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Introduction 

Some Generalization of Asai's Result 
for Classical Groups 

Toshiaki Shoji 

Let G be a connected reductive algebraic group defined over a finite 
field F q' F:G-+G be the corresponding Frobenius map and for each positive 
integer m, GF'" be the group of F"'-fixed points in G. Let GFm/ - F be the 
set of F-twisted conjugacy classes of GFm. In the case where m= 1, we 
simply express it as GF / -. A bijection NFm/F: GF / - -+GFm/ - F is defined 
by attaching x=F7n(a)a- 1 to x=a-1F(a), where x e GF, X e GFm and a e G. 
We denote by C(GF"'/ - F) the space of Qt-valued functions on the set 
GF"'/-F' Then we get the induced map N;m/F: C(GFm/-F)-+C(GF/-). 

Let GFm be the semidirect product of GF'116 with the cyclic group of 
order m with generator a, where a acts on GF'" by aga-I=F(g). For 
each representation p of GF"', we denote by [p] the restriction on GFma of 
the character of p, which we regard as an element of C(GFm/ - F) under the 
natural bijection GFm/_F-:::=.GFma / - (- means the conjugation under 
GFm). 

Assume that the center of G is connected. By Lusztig [11], the set 
C(GF"') of isomorphism classes of irreducible representations of GFm over 
Qt is partitioned into the disjoint union of subsets C(GFm, (s» where (s) 
runs over all F7n-stable semisimple conjugacy classes in the dual group G* 
of G. Moreover, by [11], taking s e G*F"', we have a canonical bijection 

(0.1) 

F acts naturally on C(GF"') and for each F-stable class (s), F stabilizes 
C(GFfA, (s». Let C(GF"', (s»)F be the set of F-stable representations in 
C(GF"', (s». We denote by C(')(GFm/ - F) the subspace of C(GFmj_ F) 
generated by [p], where p runs over all the irreducible representations of 
GFm whose restriction to GFm lies in C(GFm, (s»)F. Thus, if m= 1, 
C(')(GF / -) is the subspace of C(GF / -) generated by various elements in 
C(GF, (s». 
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The purpose of this paper is to investigate the map N;m/F in the case 
of classical groups. 

If m= 1, the map N;/F becomes an automorphism on the space of 
class functions of GF and in the case of classical groups of split type, 
Asai [2], [3] has shown using the lifting theory of Kawanaka [8], that N;/F 
leaves C(1)(GF /-) invariant and that N;/F restricted to C(I)(GF /-) is 
closely related with the "Fourier transform" (or rather almost characters 
in the sense of [11, § 4 D of unipotent characters. (He also obtained the 
similar result ([4]) in the case of exceptional groups using the twisted ope
rator instead of N;/F)' 

In this paper, we shall treat the case where G is a classical group with 
connected center and m is sufficiently divisible, i.e., F qm contains some 
fixed sufficiently large extension ofFq • Then tC(GFm, (s))F is parametrized 
by X(W., rs) (see 2.1 for the definition) independently of m, and for each 
x E X(W., r s) an almost character R", E C(s)(GF /-) can be defined by [11]. 
By this correspondence, we can attach to each p E tC(GFm, (s))F corre
sponding to xp E X(W" r s), an almost character R",p up to a root of unity 
multiple. Then our main result is Theorem 2.2, which asserts that under 
the above assumptions, N;m/F maps C(S)(GFm/_ F) onto C(S)(GF /-) and 
that N ;m/F([ppP])= Rxp ' where P is an extension of p to GFm and piJ is a 
root of unity depending on the choice of P and m. In particular, N;m/F 
is compatible with the map (0.1). 

In the case where s= 1, our result is already contained in [2], [3]. 
Hence, Theorem 2.2 can be regarded as a generalization of Asai's result 
to arbitrary s, although his result itself (which is concerned with N;/F) is 
not extended to the general case by our argument. 

As a corollary (Corollary 2.19), we can decompose R~cp(1C) into 
irreducible constituents, where M is an F-stable Levi subgroup of (not 
necessarily F-stable) parabolic subgroup P of G and 1C is an irreducible re
presentation of MF. 

As regards the proof, Asai's method can be applied to our case, es
sentially. However, it should be noticed that, as we are dealing the case 
where m is sufficiently large, Kawanaka's theory cannot be applied to our 
case. Instead, using the argument of Lusztig ([11]), we can show that 
N;m/F([p]) gives the same element in C(GF /-), up to a root of unity mul
tiple, for infinitely many m. This enables us to apply the specialization 
argument to our situation, and once this is done, Asai's method works as 
well to ours by making use of results of Lusztig [11]. 

The author understands that B. Srinivasan obtained independently 
the similar result as Corollary 2.19. 

The author is indebted to G. Lusztig for suggestions and discussions 
on the occasion of Katata conference in 1983. 
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§ 1. The maps Rl:(~) and aFw 

1.1. Let G be a connected reductive algebraic group defined over a 
finite field F q' with Frobenius map F. We may assume further that G 
has a split Fp-structure with Frobenius map Fo such that FoF=FFo and 
that some power of Fo is equal to some power of F, where F p is a prime 
field contained in F q' We shall fix an Fo-stable Borel subgroup B, an Fo
stable maximal torus T contained in B, and denote by W the Weyl group 
of G relative to T. We assume further F(B)=B and F(T)= T. Let 2 be 
the set of roots of G with respect to T and II e 2 be the set of simple roots 
with respect to (B, T). Then any parabolic subgroup :containing B is ex
pressed as PJ=MJUJ for some Jell, where M J is a Levi subgroup of PJ 
con taining T and UJ is the unipotent radical of P J' Put M = M J. Take 
we W such that Fw(J)=J, and let w be a representative of win NaCT)Fo. 
Then Fw: g-+F(wgw- ') may be considered as a Frobenius map of M com
muting with Fo with respect to some F q-structure. Consider the variety 
S={g e Glg-'F(g) e F(wUJ)} and put s=SjUJnF(wUJw-'). Then GFX 
MFW acts on H~(S, Ql)' According to [9], [2], we associate a virtual GF_ 
module R~(w)(7r) to an irreducible MFW-module 7r as follows. 

Thus, extending linearly, we get a homomorphism R~(w): f!Jl(MFW)-+ 
f!Jl(GF), where f!Jl( ) denotes the Grothendieck group of representations of 
a finite group over Ql' (Note our definition of R~(w) here is slightly dif
ferent from that of [2J, where he uses wF instead of Fw). 

1.2. We recall here some related notations of [11]. For each w e W, 
we define Xw={gB e GjBlg-'F(g) e BwB} and for each representative 
weNo(TYo, we define Xw={geGlg-1F(g)ewU}jUnwUw- 1, where 
U is the unipotent radical of B. Put Tw={t e Tlw(F(t))=t}. Then GF 
X Tw acts on Xw by x-+gxt-1 and induces the isomorphism Xw/Tw-:::::'Xw, 
which is GF -equivariant with respect to the action of GF by left multiplica
tion on Xw' We denote by §'O the locally constant GF-equivariant Ql

sheaf of rank lover X w corresponding to {} e T (;. Then H~( X w, §' 0) be
comes a GF -module and in fact, 

Let Xw be the Zariski closure of Xw in GjB. Then Xw is the disjoint 
union of X w' (w'<w). We shall consider, following [11, §2], the cohomo
logy sheaves £i(Xw, §' 0) of the intersection cohomology complex 
IC (Xw, §' 0) and its hypercohomology group Hi (Xw, §' 0), which becomes 
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a GF -module. 

