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Introduction 

In 1963, V. Ennola [6] conjectured: the complex irreducible characters 
of the finite unitary group U ,,(F q) could be obtained from those of the 
finite general linear group GLn(F q) "by simple formal change that q is 
everywhere replaced by -q." (See [6] or Section 4.1 for the precise for
mulation.) This has been verified for small n (Ennola [6], S. Nozawa [22]) 
and for the characters corresponding to a Coxeter torus (G. Lusztig [17]). 
Moreover, according to R. Hotta and T. A. Springer [11], the conjecture is 
true if the characteristic p of F q is large compared with n. One of the 
purpose of the present paper is to give a proof of Ennola conjecture which 
works without any restriction. More precisely, we show that the conjec
ture, if suitably strengthened, is equivalent to a formula (3.2.10) on duality 
operation [1, 13] and Green polynomials [9, 21]. Since this formula can 
be considered as a system of equalities between polynomials in q with 
coefficients independent of p, the truthness of Ennola conjecture follows 
from the result of Hotta and Springer via "analytic continuation". 

Another purpose of the paper is to begin the study of generalized 
Gelfand-Graev representations. An original Gelfand-Graev representation 
(see, e.g., [5, 7, 8, 24, 33]) of a finite (or real or p-adic) reductive group G 
is, in a sense, associated to a regular nilpotent Ad (G)-orbit in g= Lie (G). 
Using Dynkin-Kostant-Springer-Steinberg's theory on nilpotent Ad (G)
orbits, one can generalize this construction and attach to every nilpotent 
orbit 0 an induced representation To (see (1.3.4)). If G= GL,,(F q) or 
U n(F q), the nilpotent orbits are prametrized by the set i?J n of partitions of 
n. We denote by lop the characteristic function of the nilpotent orbit Op 
corresponding to fJ- E i?J n , and by rp the character of Top' When applied 
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to this special case, our main result (3.1.1) on generalized Gelfand-Graev 
characters gives the following "q++q-I" duality: 

Theorem. Let G=GLn{Fq) or Un(Fq). Let fl., lJ E f!l n • Then there 
exist polynomials HG,fJ,.(t), Hi£,fJ,.(t) E Z[t] with the following properties. 

( i ) Their coefficients are independent of q. 
(ii) <1'.1" r.)G=HG,fJ,.(q) 

and 

IGII 01' 1-1~(1o)(A.)=Hi£,p,.(q), 

where AI' E 01' and ~(.) is the Fourier transforms defined in [13]. 
(iii) Hi£,p,.(t)= (_l),(G)t n (fJ,.) HG,fJ,.(t -I) 

for some positive integers s(G) and n(fl., lJ). 

This combined with the author's previous result [13] and the result 
of Hotta and Springer [11] gives an explicit formula (3.2.14) for the values 
of rp in terms of Green polynomials. In particular, one can see that an 
Ennola-type duality ("q++-q" duality) between GLn{Fq) and Un{Fq) 
holds for these character values. This is the key-step towards the proof 
of Ennola conjecture. 

The paper is organized as follows. In Sections 1.1-1.3, after some 
preliminaries, we give the definition of the generalized Gelfand-Graev 
representations of a finite reductive group. In 2.1-2.3, we derive some 
consequences from Dynkin-Kostant-Springer-Steinberg theory. In 3.1 we 
prove a relation (a "q++q-I" duality) between inner products of generalized 
Gelfand-Graev characters and values of Fourier transforms of nilpotently 
supported invariant functions. A detailed study of the generalized 
Gelfand-Graev characters of GLn{F q) and U n{F q) is given in 3.2. In 3.3, 
some conjectures concerning generalized Gelfand-Graev characters of a 
general finite reductive group are stated. Finally, in 4.1-4.2, we prove 
Ennola conjecture. 

The author is very grateful to A. Gyoja for showing his experimental 
results on induced characters of GLn{F q) (see (4.2.9) (ii)), by which the 
author came to notice the importance of generalizing Gelfand~Graev 
representations. He is also very thankful to T. Asai for explaining his 
arguments in [2, 3]. This has been used to simplify the original proof of 
the equality (4.2.22). Some part of this work was done during the 
author's stay at the Mathematics Institute of the University of Warwick in 
1977, and some part of this paper was written during the visit at the 
Department of Pure Mathematics of the University of Sydney in 1982. 
So the author would also like to express his hearty thanks to the both 
institutes for their hospitality. 

