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Some Generalization of Asai’s Result
for Classical Groups

Toshiaki Shoji

Introduction

, Let G be a connected reductive algebraic group defined over a finite
field F ,, F:G—G be the corresponding Frobenius map and for each positive
integer m, G*™ be the group of F™-fixed points in G. Let G*"/~ ; be the
set of F-twisted conjugacy classes of G*™. In the case where m=1, we
simply express it as G¥/~. A bijection Nypnsp: G¥/ ~—>G""] ~ is defined
by attaching x=F™(a)a"! to £=a 'F(a), where x e G, £ e G""and a ¢ G.
We denote by C(GF"/~ ) the space of Q,-valued functions on the set
G¥"| ~ 5. Then we get the induced map Ni» »: C(G"" ~ z)—>C(G"[~).

Let G™™ be the semidirect product of G¥™ with the cyclic group of
order m with generator ¢, where ¢ acts on G*" by ogo™'=F(g). For
each representation g of G*™, we denote by [g] the restriction on G*"¢ of
the character of 3, which we regard as an element of C(G*™/ ~ ;) under the
Ilatural bijection G¥"/~~G*"¢/ ~ (~ means the conjugation under
GF™).

Assume that the center of G is connected. By Lusztig [11], the set
&(G*™) of isomorphism classes of irreducible representations of G¥™ over
Q, is partitioned into the disjoint union of subsets &(G™", (s)) where (s)
runs over all F™-stable semisimple conjugacy classes in the dual group G*
of G. Moreover, by [11], taking s € G*7™, we have a canonical bijection

©.1) (G, ()= E(Zes)*F7, (1)).

F acts naturally on &(G*™) and for each F-stable class (s), F stabilizes
E(GT™, (s)). Let &(GT™, (s))" be the set of F-stable representations in
&(G*™, (5)). We denote by C¥(GF"/~ ) the subspace of C(GT"/ ~ ;)
generated by [g], where § runs over all the irreducible representations of
G*™ whose restriction to GF™ lies in &(G™, (s))*. Thus, if m=1,
C®(GF| ~) is the subspace of C(GF/~) generated by various elements in
&(G*, (s)).
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The purpose of this paper is to investigate the map N, in the case
of classical groups.

If m=1, the map N}, becomes an automorphism on the space of
class functions of G¥ and in the case of classical groups of split type,
Asai [2], [3] has shown using the lifting theory of Kawanaka [8], that N5
leaves C®(G¥/~) invariant and that N}, restricted to C(G*/~) is
closely related with the “Fourier transform” (or rather almost characters
in the sense of [11, §4]) of unipotent characters. (He also obtained the
similar result ([4]) in the case of exceptional groups using the twisted ope-
rator instead of N} z).

In this paper, we shall treat the case where G is a classical group with
connected center and m is sufficiently divisible, i.e., F » contains some
fixed sufficiently large extension of F,. Then &(G™™, (5))* is parametrized
by X(W,, 7,) (see 2.1 for the definition) independently of m, and for each
x e X(W,, 7,) an almost character R, ¢ C®(G¥/~) can be defined by [11].
By this correspondence, we can attach to each pe &(G™", (s))* corre-
sponding to x, € X(W,, 7,), an almost character R,, up to a root of unity
multiple. Then our main result is Theorem 2.2, which asserts that under
the above assumptions, N}, maps C(GF"/ ~p) onto C¥(G*/~) and
that N7 #([¢£;0])=R.,, where § is an extension of p to G™ and Usisa
root of unity depending on the choice of g and m. In particular, N¥.
is compatible with the map (0.1).

In the case where s=1, our result is already contained in [2], [3].
Hence, Theorem 2.2 can be regarded as a generalization of Asai’s result
to arbitrary s, although his result itself (which is concerned with N} ) is
not extended to the general case by our argument.

As a corollary (Corollary 2.19), we can decompose R% . () into
irreducible constituents, where M is an F-stable Levi subgroup of (not
necessarily F-stable) parabolic subgroup P of G and z is an irreducible re-
presentation of M*. \

As regards the proof, Asai’s method can be applied to our case, es-
sentially. However, it should be noticed that, as we are dealing the case
where m is sufficiently large, Kawanaka’s theory cannot be applied to our
case. Instead, using the argument of Lusztig ([11]), we can show that
Nia, #([p]) gives the same element in C(G*/~), up to a root of unity mul-
tiple, for infinitely many m. This enables us to apply the specialization
argument to our situation, and once this is done, Asai’s method works as
well to ours by making use of results of Lusztig [11].

The author understands that B. Srinivasan obtained independently
the similar result as Corollary 2.19.

The author is indebted to G. Lusztig for suggestions and discussions
on the occasion of Katata conference in 1983.
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§1. The maps R§",, and ay,

1.1. Let G be a connected reductive algebraic group defined over a
finite field F,, with Frobenius map F. We may assume further that G
has a split F -structure with Frobenius map F; such that F,F=FF, and
that some power of F; is equal to some power of F, where F,, is a prime
field contained in F,. We shall fix an F,-stable Borel subgroup B, an F,-
stable maximal torus T contained in B, and denote by W the Weyl group
of G relative to 7. We assume further F(B)=B and F(T)=7. Let 3 be
the set of roots of G with respect to 7 and I7 C X be the set of simple roots
with respect to (B, T). Then any parabolic subgroup ‘containing B is ex-
pressed as P,=M U, for some JC II, where M is a Levi subgroup of P,
containing 7 and U, is the unipotent radical of P,. Put M=M,. Take
w e W such that Fw(J)=2J, and let w be a representative of w in N (T)7e.
Then Fw: g—F(vgw-") may be considered as a Frobenius map of M com-
muting with F, with respect to some F -structure. Consider the variety
S={g e G|g"'F(g) e FWU,)} and put S=S/U, N FWwU,w~*). Then G X
MT? acts on Hi(S, Q,). According to [9], [2], we associate a virtual G*-
module R ;,(x) to an irreducible M 7¥-module x as follows.

R wn(m)= Z(_ DA(HS, Qz)@ﬂ)MFw

Thus, extending linearly, we get a homomorphism R$ g, : Z(MT?)—
A(GT), where Z( ) denotes the Grothendieck group of representations of
a finite group over Q,. (Note our definition of R, here is slightly dif-
ferent from that of [2], where he uses wF instead of Fi).

1.2. We recall here some related notations of [11]. For each w ¢ W,
we define X,={gB e G/B|g"'F(g) ¢ BwB} and for each representatlve
W e Ny(T)F>, we define X,={geG|g 'F(g)e wU}JUNWUW™", where

U is the unipotent radical of B. PutT,={teT [w(F(t))—-t} Then G¥
x T, acts on X, by x—gxt~* and induces the isomorphism X,/T,~X,,
which is G¥-equivariant with respect to the action of G* by left multlphca-
tion on X,,. We denote by &, the locally constant G7-equivariant Q,-
sheaf of rank 1 over X,, corresponding to § € 7. Then HYX,, & ,) be-
comes a GF-module and in fact,

R 0)= 2 (= D HL X, Fo).