1.3. Let G* be the dual group of G defined over F q and T* be an 
F-stable maximal torus of G* which is dual to T over F q' 

From now on, throughout this section, we assume that the center of 
G is connected. 

According to [9, §7], 0 E T{;; determines an F-stable semisimple class 
(s) of G*. Then, by [11], for each F-stable class (s)cG*, the set IS'(GF, (s)) 
consists of p E IS'(GF) such that p appears as a constituent in a GF -module 
Hi(Xw, :? 0) for some i and w under the condition that 0 corresponds to 
(s). 

Fix an F-stable class (s) in G*. Let s be an element of (s) contained 
in T* and d be the smallest integer such that Fg(s)=s. Then F:/ acts on 
X w' and since 0 is F:/-stable, :? 0 is endowed with an F:/-structure. So, Fod 
acts naturally on H~(Xw, :? 0) and Hi(Xw, :? 0)' However, this F:/-structure 
depends on the choice of a representative w of w, we shall write :F 0 as 
§w,o (as GF-equivariant sheaf, :Fw,o are mutually isomorphic). Hence, 
from now on, according to [11, 1.23], we shall fix a suitable representative 
W E Na(TYo for each w E W. 

Let b be the smallest integer such that Fg b is an integral power of F. 
In the following, for (GF, Fgb)-module H, we denote by Hp the p-isotypic 
subspace of H and by H p ,!, the generalized p-eigenspace with respect to 
Fg b of Hp- The following lemma, which is a usual cohomology version of 
[11, Proposition 2.20], is due to G. Lusztig. The author is very grateful 
to him for communicating this. 

1.4. Lemma. Assume we are in the setting of 1.3. Let GF (FJ.) be 
the semidirect product of GF with the cyclic group of order b with generator 
.[), where .[) acts on GF by .[)g.[)-l= F:/(g). Then each representation p in 
IS'(GF, (s)) is F:/-stable. Moreover,for each p E IS'(GF, (s)), there exists an 
extension p to GF <.[) and a root of unity A~ E Qf such that the following 
holds. 

(i) Put Ap=(A~)b. Then the eigenvalues of Fgb on H~(Xw, :?w,o)p are 
Ap times integral powers of pdb/Z. 

(ii) Put p= Appdbk/2 be an eigenvalue of Fgb as given in (i). Then 
H~(Xw, :Fw,o)p,1' is F:/-stable and admits a (GF', Fod)-stable filtration each of 
whose successive quotients is isomorphic as a GF <.[)-module (with .[) acting 
as (A~)-lrdk/2F:/) to p. 

Proof All the statements are certainly true for Hi(Xw, :? w, 0) in view 
of [11, Proposition 2.20, Theorem 3.8]. Hence the first statement follows. 
We shall show (i). Take p E IS'(GF, (s)). They by [loco cit.], the eigenvalues 
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of F~b on Hi(.¥w, :7 w,o)p are of the form Appidb/2, where Ap is a root of 
unity independent of i and w. Suppose the lemma does not hold and let 
w be a minimal element with respect to the Coxeter order where the lemma 
fails. Hence there exists i and f1- E Qt, not of the form Ap times integral 
power of pdb/2, such that H~(Xw, :7.0, o)p,p =1=0. The spectral sequence of 
GF-modules 

which is F:-equivariant, implies 

(1.4.1) 

But, by [11, Theorem 2.4], for each w' <w, the restriction of J'C'J(.¥w,:7 .0,0) 
to X w ' has a filtration of GF-equivariant sheaves defined over F pa if it is 
non-zero, where each successive quotient is isomorphic to :7.0',0'(-j/2) 
(Tate twist) for some f)' E T:;;, corresponding to (s). Moreover when w' = 
w, this restriction is isomorphic to :7.0,0 if j=O and ° otherwise. Hence, 
by assumption on w, the left hand side of (1.4.1) vanishes except when 
j=O. Thus we have 

This is a contradiction since W('¥w, :7w,o)p,p=O. Thus (i) is proved. (ii) 
follows from Proposition 2.20 of [11] using the similar argument as in (i) if 
we notice that (1.4.1) turns out to be the spectral sequence of GF < {)
modules. Thus the lemma is proved. 

1.5. Let w E W be such that Fw(J) = J. We shall choose a positive 
integer m such that Fm is a power of Fo and that (Fw)m=Fm on M=MJ • 

Then Fm acts on S and so acts on H~(S, Qz)®1C commuting with the action 
of MFw (with trivial action on 1C). Hence we get a natural action of Fm 
on the virtual GF-module R!Jr(w)(1C). 

The following proposition describes the eigenvalues of Fm on R!Jr(w)(1C) 
in the case where m is sufficiently large. 

1.6. Proposition. Let w E W be as in 1.5. There exists an integer 
ml>O such thatJor any integer m>O divisible by ml, the eigenvalues oj Fm 
on (H~(S, Qz)®1C)MFW are integral powers oJ q m/2. 

Proof Take m as in 1.5. Then for each 1C E ~(MFW), there exists 
XW',M (the similar variety as Xw defined replacing (G, F) by (M, Fw)), f)' E 

T/) and Fm-stable subspace V~ of Hl(Xw"M' .'F w',o') isomorphic to 1C as 
MFw-module. Then by the similar argument as in [11, 3.5], [2, 1.1], there 
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exists w" E Wand 0" E T/), such that 

The inclusion is Fm-equivariant as m is taken as in 1.5. Hence the pro
position follows from Lemma 1.4. 

1.7. We fix a parabolic subgroup P=PJ • Taking m such that Fm 
is a power of Fo, consider an irreducible representation 7r: M Fm ~GL(V). 
7r is naturally extended to a representation of pFm, which we also denote 
by 7r. Let f!Jm be the space of all functions!:. GFm~v. It is a GFm-module 
by (gf)(x) = !(xg) , g, x E GFm,j E f!J m' Let us define a subspace of f!J m by 

f!J(M, 7r)={fE f!Jml!(pg)=7r(p)!(g) for p E pFm, g E GFm}. 

Then f!J.=f!J(M, 7r) is a GFm-submodule of f!Jm isomorphic to Ind~~;;:(7r). 
For each w E W such that wJcII, choose a representative w E NaCTYo and 
define a linear map T.,w: f!Jm~f!Jm by 

(1.7.l) 

Then T"w is GFm-equivariant and we have 

(1.7.2) 

where w7r is a representation of (wMw-lym given by w7r(x)=7r(w- 1xw). We 
also define F: f!Jm~f!Jm by F(f)(x)=!(F-l(X». 

