-2)} x'_{m-1} \xleftarrow{s(m-1)} x_{m},$$

and that Γ does not contain edges of the form

$$x'_k \xleftarrow{s(k)} x'_{k+1}$$
 or $x'_{l-1} \xleftarrow{s(l-1)} x'_l$.

Then $k \le l-1$. Construct an S-digraph Γ^* by adding to Γ new vertices $x'_{k+1}, \dots, x'_{l-1}$ and new edges

$$x'_k \xleftarrow{s(k)} x'_{k+1} \xleftarrow{s(l-1)} x'_l$$

Let φ be a morphism of Γ into a complete S-digraph Γ' . Since Γ' is complete, there is a unique path of the form

$$(\varphi(x_0)=) y_0 \xleftarrow{s(0)} y_1 \xleftarrow{s(1)} \cdots \xleftarrow{s(m-1)} y_m (=\varphi(x_m)).$$

Hence $\varphi: \Gamma \to \Gamma'$ can be uniquely extended to a morphism $\varphi^*: \Gamma^* \to \Gamma'$. We make this operation to all the dihedral path of Γ which satisfy our assumption and construct a new S-digraph Γ_1 . Then $\varphi: \Gamma \to \Gamma'$ can be uniquely extended to $\varphi_1: \Gamma_1 \to \Gamma'$. In this way, we construct successively S-digraphs $\Gamma_1, \Gamma_2, \cdots$ and put $\overline{\Gamma} = \underline{\lim} \Gamma_n$. Then this $\overline{\Gamma}$ with the natural inclusion map $\iota: \Gamma \to \overline{\Gamma}$ is a completion of Γ .

2.4. Let Γ be an S-graph. Let Γ^+ be the two dimensional cell complex which is obtained by attaching one 2-cell for each subgraph of the form

or

$$x_1 \underline{\underline{\qquad}} x_2,$$

where s(i) and *m* are defined as in (2.1). (Here we do not assume that x_i 's and y_j 's are all distinct.) Let

$$x_0 = \omega(0) \underbrace{\overset{s_1}{\longrightarrow}} \omega(1/n) \underbrace{\overset{s_2}{\longrightarrow}} \cdots \underbrace{\omega((n-1)/n)} \underbrace{\overset{s_n}{\longrightarrow}} \omega(1) = x_0$$

be a closed path of Γ and $[\omega]$ its homotopy class of $\pi_1(\Gamma^+, x_0)$. Then the element $s_n \cdots s_2 s_1$ depends only on the homotopy class $[\omega]$. We denote this element by $\theta([\omega])$.

2.5. Let w be an element of W such that $l(w^k) = kl(w)$ $(k \ge 0)$. Let $w = s_n \cdots s_2 s_1$ $(s_i \in S)$ be a reduced expression of w. Consider the following S-digraph

where $\bar{i} = i \mod n$. Denote this graph by $\Gamma(s_1, \dots, s_n)$. We know that any reduced expression of w can be obtained from one reduced expression by using the relation

$$sts \dots = tst \dots$$
 (*m* factors),
s. $t \in S$. $m = \text{ord}(st)$.

(See [1; Chap. IV, § 1, Lemma 4]). Hence the completion $\overline{\Gamma}(s_1, \dots, s_n)$ of $\Gamma(s_1, \dots, s_n)$ does not depend on the choice of the reduced expression. (More precisely, let $w = s'_n \cdots s'_1$ be another reduced expression. There is a unique path $\Gamma'(s'_1, \dots, s'_n)$ of the form

in $\overline{\Gamma}(s_1, \dots, s_n)$. (Here $x_i \neq x_j$ if $i \neq j$.) And

$$\Gamma(s'_1, \cdots, s'_n) \xrightarrow{\sim} \Gamma'(s'_1, \cdots, s'_n) \xrightarrow{\sim} \overline{\Gamma}(s_1, \cdots, s_n)$$

is a completion. Note that the point $\overline{0} = \overline{n}$ is also independent of the choice of the reduced expression. We denote this completion by $\overline{\Gamma}(w)$.

Principal Series

Let

$$\omega(0) \xrightarrow{s_1'} \omega(1/N) \xrightarrow{s_2'} \omega(2/N) \xrightarrow{s_N'} \omega(1)$$

be a path of $f(\overline{\Gamma}(w))$. We count the edges contained in this path with alternating signs; an edge $\omega(i/N) - \omega(i+1/N)$ is counted with +1 if $\omega(i/N) \rightarrow \omega(i+1/N)$ in $\overline{\Gamma}(w)$ and is counted with -1 if $\omega(i/N) \leftarrow \omega(i+1/N)$ in $\overline{\Gamma}(w)$. The sum of these ± 1 over all the edges contained in this path is denoted by $i([\omega])$. If $\omega(0) = \omega(1) = x_0$, this number $i([\omega])$ depends only on the homotopy class $[\omega] \in \pi_1((f\overline{\Gamma}(w))^+, x_0)$ of ω and defines an isomorphism

$$i: \pi_1((f\overline{\Gamma}(w))^+, x_0) \xrightarrow{\sim} n\mathbb{Z}.$$

Hence the local system $x_0 \mapsto \pi_1((f\bar{\Gamma}(w))^+, x_0)$ is trivial and there is a uniquely determined isomorphism

$$\pi_1((f\bar{\Gamma}(w))^+, x_0) \xrightarrow{\sim} \pi_1((f\bar{\Gamma}(w))^+, x_0'). \qquad (x_0, x_0' \in \bar{\Gamma}(w)).$$

This isomorphism is compatible with the isomorphism *i*. Let $\alpha(x_0)$ be the element of $\pi_1((f\overline{f}(w))^+, x_0)$ which corresponds to $n \in n\mathbb{Z}$ by the isomorphism *i*. Denote the element $\theta(\alpha(x_0))$ by $\theta(x_0)$. (See (2.4) for θ .) Let

 $x_0 = y_0 \frac{s_1}{y_1} + y_1 \frac{s_2}{y_2} + \cdots + \frac{s_m}{y_m} + y_m = x_0'$

be a path of $f\overline{\Gamma}(w)$ connecting two vertices x_0 and x'_0 . Put $\gamma = s'_m \cdots s'_2 s'_1$. Then

(2.6)
$$\theta(x_0) = \tilde{\gamma}^{-1} \theta(x'_0) \tilde{\gamma}.$$

2.7. Let w be an element of W as in (2.5). Let S_0 be a subset of S such that l(w) = l(sws) ($s \in S_0$). Let W_0 be the parabolic subgroup generated by S_0 . Let $\gamma \in W_0$ and $w^r = \gamma^{-1}w\gamma$. If $l(swr) = l(w^rs)$ ($s \in S_0$), $sw^r = w^rs$. (In fact, for any elements s, $t \in S$ and $w \in W$, "l(swt) = l(w) and l(sw) l(wt)" implies sw = wt.) Hence if $w^{rs} \neq w^r$, $l(sw^r) > l(w^r) > l(w^rs)$ or $l(sw^r) < l(w^rs)$. Let $\Gamma_0(w)$ be the S_0 -digraph whose vertices are $\{w^r | \gamma \in W_0\}$ and such that two vertices w^r and w^{rs} ($s \in S_0$) are connected in the following way. If $l(w^rs) < l(w^r)$, $w^{rs} \notin w^r$. And we assume that $\Gamma_0(w)$ has no other edges. The S_0 -graph $f \Gamma_0(w)$ is connected.