Let X, be the Zariski closure of X, in G/B. Then X, is the disjoint
union of X, (W' <<w). We shall consider, following [11, §2], the cohomo-
logy sheaves s#%X,, F,) of the intersection cohomology complex
IC(X,, &, and its hypercohomology group H*(X,, % ,), which becomes
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a G¥-module.

1.3. Let G* be the dual group of G defined over F, and T* be an
F-stable maximal torus of G* which is dual to T over F,,.

From now on, throughout this section, we assume that the center of
G is connected.

According to [9, §7], 8 ¢ T}, determines an F-stable semisimple class
(s) of G*. Then, by [11], for each F-stable class (s) C G¥*, the set &(G7, (s))
consists of p e §(G¥) such that p appears as a constituent in a G"-module
H{(X,, #,) for some i and w under the condition that # corresponds to

{s).

Fix an F-stable class (s) in G*. Let s be an element of (s) contained
in T* and d be the smallest integer such that F¥(s)=s. Then F¢ acts on
X, and since @ is F2-stable, & , is endowed with an Fé-structure. So, F¢
acts naturally on H{(X,, % ,) and H(X,,, & ,). However, this Fé-structure
depends on the choice of a representative w of w, we shall write &, as
F 4.0 (as G¥-equivariant sheaf, %, , are mutually isomorphic). Hence,
from now on, according to [11, 1.23], we shall fix a suitable representative
w e Ng(T)F for each we W.

Let b be the smallest integer such that F2° is an integral power of F.
In the following, for (G¥, F¢*)-module H, we denote by H, the p-isotypic
subspace of H and by H, , the generalized p-cigenspace with respect to
F¢ of H,. The following lemma, which is a usual cohomology version of
{11, Proposition 2.20], is due to G. Lusztig. The author is very grateful
to him for communicating this.

1.4. Lemma. Assume we are in the setting of 1.3. Let GF{9) be
the semidirect product of G* with the cyclic group of order b with generator
9, where 9 acts on G* by 989 '=FXg). Then each representation p in
E(GT, () is Fl-stable. Moreover, for each p e &(G*, (s)), there exists an
extension § to GT{9) and a root of unity %, e QF such that the following
holds.

(i) Put 2,=(2,)’. Then the eigenvalues of F® on H(X,, F ,,,), are
2, times integral powers of p***.

(i) Put p=2,p*""* be an eigenvalue of F% as given in (i). Then
HYX,, F4.0),p 15 Fl-stable and admits a (G¥, F®)-stable filtration each of
whose successive quotients is isomorphic as a G* {9y-module (with 9 acting
as (,)"'p~**F% to p. '

Proof. All the statements are certainly true for H'(X,,, %, ,) in view
of [11, Proposition 2.20, Theorem 3.8]. Hence the first statement follows.
We shall show (i). Take p € £(G7, (s)). They by [loc. cit.], the eigenvalues
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of F?® on H'(X,,, #,,,), are of the form 2,p*®*2 where 1, is a root of
unity independent of i and w. Suppose the lemma does not hold and let
w be a minimal element with respect to the Coxeter order where the lemma
fails. Hence there exists i and g € Q}, not of the form 2, times integral
power of p®”? such that H(X,, %, ,),.70. The spectral sequence of
G*-modules

HZ(X—wa %j(yun %w,ﬁ)):ﬂprj(yw: y_w,o):
which is F¢-equivariant, implies
‘(141) Hi(yw’ ‘%j(ywa 33‘12,’ H))p,y—:/>Hi+j(ywa gw, 0),0,#'

But, by [11, Theorem 2.4], for each w’<w, the restriction of #/(X,,, F )
to X, has a filtration of G*-equivariant sheaves defined over F . if it is
non-zero, where each successive quotient is isomorphic to F 4, .(—J/2)
{Tate twist) for some §’ e T corresponding to (s). Moreover when w'=
w, this restriction is isomorphic to #,, , if j=0 and 0 otherwise. Hence,
by assumption on w, the left hand side of (1.4.1) vanishes except when
j=0. Thus we have

HZ(Xw’ t%.u'),ﬂ)p,p:.ll—]:i(yw: tgz‘w,ﬂ)p,p'

This is a contradiction since H(X,,, # 4 4),,,=0. Thus (i) is proved. (ii)
follows from Proposition 2.20 of [11] using the similar argument as in (i) if
we notice that (1.4.1) turns out to be the spectral sequence of G¥{9)>-
modules. Thus the lemma is proved.

1.5. Let we W be such that Fw(J)=J. We shall choose a positive
integer m such that F™ is a power of F, and that (FWw)"=F" on M=M,.
Then F™ acts on S and so acts on H(S, Q,)®x commuting with the action
of M*? (with trivial action on #). Hence we get a natural action of F™
on the virtual G*-module R% ;) (x).

The following proposition describes the eigenvalues of F™ on R, (x)
in the case where m is sufficiently large.

1.6. Proposition. Let we W be as in 1.5. There exists an integer
m, >0 such that for any integer m>0 divisible by m,, the eigenvalues of F™
on (HYS, Q) Qm)*™ are integral powers of q™"*.

Proof. Takem as in 1.5. Then for each 7 e &(M*?), there exists
X, » (the similar variety as X,, defined replacing (G, F) by (M, Fw)), ¢’ ¢
T2 and F™stable subspace V, of HI(X, y» F u,) isSomorphic to = as
MF?-module. Then by the similar argument as in [11, 3.5}, [2, 1.1], there
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exists w”’ e Wand §” e T/, such that
(HYS, Q)R VY oa—s H WX iy F i, 00)-

The inclusion is F™-equivariant as m is taken as in 1.5.- Hence the pro-
position follows from Lemma 1.4.

1.7. We fix a parabolic subgroup P=2P,. Taking m such that F™
is a power of F,, consider an irreducible representation z: M**—GL(V).
# is naturally extended to a representation of P¥™, which we also denote
by #. Let £, be the space of all functions f/: G"™—V. It is a G""-module
by (g )(x)=f(x2), g, x e GT", fe &,. Let us define a subspace of Z,, by

PM, r)y={fe Z,.|f(pg)=r(p)f(g) for pe P'", gc G"}.