Now, assume given w E Wand m as in 1.5. We assume further that 
7r is Fw-stable. Then since Fw(J)=J, T. w can be defined. Let aw be the 
restriction of Fw to MFm. Since Fm=(Fw)m, we can define MFm as the 
semi direct product of M Fm with the cyclic group of order m generated by 
aw. Let it be an extension of 7r to MFm. Then it(aw): V~V gives a map 
f!J(M, FW7r) ~f!J(M, 7r) by !~it(aw) 0 f, which we denote also by it(aw). 
Hence, we get a map 

(1.7.3) it(aw)FT.,w: f!J(M, 7r)~f!J(M, 7r), 

which is independent of the choice of representatives w of w. Note that 
it(aw)FT.,w is nothing but aF(W)F in Asai's notation up to a constant mul
tiple ([2, 1.3]). 

1.8. Let C( GF / ~ ) and C( GFm / ~ F) be as in Introduction. We define 
the similar objects with respect to M with Frobenius map Fw. (Note 
(Fw)m=Fm by assumption). Following [2, 1.4], we shall define a linear 
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map a F W: C(M Fm 1-Fw)-,-»C( GFm I - F) by putting 

(1.8.1) 

for each it which is an extension to kEF'" of 7r: E rff(MF"'YW, and extending 
linearly to C(MF"'I-FW)' Here d'=dim(UJnw-1U-w). (U- is the uni
potent radical of the opposite Borel subgroup of B with respect to T). 

Nextly, we define a linear map RYFr,'w): C(MFWI - )-,-»C(GF 1-) by 
putting 

for each 7r: E rff(M FW) and extending linearly to C(M FWI -). Note our 
definition of RYFr,'w) is slightly different from that of [2, 1.4], Now, using 
the same argument as in [2, 1.4], [11, 2.10], we have 

1.9. Proposition. Let wand m be as in 1.5. Then the following dia
gram is commutative. 

(1.9.1) 

1.10. As in [2,2.4], [11, 3.6], we shall express the map aFW more 
explicitly using Hecke algebras. Let (5 be an irreducible cuspidal repre
sentation of MF"'. Put Wa={w E WjwJ=J, w(5c:::(5}, where M=MJ as 
before. Then by the result of Howlett and Lehrer [6] and [11, § 8], Wa is 
a reflection group on the orthogonal complement of <J) in X(T) @R. 
(X(T) is the group of characters of T). Moreover there exists a "root 
system" r c I and the set of "positive roots" r + = r n I + (actually the 
projection on (J)J.. is a root system in the usual sense). Now, (5 can be 
extended to a representation on Na(MY'" by means of (6.4) of [6] since 
Wa is generated by reflections. We denote by 3 an extension of (5 to 
Na(MY"'. Let Soc Wo be the set of simple reflections with respect to r+. 
Following [6, 4.11], we shall define for each y E Wa, Ty: f!jJa-,-»f!jJo by 

(1.10.1) 

where Y>-*e~m)= ±1 is a linear character of Wa and qy= rr.q'(S), s runs 
through the elements in a reduced expression of yin W6 and A: SiJ-'-»Z+ is 
a function which takes constant value under W6-conjugate (cf. [11, Theorem 
8.6]). Note that Ty is independent of the choice of representatives y of y. 
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Then Ty (y E W~) gives a basis of EndoFm Ind~~;;: (0). Moreover, by [6], 
[11, Theorem 8.6], Ty (y E W~) gives rise to a basis of the Hecke algebra 
H(qm) over Ql with relations 

TwTw'= Tww" if i(ww')=i(w)+i(w') 

(T.+l)(T.-qml(·»=O, s E So. 

where i is the length function of W. and.:1: SIJ-';Z+ is as above. 
We define the set Zo={w E WIFw(J)=J, FWO=::O}. Then Za can be 

written as wWa for some w E Zo. Since F(wWaw- l)= Wa and Fw stabilizes 
<J)l., there exists WI E Za such that Fwl(r+)cI+ by [6, Lemma 2.2]. Then 
w1(r+)cI+ and WI is uniquely determined by this property. In the fol
lowing, let us fix suitable representatives of Z. in NaCTY· (a coherent 
lifting of ZIJ in the sense of [11, 1.23]). Now, 3 can be extended to 
No(MY"'«Jlv l ) (semidirect product), which we denote also by 3. 

We now want to show analogous formulae of (3.5.1), (3.5.2) and 
(3.5.3) in [11]. In order to do this, we need the following lemma, which 
is a variant of [6, Lemma 4.2] and can be proved by the same way. 

1.11. Lemma. Let v, w E W. Assume one of the following conditions 
holds. 

(i) v E Wo, wJclI and wr+ cI+. 
(ii) vJ=J'clI, wJ'cll and vr+cI+. 

Then we have 

-. 1: - qm/2(I(WV) -lew) -I (v».,.. 
V6,w 0,';;- "6,wv' 

1.12. Put r= r~ and -'Wl = -'a,Wl' The linear map 3(aw1)F-.W, : f!Ila-,;f!Illi 
has the following properties: 

(1.12.1) 

(1.12.2) 

(1.12.3) 

(3( aw1)F1: Wl)g= F(g) (3( aw1)F -. W,) 

Tr(y)(3(aw1)F-.Wl) = (3(aw1)F-'W,)Ty 

(3( aw1)F -. w,)i = ql/2(1 (F -H l(Wl)F -H'(Wl)' •• F-l(Wl)Wl) - iZ(Wl» m 

X 3(aw1)i Fi-'o,F-<+1(Wl)F-<+O(Wl) ... F-l(Wl)Wl' 

In fact, (1.12.1) is obvious. We shall prove (1.12.2). Since r is an 
automorphism of the Coxeter group (Wa, S.), we have e~m) = ei~\ and q~m) 
= qir:X Then (1.12.2) is equivalent to 

(1.12.4) 

Lemma 1.11, (i) can be applied to the right hand side of (1.12.4) since 
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While, for the left hand side, 

!'FWIO,r(fI) F'tO,Wl===FTwlJ,WlirWll 'to,Wl 

= ql/2(1(WlY) -l(Wl) -l(W,YW,'))m F1:o,YJIir 

The last equality follows from Lemma 1.11, (ii). Since l(w1yw11)= 
I(F(w1yw11»=I(r(y», (1.12.4) follows. 

Next, we show (1.12.3). The left hand side of (1.12.3) is equal to 

We want to apply Lemma 1.11, (ii) successively from the left. For this, 
we have only to verify that for eachj> 1, 

(i) F-i+j(w1)F-i+j+l(W1)'" F-1(W1)w1JcII, 

(ii) F-i +J(w1)F-i+j+l(W1)' .. F-1(W1)W1r+ c.l'+. 

But these are obvious since FWI J=J and Fw1r+ =r+. 

1.13. Let Wo= Wo<ro> be the semidirect product of Wo with the 
cyclic group generated by roo The Hecke algebra H(qm) can be extended 
to an algebra fi(qm) with basis Tw (w E Wo) as in [11, 3.3]. Let us denote 
by (Wo)~ the set of isomorphism classes of irreducible Wo-modules over Q 
which is extendable to a Wrmodule over Q. Let E(qm) be an irreducible 
H(qm)-module corresponding to E E W;. If E E (Wo);';, there exists exactly 
two extensions to Wa over Q. Let E E W; be one of them. Then, corre
sponding to E, E(qm) can be extended to an fi(qm)-module, which we 
denote by E(qm). 

N ow let us take m sufficiently large so that 

(1.13.1) Fm is a power of Fa and F-m+l(w1)F-m+2(w1)·· ·F-1(W1)IV1= 1. 