2.8. Let $\overline{\Gamma}_1(w)$ be the S_0 -digraph which is obtained from $\overline{\Gamma}(w)$ by deleting all the edges corresponding to the elements in $S - S_0$. Let $\overline{\Gamma}_0(w)$ be the connected component of $\overline{\Gamma}_1(w)$ which contains $\overline{0}$.

Lemma. The S_0 -digraph $\overline{\Gamma}_0(w)$ is a covering of $\overline{\Gamma}_0(w)$. Especially, if $f\Gamma_0(w)$ is simply connected, the two S_0 -digraphs $\Gamma_0(w)$ and $\overline{\Gamma}_0(w)$ are isomorphic.

Proof. In (2.5) we defined a mapping $\theta: \overline{\Gamma}(w) \to W$. Let us show that this mapping induces a covering map $\overline{\Gamma}_0(w) \to \Gamma_0(w)$. By (2.6), $\theta(\overline{\Gamma}_0(w))$ is contained in $\{w^r | r \in W_0\}$. Let $x \xrightarrow{s} y$ be an edge of $\overline{\Gamma}_0(w)$. Let

$$s'_{n} = s$$

$$x = \omega(n - 1/n) \underbrace{s'_{n-1} \cdots \underbrace{s'_{2}}_{s'_{2}} \omega(1/n) \underbrace{s'_{1} \cdots \underbrace{s'_{n}}_{s'_{1}} \omega(0)}_{s'_{1}} = y$$

be a closed path of $\overline{\Gamma}(w)$ which contains $x \xrightarrow{s} y$ as an edge. Then

$$\theta(x) = s'_{n-1} \cdots s'_1 s,$$

$$\theta(y) = s s'_{n-1} \cdots s'_1.$$

By the assumption on S_0 , $l(\theta(x)) = l(\theta(y)) = n$. Hence

$$\theta(x) = \theta(y)^s \xrightarrow{s} \theta(y).$$

Thus θ induces a morphism between S-digraphs.

Assume that $\theta(\overline{\Gamma}_0(w)) \subsetneq \{w^r | \ell \in W_0\}$. Then there exist $x \in \overline{\Gamma}_0(w), y' \in \Gamma_0(w) - \theta(\overline{\Gamma}_0(w))$ such that $\theta(x) \xrightarrow{s} y'$ or $\theta(x) \xleftarrow{s} y'$ $(s \in S_0)$. If $\theta(x) \xrightarrow{s} y'$, then $y' = \theta(x)^s$ and $l(\theta(x)s) < l(\theta(x))$ (=n). Hence there is a reduced expression of the form

$$\theta(x) = s'_n \cdots s'_2 s.$$

Hence there is a closed path of $\overline{\Gamma}(w)$ of the form

But then $y \in \overline{\Gamma}_0(w)$ and $\theta(y) = y'$, which is absurd. The case $\theta(x) \xleftarrow{s} y'$ can be treated in the same way. Hence $\theta(\overline{\Gamma}_0(w)) = \{w^r | \tau \in W_0\}$. Moreover, it can be proved in the same way that every edge $x' \xrightarrow{s} y'$ of $\Gamma_0(w)$ comes from some edge $x \xrightarrow{s} y$ of $\overline{\Gamma}_0(w)$. Hence θ induces a covering map.

2.9. Let $\overline{\Gamma}_0'(w)$ be any connected component of $\overline{\Gamma}_1(w)$. If $\theta(\overline{\Gamma}_0'(w))$ is

Principal Series

contained in $\{w^r | \tilde{\tau} \in W_0\}$, by the same argument as in (2.8), we can show that $\overline{\Gamma}'_0(w)$ is a covering of $\Gamma_0(w)$.

3.

In this section we construct some S-digraphs and study them. The main purpose of this study is to get the equality (3.22), which will be used in the next section.

3.1. First of all, let us fix some notations relative to affine Weyl groups. The basic references are [1] and [3].

Let R be a reduced, irreducible root system of rank $l \ge 1$ and $\{\alpha_1, \dots, \alpha_l\}$ a set of simple roots. Let α_0 be the highest root of R. Let V be the vector space spanned by R, V* the dual space of V, E the underlying affine space of V^* and R^{\vee} the inverse root system of R. For $\alpha \in R$ and $k \in \mathbb{Z}$, put

$$H_{\alpha, k} = \{x \in E | \langle \alpha, x \rangle = k\},\$$

where \langle , \rangle is the natural pairing of V and V^* . Let \mathscr{F} be the totality of these hyperplanes. Each hyperplane $H \in \mathscr{F}$ defines an orthogonal reflection $e \rightarrow e\sigma_H$ in E with fixed point set H. Let Ω be the group of affine motions generated by σ_H ($H \in \mathscr{F}$). It is known that this group Ω satisfies the assumption in [3; 1.1], i.e., Ω is an infinite discrete subgroup of the group of affine motions of E, acting irreducibly on V^* and leaving stable the set \mathscr{F} . For each special point v, we put

$$\mathscr{C}_{v}^{+} = \{ x \in E \mid 0 < \langle \alpha_{i}, x - v \rangle \ (1 \le i \le l) \}.$$

These cones \mathscr{C}_v^+ also satisfies the assumption in [3; 1.1], i.e., for any two special points v and v', $\mathscr{C}_{v'}^+$ is a translate of \mathscr{C}_v^+ . Thus we may use the notations and definitions of [3; 1.1–1.4] without any change. For any unexplained notation, the reader is referred to [3; 1.1–1.4].

Let $\{\omega_1, \dots, \omega_l\}$ be the vectors in V^* such that $\langle \alpha_i, \omega_j \rangle = \delta_{ij}$. These are the fundamental weights of R^{\vee} . Let $P = P(R^{\vee})$ (resp. $Q = Q(R^{\vee})$) be the lattice of V^* generated by $\{\omega_1, \dots, \omega_l\}$ (resp. $\{\alpha_1^{\vee}, \dots, \alpha_l^{\vee}\}$).