Then #,=2P(M, r) is a G'™-submodule of &,, isomorphic to Ind &7nu(x).
For each w ¢ W such that wJ I, choose a representative w € N (T)"° and
define a linear map z, ,: #,—%, by

1.7.1) el (X)) =

L X 6y

Fm
F
| UwJ [ YeEU,, 5
Then <, , is G¥™-equivariant and we have

(1.7.2) Trw: PM, 1)—>P(wMw, *1),

where ¥z is a representation of (wWMw-Y)F™ given by Yz(x)=r(W~'xw). We
also define F: &#,—%,, by F(f)(x)=f(F(x)).

Now, assume given w ¢ Wand m as in 1.5. 'We assume further that
m is Fi-stable. Then since Fw(J)=/J, z, , can be defined. Let o be the
restriction of Fyw to M*™. Since F™=(Fw)™, we can define M*™ as the
semidirect product of M¥™ with the cyclic group of order m generated by
ow. Let # be an extension of = to M*™. Then 7#(ow): V—V gives a map
P(M, TPr) - P(M, ) by f—i(ow)of, which we denote also by Z(aWw).
Hence, we get a map

(1.7.3) #HoW)Ft, gt P(M, £)—>P (M, ),

which is independent of the choice of representatives w of w. Note that
#{oWw)Fr,,, is nothing but a7 in Asai’s notation up to a constant mul-
tiple (2, 1.3]).

1.8. Let C(G¥/~) and C(G¥™/ ~ ») be as in Introduction. We define
the similar objects with respect to M with Frobenius map Fw. (Note
(Fw)™=F™ by assumption). Following [2, 1.4], we shall define a linear
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map ap,: C(M*"[ ~ z;)—>C(G""[ ~ 5) by putting
(1.8.1) (ar(ZD)(Ea)=g™* Tr (X&(oW)Fz, 4, P.)

for each # which is an extension to M*™ of = € &(MF™)F®, and extending
linearly to C(M*™| ~ ry). Here d’=dim (U, Nw~'U-w). (U- is the uni-
potent radical of the opposite Borel subgroup of B with respect to T).

Nextly, we define a linear map R{Y,,: C(M*%/ ~)—C(GF/~) by
putting

Riftn @)= 2, (= 1D* Tr ((xF7)*, (H(S, Q)®n)""™)

for each 7 e &(M7%) and extending linearly to C(M*%/~). Note our
definition of R, is slightly different from that of [2, 1.4], Now, using
the same argument as in [2, 1.4], [11, 2.10], we have

1.9. Proposition. Let w and m be as in 1.5. Then the following dia-
gram is commutative.

N ;‘km/F m
C(G*| ~)———>C(G™"] ~ )
R%n()w) Apw

c(MT¥ ~)—*->C(Mpm/ ~ r)

Fm/F

(1.9.1)

1.10. As in [2, 2.4], [11, 3.6], we shall express the map a, more
explicitly using Hecke algebras. Let § be an irreducible cuspidal repre-
sentation of M*™. Put W,={w e W|wJ=J, “6=~4}, where M=M,; as
before. Then by the result of Howlett and Lehrer [6] and [11, § 8], W is
a reflection group on the orthogonal complement of <(J) in X(T)® R.
(X(T) is the group of characters of 7). Moreover there exists a “root
system” I'C X and the set of “positive roots” I'*=1"N2* (actually the
projection on {J)L is a root system in the usual sense). Now, § can be
extended to a representation on Ng(M)F™ by means of (6.4) of [6] since
W, is generated by reflections. We denote by § an extension of § to
Ny (M)*™. Let S;C W, be the set of simple reflections with respect to ™+,
Following [6, 4.11], we shall define for each y € W, T,: #;—%; by

(1.10.1) T, =e™(q,)™*q" ™5 (P)es 4

where y—e{™ =1 is a linear character of W; and g,= [[,¢"®, s runs
through the elements in a reduced expression of y in W; and 4: S;—Z* is
a function which takes constant value under Wj-conjugate (cf. [11, Theorem
8.6]). Note that T, is independent of the choice of representatives y of y.
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Then T, (y € W) gives a basis of Endgrs Indgim (5). Moreover, by [6],
[11, Theorem 8.6), T, (y € W;) gives rise to a basis of the Hecke algebra
H(g™) over Q, with relations

ToT=Tpw if [(ww)y=I(w)+I1(w")
(T, 4+ T, —gqm*)=0, s eS;,

where [ is the length function of W; and 1: S;—Z* is as above.

We define the set Z,={w e W|Fw(J)=J, ¥*§~§}. Then Z, can be
written as wW; for some w e Z;,. Since F(wW,w~")= W, and Fw stabilizes
{J>+, there exists w, e Z, such that Fw,(I'*)C 3+ by [6, Lemma 2.2]. Then
w(I'*)c X+ and w, is uniquely determined by this property. In the fol-
lowing, let us fix suitable representatives of Z; in Ng(T)¥° (a coherent
lifting of Z; in the sense of [11, 1.23]). Now, § can be extended to
NM)*™{aw,> (semidirect product), which we denote also by 4.

We now want to show analogous formulae of (3.5.1), (3.5.2) and
(3.5.3) in [11]. In order to do this, we need the following lemma, which
is a variant of [6, Lemma 4.2] and can be proved by the same way.

1.11. Lemma. Lef v, w e W. Assume one of the following conditions
holds.

(i) ve Wy, wCIl and wl'*C 23+,

() vJ=J'cIl, w/'cClIl and o'+ 23~
Then we have

Ts T _qm/Z(l(wv) I{w) - l(’l}))T

b5, W

1.12. Put y=y, and 74,=7, 4, The linear map §(avv))Fz,,: Py—P;
has the following properties:

(L12.1)  (3(ow)Frn)g—=F(g)((ow)Fry)  for g e GF™,
(1.12.2) T, (0(0W,)F )= (6(oWw)Fz,) T, for y'e W,,

(1.12.3) (S(Gwl)Ffw )Z — q1/2<l(F—i+1(w1)F_i+2(wl)"'F_1(w1>w1)"il(wl))‘rn
1.
S N
X (W) FiTy pmtrrtiy p-i+300p - F =10

In fact, (1.12.1) is obvious. We shall prove (1.12.2). Since y is an
automorphism of the Coxeter group (W;, S;), we have /™ =7 and g™
=g, Then (1.12.2) is equivalent to

— 120w -t @m
(1.12.4) TFu')m,r(g)FTB,wl—Frﬂa,wlff?:i/q T .

Lemma 1.11, (i) can be applied to the right hand side of (1.12.4) since
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ye Wy, wJCII and w,['* X+, Hence,

1/2(1¢w =l(wy) -1 m
T"'IT,' q/(( 1Y) (w1) @) T,'1"

T Faing,y () Ffa,w1=FTw1a,w1gw;l T,

=q1/2(l(ww) ‘l(wl)"”wlywl_l))mFTa g
The last equality follows from Lemma 1.11, (ii). Since /(w,ywi')=
IF(w,ywr)=I(F(»)), (1.12.4) follows.