Then from (1.12.3), (a(aw1)F1:w1)m=q-l/21(Wl)m2 id. on [lJ!o' Thus, by the 
same argument as in [11, 3.6], we have 

(1.13.2) 
Tr (x(a(aw1)F1:w,)Ty , [lJ!0) 

:6 q-l/21(Wl)m Tr (xa, PE) Tr (TrY' E(qm», 
EE(Wa)~ 

for each x E Gpm• Here aE is an extension of the irreducible Gpm-module 
PE corresponding to E E (Wo);'; and this extension is uniquely determined 
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by the choice of an extension 3 of 0 and by the choice of E of E. 

1.14. Following [2, 2.3, 2.4], [3, 1.3], we shall extend the formula 
(1.13.2) to (!lin where l' is not necessarily cuspidal. Let l' be an irreducible 
representation of MIt (KcII), where Fw(K)=K and FW1' ::::::. 1'. Let WK be 
the Weyl subgroup of W with respect to K. There exists an irreducible 
cuspidal representation 0 of M~m (JcK) such that l' can be written as 1'E , 

for E' E (WK);;'. We assume here that (*) Fw(J)=J. Then as 1'E, is Fw
stable, there exists w' E WK such that FWW'O::::::,O. Hence ww' E ZiJ and we 
can write ww' = wly', Y' E WiJ. Moreover, w' E Z~ (the subset of WK with 
respect to W~= (WK)iJ and Fw) and we have w' = w;y", where y" E W~ and 
w; is the similar element of Z~ as WI in Zo' Hence there exists Y E WiJ such 
that w=wlywr'. 

Let r~ be the automorphism of W~ defined by (Fw)w; similar to ro for 
Wo, and W~ be the semidirect product of W~ with <r~>. We denote by 
H'(qm) the subalgebra of H(qm) generated by Tz (z E W~) which corre-

pFm __ 

sponds to Ind ~m(O). Let H'(qm) be the extended algebra corresponding 
P J 

to W~, and we denote by Tra the element of fi'(qm) corresponding to r~. 
In the following, for each E E (WiJ)~ and E' E (W~)~, we denote by E(qm)E' 
the E'(qm)-isotypic subspace of H'(qm)-module E(qm). On the other hand, 
as 1'E, is Fww;-stable, E' is r~-stable. Hence the extension itE, of 1'E, to Mft 
is determined canonically as in 1.13 from 3. Then we have 

1.15. Lemma. Let 1'E, E g(MftYw and w=wlyw;-' as in 1.14. Put 

l=riJ' r'=r~· Then 

aFW([itE,])(xa)= di~ E' e~m)qmd'(qy)-m/2q-I/2U(W') +l(y) -l(w,'))m 

X ~ Tr (xa, PE) Tr (TryT;;\ E(qm)E')' 
EE(Wo)~ 

Proof Let 

Fm 
be a realization of IndP~m(o), where VI is a representation space of O. 

P J 

We denote by (!liE' the E'(qm)-isotypic subspace of (!li and P E' be the repre
sentation of pz;.m on (!liE" HencepE' is isomorphic to 1'E,@E'(qm) as pz;.m 
XH'(qm)-module. Moreover the map <jJ: (!li(MK,PE,)~(!li(MJ> 0) given by 

<jJ(f)(x)= f(x)(I) (evaluation of f(x) E (!liE' at 1 E pz;.m) induces an isomor-
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phism of GFXH'(qm)-modules f!Jl(MJ(, PE,)-:::::!!J!(Mh O)E', which becomes 
an isomorphism of H(qm)-modules. Here f!Jl(Mh O)E' denotes the E'(qm)_ 
isotypic subspace of f!Jl(Mh 0). 

Let 3(awwDFr-f,wl': f!Jl-+f!Jl be the map defined for PIJt with respect to 
o and w; E Z~ similar to GFm, and we denote by bWi its restriction on f!Jl E" 
Thus, by 1.13, bWi acts on 7rE'0E'(qm) as q-I/21(Wil mFw0 Tr,. Since 

f!Jl(MJ(,PE') -::::: f!Jl(MJ(, 7rE,)0E'(qm), bw; induces a map f!Jl(MJ(/wPE')-+ 

f!Jl(MJ(, PE,), which we denote also by bwi . Hence we can define a map 

bw;Frp E', W: f!Jl(M k' P E,)-+f!Jl(M J(, P E,). 

Now by assumption, Fw(J)=J and Fw(K)=K. Thus UWJ = U~JUwJ( and 
w-IU:Jw=UY, where Uf=UInMJ( for any IclI. From this, we see 
easily that, under the isomorphism ¢, bw;Fr-PE',W turns out to be the map 

3 (awwDFr-o,ww; : !!J!(MJ' oh,-+!!J!(Mh oh" which is nothing but the map 

3 (awly)Fr-O,WlY' 
On the other hand, using f!Jl(MJ(, PE,)-:::::f!Jl(MJ(, 7rE,)0E'(qm), we have 

Tr (xbwiFr-PE"WT;,\ f!Jl(MJ(, iJE')) 

= (dim E')q-I/21(Wp m Tr (XltE,(aw)Fr-"E',W' !!J!(MJ(, 7r E'))' 

This implies the lemma in view of (1.13.2). 

§ 2. The main result 

2.1. In this section, we assume that G is a connected classical group 
with connected center. Let (s) be an F-stable semisimple class in the dual 
group G* of G. Taking s E (s) n T*, define Ws={w E W\w(s)=s}. Since 
(s) is F-stable, there exists WE W such that Fw(s)=s. Then Fw stabilizes 
W. and we may take Wo E W such that Fwo(s)=s and that Fwo induces a 
graph automorphism rs: W.-+W •. According to [11, §4], the set X(W., r.), 
X(W., rs) and a pairing {,}: X(W., rs)xX(W., rS)-+QI is defined. More
over, a finite group Me acts freely on X(W., rs), where c is the order of rs 
and Me={a E Qt\ae= I}. In our case, Ws is isomorphic to a product of 
various WI and r s stabilizes each Wb where WI is either an irreducible 
Weyl group of type C l or D l , or WI -::::: n iEI Wi where Wi is an irreducible 
Weyl group of type Al for various I and rs permutes transitively each 
component Wi' If we denote by r I the restriction ofrs to WI' X(W., rs) 
(resp. X(W., rs)) is defined as the product set of X(Wb r I) (resp. X(WI' r I)), 
and the pairing { , } is defined as the product of each pairing. 

If WI -::::: n iEI Wi' (Wi: type AI), we may assume I=Z/rZ and riWi) 
= Wi + 1 for i E I. Then n(WI )= WI' Let c be the order of n on WI' 
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Then the order of rI is equal to rc. Now, X(WI' rI)~X(Wl' r[)~W;-, 
and X(Wb rI)~ W;-XMre. The pairing { , }: X(Wb rI) X X(Wb rI)~Qz 
is given by p, (A', a)}=ol,l,a-1(A, A' E W;-, a E Mre). 

If WI is a Weyl group of type Cz, rI is identity. Then X(WI' rI)~ 
X(WI' rI)= Wz : the set of symbol classes of rank I and odd defects ([10, §3], 
[11,4.5]). 