Let W be an affine Weyl group and S its canonical generator ([3; 1.1]). This group W acts on the set of alcoves from the left. For an element $\tilde{\gamma} \in \Omega$ (resp. $w \in W$), there is a unique element $\bar{\gamma} \in W$ (resp. $\bar{w} \in \Omega$) such that $\bar{\gamma}A_0^+ = A_0^+\tilde{\gamma}$ (resp. $A_0^+\bar{w} = wA_0^+$). For two elements $\tilde{\gamma}_1, \tilde{\gamma}_2 \in \Omega$, we have $\bar{\gamma}_1\bar{\gamma}_2A_0^+ = \bar{\gamma}_1A_0^+\tilde{\gamma}_2 = A_0^+\tilde{\gamma}_1\tilde{\gamma}_2A_0^+$. Hence $\tilde{\gamma} \to \bar{\gamma}$ is a homomorphism of Ω into W. The mapping $w \to \bar{w}$ is also a homomorphism of W into Ω . It is clear that $\bar{\gamma} = \tilde{\gamma}$ ($\tilde{\gamma} \in \Omega$) and $\bar{w} = w$ ($w \in W$). Especially Ω is isomorphic to W and (Ω, \bar{S}) is a Coxeter system.

3.2. Let c_i be the smallest positive integer such that $c_i\omega_i \in Q$. For an element ω of V^* , $t(\omega)$ denotes the translation by ω . Let R_i be the intersection of R with the subspace spanned by $\{\alpha_j | j \neq i\}$ and $R_i^+ = R_i \cap \{\alpha \in R | \alpha > 0\}$. Put

$$\beta_i = t(c_i \omega_i), \qquad l_i = l(\beta_i),$$

$$K_i = \{ x \in E \mid 0 < \langle \alpha, x \rangle < 1 \qquad (\alpha \in R_i^+) \}.$$

In the rest of this section, we fix *i*. So we write sometimes l for l_i , if there is no fear of confusion.

We construct an S-digraph $\overline{\Gamma_s}$ as follows. The vertices are the alcoves contained in K_i . If A, B are two alcoves contained in K_i such that they have a common face of type $s (\in S)$ and $s \notin \mathcal{L}(A)$, then two vertices A, B are connected in the following way.

$$A \xrightarrow{s} B$$

And assume that $\overline{\Gamma_i}$ has no other edges. Then $\overline{\Gamma_i}$ is an S-digraph and $f(\overline{\Gamma_i})$ is simply connected. Let G_i be the group generated by β_i . Then G_i acts on $\overline{\Gamma_i}$ as an automorphism group by

$$A \longmapsto A \Upsilon \qquad (\Upsilon \in G_i).$$

Hence we can naturally construct a new S-digraph $\overline{\Gamma}_i = \overline{\Gamma}_i^{\sim} / G_i$.

Let $\overline{\beta}_i = s_i \cdots s_2 s_1$ ($s_i \in S$) be a reduced expression of $\overline{\beta}_i$. Then the set of alcoves

$$A_0^+ \beta_i^n$$

$$s_1 A_0^+ \beta_i^n$$

$$\cdots$$

$$s_{l-1} \cdots s_1 A_0^+ \beta_i^n \qquad (n \in \mathbb{Z})$$

defines a full subgraph Γ_i^{\sim} of $\overline{\Gamma_i^{\sim}}$, which becomes an S-digraph. Note that Γ_i^{\sim} depends on the choice of the reduced expression. The action of G_i preserves Γ_i^{\sim} . Hence we can construct another S-digraph $\Gamma_i = \Gamma_i^{\sim}/G_i$.

3.3. Lemma (1) The S-digraph $\overline{\Gamma}_i^{\sim}$ is a completion of Γ_i^{\sim} .

(2) The S-digraph $\overline{\Gamma}_i$ is a completion of Γ_i .

Proof. (1) Let Γ be a complete S-digraph and $\varphi: \Gamma_i \to \Gamma$ be a morphism. Let x be a vertex of $\overline{\Gamma_i}$. Then there is a path of $\overline{\Gamma_i}$ of the form

 $x_{-N-1} \xleftarrow{S_{-N}} \cdots \xleftarrow{S_{-1}} x_{-1} \xleftarrow{S_0} x_0 = x \xleftarrow{S_1} x_1 \xleftarrow{S_2} \cdots \xleftarrow{S_M} x_M,$

$$x_{-N-1}, \qquad xM \in \Gamma_i^{\sim}$$

(Take alcoves x_{-N-1} , x_M far enough from the alcove x. Take points $a_- \\\in x_{-N-1}$, $a_0 \\\in x$ and $a_+ \\\in x_M$ in general position. Since any face contained in K_i is transversal to ω_i , it is also transversal to the vectors $\overrightarrow{a_+a_0}$ and $\overrightarrow{a_0a^-}$. Let x_M , \cdots , x_0 (resp. x_0 , \cdots , x_{-N-1}) be the alcoves which intersect the segment $\overrightarrow{a_+a_0}$ (resp. $\overrightarrow{a_0a_-}$). We may assume that these segments do not intersect with any facets of codimension greater than one and that x_i and x_{i+1} have a common face. Thus we get a path of the above form.) Then T_i^{\sim} has a path connecting x_{-N-1} and x_M

$$x_{-N-1} = y_{-N-1} \underbrace{\overset{s'_{-N}}{\longleftarrow} \cdots \overset{s'_{M}}{\longleftarrow} y_{M}} = x_{M}.$$

Then Γ has the path

$$\varphi(y_{-N-1}) \xleftarrow{s'_{-N}} \cdots \xleftarrow{s'_{M}} \varphi(y_{M}).$$

Since Γ is complete, Γ has a path of the form

$$\varphi(y_{-N-1}) = z_{-N-1} \underbrace{\stackrel{s_{-N}}{\longleftarrow} \cdots \stackrel{s_0}{\longleftarrow} z_0 \underbrace{\stackrel{s_1}{\longleftarrow} \cdots \stackrel{s_M}{\longleftarrow} z_M = \varphi(y_M).$$

Put $\bar{\varphi}(x) = z_0$. Since $\bar{\Gamma}_i^{\sim}$ is simply connected, this is well defined and an extension of φ . Hence $\bar{\Gamma}_i^{\sim}$ is a completion of Γ_i^{\sim} .

(2) Let Γ be a complete S-digraph and $\varphi: \Gamma_i \to \Gamma$ be a morphism. Then there is a uniquely determined morphism $\psi: \overline{\Gamma_i} \to \Gamma$ such that the following diagram becomes commutative.

Since ψ is uniquely determined, ψ is G_i -invariant and induces a morphism

$$\bar{\varphi}: \Gamma_i \to \Gamma,$$

which is an extension of φ .

3.4. The element $\overline{\beta}_i$ satisfies the assumption of (2.5), i.e., $l(\overline{\beta}_i^k) = kl(\overline{\beta}_i)$ ($k \ge 0$). (See [5; 3.2.3]). Hence we can use the results of (2.5). If

 $\overline{\beta}_i = s_i \cdots s_2 s_1 \ (s_i \in S)$ is the reduced expression used to construct Γ_i^{\sim} , then Γ_i is isomorphic to $\Gamma(s_1, \cdots, s_l)$. Hence $\overline{\Gamma}_i$ is isomorphic to $\overline{\Gamma}(\overline{\beta}_i)$. (See (2.5) for the definition of $\overline{\Gamma}(\overline{\beta}_i)$.)

For an alcove A, define an element $\theta(A)$ of W by

$$\theta(A)A = A\beta_i$$
.