General Notations. For a set X, IXI denotes its cardinality. If q is 
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a transformation of X, X" denotes the set of a-fixed elements of X; Let 
Y be a subset of X. Then 1 Y = 1 YcI is the characteristic function of Y on 
X. If P is a, say, complex valued function on X, plY is the restriction of 
p to Yand supp (p)= {x e X; p(x):;i:O}. Let G be a group and let x, y e 
G. Then x" = y-Ixy. Similarly, if g is the Lie algebra of an algebraic 
group ®, then X"=Ad (y-I)X, where X e g, y e ® and Ad is the adjoint 
action of ® on g. If X is an element of g or ®, ZQI(X) = {g e ®; xg = X}. 
Some of more specific notations are explained in 1.1. 

§ 1. Gelfand-Graev representations 

1.1. Notations and assumptions 
Let K be an algebraically closed field containing a finite field F q of q 

elements. Let ® be a connected reductive linear algebraic group over K, 
with a fixed F q-rational structure. The Frobenius morphism will be 
denoted by 0'. We use the notations in [13; 1.1]. In particular, m (resp. 
5t) is a a-stable Borel subgroup (resp. a a-stable maximal torus contained 
in m), 2 is the root system of ® with respect to 5t and 2+ (resp. n) is the 
positive (resp. simple) system of 2 corresponding to m. For a subset r 
of the standard generator system R of the Weyl group W = (N aC5t)/5t)", 
113T(::Jm) denotes the corresponding parabolic subgroup of ®. In general, 
algebraic subgroups (resp. Lie algebras of algebraic subgroups) of ® will 
be denoted by large (resp. small) Gothic letters, and their a-fixed points 
set will be denoted by the corresponding large Roman letters (resp. small 
Roman scripts). For example, G=®". g=Lie (®) and h=Lie (m)". 
From now on, we need the following: 

(1.1.1) Assumption. (0) ® is a direct product of connected reductive 
groups ~j with the root system 2 j , 1 <j <so 

(i) The commutator groups [~J' ~j] (1 ~j <s) are simple. 
(ii) p (=char (K)) is good ([32; I, 4.3]) for 2 j , I~j~s. 

(iii) If some 2Jo (1 ~jo ~s) is of type AI and p divides 1+1, then 
[~Jo' ~jo]:::;SLI+I· 

(iv) If some 2 Jo (1 ~jo <s) is of type E6, E7, Ea, F4 or G2, then p > 
4mjo +3, where mjo is the height of the highest root of 2;0. 

Under this assumption, we can use Dynkin-Kostant-Springer-Stein
berg's theory ([32]; cf. also [13; 1.4]) on nilpotent Ad (®)-orbits in g. 
Thus, given a nilpotent element A of g= g". one can define a a-stable Z
grading 

(1.1.2) 

of g with the following properties (i)-(v). 
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( i) g(2)A ~ A. 
(ii) P A = EE\;;,o g(i) A is the Lie algebra of a a-stable parabolic sub

group ~A of ®, and tA=g(O)A is the Lie algebra of a a-stable Levi sub
group EA of ~A' 

(iii) g(2)A is Ad (EA)-stable and Ad (EA)A is dense in g(2)A' 
(iv) For i~l, Ui,A=Ebgi g(i)A is the Lie algebra of a a-stable 

connected normal unipotent subgroup Ui,A of ~A' In particular, UI,A is 
the unipotent radical of ~A' 

(v) By taking a suitable G-conjugate of A instead of A, if necessary, 
we can assume that ~A:JQ3:J5tcEA' Then there exists a unique a
invariant Z-valued function hA on 2) such that: 

(a) hia)=O, 1 or 2 for a E n; 
(b) hA «(3) = ~aE' nahia), if (3= ~aE' naa E 2) with na E Z; 
(c) g(i)A=EbhA(a)=i Ua • 

We denote by H(®) the set of all Z-valued functions h (or "weighted 
Dynkin diagrams") which can be realized as hA for some nilpotent A E g. 
Then the a-stable nilpotent Ad (®)-orbits in g are parametrized by H(®). 
For h E H(®), we put 

if h=hA • Eh , g(i)h> Ui,h' ... are defined similarly. 