If WI is a Weyl group of type Dz, X(WI' rI)=Wf according as rI is 
trivial or not, where wt (resp. Wi:) is the set of symbol classes of rank I 
and defect=::O (mod 4), with reduced symbol (S, S) counted twice, (resp. 
defect =::2 (mod 4», ([11, 4.6]). lUI is trivial, X(WI' rI)=X(Wb rI). While 
if rI is non-trivial, X(Wb rI)=7fJ'z: the set of ordered symbol classes (S, T) 
such that S=I= T, of rank I and defect=::O (mod 4). M2~ Zj2Z acts on 7fJ'z 
by (S, T)<;--,>(T, S), ([11, 4.18]). For each of above cases, the pairing is 
given in terms of symbols, ([11, 4.5, 4.6, 4.18]). 

It is known by Theorem 4.23 of [11], that <&"(GF,(S»~X(W., r,). We 
express this correspondence by p~xp. Take m large enough so that s E 

T*Fm and that Fm is a power of Fo. Then there exists a surjection from 
X( W., r ,) to <&"( G Fm, (s»)F each of whose fibre is just an Me-orbit. Hence 
<&"(GFm, (s»)F ~X(W., r,)jMe. 

For each x E X(W., r,), we shall define, following [11, (4.24.1)], an 
almost character associated to x, 

(2.1.1) Rx=(_l)l(wol .6 {xp, x}p E ~(GF)®QZ' 
pEC(GF,('ll 

The action of Me on X(W" rs) gives rise to the scalar multiplication by 
elemets of Me on Rx. Hence, for a given p in <&"(GFm, (s»)F, an element 
x=xp in X(W" r,) is determined up to the Me-orbit, and we can attach 
Rxp E ~(GF)®Qz to p up to a c-th root of unity multiple. 

We note here that by our assumption on m, a root of unity Ap (in 
Lemma 4.1) is associated to each p E <&"(GFm, (s». We can now state our 
main result. 

2.2. Theorem. Let G be a classical group with connected center. 
Then there exists an integer mo = moe GF) satisfying the following properties: 

Let p be a representation in <&"(GFm, (s)y and p an extension to GFm. 
If m is divisible by mo, there exists fl. (depending on m, p and the choice of 
x p) such that 

2.3. Remark. The definition of Ap in [11, Proposition 2.20] depends 
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on the choice of a coherent lifting ([11, 1.23]). However, our theorem 
implies that, at least in our setting, i.e., m is sufficiently divisible and p is 
F-stable, Ap is independent from that choice since (pp)m is uniquely deter
mined by p. 

2.4. The remainder part of this paper is devoted to the proof of the 
theorem. 

If Gis of type An, the lifting always exists by [12], [7] and the theorem 
is proved easily from this. Hence we assume that G=Gn is of type Bn , 

Cn or Dn. Using induction on n, we shall assume that the theorem is 
valid for G n' (n' <n). 

Let M=MJ be a proper Levi subgroup of G and Fw be a Frobenius 
map on M (i.e., Fw(J)=J). Since the Coxeter diagram of M is a direct 
sum of diagrams of classical type, using the argument in [1, § 2], we may 
assume that the theorem is valid for M. 

2.5. Let M and Fw be as in 2.4 and (s)cM* be an Fw-stable semi
simple class. We assume that S(MF"', (s))Fw contains a cuspidal represen
tation 0, which is unique in S(MF"', (s)). By induction hypothesis, for each 
m divisible by moCMFW), we can attach a root of unity P3 such that 
N;"'/F,M([,uaa]) is independent of m. Let PE e S(GF"', (s))F be the represen
tation corresponding to E e (Wa); and PE be as in 1.13. 

Following [11, § 3], we shall show that N;"'/F ([PaPE]) takes the same 
value for infinitely many m. 

OF'" 
Let H(qm) be the Hecke algebra corresponding to IndpF'" (0). Then. 

J 

since Wa={w e W.lw(J)=J} by [1], H(qm) is a tensor product of various 
Hecke algebras of classical type. Hence by [11, § 3] and Benson and 
Curtis [4], we see that, for each E e (Wa)e'; 

(2.5.1) 

Let ml(GF) be the smallest integer such that ml(GF) is divisible by 
both of mo(MFW) and m1 in Proposition 1.6 for various M and Fw, and 
that ml(GF) satisfies (1.13.1) for various WI' We denote by vIt' the set of 
positive integers m divisible by ml(GF). Then, in particular, N;"'/F,MC[,uaa]) 
=R"J for m e vIt'. Put (Xt,E(m)=<..Jr, N;"'/FC[PaPE]»OF' for each..Jr e S(GF). 
Now using the orthogonality relations of Hecke algebra H(qm), we see, by 
Proposition 1.9 together with (1.13.2), that N;"'/F([,uaPE]) is contained in 
C(S)(GF/ ~). Moreover, by virtue of Proposition 1.6, we see that (Xt,E(m) 
is contained in a fixed algebraic number field in Qt. On the other hand, 
(Xt,E(m) are cyclotomic integers divided by 1 GF I, and have absolute value 
< 1. The last property follows from the Cauchy-Schwarz inequality, (cf. 
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[11, 3.8]). Hence there are only finitely many lXt.E(m) for mE Jt'. 
Therefore we can divide Jtl into a finite number of sets Jtt (i= 1, .. " r) 
such that lXt .E takes constant value on Jtt for each pair Ct, E). 

Let Jt be one of the Jtt such that IJtI=oo. Then Njm/F«(uaPE]) is 
independent of m for mE Jt. Hence, by Lemma 1.15 applied to the case 
J=K, we see that e~m) is independent of mE Jt for each y E W~. We de
note by ey this constant value e~m" (the assumption (*) in 1.14 is trivial in 
this case) .. 

2.6. Let 011 (')(G, F) be an Euclidean space over Ot with inner product 
< , > generated by fe, (x E X(W., r.)) with relations 

/cx=r.lx 

<Ix, Iy>={~ 
for each t; E Me, 

if x=y 

if y $ Mex. 

Moreover, let j/'(')(G, F) be an Euclidean space over O£ with inner pro
duct < , > and with orthonormal basis e,,(x E X(W., r.)). As in 2.1, 
$(GFm, (s))F is bijective with X(W., r8)jMe. We fix a representative x=xp 

in X(W., r.) for each P E <t(GF"', (s))F. Let C(8)(Gp mj - F)' be the subspace 
of C(8)(GF"'j - F) generated by [PEl for various (M, Fw) with M *G. Also 
we denote by 0lI(8)(G, F)' the subspace of 0lI(8)(G, F) generated by Ix for x 
corresponding to PE as above. Then we may identify OlI(')(G, F)' with 
C(')(GF"'j - F)' by associating x=xPE to (u"PE]' We consider also the 
similar spaces OlI(')(M, Fw) and j/'(8)(M, Fw). We may identify 011 (8)(M, Fw) 
with C(S)(MF"'j - F) by associating x=xp to flpP, where P E <t(MF"', (s))Fw 
and flol is given as in the theorem. Then aFw (resp. Rl:(in)) induces the map 
aFw : OlI(')(M, Fw)~OlI(')(G, F)' (resp. Rl:(in): j/'(S)(M, Fw)~j/'(')(G, F)) by 
above identifications. 