Then $\theta: \overline{\Gamma}_i \to W$ is G_i -invariant and induces $\theta: \overline{\Gamma}_i \to W$. Then the diagram

is commutative. (See (2.5) for the definition of θ .) Any alcove can be expressed uniquely as $A = w^{-1}A_0^+ t(p)$ ($w \in W_0, p \in Q$). Since $w^{-1}A_0^+ t(p)\beta_i = w^{-1}\overline{\beta}_i w$. $w^{-1}A_0^+ t(p)$, we have $\theta(A) = \overline{\beta}_i^w$. Hence

(3.5)
$$\theta(\overline{\Gamma}(\overline{\beta}_i)) = \{\overline{\beta}_i^w | w \in W_0\}.$$

3.6. Let Ω_i be the stabilizer of ω_i in Ω_0 , where Ω_0 is the stabilizer of 0 in Ω . For a natural number f and an element w of W, put

$$N(f, w) = \{I = (w_1, \dots, w_j) | w_j \in W - \{1\}, \sum_{j=1}^{f} l(w_j) = l(w), \\ w_f \cdots w_2 w_1 = w\}.$$

Let G(f) be the group generated by the automorphism

$$(w_1, \cdots, w_f) \longmapsto (w_f, w_1, \cdots, w_{f-1})$$

of W^f . Put

$$N(f) = \coprod_{r \in \mathcal{Q}_i \setminus \mathcal{Q}_0} N(f, \overline{\beta_i}),$$
$$N = \coprod_{r \in I} N(f) / G(f).$$

A subgraph of $\overline{\Gamma}(\overline{\beta}_i)$ of the form

(3.7)
$$\begin{array}{c} s'_{l} \\ \downarrow \\ x_{l} \underbrace{\prec}_{s'_{l-1}} \cdots \underbrace{\prec}_{s'_{l}} x_{1} \end{array}$$

is called a global section. Let J be a set of vertices of $\overline{\Gamma}(\overline{\beta}_i)$ which is contained in some global section. Let M be the totality of such a set J. Put $M(f) = \{J \in M | \sharp J = f\}$. Assume that $J(\in M(f), \neq \phi)$ is contained

Principal Series

in the global section (3.7) and put $J = \{x_{i_1}, \dots, x_{i_f}\}$ $(i_1 < \dots < i_f)$. Put

$$w = s'_{i_2-1} \cdots s'_{i_1}, w_2 = s'_{i_3-1} \cdots s'_{i_2}, \cdots, w_f = s'_{i_1-1} \cdots s'_1 s'_1 \cdots s'_{i_f}$$

Then (w_1, \dots, w_f) defines an element of N(f)/G(f). Let Aut_i be the automorphism group of $\overline{\Gamma}(\overline{\beta}_i)$. Then the mapping $M(f) \rightarrow N(f)/G(f)$ is Aut_i-invariant and induces a mapping

$$\xi: M(f)/\operatorname{Aut}_i \to N(f)/G(f).$$

Assume that two elements J, J' of M(f) correspond to the same element of N(f)/G(f). Let $\Gamma(\text{resp. }\Gamma')$ be a global section containing J (resp. J'). By the assumption, we may assume that Γ is isomorphic to Γ' . Moreover we may assume that there is an isomorphism $f: \Gamma \to \Gamma'$ such that f(J)=J'. As is easily verified, $\overline{\Gamma}(\overline{\beta}_i)$ is a completion of any global section. Hence fcan be extended to an automorphism of $\overline{\Gamma}(\overline{\beta}_i)$. Hence ξ is injective. By (2.8), for any $\gamma \in \Omega_0$, there is a global section of the form (3.7) such that $s'_i \cdots s'_1 = \overline{\beta}'_i$. Assume that (w_1, \cdots, w_f) is an element of $N(f, \overline{\beta}'_i)$ and that $w_1 = s''_{i_2-1} \cdots s''_1, w_2 = s''_{i_3-1} \cdots s''_{i_2}, \cdots$ be reduced expressions. Since $\overline{\Gamma}(\overline{\beta}_i)$ is complete, there is a global section of the form

Put $J = \{x_1, x_{i_2}, \dots, x_{i_f}\}$. Then $\xi(J)$ is the class of (w_1, \dots, w_f) . Hence (3.8) $\xi \colon M(f)/\operatorname{Aut}_i \longrightarrow N(f)/G(f)$.

Put $M' = M - \{\phi\}$. Then

(3.9) $\xi: M'/\operatorname{Aut}_{i} \longrightarrow \coprod_{f \leq i} N(f)/G(f).$

Let $J = \{x_{i_1}, \dots, x_{i_f}\}$ be an element of M(f) which is contained in the global section (3.7). Define an element $I = (w_1, \dots, w_f)$ of N(f) as before. Let σ be an element of Aut_i such that $\sigma(J) = J$. Put $y_j = x_{i_f}$. Here we consider the index j as an element of $\mathbb{Z}/f\mathbb{Z}$. Then $\sigma(y_j) = y_{j+\tau}$ with some $\tau \in \mathbb{Z}/f\mathbb{Z}$. Define an element σ' of G(f) by $\sigma'(w'_1, \dots, w'_f) = (w'_{1+\tau}, \dots, w'_{j+\tau})$. Here also we consider the index j of w'_j as an element of $\mathbb{Z}/f\mathbb{Z}$. Then σ' is an element of the stabilizer G(I) of I in G(f). Conversely, assume that $\sigma': (w'_1, \dots, w'_f) \mapsto (w'_{1+\tau}, \dots, w'_{j+\tau})$ stabilizes the element I. Then J is contained in a global section which admits an automorphism σ such that $\sigma(y_j) = y_{j+\tau}$. This σ can be extended to an automorphism of $\overline{\Gamma}(\overline{\beta}_i)$, which we shall denote by the same letter σ . Then σ is an element of the stabilizer G(J) of J in Aut_i. Thus we get

$$(3.10) G(I) \cong G(J).$$

From (3.9) and (3.10), we have the following equality.

(3.11)
$$\sum_{\substack{I \leq I \\ I \in N(f)/G(f)}} (-1)^{f-1/\#} G(I) = \sum_{J \in M'/\operatorname{Aut}_i} (-1)^{|J|-1/\#} G(J) = (\#\operatorname{Aut}_i)^{-1} \sum_{J \in M'} (-1)^{|J|-1}.$$

3.12. Let Γ_0 ($n \ge 2$) be the graph of the form

Let Γ be a finite graph and $p: \Gamma \rightarrow \Gamma_0$ a morphism. We define the admissibility of such a pair (Γ, p) as follows:

(3.12.1) (Γ_0 , id) is admissible.

(3.12.2) Assume that (Γ, p) is admissible. Take two vertices x''_k and x''_l of Γ such that $p(x''_k) = x_k$ and $p(x''_l) = x_l$. Construct a graph Γ' by adding to Γ new vertices $x''_{k+1}, \dots, x''_{l-1}$ and new edges

 $x_k^{\prime\prime} - - x_{k+1}^{\prime\prime} - - x_{l-1}^{\prime\prime} - x_l^{\prime\prime}.$

Define an extension $p': \Gamma' \to \Gamma_0$ of $p: \Gamma \to \Gamma_0$ naturally. Then (Γ', p') is admissible.