1.2. Non-degeneracy of a skew symmetric bilinear form 
Let f be a Springer's morphism [32; III, 3.12], i.e. a bijective F q

morphism from the unipotent variety ®I ( c ®) onto the nilpotent variety 
goC cg). For our later purpose, it is convenient to choose an f explicitly 
as follows. (Here one can assume that 2) is irreducible.) 

( i ) If 2) is of classical type, we can assume that ® = SLm SP2n or 
(P) SO n for some n. If ® = SLn and a is an untwisted (resp. twisted) 
Frobenius, we can take for fthe map x-+x-I (resp. x-+(x-I)(r/x+1))-1 
with 1) E Fq2 such that 1)+1)q= 1). If@=SP2n or (P)SOn, we define f to 
be the Cayley map x-+(x-I)(x+ 1)-1. (If a is twisted, it can be written 
as a= j 0 ao with an untwisted Frobenius ao and a non-trivial graph 
automorphismj of ® commuting with ao• The fact thatfis defined over 
F q can be checked using an explicit realization of j (see, e.g., [34]). 

(ii) If 2) is of exceptional type, we define f to be the logarithm 
map. (Recall that, in this case, we are assuming p>4m+3 (see (1.1.1) 
(iv)), although this condition seems to be too restrictive than is actually 
necessary.) 

Let A be a nilpotent element of g= gao and let g(i)A' Uj,A' . .. be as 
in 1.1. Since we fix A throughout in this and next subsections, we shall 
use the simplified notations g(i), U j , •.. instead of g(i)A, Uj,A' .. '. By 
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virtue of the explicit choice of J, we have the following: 

(1.2.1) Lemma. (i) f(Ut)=U t for any i > 1. 
(ii) Let U E Ut and v E U j with i, j > 1. Then we have 

f(uv)- f(u)- f(v) E u t + j • 

(iii) Notations being as in (ii), we have 

f(uVU-lV-l)-c[f(u),J(v)] E ut + j + l 

with some c E F q \{o} independent of u and v. 
(iv) Let u be as above and let X E g(j)for some integer j. Then 

Ad (u)X -{X +d[f(u), Xl} E EB gel) 
1",,2i+j 

with some dE F q \{o} independent of u, A and X. 
(v) Let u E @l' If[f(u), A]=O, then u E ZeiA). 

Let IC(" .) be a fixed Ad(@)-invariant symmetric bilinear form on g 
defined over F q with the following properties: 

(1.2.2) 

(1.2.3) 

IC(Xl> [X2' Xs])=IC([Xl> X2], Xs), X t E g; 

u;=tE8 L: u_ p, a E 2, 
pEI\{a} 

where u;={X E g; IC(X, ua)=O}. (Such IC(" .) exists by the proof of [32; 
I, 5.3].) Let X --+X*(X E g) be an opposition F q-automorphism [13; (3.1.4)] 
of g. Then, for i> 1, (ut)*=u- t can be considered as the dual space of 
lit by 

X*: Y--H(X*, Y), X, YE U t • 

(1.2.4) Lemma. (i) IfuEUland[f(u),A*]=O,thenu=e. 
(ii) The Ul-orbit of A* under the coadjoint action is A*+g( -1). 
(iii) The skew symmetric bilinear form 

(X, Y)~IC(A*, [X, YD 

on g(l) (or on g(1)=g(l)u) is non-degenerate. In particular, dim g(l) is even. 

Proof (i) It is known (see, e.g., [13; (1.4.3) (vi)]) that ZC!!(A*) n U l 

= {e}. Hence the statement follows from (1.2.1) (v). 
(ii) By (i) and (1.2.1) (iv), 

(1.2.5) Ad*(Ul)A*cA*+g( -1) 
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and 

(1.2.6) 

By a theorem of Rosenlicht, the left hand side of (1.2.5) is closed. Hence, 
to prove (ii), it is enough to show that the both sides of (1.2.5) have the 
same dimension. But, by (1.2.6), 

dim Ad *(U1)A * = dim U1 - dim Uz = dim g(1) = dim (A * + g( -1 ». 
Hence (ii) is proved. 

(iii) Let X E g(l). By (i), if [A*, X]=O, thenf-l(X)=e, i.e., X =0. 
The required non-degeneracy follows from this fact, (1.2.2) and (1.2.3). 