2.7 Let us define LIM: OlI(')(M, Fw)~j/'(S)(M, Fw) by 

LIM: Ixl----+ex= ( _l)I(w6) L: {y, x}y, 
ilEXCCWJ),.r;) 

where w~ is the corresponding element in WJ of Wo in W. Hence LIM 
coincides with Ni"'/F.M under our identifications. Moreover, we define 
Llo: OlI(')(G, F)'~j/'(')(G, F) by associating x=xPE to the element corre
sponding to Nj"'/F«(u.lPE]) which is independent of m E Jt by 2.5. Then 
LIM and Llo becomes isometries between two spaces and (1.9.1) turns out to 
be the following commutative diagram. 

j/'(8)(G, F)~0lI(') (G, F)' 

(2.7.1) Rl:(;;,) I laFw 

j/'(S)(M, Fw)~OlI(S)(M, Fw) 
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In (2.7.1), each spaces and Lla, LlM are independent of m, while R'!tc'w) is 
the map whose coefficients are given by (laurent) polynomials in qm/2 by 
Proposition 1.6. We show that aFW is also the map whose coefficients are 
given by polynomials in qmf2. In view of Lemma 1.15 and (2.5.1), we have 
only to show that the assumption (*) in 1.14 is satisfied. Thus we shall 
show that for each 'ICE' e C(M!tyw, there exists an Fw-stable Levi subgroup 
M J and a cuspidal representation 0 e C(Mrn) to which 'ICE' belongs. Since 
we are dealing with classical groups, this is reduced to the case where K is 
of type At and O'W is a non-trivial automorphism of K. But in this case, 
by the existence of the lifting ([7]), (*) is transferred to the similar problem 
in MJ::w. Hence (*) holds in this case. 

Now, by specializing qm--+I, we get the following diagram. 

(2.7.2) 

The map a w is given for each XE,=X%E' ('ICE' as in 1.15), 

(2.7.3) 

wherefxE e I1II( 8 )(G, F)' is the element corresponding to PE e C(GFm, (s)y 
and W=W1YW~-1 is as in 1.15. BE' is the E'-isotypic subspace of W~
module B. R cw) is nothing but R'trcw) by our identifications. 

The following transitivity of R(w) is known ([9], [2, 1.1.31). 

(2.7.4) 

where w e Wand w' e WK' (s) is a class in M J which is Fww'-stable and 
is extended to the classes in MK and in G. 

The following transitivity of aw also follows easily from (2.7.3), (cf. 
[2, Lemma 2.7.7]). Under the same setting as above, 
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(2.7.5) 

T. Shoji 

%'C')(,G' F)~ a
w 

aww' ~)(Mx. Fw) 

/ aw' 
O/Jc')(MJ> Fww') 

2.8. We now show that the proof of the theorem is reduced to the 
special case where the centralizer Za.(s)* has the same semisimple rank as 
G. Assume that the semisimple rank of Za.(s)* is less than that of G. 
Then there exists some M"* G with Frobenius map Fw such that Za.(s) is 
contained in M*. In this case, W. is contained in Wx (here we put M=. 
Mx) and X(W., r8) for M coincides with the one for G. By [9,8, 10J, 
RM(w) becomes the scalar multiplication (_1)a(a) -a(M) under our identifica
tion "Y(')(M, FW)="Y(8)(G, F), where a(G) Crespo a(M» is the F q-split rank 
of G (resp. M) with respect to F (resp. Fw), respectively. Hence 

(_l)"(a)-u(M)=( -l)1(W). 

On the other hand, since W~ = W~ for each cuspidal representation 0 
of M J (JcK), we have wwi=w1• Hence ri)=r~ and y=l, and a w turns 
out to be the identity map on d//(')(M, Fw)= d//(')(G, F)' (= d//(')(G, F). 
Now our assertion follows from the fact that the element Wo in W with 
respect to (W., rs) in g(GF, (s» is equal to w, while w~ in g(MFW, (s» is 
equal to 1. 

2.9. In view of 2.8, we may assume Za.(s) has the same semisimple 
rank as G*. Then W, has the form W1X Wz, where Wi (i=1, 2) is a 
Weyl group of type Ck or D k • We may take s E T*F in this case and 
therefore Wo= 1. 

Let us define a linear map J=Ja: d//(S)(G, F)~"Y(s)(G, F) byassoci
atingj", (x E X(W" r.» to e",=2{y, x}y, where y runs over the elements in 
X(W., r.). We want to show that J=J on %,(S)(G' F)'. Let Mr=MJr 

(r~O) be the Levi subgroup of G whose Coxeter diagram has the same 
type as G with rank r (r"* 1, 2 if G is of type Dn). It is clear that 
%,(S)(G, F)' is generated by the images of aw from d//(S')(M" Fw) «s') is a 
class in Mr such that (s')c(s» for various M" wand (s'). So, it is enough 
to show that J=J on aw(d//(")(M" Fw» for each triple (M" w, (s'». We 
note here that 

(2.9.1) 

In fact, since /(wo) = 1, this follows immediately from Corollary 4.24 of[11J. 
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Assume r>O (resp. r>4) for G of type Bn, Cn (resp. Dn) Put wr= 
{w E Wlw(Jr)=Jr}. Then wr is isomorphic to a Weyl group of type Cn_n 
and an element w E wr can be expressed as a product of positive cycles and 
negative cycles. Hence, from the transitivity of R(w) and aw «2.7.4), (2.7. 
5», the verification of L/=.d on C2{(S)(G, F)' is reduced to showing that 
L/=.d on aw(C2{(8)(M" FI1J» where w is a positive or negative cycle of length 
n-r. 

2.10. Lemma. Assume that w E wr is a positive cycle of length n - r. 
Then L/=.d on aw(C2{(8)(M" Fw». 

Proof Let M be the Levi subgroup of G whose Coxeter diagram is 
a direct sum of A n _ r_! and the diagram of Mr. Then using the transitivity 
(2.7.4), (2.7.5) to M~w, MF and GF, we see that to prove the lemma it is 
enough to show the commutativity of the following diagram. 

As R(t) is nothing but the induction from p F to GF, all the maps are 
explicitly computable. Hence using the similar computation as in [2, 
Lemma 2.8.3], we get the lemma. 

2.11. Next we consider the case where w E wr is a negative cycle of 
length n-r. In order to apply (2.7.3) to this case, we shall determine ro' 
r~ and others. Assume 15 is a cuspidal representation of Mfm (t::;;'r), where 
J, is Fw-stable. Then, since W. e::: W! X W2, we can express (WJr). e::: Wi X 
W~ and (WJ,)se::: Wi'x W~' with Wi'e Wie Wi (i= 1,2). In our setting, 
w(mayassume W2 = W~. Put W~=Wo n WJr . Since Wile::: W' n w., we 
can express W. and W~ as Wo e::: (Wo)! X (WO)2, W~ e::: (W~)! X (W~)2. Let n: 
Wi-+Wi ' r i : (WO)i-+(Wo)i and ri: (W~)i-+(Wi)i be the maps on the i-th 
factor (i=I, 2) induced from rs: Ws-+W., ro: Wo-+Wo and r;: W;-+W;, 
respectively. Moreover we put rr: Wi-+ Wi the map induced on the i-th 
factor from r~: (WJr)s-+(WJr)8. 