Next, we show (1.12.3). The left hand side of (1.12.3) is equal to
S(le)iFiTF‘i'H(ﬁn)---F—l(u')l)wm,p—i+i(1j,l) *t Ting, peaany) T

We want to apply Lemma 1.11, (ii) successively from the left. For this,
we have only to verify that for each j>1,

(1) FHw)F-i+34(wy) - - - F- (ww, JC I,
(i) F-t+i(w)E-i+9%(w)- . . F-{(w)w [+ C 3.

But these are obvious since Fw, J=J and Fw I *=1"".

1.13. Let W,=W,(y,> be the semidirect product of W, with the
cyclic group generated by y;. The Hecke algebra H(g™) can be extended
to an algebra H(q™) with basis T, (w € W;) as in [11, 3.3]. Let us denote
by (W;)a the set of isomorphism classes of irreducible W;-modules over Q
which is extendable to a W;-module over Q. Let E(¢g™) be an irreducible
H(g™)-module corresponding to E ¢ W;. If E e (W;)5, there exists exactly
two extensions to W, over Q. Let £ e W7 be one of them. Then, corre-
sponding to £, E(g™) can be extended to an H(g™)-module, which we
denote by E(g™).

Now let us take m sufficiently large so that

(1.13.1) F™is a power of F, and F~™+'(w)F-™*%4¥,)- - - F'(w ), = 1.
Then from (1.12.3), (8(oWw,)Fr,)"=q #*v™ id, on &, Thus, by the

same argument as in [11, 3.6], we have
TI‘ ()e(g(o‘wl)FT,bl)Ty, @5)
= > g eonTr(fe, o) Tr(T,,, E(g™),

EeWag

(1.13.2)

for each £ € G*™. Here 8 is an extension of the irreducible G*™-module
px corresponding to E e (W;); and this extension is uniquely determined



216 T. Shoji

by the choice of an extension § of 6 and by the choice of £ of E.

1.14. Following [2, 2.3, 2.4], [3, 1.3], we shall extend the formula
{1.13.2) to &, where = is not necessarily cuspidal. Let = be an irreducible
representation of ME™ (KC IT), where Fw(K)=K and "*r~z. Let Wy be
the Weyl subgroup of W with respect to K. There exists an irreducible
cuspidal representation d of ME™ (JC K) such that = can be written as
for E' e (Wx);. We assume here that (*) Fw(J)=J. Then as z, is Fw-
stable, there exists w’ e W, such that ¥**5~3. Hence ww’ ¢ Z, and we
can write ww’=w,y’, y' e W,. Moreover, w’ e Z; (the subset of W, with
respect to Wi=(Wy), and Fw) and we have w'=w{y"”’, where y"’ ¢ W} and
wy is the similar element of Zj as w, in Z;. Hence there exists y € W, such
that w= w1 ywit

Let T,; be the automorphism of W defined by (Fw)wj similar to ¢, for
W,, and W/ be the semidirect product of W/ with {ri>. We denote by
H'(g™) the subalgebra of H(g™) generated by 7, (z € W}) which corre-

sponds to Ind (5) Let A’(g™) be the extended algebra corresponding

to W}, and we denote by T7,, the element of H'(qg™) corresponding to 75
In the following, for each E ¢ (W,)a and E’ e (W%)", we denote by E(q™),
the E’(q™)-isotypic subspace of H’(g™)-module E(g™). On the other hand,
as r,, is Fww]-stable, E’ is y}-stable. Hence the extension %, of 7, to ME"
is determined canonically as in 1.13 from §. Then we have

1.15. Lemma. Let ny e EMENY™ and w=w,yw;™" as in 1.14. Put
=757 =75 Then

C mra 1 N ltwy
Ap([F ) (£o)= dlmE’S;/m) qm¥(q,) ™ q A0+ L) -t m

X Z Tr (fg, ﬁE) TI' (TryTr 15 E(qm)E’)’

B Targ
where d’ =dim (U, NwU~w).
Proof. Let

P={f: P"—>V,|f(px)=08(p)f(x) for p ¢ P§", x e P}

m
be a realization of Indpﬁm(é), where V, is a representation space of 6.
Py

‘We denote by £, the E’(¢™)-isotypic subspace of & and p,. be the repre-
sentation of PE" on #,. Hence p,. is isomorphic to n; Q@ E’'(g™) as PE"
X H'(g™)-module. Moreover the map ¢: P(My, pg)—P(M,, §) given by
$()(x)= f(x)(1) (evaluation of f(x) € #, at 1 € PE™) induces an isomor-
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phism of G¥ X H'(g™)-modules #(My, pr)~P(M;, 6)5, which becomes
an isomorphism of H(g™)-modules. Here #(M,, ), denotes the E'(g™)-
isotypic subspace of (M, ).

Let §(aWww))Frky,: P—P be the map defined for PE™ with respect to
¢ and wi e Z; similar to G*", and we denote by b, its restriction on Z ..
Thus, by 1.13, by, acts on #;®E(q™) as ¢ V/*@"FWw®T,. Since
PMy, pr) = P(My, mz) Q E'(@q™), by, induces a map P(Mg,""pg)—
P(My, pg.), which we denote also by b,;,, Hence we can define a map

bu‘:iFTpE’a e ‘@(Mka pE’)_)‘@(MKs pE')'

Now by assumption, Fw(J)=J and Fw(K)=K. Thus U,,=U%,U,, and
wtUX,w=U¥, where Uf¥=U, N My for any ICII. From this, we see
easily that, under the isomorphism ¢, b, Fz, ., turns out to be the map
5 (ewWw))F Ts,0m;0 P (Mg, ) g —>P (M, 8)p, which is nothing but the map

3(GW1).’)F75,1&117‘
On the other hand, using (M, pr)=P My, wz) D E'(@™), we have

TI' (fbwiFTpEr,wTr_'la ga(MKa pE’))
=(dim E")g~1 0™ Tt (£7 g 0W)Fr, . 00 P(Mg, 75)).

This implies the lemma in view of (1.13.2).

§2. The main result

2.1. In this section, we assume that G is a connected classical group
with connected center. Let (s) be an F-stable semisimple class in the dual
group G* of G. Taking 5 € (s) N T*, define W,={w e W|w(s)=s}. Since
(s) is F-stable, there exists w ¢ W such that Fw(s)=s. Then Fw stabilizes
W, and we may take w, ¢ W such that Fw,(s)=s and that Fw, induces a
graph automorphism 7,: W,—W,. According to[l11, §4], the set X(W, 7,),
X(W,, r,) and a pairing {, }: X(W,, 7 )X X(W,, 7,)—Q, is defined. More-
over, a finite group M, acts freely on X(W,, '), where c is the order of 7,
and M,={a e Qf|a°=1}. In our case, W, is isomorphic to a product of
various W, and 7, stabilizes each W,, where W, is either an irreducible
Weyl group of type C, or D, or W;=~[],.; W, where W, is an irreducible
Weyl group of type A, for various / and 7, permutes transitively each
component W,. If we denote by 7, the restriction of 7, to W,, X(W,,7,)
(resp. X(W,,7,))is defined as the product set of X(W,, ;) (resp. X(W,, 11)),
and the pairing { , } is defined as the product of each pairing.