1.3. Generalized Gelfand-Graev representations 
We fix a complex non-trivial additive character X of F q • Let A be 

as in 1.2. We define a C-valued function ';A on Uz= UZ,A by 

';iU)=X(IC(A*,f(u»), u E U z• 

By (1.2.1) (ii) and (1.2.3), this is a linear character of the group Uz• By 
(1.2.4) (iii), there exists a linear subspace s of g(l) of dimension (dim g(1 »/2 
such that 

(1.3.1) IC(A*, [X, Y])=O, X, YES. 

(1.3.2) Lemma. Notations being as above, let 

Then we have: 

( i ) Uu is a subgroup of G; 
(ii) U1::)U1.5::)UZ and [U1: U U ]=[U1.5: U2]; 

(iii) .; A is extendable to a linear character ';A' of U u ' 

Proof By (1.2.1) (i) (ii), we have (i). (ii) is trivial. To check (iii), 
it is enough to show that Uu/Ker (';A) is abelian, i.e., that 

(1.3.3) 

(Note that uVU-1V-1 E Uz.) But the left hand side of (1.3.3) is equal to 

X(IC(A*, f(uvu-1v- 1») = X(IC(A*, c[f(u)f(v)])) 

by (1.2.1) (iii). Hence (1.3.3) follows from (1.3.1) and (1.2.3). 
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(1.3.4) Definition. The representation r A of G induced from the 
linear character ~A of Ul05 is called the generalized Gelfand-Graev repre
sentation of G associated with A. (See also (1.3.6) and (1.3.8) (ii).) The 
character of r A will be denoted by r A' 

(1.3.5) Remark. ( i ) If A is regular nilpotent [32], then r A is a 
Gelfand-Graev representation as defined in [33] (See also [5, 7, 8, 24].) 

(ii) As is evident from the above construction, one can also define 
generalized Gelfand-Graev representations of real, complex or j:>-adic 
reductive algebraic groups. 

(1.3.6) Lemma. ( i ) If A' Egis G-conjugate to A, then r A = r A" 

(ii) 

where m(A) = (dim g(I)A)j2. In particular, r A does not depend on the choice 
of s and ~A in (1.3.2). 

Proof ( i ) Obvious. 
(ii) It is enough to show: 

(1.3.7) {q m(Alt:A(U) if u E V 2, 

indg: .• (~A)(u)= ° <,; 
if u E V I\V2• 

By (1.2.1) (i) (ii), we have 

for any X E g(1) and Y E U2• Hence, if one put u= f-I(X + Y), the left 
hand side of (1.3.7) is equal to 

\VI.5\-1 L:: ~A(u)~if-I(Ad(u)X -X» 
VEUl 

by (1.2.1) (iv). If X =0, i.e., u E V 2, then this is evidently equal to 
qm(Al~iu). If X *0, then 

L:: ~if-I(Ad(u)X -X»)= L:: X(/C(Ad(u)A*, X»=O 
VEUI VEUI 

by (1.2.3) and (1.2.4) (ii). This proves (1.3.7). 

(1.3.8) Remark. (i) By (1.3.7), indg: .• (~A) is an irreducible rep
resentation of VI' In fact, this is the irreducible representation of VI 
associated with the coadjoint Vcorbit of A* E U{ in the sense of A. A. 
Kirillov [16] (and D. A. Kazhdan [15]). 



182 N. Kawanaka 

(ii) Let ®' be a connected reductive group defined over F q whose 
root system is isomorphic to that of ®. Then, by (i), it is easy to see 
that one can define the generalized Gelfand-Graev representation roof 
G' associated with a unipotent class 0 of G'. 

In Section 4, we need a slight generalization of r A: 

(1.3.9) Definition. Let Z(®) be the center of G, and let ifJ be a 
character of Z(®).. Using the notations in (1.3.4), we denote by r A,,/> 

the representation of G induced from the linear character ifJ@t;; of Z (®). 
X U1.5' and call it the generalized Gelfand-Graev representation associated 
to (A, ifJ). The character of r A,p will be denoted by r A,,/>' 

§ 2. On nilpotently supported invariant functions 

2.1. Induced invariant functions on p" supported by uz,,, 

In this subsection, we fix an element h of H(®) (see 1.1). Hence, 
almost always, we will omit the letter h in )J3", P", +"" U i ,,,, g(i)", ... and 
denote them simply by )J3, P, +" U i , g(i), .. '. 