First consider the case where W! is of type Ck • In this case, (Wo)! 
and (W;)! are also of type C. Hence, n=r!=ri=rr=trivial. Moreover, 
since w E (W.)!, we have w! = w; = 1. 

Next consider the case where W! is of type D k • If Wi' = {l}, then 
(Wo)! = WI' (W~)I = Wi and both of these are of type D. In this case, 
since F stablilizes (Wo)i and (W;)i' WI stabilizes (WO)i and wi stabilizes 
(W~)i (i= 1,2). From this, considering the possibility of Wl and wi, we 
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see that y= w1iww{ E (Wo)! and that exactly one of w! and w{ is equal to 1. 
Thus, n=r!, r{=7i= -rio (Here we regarded n r!, etc. as elements in 
M 2={I, -I}). Moreover r!yr{-! coincides with win (Wo)!' If W{'*{l}, 
(Wo)! and (W~)! has type C, and w is contained in (Wo)!' Hence r! =r{ = 
trivial and w=y. Moreover, as w acts non-trivially on W{, we have n= 
-n. Throughout the above cases r2=r~ and the contribution of royr~-! 
on(WO)2 is trivial. 

2.12. Before proceeding further, we note here about ey in (2.7.3). 
This is described as follows. Let y E (Wo)! as in 2.12. Then by [11, § 5], 
[1], there exists e~= ± 1 such that 

(2.12.1) 
if (Wo)!: type D, 

if (Wo)!: type C, 

where l'(y) is the number of reflections corresponding to long roots (in C) 
appearing in the reduced expression of yin (Wo)!' 

2.13. Lemma. Let w E wr be a negative cycle of length n-r. Then 
LI=,d on aw(O!J(s)(Mn Fw)). 

Proof We shall show the lemma, following [2], only in the case 
where W! is of type D k' The case W! is of type C k is dealt similarly (cf. 
[3]), (see also Remark 2.14). 

Let O!Jic (resp. 1""iJ be the space corresponding to X(W!, rD (resp . 
..f(W!> rm as in 2.6, where e= ± 1 according as r! is trivial or not. Thus, 
as in 2.1, O!Jic and 1"";' are described by symbols. For each symbol A in 
([): or 1Jf k' we denote by fA or eA the element corresponding to Ix or ex. 
We may identify O!J(S)(G, F) (resp. 1""(S)(G, F)) with O!Jj,,@O!J' (resp.1""ic@1""') 
and also O!J(S)(M, Fw) (resp, 1""(S)(M, Fw)) with O!Ji@O!J' (resp. 1""i@1""'), 
respectively. Here O!J' (resp. 1""') denotes the space corresponding to 
X(W2' rn (resp. X(W2, rD). 

Following [2, 2.8], for positive integer v, linear maps I(:v): O!Ji~O!Jk' 
and J(v): 1""i~1""k', (k=l+v) are defined. Since,d: O!Jic@O!J'~1""k@1""' 
can be decomposed as ,d=,dk@,d', where ,dk' .1' is the corresponding map 
on 0!Ji." O!J', respectively, we see that the following diagrams turns out to 
be commutative by [2, Lemma 2.8.3]. 

(2.13.1) 
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Using the definition of aw (2.7.3) together with 2.11, we see by [2, 
Lemma 2.8.2] that I0,)Q91 coincides with aw for a negative cycle w of 
length v. Note, in this case, under the identification of tJ/t(s)(G, F) with 
X(W., rs)/Me, retaking representatives of Me-orbit if necessary, we may 
regard Cy = 1 when comparing aw with I0,)Q91, (cf. [2]). 

Take eAQgex E'i"'iQ9'i"". Then by (2.7.2), (2.l3.1), we have 

LlLi-l(J(V)eAQgeX)=R(w/eAQgeX) 

Hence LlLi-l(J(V)eAQgeX) is an integral linear combination of various eA.Qgey 

E'i"'kQ9'i"". Now Li is an isometry and Ll is also an isometry where it is 
defined, and moreover we know already Ll=Li on tJ/tk,OQ9tJ/t~ by (2.9.1), 
where tJ/tk.O is a space generated by symbols of defect 0 and tJ/t~ is the similar 
subspace in tJ/t'. Hence entirely similar proof as in Lemma 2.8.10 of [2] 
shows that, if we put J = J(v)e AQgeji, then 

where ft E 'i"';;' is written as in the form (II) of Lemma 2.8.10 in [2] with 
/=J(V)eA. Furthermore, <ft, eA,> =0 for any eA' of defect O. Hence by 
the argument in Lemma 2.8.7, Lemma 2.8.8 in [2], we have ft=O. This 
shows that Ll=Li on I0,)(tJ/ti)Q9tJ/t'. Hence the lemma is proved. 

2.14. Remark. The case where WI is of type C Ie is dealt similarly 
according to [2]. In this case, as in [3], we encounter the problem to 
determine co explicitly on the way to the proof. This is done similarly as 
in [3] and we have the following. Let x = (Xl> x 2) be the element in 
X(W., r,):=X(Wl' rDxX(W2• Tn corresponding to o. Now X(Wl> rD is 
identified with symbols of odd defect. If Xl corresponds to a symbol of 
defect d, then we have 

Now, in view of 2.9, we have 

2.15. Proposition. In the setting 0/2.9, Ll=Li on tJ/t(S)(G, F)'. 

2.16. We keep the assumption on s as in 2.9. Then, as is easily 
seen, tJ/t(S)(G, F)' coincides with the space generated by the elements corre
sponding to non-cuspidal representations. Moreover, in the case of 
classical groups, C(Gpm, (s)) contains at most one cuspidal representation 
for each (s)cG*. Thus, in view of Proposition 2.15, to prove the theorem, 
it is enough to show the following lemma. (Note our result does not 
depend on the choice of vIt.) 
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2.17. Lemma. Let s E G*/i' be as before and mE vIt. Assume 
C(GFm, (s»)F contains a cuspidal representation po. Thenfor each extension 
po to {JFm, there exists a root of unity Ppo such that 

where xo=xpo. Moreover (Piio)m=A;o\ where Apo is a root of unity associ
ated to Po (see Lemma 1.4). 

Proof Let us take w E Wi (the group of F-fixed points of W s). Then 
F acts on TWFm and we can find {} E TWFm corresponding to s E T*WFm such 
that {} is F-stable. We denote by (}o E TF the character obtained as the 
image of the map N;'Fm/F: C(TwFm/ ~ F)---+C(TF / ~). 