If Wi=]]iex Wi (W, type 4,), we may assume I=Z/rZ and 7 (W)
=W,.,foriel Then 7r:(W)=W, Let c be the order of 7} on W,.
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Then the order of 7, is equal to re. Now, X(W, T)=X(W, 1) =WT7,
and X(W,, 1)=W7 X M,,. The pairing {, }: X(W,, 1) X X(W,, T)—Q,
is given by {2, (', ®)}=38,,07'A, X e WT,x e M,,).

If W, is a Weyl group of type C,, 7; is identity. Then X(W,, 7)==
X(W,, 1)=29,: the set of symbol classes of rank / and odd defects ([10, §3],
[11, 4.5]).

If W, is a Weyl group of type D,, X(W,, 7,)=®; according as 7, is
trivial or not, where @; (resp. @;) is the set of symbol classes of rank /
and defect=0 (mod 4), with reduced symbol (S, S) counted twice, (resp.
defect=2 (mod 4)), ([11, 4.6)). If 7, is trivial, X(W,, 7,)=X (W, T,). While
if 7; is non-trivial, X(W;, 7;)=¥,: the set of ordered symbol classes (S, T)
such that S== T, of rank / and defect=0 (mod 4). M,=Z/2Z acts on ¥,
by (S, T)(T, S), ([11, 4.18]). For each of above cases, the pairing is
given in terms of symbols, ([11, 4.5, 4.6, 4.18]).

It is known by Theorem 4.23 of [11], that £(G7, (s))= X(W,,7,). We
express this correspondence by p<>X%,. Take m large enough so that se
T*F™ and that F™ is a power of F,. Then there exists a surjection from
X(W,, 1, to £(GT™, (5))F each of whose fibre is just an M, -orbit. Hence
éa(GFm’ (S»F :X(Wsa Ts)/‘Mc'

For each x e X(W,, 7,), we shall define, following [11, (4.24.1)], an
almost character associated to x,

2.1.D) R,=(—=1 > Ix,, x}pe Z(G"RQ,.
PEE(GT,(8))

The action of M, on X(W,, ) gives rise to the scalar multiplication by
elemets of M, on R,. Hence, for a given p in &(G*™, (5))”, an element
x=x, in X(W,, T,) is determined up to the M, -orbit, and we can attach
R,, € Z(G")®Q, to p up to a c-th root of unity multiple.

We note here that by our assumption on m, a root of unity 2, (in
Lemma 4.1) is associated to each p € £(G"™, (s)). We can now state our
main result.

2.2. Theorem. Let G be a classical group with connected center.
Then there exists an integer my=myGT) satisfying the following properties:
Let p be a representation in &(G*™, (s))¥ and p an extension to G*™,
If m is divisible by m,, there exists p, (dependmg on m, § and the choice of
x,) such that

Ninyol8) =R,
Here y, is a root of unity satisfying (u,)"=2;"
2.3. Remark. The definition of 2, in [11, Proposition 2.20] depends
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on the choice of a coherent lifting ([11, 1.23]). However, our theorem
implies that, at least in our setting, i.e., m is sufficiently divisible and p is
F-stable, 2, is independent from that choice since (¢,)™ is uniquely deter-
mined by p.

2.4. The remainder part of this paper is devoted to the proof of the
theorem.

If G is of type A4, the lifting always exists by [12], [7] and the theorem
is proved easily from this. Hence we assume that G=G, is of type B,
C, or D,. Using induction on n, we shall assume that the theorem is
valid for G, (W' <n).

Let M= M, be a proper Levi subgroup of G and Fiw be a Frobenius
map on M (i.e., Fw(J)=J). Since the Coxeter diagram of M is a direct
sum of diagrams of classical type, using the argument in [1, § 2], we may
assume that the theorem is valid for M.

2.5. Let M and Fw be as in 2.4 and (s)C M* be an Fiv-stable semi-
simple class. We assume that &S(M ", (s))*® contains a cuspidal represen-~
tation §, which is unique in (M T", (s)). By induction hypothesis, for each
m divisible by my(M**), we can attach a root of unity p; such that
N, M([ﬂ;g]) is independent of m. Let pg € £(G*™, (5))” be the represen-
tation corresponding to E e (W;).; and g, be as in 1.13.

Following [11, § 3], we shall show that N, ([:6:]) takes the same
value for infinitely many m.

e
Let H(g™) be the Hecke algebra corresponding to Indem (). Then,
J

since W,={w e W |w(J)=J} by [1], H(g™) is a tensor product of various
Hecke algebras of classical type. Hence by [11, § 3] and Benson and
Curtis [4], we see that, for each F & (W)

2.5.1) Tr (T, £(g™) e Qlg™].

Let m,(GT) be the smallest integer such that m,(GT) is divisible by
both of m(M*®) and m, in Proposition 1.6 for various M and Fw, and
that m,(GT) satisfies (1.13.1) for various w,. We denote by .#” the set -of
positive integers m divisible by m,(GF). Then, in particular, N »([1:6])
=R, forme A'. Put a,, ()=}, Ni (0] for each ¢ € &(GT).
Now using the orthogonality relations of Hecke algebra H(q™), we see, by
Proposition 1.9 together with (1.13.2), that N A[¢65]) is contained in
C®(G¥[~). Moreover, by virtue of Proposition 1.6, we see that «,, z(m)
is contained in a fixed algebraic number field in Q,. On the other hand,
a,, z(m) are cyclotomic integers divided by |G”|, and have absolute value
<{1. The last property follows from the Cauchy-Schwarz inequality, (cf.



220 T. Shoji

[11, 3.8]). Hence there are only finitely many a, z(m) for me .4’
Therefore we can divide .4’ into a finite number of sets 4, (i=1, ---,r)
such that e, ; takes constant value on .#, for each pair (, E).

Let 4 be one of the .#; such that | #|=oco. Then N, ([:05]) is
independent of m for m e .#. Hence, by Lemma 1.15 applied to the case
J=K, we see that &™ is independent of m e # for each y ¢ W,. We de-
note by ¢, this constant value &™), (the assumption (¥) in 1.14 is trivial in
this case).