(3.12.3) A pair (Γ, p) is admissible iff it can be obtained in this way.

Assume that (Γ, p) is admissible. A subgraph C of Γ is called a global section if $p|_{\mathcal{C}} : C \to \Gamma_0$ is an isomorphism. Let J be a set of vertices of Γ which is contained in some global section. Let $M = M(\Gamma)$ be the totality of such a set J. Let |M| be the simplicial complex whose vertices are the vertices of Γ and whose simplices are the nonempty set belonging to M.

Let us show that |M| is contractible. If $(\Gamma, p) = (\Gamma_0, \text{ id})$, |M| is a simplex, hence contractible. Assume that $|M(\Gamma)|$ is contractible and that (Γ', p') is obtained from (Γ, p) by the procedure (3.12.2). Let $\{C_i\}$ be the totality of the global sections of (Γ', p') which contains $\{x''_{k+1}, \dots, x''_{i-1}\}$. Let $|C_i|$ be the simplex of $|M(\Gamma')|$ corresponding to C_i . Then $|M(\Gamma')| = \bigcup_i |C_i| \bigcup |M(\Gamma)|$. Since each simplex $|C_i| \cap |M(\Gamma)|$ is a simplex and contains

the vertices x_k'' and x_l'' , $(\bigcup_i |C_i|) \cap |M(\Gamma)|$ is contractible. Since, by the induction hypothesis, $|M(\Gamma)|$ is also contractible, $|M(\Gamma')|$ is contractible.

Thus we have shown that |M| is contractible. Especially the Euler characteristic of |M| is equal to one, in another word,

$$\sum_{J\in M(\Gamma)} (-1)^{|J|} = 0.$$

3.13. By (3.11) and (3.12), we get

$$\sum_{\substack{I \leq l \\ I \in N(f)/G(f)}} (-1)^{f-1} \# G(I) = (\# \operatorname{Aut}_i)^{-1}.$$

Let us give an explicit formula for $\# \operatorname{Aut}_i$. Since an element σ of Aut_i is determined by $\sigma(\overline{0})$, it suffices to determine the cardinality of Aut_i -orbit of $\overline{0}$. (See (2.5) for $\overline{0}$.)

3.14. Let $S_0 = S \cap W_0$. Then S_0 satisfies the assumption of (2.7) with $w = \overline{\beta}_i$, i.e., we have $l(\overline{\beta}_i) = l(s\overline{\beta}_i s)$ for $s \in S_0$. Thus we can define the S_0 -digraph $\Gamma_0(\overline{\beta}_i)$.

Lemma. The S_0 -graph $f\Gamma_0(\overline{\beta}_i)$ is simply connected. (It follows that the two S_0 -digraphs $\Gamma_0(\overline{\beta}_i)$ and $\overline{\Gamma}_0(\overline{\beta}_i)$ are isomorphic. See (2.8).)

Proof. Asssume that

$$(3.15) \qquad \qquad (\overline{\beta_i^r})^s \stackrel{s}{\longleftarrow} \overline{\beta_i^r} \qquad (\widetilde{\gamma} \in \Omega_0, \, s \in S_0).$$

Let $H_{\alpha,0}$ ($\alpha > 0$) be the fixed point set of the reflection \bar{s} . Then (3.15) is equivalent to

$$(3.16) \qquad \langle \alpha, \omega_i^r \rangle < 0.$$

Since $\overline{W} = \Omega$, Ω is a Coxeter group. Let γ_0 be the minimal element in the coset $\Omega_i \gamma$. Then (3.16) is equivalent to

(3.17)
$$\alpha^{r_0^{-1}} < 0.$$

In fact (3.16) \Rightarrow (3.17) is trivial. Assume that $\alpha r_0^{-1} < 0$ and $\langle \alpha, \omega_i^r \rangle \ge 0$. Then $\langle \alpha r_0^{-1}, \omega_i \rangle = 0$. Hence αr_0^{-1} can be expressed as

$$\alpha^{\tau_0^{-1}} = \sum_{j \neq i} c_j \alpha_j.$$

Since $\alpha^{r_0^{-1}} < 0$, $c_j \le 0$. Since γ_0 is the minimal element of $\Omega_i \gamma$, $\alpha_j^{r_0} > 0$ $(j \ne i)$. Hence

$$\alpha = \sum_{j \neq i} c_j \alpha_j^{r_0} < 0.$$

This is absurd. Hence $(3.16) \Leftarrow (3.17)$. It is easy to see that (3.17) is equivalent to

where $\sigma = \bar{s}$ (= the reflection with respect to $H_{\alpha,0}$). Let σ_j be the reflection with respect to $H_{\alpha_j,0}$, $\Sigma_0 = \{\sigma_j | 1 \le j \le l\}$ and $\Sigma_i = \{\sigma_j \in \Sigma_0 | j \ne i\}$. Let Γ_i be the S_0 -digraph whose vertices are the (Σ_i, ϕ) -reduced element of Ω_0 (see [1; Chap. IV, § 1, Ex. 3]) and two vertices are connected in the following way. Let γ be a vertex of Γ_i and σ an element of Σ_0 such that $\gamma \sigma < \gamma$. Then $\gamma \sigma$ is also a vertex of Γ_i and we set

$$\gamma \sigma \xleftarrow{\overline{\sigma}} \gamma$$
.

Since $\tilde{\gamma} \mapsto \overline{\beta_i^{\gamma}}$ defines a bijection between the vertices of Γ_i and $\Gamma_0(\bar{\beta}_i)$ and (3.15) is equivalent to (3.18), these two S_0 -digraphs Γ_i and $\Gamma_0(\bar{\beta}_i)$ are isomorphic.

Let

$$\gamma_0 - \gamma_1 - \gamma_1 - \gamma_N - \gamma_N - \gamma_N$$

be a path of $f\Gamma_i$. Then

 $\overline{\gamma}_0 s_1 s_2 \cdots s_N = \overline{\gamma}_N.$

Hence $f\Gamma_i$ is simply connected and $f\Gamma_0(\overline{\beta}_i)$ is also simply connected.