Let x~m) be the variety as in 1.2 with Frobenius map Fm, and §'w,o 
be the corresponding sheaf on x~m). Since w is F-stable, F acts naturally 
on x~m) and we get the induced action of F on H~(x~m), §' w, 0) as {} is F
stable. Then using the similar argument as in the proof of Proposition 
1.9, ([2, 1.4], [11, 2.10]), but with inverse setting, we have 

(2.17.1) .L: (_1)i Tr (F*x*, H~(x~m), §' w,o»=Tr (X-ITO"w, Ind~~({}o», 
i 

where x E GFm and x E GF are as in Introduction. 
From Lemma 1.4, for each p E rff(GFm, (s»)F, there exists a root of 

unity Ap such that the eigenvalues of F m on H~(x~m), §' w, 0) are of the 
form Apqjm/2 for some integer j. Let us fix an m-th root A~ of Ap. For an 
eigenvalue p=Apqjm/2, put H~,I' be the generalized eigenspace of Fm with 
eigenvalue P of H!(x~ml, §' w,o)p. Then H~,I' is a GFm-module on which F 
acts. There exists a filtration of GF -modules, stable by F, whose succes
sive quotient is isomorphic to p as a GFm-module. If we define the action 
of a on this filtration by A~qj/2F*-I, each successive quotient becomes a 
.(JFm-module. However, if we consider the action of Pz instead of F, this 
filtration gives rise to an F2-stable filtration and each successive quotient 
turns out to be a GFm« 2)-module. Then, by Lemma 1.4, these GFm«2)_ 

modules are mutually isomorphic for various filtration and various i and 
w. Hence, as {JFm-modules, there are at most two possibilities, if we 
denote one by p, the other one is obtained by acting a as - a on p, which 
we denote by - p. Since, 

Tr (F*x*, HL)=AA~qj/2 Tr «xa)-t, p), 

where A=#{,o-factors in H~,I'}-#{ -,o-factors in H~,I'}' the left hand side 
of (2.17.1) can be expressed as 

(2.17.2) .L: Cw,pA: Tr «xa)-t, (0), 
p 
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where P runs over all the representations in tff(GFm, (s)y and cw,p is a real 
number .. 

On the other hand, the right hand side of (2.17.1) becomes 

(2.17.3) 

where Cw(q) is an integral power of q and E runs over all the irreducible 
representations of W:. Moreover Tw is a standard basis of the Hecke 
algebra H(q) corresponding to a Coxeter group W:. Since the set of the 
dual representation of tff(GFm, (s)y coincides with tff(GFm, (S-l)y and the 
dual of the cuspidal representation is again cuspidal, we may replace P by 
the dual p* of p. Then (2.17.2) and (2.17.3) implies that 

(2.17.4) 

for each W E W:. 
Let C(Wf) be the subspace of C(S)(GFm/ - F) generated by .xCw,p.A~.[p] 

for various W E W:. Then (2.17.4) shows, by the orthogonality relations 
of Hecke algebra H(q), that the image of C(Wf) by N;m/F coincides with 
the subspace of C(S)(GF / -) generated by PE (E E (Wf)"'). Let Po be the 
cuspidal representation in tff(GFm, (s)y and let Xo the corresponding element 
in X(W" rs). Then <Rxo' PE)OF=I=O for some E, and in particular, 
N;mIF(C(Wf)) is not contained in the subspace of C(S)(GF / -) generated 
by Rx with x=l=xo, x E X(W" rs). This implies that N;m/F([Po]) is contained 
in C(S)(GF / -) since we know already N;m/F(p .. [p])=R xp for each xp =l=xo' 
Since N;m/F is an isometry, we have 

(2.17.5) 

for some ao E Qz of absolute value 1. 
Let us take W E W: such that Cw, p.=I= 0, (such a W exists). Then (2. 

17.4) implies that the image of L: Cw,p.A;.[p] by N;m/F is written as a linear 
combination of Rx (x E X(W" rs») with coefficients in R. Hence, in par
ticular, N;m/F(A;~[poD coincides with Rxo up to a real number multiple. 
This shows, by (2.17.5), 

Now, (±A;~)m=Ap~ and Apo coincides with A;ol by the Poincare duality. 
This proves the lemma. 

2.18. Using Theorem 2.2, we can describe the map 

RM(w): C(s)(MFw/ _ } ____ ~C(S)(GF/ _) 
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for M=MK • If we choose a set Xl of representatives of M; orbits 
in X((WK )., r~), almost characters R" (x' E XI) give a basis of 
C(·)(MFW/_). For each x' E Xl' there exists a Levi subgroup M J con
tained in MK and a cuspidal representation 0 of M~m (m: as in the 
theorem) such that x' can be expressed as x'=xp " where E' E W~-" 

If 

and PE is an irreducible representation of Mk'" corresponding to E'. As 
mentioned earlier, Ws is a product of various Weyl groups of classical 
type. Hence W. and the linear character y~ey (y E W.) is decomposed 
according to it. We denote by 7J(Y) the part of ey corresponding to the 
component of type C in W.. Hence 7J(Y) is explicitly known by Remark 
2.14. Now, in view of (2.7.3), together with Theorem 2.2, we have the 
following corollary. 

2.19. Corollary. Let W=WIYW~-t, r.: WJ~W. and r~: W~~W~ be 
as in (2.7.3). Then 

2.20. Remark. It is likely that similar results hold for exceptional 
groups, in view of [4]. But more generally for arbitrary connected alge
braic groups, we can consider the map N;."IF: C( GFm/_ F )~C (GF /-) in 
a similar manner, and the number of F-stable irreducible representations of 
GFm is independent of m. Hence our result suggests the following con
jecture. 

Conjecture. Let G be a connected algebraic group defined over F q' 

There exists a good parametrization of the set cS'(GFmy of F-stable irre
ducible representations of GFm, say ..r(G) by p,,~x such that N;m/F([p,,]) 
E C(GF /-) is independent of m (for sufficiently divisible m) up to a root 

of unity multiple. 

Added in Proof. Recently Asai extended his result to the case of 
non-split orthogonal groups. 
T. Asai.: The unipotent class functions of non-split finite special ortho
gonal groups. Preprint. 

References 

[ 1] Asai, T., Endomorphism algebras of the reductive groups over Fq of classi
cal type, Preprint. 

[ 2} --, Unipotent class functions of split special orthogonal groups SOin over 
finite fields, Comm. in Algebra, 12 (1984),517-615. 



Generalization of Asai's Result 229 

[ 3] --, The unipotent class functions of the symplectic groups and odd ortho
gonal groups over finite fields, Comm. in Algebra, 12 (1984), 617-645. 

[ 4] -_., The unipotent class functions of exceptional groups over finite fields, 
Preprint. 

[5] Benson, C. and Curtis, C. W., On the degrees and rationality of certain charac
ters of finite Chevalley groups, Trans. Amer. Math. Soc., 165 (1972),251-
273 and 102 (1975), 405-406. 

[6] Howlett, R. and Lehrer, G., Induced cuspidal representations and generalized 
Hecke rings, Invent. Math., 58 (1980),37-64. 

[7] Kawanaka, N., On the irreducible characters of finite unitary groups, J. 
Math. Soc. Japan, 29 (1977),425-450. 

[ 8] --, Liftings of irreducible characters of finite classical groups I, J. Fac. 
Sci. Univ. Tokyo, 28 (1982),851-861. 

[9] Lusztig, G., On the finiteness of the number of unipotent classes, Invent. 
Math.,34 (1976),201-213. 

[10] --, Irreducible representations of finite classical groups, Invent. Math., 
43 (1977), 125-175. 

[11] --, Characters of reductive groups over a finite field, Ann. of Math. 
Studies 107, Princeton University Press, 1984. 

[12] Shintani, T., Two remarks on irreducible characters of finite general linear 
groups, J. Math. Soc. Japan, 28 (1976), 396-414. 

Department of Mathematics 
Science University of Tokyo 
Noda, Chiba, 278 Japan 