2.6. Let % (G, F) be an Euclidean space over Q, with inner product
{, > generated by f,, (x e X(W, 7,)) with relations

fez=Cfs for each L e M,,

o = {1 fx=y
0 if y¢ M x.
Moreover, let 7" (G, F) be an Euclidean space over Q, with inner pro-
duct ¢ , » and with orthonormal basis e; (X ¢ X(W,,7,). Asin 2.1,
&(GT™, (s))T is bijective with X (W,, 1,)/M,. We fix a representative x=1x,
in X(W,, 1,) for each p € &(GT™, (s))*. Let C*)(G*"/ ~ ;) be the subspace
of C(G"™[ ~ ;) generated by [§] for various (M, Fw) with M==G. Also
we denote by % (G, F) the subspace of % (G, F) generated by f, for x
corresponding to p; as above. Then we may identify % (G, F) with
CO(GT™| ~ ) by associating x=x, to [up z. We consider also the
similar spaces % (M, Fw) and v (M, Fw). We may identify % (M, Fw)
with C®(M*" ~ ) by associating x=x, to p,0, where p € S(M*", (s5))"®
and y; is given as in the theorem. Then gy, (resp. R{;,) induces the map
gyt U (M, F0)—U NG, FY (resp. R\fy,: 7" (M, Fw)—7" (G, F)) by
above identifications.
2.7 Let us define 4,,: % (M, Fw)—7" (M, Fw) by
Dyt fr—ls=(=10 51 (5,35,
FEX ((wr)ssr})

where wj is the corresponding element in W, of w, in W. Hence 4,
coincides with N} , under our identifications. Moreover, we define
dg: UG, FY —¢" (G, F) by associating x=x,_to the element corre-
sponding to N »([us0z]) which is independent of m e .# by 2.5. Then
4, and 4, becomes isometries between two spaces and (1.9.1) turns out to
be the following commutative diagram.

VG, F)2a (G, Fy
@71 R, .
VM, Fi) (M, F)
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In (2.7.1), each spaces and 4;, 4, are independent of m, while R{Y,, is
the map whose coefficients are given by (laurent) polynomials in g™ by
Proposition 1.6. We show that a,, is also the map whose coefficients are
given by polynomials in g™ In view of Lemma 1.15 and (2.5.1), we have
only to show that the assumption (*) in 1.14 is satisfied. Thus we shall
show that for each z ;. € S(ME")™™, there exists an Fi-stable Levi subgroup
M, and a cuspidal representation § € &(M%E™) to which =, belongs. Since
we are dealing with classical groups, this is reduced to the case where X is
of type A; and oW is a non-trivial automorphism of K. But in this case,
by the existence of the lifting ([7]), (*) is transferred to the similar problem
in MEZ®. Hence (*) holds in this case.
Now, by specializing g™—1, we get the following diagram.

PG, F)<-a9(G, FY
27.2) R, o
P OM, Fin)<qr (M, Fi)

The map a,, is given for each xz. =x,,. (7 as in 1.15),

2.13) a(fur) =L > Te(ors e fey

— &,
. v
dim E/ "re@ag

where f,, € %#“(G, F) is the elemgnt corresponding to py € £(G"™, ()"
and w=w,yw/~" is as in 1.15. Ej is the E’-isotypic subspace of Wij-
module £. R, is nothing but R$ 4, by our identifications.

The following transitivity of R, is known ([9], [2, 1.1.3]).

¥ (G, F)
N R
(2.7.4) R VO (M, F)
Ry
V(M Fw')

where w e Wand w’ € Wy. (s)is a class in M, which is Fww’-stable and
is extended to the classes in M, and in G.

The following transitivity of a,, also follows easily from (2.7.3), (cf.
[2, Lemma 2.7.7]). Under the same setting as above,
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%G, F)
Ay
(2.7.5) Qo UMy, Fiv)
Ay

UM, Fii)

2.8. We now show that the proof of the theorem is reduced to the
special case where the centralizer Z,«(s)* has the same semisimple rank as
G. Assume that the semisimple rank of Z,.(s)* is less than that of G.
Then there exists some M+ G with Frobenius map Fiw such that Z,.(s) is
contained in M*. In this case, W, is contained in W (here we put M=
M) and X(W,,7,) for M coincides with the one for G. By [9, 8, 10],
R, s, becomes the scalar multiplication (—1)°‘® -7 ynder our identifica-
tion ¥ (M, Fw)=7"(G, F), where o(G) (resp. o(M)) is the F -split rank
of G (resp. M) with respect to F (resp. ), respectively. Hence

(___ l)ﬂ(G)—V(M) :(_ I)l(’w).

On the other hand, since W,= W/, for each cuspidal representation §
of M; (JCK), we have ww;=w,. Hence 7,=7} and y=1, and «, turns
out to be the identity map on (M, Fw)=%“(G, F) (=%“(G, F)).
Now our assertion follows from the fact that the element w,in W with
respect to (W, 7,) in &(G7, (s)) is equal to w, while wj in &M T2, (s)) is
equal to 1.

2.9. In view of 2.8, we may assume Z;{s) has the same semisimple ‘
rank as G*. Then W, has the form W,X W,, where W, (i=1,2) is a
Weyl group of type C, or D,. We may take s € 7*" in this case and
therefore w,=1.

Let us define a linear map A=4,: % (G, F)—7 (G, F) by associ-
ating f, (x e X(W,, 7,)) to é,=2{7y, x}y, where 7 runs over the elements in
X(W,, 1). We want to show that 4=4 on %“X(G, FY. Let M,=M,,
(r>0) be the Levi subgroup of G whose Coxeter diagram has the same
type as G with rank r (r+£1, 2 if G is of type D,). It is clear that
UG, F) is generated by the images of a,, from #“"(M,, Fw) ((s') is a
class in M, such that (s")C(s)) for various M,, w and (s’). So, it is enough
to show that 4=4 on a, (% (M,, FW)) for each triple (M,, w, (s)). We
note here that

2.9.1) Ad=4 on a,(%N(T, Fw)).

In fact, since I(w,)=1, this follows immediately from Corollary 4.24 of [11].
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Assume r >0 (resp. r>4) for G of type B,, C, (resp. D,) Put W=
{we W|w(J,)=J,}. Then Wris isomorphic to a Weyl group of type C,_,,
and an element w € W7 can be expressed as a product of positive cycles and
negative cycles. Hence, from the transitivity of R, and «,, ((2.7.4), (2.7.
5)), the verification of 4=/4 on % (G, FY is reduced to showing that
A=14 on a (% (M,, Fw)) where w is a positive or negative cycle of length
n—r.

2.10. Lemma. Assume that we W is a positive cycle of length n—r.
Then 4=4 on a, (U (M,, Fw)).

Proof. Let M be the Levi subgroup of G whose Coxeter diagram is
a direct sum of 4,_,., and the diagram of M,. Then using the transitivity
(2.7.4), (2.7.5) to M, MT and G¥, we see that to prove the lemma it is
enough to show the commutativity of the following diagram.