3.19. As is noted in the proof of the above lemma, (3.15) is equivalent to (3.16). Hence every edge goes in at $\overline{\beta}_i^r$ iff ω_i^r is dominant, i.e., $\beta_i^r = \beta_i$. Since $\overline{\Gamma}_0(\overline{\beta}_i)$ is isomorphic to $\Gamma_0(\overline{\beta}_i)$ and the vertex $\overline{0}$ corresponds to $\overline{\beta}_i, \overline{0}$ is the unique vertex of $\overline{\Gamma}_0(\overline{\beta}_i)$ at which every edge goes in. By (2.9) and (3.5), every connected component of $\overline{\Gamma}_1(\overline{\beta}_i)$ is also isomorphic to $\Gamma_0(\overline{\beta}_i)$. Hence the cardinality of $\pi_0(\overline{\Gamma}_1(\overline{\beta}_i))$ is equal to the cardinality of the set V_0 of the vertices at which every edge goes in. Since Aut_i-orbit of $\overline{0}$ is contained in V_0 ,

$$\# \operatorname{Aut}_i = \# \operatorname{Aut}_i(\overline{0}) \leq \# V_0 = \# \pi_0(\overline{\Gamma}_1(\overline{\beta}_i)).$$

3.20. Suppose that R_i is a direct sum of irreducible root systems $R_{i,\nu}$ ($\nu = 1, 2, \cdots$). Let $R_{i,\nu}^+ = R_{i,\nu} \cap R_i^+$ and $\tilde{\alpha}_{\nu}$ the highest root of $R_{i,\nu}$. Then

$$K_i = \{x \in E \mid 0 < \langle \alpha_j, x \rangle \ (j \neq i), \ \langle \tilde{\alpha}_{\nu}, x \rangle < 1 \ (\nu = 1, 2, \cdots) \}.$$

Put $\tilde{\alpha}_{\nu} = \sum n_{\nu,j} \alpha_j$, $J_{\nu} = \{j | n_{\nu,j} = 1\}$ and $J'_{\nu} = \{j | \alpha_j \in R_{i,\nu}\}$. Let J be a subset

of $\bigcup_{\nu} J_{\nu}$ such that $\#(J \cap J_{\nu}) \leq 1$ for every ν . For a subset I of $\{j | 1 \leq j \leq l\}$, let $\Omega(I)$ be the group generated by $\{\sigma_j | j \in I\}$ and $\Upsilon(I)$ the longest element of $\Omega(I)$. Put

$$\tilde{\gamma}(J,\nu) = \tilde{\gamma}(J'_{\nu})\tilde{\gamma}(J'_{\nu}-J).$$

Lemma. We have

$$K_i(\prod_{\nu} \tilde{r}(J,\nu))t(\sum_{j\in J} \omega_j + r\omega_i) = K_i \qquad (r \in \mathbb{Z}).$$

Proof. Let x be an element of K_i . For $k \in J \cap J_{\nu}$,

$$\langle \alpha_k, x(\prod_{\nu} \tilde{\gamma}(J,\nu)) + \sum_{j \in J} \omega_j + r \omega_i \rangle = 1 - \langle -\alpha_k \tilde{\gamma}(J'_{\nu} - J) \tilde{\gamma}(J'_{\nu}), x \rangle > 0.$$

For $k \in J'_v - J$,

$$\langle \alpha_k, x(\prod_{\nu} \mathcal{I}(J, \nu)) + \sum_{j \in J} \omega_j + r \omega_i \rangle = \langle \alpha_k \mathcal{I}(J'_{\nu} - J) \mathcal{I}(J'_{\nu}), x \rangle > 0.$$

Finally, for $\nu = 1, 2, \cdots$

$$\langle \tilde{\alpha}_{\nu}, x(\prod_{\nu} (J,\nu)) + \sum_{j \in J} \omega_{j} + r \omega_{i} \rangle = \langle \tilde{\alpha}_{\nu} \mathcal{I}(J_{\nu}' - J) \mathcal{I}(J_{\nu}'), x \rangle + \# (J \cap J_{\nu}) < 1.$$
3.21. Put

$$\mathscr{A} = \{J | J \subset \bigcup J_{\nu}, \ \# (J \cap J_{\nu}) \leq 1\}.$$

Since $\overline{\Gamma}_i$ is isomorphic to $\overline{\Gamma}(\overline{\beta}_i)$ (see (3.4)) and

$$Q \cap \overline{K}_i = Q \cap \{\sum_{j \in J} \omega_j + r \omega_i | J \in \mathscr{A}, \quad r \in \mathbf{Z}\},\$$

(3.20) implies that Aut_i acts on $\pi_0(\overline{\Gamma}_1(\overline{\beta}_1))$ transitively. (Note that, if one deletes all the faces corresponding to $S - S_0$ from \overline{K}_i and denotes it by K', then there is a one-to-one correspondence $\pi_0(K') \cong Q \cap \overline{K}_i$.) Hence

$$\# \operatorname{Aut}_{i} = \# \operatorname{Aut}_{i}(\bar{0}) = \# V_{0} = \# \pi_{0}(\bar{\Gamma}_{1}(\bar{\beta}_{1})) = \# Q_{i},$$

where

$$Q_i = (Q \cap \{\sum_{j \in J} \omega_j + r \omega_i | J \in \mathcal{A}, r \in \mathbb{Z}\}) / \mathbb{Z} c_i \omega_i.$$

Then the equality in (3.13) can be rewritten as follows

(3.22)
$$\sum_{\substack{f \leq l \\ i \in N(f)/G(f)}} (-1)^{f-1} \# G(I) = (\# Q_i)^{-1}.$$

4.

The purpose of this section is to prove the main theorem. (See introduction.)

Let us introduce some notations. Put

$$\Pi^{\sim} = \{ x \in E \mid 0 < \langle \alpha_i, x \rangle < c_i \ (1 \le i \le l) \}.$$

Let Q^{++} be the set $\{\sum_{i=1}^{l} a_i c_i \omega_i | a_i \in \mathbb{Z}, a_i \ge 0\}$. For a subset E' of E, put

 $W(E') = \{ w \in W | wA_0^+ \subset E' \}.$

4.1. The following statement is easily verified. Every element w of W can be expressed uniquely as $w = w_1 w_2$ ($w_1 \in W(\mathscr{C}_0^+)$, $w_2 \in W_0$). And, then, $l(w) = l(w_1) + l(w_2)$.

4.2. For $w \in W(\mathscr{C}_0^+)$, we have $l(w) = d(A_0^+, wA_0^+)$. Hence for $w_1 \in W(\tilde{H})$ and $p \in Q^{++}$, we have

$$l(w_1 t(p)) = d(A_0^+, w_1 t(p)A_0^+) = d(A_0^+, A_0^+ t(p)) + d(A_0^+ t(p), w_1A_0^+ t(p))$$

= $l(t(p)) + l(w_1).$

4.3. Let K be the quotient field of the group ring $\mathbb{C}[P]$. Let q be a positive real number. The Hecke algebra $H_q(W)$ is the associative K-algebra which has basis element T(w) (one for each $w \in W$) and multiplication defined by the rules

$$(T(s)+1)(T(s)-q)=0 \quad (s \in S),$$

T(w)T(w')=T(ww'), if $l(ww')=l(w)+l(w').$

For a representation R of $H_a(W)$, put

$$L(t, R) = \sum_{w \in W} R(T(w)) t^{l(w)}.$$

(See [2] for its properties.)