As in [13; 2.2], we denote by Inv (p) the space of complex valued 
Ad (P)-invariant functions on p with the standard hermitian inner product 
< " . > p' We also consider the subspace Inv (p; uz/us) = Inv (p,,; Uz, It/us, ,,) 
of Inv (p) which consists of all elements ifJ E Inv (p) such that supp (ifJ) C Uz 

and that ifJ(X + Y)=ifJ(X) for any X Ep and Y E US' A a-stable subset 1 
of l)+ is called a a-ideal [13; (1.3.1)] if 13 a implies 1:J(a+l)+)nl)+. 
We denote by Y the set of a-ideals of l)+. Then, for any positive 
integer i, 

l)(;;::::i)= l)(;;::::i),,= {a E l); h(a)~i} 

is an element of Y. Put 

Y[h] = {I E Y; l)(;;::::2):JI:Jl)(>3)} 

and let Inv(p; uz/us)' = Inv (Ph; Uz,,,/Us,,,)' be the subspace of Inv (p, uz/us) 
spanned by {indC(1n(I); I E Y[h]}, where 

n(I)=n(I).=(L; u.) •. 
aEI 

In [13; 3.2] we studied the subspace Inv (go)' of Inv (g) spanned by 
{indg(1n(I); lEY}. From the proof of [13; (3.2.2)], one can see that 
Inv (go)' is spanned by 
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where the union is taken oyer H(CM). (See also the conjecture [13; (3.2.9)] . 
for the space Iny (go)'.) Thus the following proposition can be considered 
as a bit stronger version of [13; (3.2.2)]. 

(2.1.1) Proposition. Let <P be an element of Iny (p; u2/ U 3)' and let 
0=:0" be the nilpotent Ad(CM)-orbit corresponding to h. Define <Po e 
Iny (p; U2/U8) by 

where 0=0 •. 
Then <Po e Iny (p; U2/U8),. In particular, we have 

lon".=(l".)o E Iny (p; U2/U3),. 

For a proof of (2.1.1) we need the following: 

(2.1.2) Lemma. Let t E Iny (go)'. Then there exists an element t p 

of Iny (p; U2/U3), such that 

(2.1.3) 

for any a e Iny (p; U2/U3). 

Proof. It is enough to prove this when t=indg(ln(I)) for some 
IE f. Let R(h) be the subset of R defined by 

(2.1.4) 

Then, by Mackey's formula and Frobenius reciprocity, the left hand side 
of (2.1.3) is equal to 

(2.1.5) 

where the outer sum is taken oyer the set W(<p, R(h)) of (<p, R(h))-reduced 
element of W. By [13; (3.2.7)], (n(I)W n g(2))E8u8 can be written as 
n(J(w, I)) for some J(w, I) E f[h]. Hence, by the definition of 
Iny(p; U2/U8), the term in (2.1.5) corresponding to w is 

IhW npl-1In(J(w, I))I-1In(I)W nu2 1 L; a(X) 
XEn(J(w,I)) 

= c(w, I)(a, inde (In(J(!D,I)))) P' 
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t p = L: c(w, I) inde (l1l(J(W,m) E Inv (p; U2/U3), 
w 

satisfies (2.1.3). 

Proof of Proposition (2.1.1). From [13; (1.4.7), (3.2.2)], we see that 

(2.1.6) 

(2.1.7) 

and 

(2.1.8) 

By (2.1.7), 

(2.1.9) 

rpo E Inv (p; U2/U3), 

rpo = ind~(rpo) on p 

ind~ (rpo) E Inv (go)'. 

for any ex E Inv (p; U2/U3). On the other hand, by (2.1.2) and (2.1.8), there 
exists a function (ind~(rpo)) p E Inv (p; U2/U3), such that 

(2.1.10) 

for any ex E Inv (p; U2/U3). Hence, from (2.1.6), (2.1.9) and (2.1.10), we get 

rpo=(ind~(rpo))p E Inv(p; U2/U3)" 

as desired. 
Put 

f[h]={J E J[h]; n(J) n O,,=rp}. 

(2.1.11) Lemma. Let the notations be as in (2.1.1). Then supp (rp) cO 
if and only if 

(2.1.12) 

for any J E f[h]. 

Proof. The "only if" part is trivial. Assume that rp E Inv (p; U2/U3), 

satisfies (2.1.12). From the proof of (2.1.1), one sees that rp-rpo can be 
written as a linear combinations of {inde(ln(J)); J E f[h]}. Hence, by 
(2.1.12) and the definition of rpo, we have 

and 
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Hence we have p = po, i.e, supp (p) cO. This proves the "if" part. 
For I e J[h], we put p(I)=p,,(/)=Lie(~(I), where ~(I)=~,,(/) is 

the normalizer of n(/) in ~". (Hence ~::J~(/)::JQ3.) The following 
lemma is easy to verify. 