VG, Yy (G, Fy
R, a,

V" O(M, F)<2—29(M, F)

As Ry, is nothing but the induction from P to G¥, all the maps are
explicitly computable. Hence using the similar computation as in [2,
Lemma 2.8.3], we get the lemma.

2.11. Next we consider the case where w e W is a negative cycle of
length n—r. 1In order to apply (2.7.3) to this case, we shall determine 7,
75 and others. Assume § is a cuspidal representation of M¥™ (t<r), where
J, is Fw-stable. Then, since W,~ W, X W,, we can express (W,,), =W} X
Wi and (W, ), =W X W{ with W/CW|CW, (i=1, 2). In our setting,
we may assume W,=W/. Put Wi=W,N\W,,. Since W,=~W*'NW,, we
can express W; and W, as Wy~ (Wy), X (Wy)y Wi (W, X(W}), Letr::
W, —W,, 7. (Ws);—(W;), and 77: (W3),—(W?%), be the maps on the i-th
factor (i=1, 2) induced from 7,: W,—W,, 7;: W;—W; and 7;: W|—Wj,,
respectively. Moreover we put 77: W,— W/ the map induced on the i-th
factor from 7;: (W,);—>(W,.)s.

First consider the case where W, is of type C,. In this case, (W),
and (W5), are also of type C. Hence, 1{=7,=7{=7]=trivial. Moreover,
since w e (W}),, we have w,=w;=1.

Next consider the case where W, is of type D,. If W{={l}, then
(W), =W,, (W)),=W/ and both of these are of type D. In this case,
since F stablilizes (W), and (W3}),, w, stabilizes (W;), and w{ stabilizes
(W), (i=1, 2). From this, considering the possibility of w, and w{, we
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see that y=www; e (W;), and that exactly one of w, and w{ is equal to 1.
Thus, 7i=7, 1{=1T=—7.. (Here we regarded 73, 7;, etc. as elements in
M,={1, —1}). Moreover 7,y7."* coincides with w in (W;),. If Wy {1},
(W), and (W?), has type C, and w is contained in (W;),. Hence 7,=71=
trivial and w=y. Moreover, as w acts non-trivially on W}, we have 7{=
—77. Throughout the above cases 7,=7% and the contribution of 7;y7;~!
on(W;), is trivial.

2.12. Before proceeding further, we note here about ¢, in (2.7.3).
This is described as follows. Let y e (W;), as in 2.12. Then by [11, § 5],
[1], there exists ¢;= -+ 1 such that

i if (,),: type D,
(2.12.1) . ——{ (Wo): typ

Uy e it (W), type G,

where /’(y) is the number of reflections corresponding to long roots (in C)
appearing in the reduced expression of y in (W}),.

2.13. Lemma. Letwe W’ be a negative cycle of lengthn—r. Then
Ad=4 on a (U (M,, FW)).

Proof. We shall show the lemma, following [2], only in the case
where W, is of type D,. The case W, is of type C, is dealt similarly (cf.
[3]), (see also Remark 2.14).

Let %: (resp. #7;) be the space corresponding to X(W,, 1) (resp.
X(W,, 19)) as in 2.6, where e= + 1 according as 7, is trivial or not. Thus,
asin 2.1, %5 and 77 are described by symbols. For each symbol 4 in
O¢ or U, we denote by f; or e, the element corresponding to f, or e;.
We may identify % (G, F) (resp. 7" (G, F)) with %,Q@%’ (resp. ¥ .:R¢"')
and also #“W(M, Fw) (tesp, 7" )M, Fw)) with %;Q%’ (resp. v":Q¥"),
respectively. Here %’ (resp. ¥”’) denotes the space corresponding to
X(W,, T3) (resp. X(W,, T3)).

Following [2, 2.8], for positive integer v, linear maps I¢,: U—U;*
and J,: 77 i—>77;*, (k=I+v) are defined. Since Ad: QU v QY
can be decomposed as A=4,84', where 4,, 4’ is the corresponding map
on %5, %', respectively, we see that the following diagrams turns out to
be commutative by [2, Lemma 2.8.3].

,V]:s@,y‘/ ¢ 4 %;5®%/
Tt et
VIRV U

2.13.1)
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Using the definition of a,, (2.7.3) together with 2.11, we see by [2,
Lemma 2.8.2] that I,®1 coincides with a, for a negative cycle w of
length v. Note, in this case, under the identification of % (G, F) with
X(W,, 1,)/M,, retaking representatives of M, -orbit if necessary, we may
regard ¢,=1 when comparing a,, with I;,®1, (cf. [2]).

Take e,Qe; € 71 ®@7". Then by (2.7.2), (2.13.1), we have

447 pye,Rez)= Ry (e,Qe)

Hence Aﬂ"(JmeA@ej) is an integral linear combination of various e,®e;
e 7i®7”. Now 4 is an isometry and 4 is also an isometry where it is
defined, and moreover we know already 4=4 on %}, %} by (2.9.1),
where % , is a space generated by symbols of defect 0 and #7 is the similar
subspace in %’. Hence entirely similar proof as in Lemma 2.8.10 of [2]
shows that, if we put f=J,,,e,®e;, then

.f-—AZ_lfzf;@ei’

where f, € 7" ¢ is written as in the form (II) of Lemma 2.8.10 in [2] with
f=J e Furthermore, {f, é,>=0 for any e, of defect 0. Hence by
the argument in Lemma 2.8.7, Lemma 2.8.8 in [2]}, we have f;=0. This
shows that 4=4 on I,(%;)®%’. Hence the lemma is proved.

2.14. Remark. The case where W, is of type C, is dealt similarly
according to [2]. In this case, as in [3], we encounter the problem to
determine ¢, explicitly on the way to the proof. This is done similarly as
in [3] and we have the following. Let x=(x,, x,) be the element in
X(W,, 7)== X(W,, 1) X X(W,, 13 corresponding to §. Now X(W,, 1% is
identified with symbols of odd defect. If x, corresponds to a symbol of
defect d, then we have

g=(—=1“"
Now, in view of 2.9, we have
2.15. Proposition. In the setting of 2.9, A4=4 on % (G, FY'.

2.16. We keep the assumption on s as in 2.9. Then, as is easily
seen, % *)(G, FY coincides with the space generated by the elements corre-
sponding to non-cuspidal representations. Moreover, in the case of
classical groups, £(G*", (s)) contains at most one cuspidal representation
for each (s)C G*. Thus, in view of Proposition 2.15, to prove the theorem,
it is enough to show the following lemma. (Note our result does not
depend on the choice of .#4.)
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2.17. Lemma. Let se G*" be as before and me M. Assume
E(G*™, (8))* contains a cuspidal representation p,. Then for each extension
Bo to G*", there exists a root of unity u,, such that

N;m/F([#poﬁo]) = R.z‘o’

where x,=x,,. Moreover (u,)"=23}

L where 2,, is a root of unity associ-
ated to p, (see Lemma 1.4).