4.4. As a consequence of (4.1) and (4.2), we get the following identities.

$$\sum_{w \in W} T(w) t^{l(w)} = \left(\sum_{w \in W(\Pi^{\sim})} T(w) t^{l(w)}\right) \left(\sum_{p \in Q^{+}+} T(\overline{t(p)}) t^{l}(t^{l(\overline{t(p)})}\right)$$
$$\cdot \left(\sum_{w \in W_{0}} T(w) t^{l(w)}\right)$$
$$= \left(\sum_{w \in W(\Pi^{\sim})} T(w) t^{l(w)}\right) \prod_{i=1}^{l} (1 - T(\overline{\beta}_{i}) t^{l_{i}})^{-1}$$
$$\cdot \left(\sum_{w \in W_{0}} T(w) t^{l(w)}\right).$$

Hene, for a representation R of $H_q(W)$, the denominator of det L(t, R) divides

$$\prod_{i=1}^{l} \det\left(1 - R(T(\overline{\beta}_i))t^{l_i}\right).$$

4.5. Let X be the set of alcoves and M be the K-vector space with basis X. There is a unique $H_q(W)$ -module structure on M such that, for $A \in X$ and $s \in S$, we have

$$T(s)A = sA$$
, if $s \notin \mathcal{L}(A)$.

Let λ be the natural inclusion map $P \subseteq K$. Let M_{λ} be the K-vector space spanned by all the infinite formal linear combinations

$$F(A) = \sum_{p \in Q} \lambda(-p) q^{d(At(p), A)/2} At(p) \qquad (A \in X).$$

The Hecke algebra $H_q(W)$ acts naturally on M_{λ} . This $H_q(W)$ -module is called a "generic principal series representation." The set $\{F(wA_0^+)|w \in W_0\}$ is a basis of M_{λ} . This basis gives a matrix representation R_{λ} . For $p \in Q$, we have

$$F(At(p)) = (\lambda \rho)(p)F(A).$$

Here $\rho(p) = q^{d(A,At(p))/2}$, which is independent of the choice of the alcove A.

4.6. It is known that the eigenvalues of $R_{\lambda}(T(\overline{\omega}))$ ($\omega \in Q^{++}$) are $\{(\gamma\lambda)(\omega)q^{t(\overline{t(\omega)})/2} | \gamma \in \Omega_0\}$ ([5; (4.3.3)]). Hence, by (4.4), the denominator of det $L(t, R_{\lambda})$ divides

$$\prod_{i=1}^{l}\prod_{r\in\mathcal{Q}_0}(1-(\gamma\lambda)(c_i\omega_i)(q^{1/2}t)^{l_i}).$$

We normalize the denominator so that its constant term equals 1. It is also known that $M_{r\lambda}$ ($\tilde{r} \in \Omega_0$) is isomorphic to M_{λ} ([5; (4.3.3)]). Hence the denominator of det $L(t, R_{\lambda})$ is invariant under the change $\lambda \rightarrow \tilde{r}\lambda$ ($\tilde{r} \in \Omega_0$). Since each $c_i\omega_i$ is not divisible in Q, the polynomial $1 - (\tilde{r}\lambda)(c_i\omega_i)(q^{1/2}t)^{l_i}$ is irreducible. Hence the denominator of det $L(t, R_{\lambda})$ is a product of the factors $1 - (\tilde{r}\lambda)(c_i\omega_i)(q^{1/2}t)^{l_i}$ ($1 \le i \le l, \tilde{r} \in \Omega_0$). Hence it is of the form

(4.7)
$$\prod_{\omega_i \mod \mathcal{Q}_0} \prod_{\gamma \in \mathcal{Q}_i \setminus \mathcal{Q}_0} (1 - (\gamma \lambda) (c_i \omega_i) (q^{1/2} t)^{l_i})^{n_i},$$

with some non-negative integers n_i . Here $\prod_{\omega_i \mod \Omega_0}$ means that ω_i runs over a representative of Ω_0 -conjugacy classes of the fundamental weights.

4.8. For an element
$$a = \sum_{p \in Q} a(p)\lambda(p)$$
 $(a(p) \in \mathbb{C})$, put $[a:p] = a(p)$.

If the numerator of det $L(t, R_{\lambda})$ is of the form $1 + a'_{1}t + a'_{2}t^{2} + \cdots$, then $[a'_{j}: p] = 0$ $(p \in Q - \{0\})$. (See [2; 1.14.2].) Hence, if det $L(t, R_{\lambda}) = 1 + a_{1}t + a_{2}t^{2} + \cdots$, then

(4.9)
$$[a_{i_i}:c_i\omega_i] = n_i q^{1_i/2}.$$

Thus to get an explicit formula of the denominator of det $L(t, R_i)$, it suffices to calculate the value of $[a_{i_i}: c_i \omega_i]$ using (1.5).

For $x \in W$ and $\gamma \in \Omega_0$, we have

$$T(x)F(A_0^+\gamma) = \sum_{x' \le x} a(x', \gamma)F(x' A_0^+\gamma)$$

with some $a(x', \tilde{\gamma}) \in \mathbb{Z}[q]$ ($\subset \mathbb{C}$). For each $x' \in W$, there are uniquely determined $p \in Q$ and $\tilde{\gamma}' \in \Omega_0$ such that $x'A_0^+ = A_0^+ t(p)\tilde{\gamma}'$. Then

$$T(x)F(A_0^+\gamma) = \sum_{x' \le x} a(x', \gamma)F(A_0^+t(p)\gamma'\gamma)$$
$$= \sum_{x' \le x} a(x', \gamma)(\lambda \rho)(p\gamma'\gamma)F(A_0^+\gamma'\gamma).$$

Hence

tr
$$R_{\lambda}(T(x)) = \sum_{\substack{\tau \in \mathcal{D}_0 \\ \tau \in \mathcal{D}_0}} a(\overline{t(p)}, \tau)(\lambda \rho)(p\tau).$$

Let x_j $(1 \le j \le n)$ be elements in W such that $\sum_{j=1}^n l(x_j) = l_i$. Then

$$\prod_{\substack{j=1\\ j\neq i}}^{n} \operatorname{tr} R_{\lambda}(T(x_{j})) = \sum_{\substack{\overline{t(p_{j})} \leq x_{j}\\ \gamma \neq i \neq 0}} (\prod_{j=1}^{n} a(\overline{t(p_{j})}, \gamma_{j}))(\lambda \rho) (\sum_{j=1}^{n} p_{j} \gamma_{j}).$$

Hence if $[\prod_{j=1}^{n} \operatorname{tr} R_{\lambda}(T(x_j)): c_i \omega_i] \neq 0$, there exist $p_j \in Q$, $\gamma_j \in \Omega_0$ $(1 \le j \le n)$ such that $\sum_{j=1}^{n} p_j \gamma_j = c_i \omega_i$ and $\overline{t(p_j)} \le x_j$. But then

$$l_i = l(\overline{\beta}_i) = l(\prod_{j=1}^n t(\overline{p_j \gamma_j})) \leq \sum_{j=1}^n l(\overline{t(p_j \gamma_j)})$$
$$= \sum_{j=1}^n l(\overline{t(p_j)}) \leq \sum_{j=1}^n l(x_j) = l_i.$$