(2.1.13) Lemma. Let w" denote the longest element of WR (,,) = 
<R(h», where R(h)cR is defined by (2.1.4). For I E J[h], let 

(2.1.14) 0(/)= 0,,(/)= w,,(.r(> 2)" \I) u .r(:::::3)". 

Then 0(/) E Jf[h], and w,,~(O(/»Whl and ~(/) have a Levi subgroup in 
common. 

2.2. Considering q as a variable 
For a reduced root system .r and a graph automorphism 7: of .r, we 

consider an infinite set S of prime powers and a family 

®(S)={®(q); q E S} (resp. g(S)={g(q); q E S}) 

of algebraic groups (resp. Lie algebras) which satisfies the following: 

(2.2.1) Assumption. (i) For each q E S, ®(q) is a connected 
reductive linear algebraic group over Fq with a fixed F q-rational structure. 
(The corresponding Frobenius endomorphism is denoted by r1 q.) 

(ii) Let Q3(q) be a (1q-stable Borel subgroup of ®(q), and let st(q) 
be a r1q-stable maximal torus contained in Q3(q). Then the root system of 
®(q) with respect to st(q) can be identified with.r in such a way that the 
automorphism of.r induced from r1q coincides with 7:. 

(iii) For each q E S, the algebraic group ®=®(q) satisfies Assump
tion (1.1.1). 

(iv) The rank and the F q-split rank of ®(q) are both independent 
of q (and will be denoted by r(®(S» and s(®(S» respectively). 

(v) For each q E S, g(q)=Lie ®(q). 
Then, for a given system (S, ®(S), 7:), the r1q-stable nilpotent Ad(®(q»
orbits in g(q) can be parametrized, independently of q E S, by a set 
H(®(S»=H(®(S), 7:) of weighted Dynkin diagrams (see 1.1). We denote 
by O,,(q) (resp. O,,(q» the orbit corresponding to hE H(®(S» (resp. the 
set (O,,(q»uq)' Let ~,,(q), p,,(q), p,,(q), p,,(/)(q) (I E J[hD, ... be as in 
1.1-2.1. When there is no fear of confusion, we will omit "q" and use 
the notations ~'" p", ... (as we did in 1.1-2.1). 

2.3. A "q~q-l" transformation A" 
Let (S, ®(S), 7:) be as in 2.2. In this subsection we fix an element h 

of H(®(S», and usually denote ~,,(q), p,,(q), O,,(q), ... simply by ~(q), 
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~(q), O(q), "', 
Let C[t] be the polynomial ring over the complex number field C in 

an indeterminate t. Put 

Q=Qs={f E C[t];f(q±I)=O for some q E S}. 

Then 

C[t]Q={};fJ;;h E C[t],J; E C[t]\Q} 

is a subring of the rational function field CCt). Let C[t]Q<.Jf[h]) be the 
free C[tkmodule with basis .Jf[h]. We define a C-linear transformation 
L1=L1/t of C[t]Q<.Jf[h]) by 

(2.3.1) L1(d(t)I) = d(t -I)t -<(f)o(I) 

for dE C[t]Q and IE .Jf[h], where c(I)=ch(I)= dimph(q)/Ph(I)(q) (which 
is independent of q E S) and 0(1) is an element of .Jf[h] defined by (2.1.14). 
From (2.1.13) and (2.2.1), we have the following: 

(2.3.2) Lemma. The transformation L1 is involutory, i.e., L12= 
identity. 

Now let a q = a h , q (q E S) be the C-linear map 

defined by 

(2.3.3) 

for dE C[t]Q and IE .Jf[h]. From the proof of (2.1.1) we have the fol
lowing: 

(2.3.4) Lemma. Let W E C[t]Q<.Jf[h]). Then there exists an element 
Wh E C[t]Q<.Jf[h]) such that 

aq(Wh ) = aq(W)O(q) 

for any q E S. (See (2.1.1) for the definition of aq(W)O(q) E 

Inv(p(q), ulq)/u3(q)'.) In particular, there exists an element lh of 
C[t]Q<.Jf[h]) such that 

for any q E S. 
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(2.3.5) Remark. Note that !J)" in (2.3.4) is not uniquely determined 
by!J) in general. Of course, it is unique modulo nqES Ker a q • 