Proof. Letustake w e W7 (the group of F-fixed points of W,). Then
F acts on T*"™and we can find § e T*F™ corresponding to s € T*“*™ such
that @ is F-stable. We denote by 6, ¢ 77 the character obtained as the
image of the map N¥pm z: C(T*T"| ~ )—C(T¥| ~).

Let X{™ be the variety as in 1.2 with Frobenius map F™, and F, ,
be the corresponding sheaf on X{™. Since w is F-stable, F acts naturally
on X{™ and we get the induced action of F on H{(X{™, %, ,) as 6 is F-
stable. Then using the similar argument as in the proof of Proposition
1.9, ([2, 1.4], [11, 2.10]), but with inverse setting, we have

.17.1) (=1 Tr (F*£*, H(X (Y, Fs,0)=Tr (x "'z, 4, IndF2(6,)),

where X € G™ and x e G are as in Introduction.

From Lemma 1.4, for each p e £(G"™, (5))”, there exists a root of
unity 2, such that the eigenvalues of F™ on HYX{", #,,,) are of the
form 4,4°™” for some integer j. Let us fix an m-th root 4, of 2,. Foran
eigenvalue p=2,9'"", put H} , be the generalized eigenspace of F™ with
eigenvalue g of Hi(X{™, ¥y 4),- Then H} , is a G"™-module on which F
acts. There exists a filtration of GF-modules, stable by F, whose succes-
sive quotient is isomorphic to p as a G*™-module. If we define the action
of ¢ on this filtration by A,¢g?*F*-!, each successive quotient becomes a
GF™module. However, if we consider the action of F? instead of F, this
filtration gives rise to an F*-stable filtration and each successive quotient
turns out to be a G*"{¢*)-module. Then, by Lemma 1.4, these G""{(¢*)-
modules are mutually isomorphic for various filtration and various 7 and
w. Hence, as G*™modules, there are at most two possibilities, if we
denote one by 5, the other one is obtained by acting ¢ as —o¢ on g, which
we denote by —p. Since,

Tr (F*£*, Hy, )= A,q'" Tr (£0) 7", p),

where A= 4§{g-factors in H}, ,}—#{— p-factors in H? }, the left hand side
of (2.17.1) can be expressed as

(2.17.2) 25 C ks Tr (o)™, 9),
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where p runs over all the representations in £&(G*™, (s))” and ¢, , is a real
number. -
On the other hand, the right hand side of (2.17.1) becomes

(2.17.3) CulD) 2] Tr (x7, pg) Tr (T, E(q))

where C,(g) is an integral power of g and E runs over all the irreducible
representations of WF¥. Moreover T, is a standard basis of the Hecke
algebra H(g) corresponding to a Coxeter group W7. Since the set of the
dual representation of &(GT™, (s))F coincides with £(GT™, (s~1))* and the
dual of the cuspidal representation is again cuspidal, we may replace p by
the dual p* of p. Then (2.17.2) and (2.17.3) implies that

(2.17.4) Nfmw (; Co,pr Al OD) = Culq) 22 T1(T o E(9))pz

for each w ¢ W7,

Let C(W7) be the subspace of C®(G*"/ ~ ;) generated by Jc;, ,+2,,[5]
for various w e W7, Then (2.17.4) shows, by the orthogonality relations
of Hecke algebra H(g), that the image of C(WT) by N, coincides with
the subspace of C}(G*/~) generated by py (E e (WE)"). Let p, be the
cuspidal representation in £(G”", (s5))” and let x, the corresponding element
in X(W,,7,). Then (R,, pzyer#0 for some E, and in particular,
N¥n,x(C(WT)) is not contained in the subspace of C“(G*/~) generated
by R, with x=#x,, x e X(W,, I',). This implies that N}km,F([pg]) is contained
in C*(G*/ ~) since we know already N Fur(¢[0)=R,, for each x,#x,.
Since N}/ is an isometry, we have

(2.17.5) N Fup A old) = @R,

for some a, ¢ Q, of absolute value 1.

Let us take w € W7 such that ¢, .50, (such a w exists). Then (2.
17.4) implies that the image of > ¢y, ,+A2[3] by N, is written as a linear
combination of R, (x e X(W,, 1,)) with coefficients in R. Hence, in par-
ticular, Nj» (2,:[3]) coincides with R, up to a real number multiple.
This shows, by (2.17.5),

N }(M/F(Z ;ﬁ[ﬁo]) =+ Rzo-

Now, (£2/)™=4,; and 1,, coincides with 27} by the Poincaré duality.
This proves the lemma.

2.18. Using Theorem 2.2, we can describe the map

Ry COMT?] ~)—>CO(GT[~)
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for M=M,. If we choose a set X; of representatives of M orbits
in X((Wy),, 7)), almost characters R, (x' ¢ X;) give a basis of
CO(MF2[~). For each x’ e X,, there exists a Levi subgroup M, con-
tained in M, and a cuspidal representation § of M%" (m: as in the
theorem) such that x’ can be expressed as x'=x, , where E’ e Wi
and pj is an irreducible representation of Mg™ corresponding to E’. As
mentioned earlier, W, is a product of various Weyl groups of classical
type. Hence W, and the linear character y—e, (¥ € W) is decomposed
according to it. 'We denote by 7(») the part of ¢, corresponding to the
component of type C in W,. Hence 5(y) is explicitly known by Remark
2.14. Now, in view of (2.7.3), together with Theorem 2.2, we have the
following corollary.

2.19. Corollary. Let w=w,yw,™\, ¥;: Wy;—W; and ;. Wi;—W; be
as in (2.1.3). Then

Ru(w)(RrE')za_i%E;v(y)ie;‘”& Tr(rﬂyr;_l, EE')R:cE

2.20. Remark. It is likely that similar results hold for exceptional
groups, in view of [4]. But more generally for arbitrary connected alge-
braic groups, we can consider the map N¥.r: C(GF"]~)—C(G*/~) in
a similar manner, and the number of F-stable irreducible representations of
G¥™ is independent of m. Hence our result suggests the following con-
jecture.

Conjecture. Let G be a connected algebraic group defined over F,.
There exists a good parametrization of the set £(G¥™)¥ of F-stable irre-
ducible representations of G*", say X(G) by p,«>x such that N¥. -((5.])
e C(G¥|~) is independent of m (for sufficiently divisible m) up to a root
of unity multiple.

Added in Proof. Recently Asai extended his result to the case of
non-split orthogonal groups.
T. Asai.: The unipotent class functions of non-split finite special ortho-
gonal groups. Preprint.
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