Hence $\overline{t(p_j)} = x_j$ and each $p_j \tilde{\gamma}_j$ is contained in the segment joining $c_i \omega_i$ and the origin of V^* . But since $p_j \tilde{\gamma}_j \in Q$, *n* must be equal to 1 and $p_1 \tilde{\gamma}_1 = c_i \omega_i$. Hence, by (1.2), we get

(4.10)
$$[a_{l_i}:c_i\omega_i] = \sum_{I \in P} (-1)^{(d-1)(l_i/n)} [\operatorname{tr}^{(l_i/n)} R_i(T(w_1 \cdots w_d)):c_i\omega_i]$$
$$= \sum_{I \in P} (-1)^{(l_i/n)d-1} (n/l_i) [\operatorname{tr} R_i(T(w_1 \cdots w_d)^{l_i/n}):c_i\omega_i],$$

where

$$P = \coprod_{d \le n, n \mid l_i} P(d, n) / G(d),$$

$$P(d, n) = \{I = (w_1, \dots, w_d) | w_j \in W - \{1\},$$

$$\sum_{j=1}^d l(w_j) = n,$$

$$(w_1 \cdots w_d)^{l_i/n} \in \{\overline{\beta_i^r} | \gamma \in \Omega_0\},$$

$$(w_1, \dots, w_d): \text{ primitive}^1$$

and G(d) is the group generated by the automorphism $(w_1, \dots, w_d) \rightarrow (w_d, w_1, \dots, w_{d-1})$. Here $I = (w_1, \dots, w_d)$ is called primitive iff $G(I) = \{1\}$, where G(I) is the stabilizer of I in G(d).

By [5; 4.3.3], we get tr $R_{\lambda}(T(\overline{\beta_i})) = \operatorname{tr} R_{\lambda}(T(\overline{\beta_i}))$ ($\Upsilon \in \Omega_0$) and

$$[\operatorname{tr} R_{\lambda}(T(\beta_{i}^{\gamma})): c_{i}\omega_{i}] = [\operatorname{tr} R_{\lambda}(T(\overline{\beta}_{i})): c_{i}\omega_{i}] = (\sharp \Omega_{i}) \times q^{\iota_{i}/2}.$$

Hence (4.9) and (4.10) imply

(4.11)
$$n_i = \left(\sum_{l \in P} (-1)^{(l_i/n)d-1} (n/l_i) \right) \times (\# \Omega_i).$$

Using the notations in (3.6), the above equality can be rewritten as

$$n_i = \left(\sum_{\substack{f \le I_i \\ I \in N(f)/G(f)}} (-1)^{f^{-1}} (\# G(I))^{-1} \right) \times (\# \Omega_i),$$

where G(I) is the stabilizer of I in G(f). Using (3.22), we get

$$(4.12) n_i = \# \Omega_i / \# Q_i.$$

4.13. Lemma. Let G be a finite commutative group and g its element of order n. Then

$$\prod_{\chi \in G^{\nu}} (1 - \chi(g)\chi) = (1 - x^n)^{\sharp G/n},$$

where $G^{\vee} = \operatorname{Hom}(G, \mathbb{C}^{\times}).$

By using (4.12) and (4.13), (4.7) can be rewritten as follows:

(4.14)
$$\prod_{\substack{\varphi_i \mod \Omega_0\\\gamma \in \mathcal{Q}_i \setminus \Omega_0\\\gamma \in \mathcal{Q}(R^{*})^{*}}} (1 - (\lambda \chi)(\omega_i \gamma)(q^{1/2}t)^{l(\omega_i)})^{(c_i/f)(\#Q_i/\#\Omega_i)},$$

where $\Phi(R^{\nu}) = P(R^{\nu})/Q(R^{\nu})$ and $f = \# \Phi(R^{\nu})$. Since we can check (case by case) that

$$(4.15) f \cdot \# Q_i / c_i = f_i,$$

(see Introduction for f_i), we have proved the main theorem.

4.16. Remark. It is well known that $\Phi = \Phi(R^{\nu})$ can be regarded as an automorphism group of the Coxeter system (W, S). Consider the semidirect product $\tilde{W} = W \rtimes \Phi$. We can define the length function l on \tilde{W} , the Hecke algebra $H_q(\tilde{W})$, the action \tilde{R}_{λ} of $H_q(\tilde{W})$ on M_{λ} which is an extension of R_{λ} etc. as usual. Put

$$L(t, \tilde{W}, \tilde{R}_{\lambda}) = f^{-1} \sum_{w \in \tilde{W}} \tilde{R}_{\lambda}(T(w)) t^{l(w)}$$

and

$$e=f^{-1}\sum_{x\in\varphi}\widetilde{R}_{\lambda}(T(x)).$$

Then $L(t, \tilde{W}, \tilde{R}_{\lambda})$ stabilizes the subspace eM_{λ} of M_{λ} and the denominator of det $(L(t, \tilde{W}, \tilde{R}_{\lambda})|_{eM_{\lambda}})$ is equal to

$$\prod_{\substack{\omega_i \mod \mathcal{Q}_0\\ \gamma \in \mathcal{Q}_i \setminus \mathcal{Q}_0}} (1 - \lambda(\omega_i \gamma) (q^{1/2} t)^{l(\omega_i)})^{\sharp \mathcal{Q}_i / f_i}.$$

(Sketch of the proof. We can prove that the denominator of det $(L(t, \tilde{W}, \tilde{R}_{\lambda})|_{eM_{\lambda}})$ is of the form

$$\prod_{\substack{\omega_i \mod \mathcal{Q}_0\\ \gamma \in \mathcal{Q}_i \setminus \mathcal{Q}_0}} (1 - \lambda(\omega_i \gamma)(q^{1/2} t)^{l(\omega_i)})^{m_i}$$

with some non-negative integers m_i (cf. (4.6)) and that the numerator is "independent of λ " by the same argument as in [2]. Since

$$\det L(t, W, R_{\lambda}) = \prod_{x \in \mathscr{A}^{\vee}} \det (L(t, \tilde{W}, \tilde{R}_{\lambda \otimes x})|_{\mathscr{M}_{\lambda} \otimes x}),$$

this fact and our main theorem imply the above statement.)

References

- [1] Bourbaki, N., Groups et algèbres de Lie, Chaps. IV-VI, Hermann, Paris, 1968.
- [2] Gyoja, A., A generalized Poincaré series associated to a Hecke algebra of a finite or p-adic Chevalley group, Japan, J. Math., 9 87-111 (1983).
- [3] Lusztig, G., Hecke algebras and Jantzen's generic decomposition patterns, Adv. in Math., 37 121-164 (1980).
- [4] Macdonald, I. G., Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.
- [5] Matsumoto, H., Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lecture Notes in Mathematics No. 590, Springer-Verlag, Berlin/Heidelberg/New York, 1977.

Department of Mathematics Osaka University Toyonaka, 560 Japan