(2.3.6) Proposition. (i) Let !J) E C[t]Q<J[h]> and let IE J[h]. 
Then there exists an FI!!,I(t) E C[t]Q such that 

for any q E S. Moreover, we have 

where 

a(I) = dim p(q )/p(I)(q) + dim n(I)(q) + dim u3(q) 

(which is independent of q E S). 
(ii) The transformation L1 stabilizes the linear subspace nqES Ker a q 

of C[t]Q<J[h]>. 
(iii) The linear transformation L1 stabilizes 

(2.3.9) 

(See (2.3.4) and (2.3.5) for the definition of !J)".) 

Proof (i) It is enough to prove this when !J)=J E J[h]. Then, 
by Mackey's formula, the left hand side of (2.3.7) is equal to 

(2.3.10) 
IBI2 IP IIP(I)I-IIP(J) 1-I<indC(1n(J))' indC(1n(I))> p 

=(IBIIP(l)I-I)(IPIIP(J)I-I) L: qL(W) In(J)W n n(l)!, 
WEWR(h) 

where L(w) = dim Q3/(Q3w n Q3). Hence the existence of FI!!,1 follows. Next 
we calculate 

FJ(J),rCq)=q -c(J) IPI<aaCo(J)), ail». 

By (2.3.10) and (2.1.13), this is equal to 

(lBIIP(I) 1-1)(lPIIP(J) I-Iq -C(J)) L: qL(W) I n(I) Ilu31In(J)WhW n n(I) I-I 
WEWR(h) 

=(IBIIP(I)I-I)(lPIIP(J)I-lq-C(J)) L: qL(WhW)ln(l) I lu31 In(J)W n n(I)I- 1• 

WEWR(h) 

Comparing this with (2.3.10) we get 
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a(I) = dim SB-dim 113(I) +L(wh ) + dim n(I)+dim Us 

= dimp/p(I) + dim n(I) + dim Us. 

This proves the part (i). 
(ii), (iii) Let if) e C[t]Q(.f[h]). Then if) e nq Ker (aq) if and only if 

(2.3.11) 

for any Ie .f[h] and any q e S. Analogously, by (2.1.11), if) e C[t]Q(.f[h])h 
if and only if (2.3.11) holds for any Ie /[h] and any q e S. Hence (ii) 
and (iii) follow from (i). 

§ 3. Generalized Gelfand-Graev characters and Fourier transforms 

3.1. A "q~q-l" duality 
We use the notations in 2.2. For q e S and a niIpotently supported 

Ad (G(q))-invariant function p on g(q), the Fourier transform [13] :F(p)= 
:F q(p) of p is defined by 

{
q_N r; X(IC(X*, Y))p(Y) if X e go(q) 

? q(p)(X)= YEuo(q) 

o if X e g(q)\go(q), 

where N = 12+ I, go(q) is the set of nilpotent elements of g(q), and X, IC( " .) 
and * are as in 1.2. Let h be an element of H(®(S)). For q e Sand 
(b e C[t]Q(.f[h]), we put 

rq;,q= r; ah,q(if))(C)rC,q, 
CEu(2)h(q) 

where r c, q is the generalized Gelfand-Graev character of G(q) associated 
with a nilpotent element C of g(q). Our main result in this subsection 
is: 

(3.1.1) Theorem. Let h, k e H(®(S)), and let if) e C[t]Q(.f[h])", 
7J! e C[t]Q(.f[k])1< (see (2.3.9) for the definition of C[t]Q(.f[h])h)' Then 
there exist Eq;,w, E¥,w e C[t]Q such that 

(rq;,q, r W,q)G(q)=Eq;,w(q) 

and 

IPh(q) liP k(q) I(:F q(if);), 7J!;)U(q) =E't,w(q) 

holdfor q e S, where the nilpotently supported Ad (G(q))-invariantfunctions 
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rb;, 'IF; on g(q) are defined by 

rb;(X)=ah,irb)(X) if X eph(q); 

'IF;(X)=ak,q('IF)(X) if X epk(q). 

Moreover, one has 

EV (t)-( l)·(C!l(S))tm(h,k)E (t- 1) 
<D,lI" - - 4(<D),4(lI")' 

where m(h, k)=2N+r(®(S»-(dimg(1)h +dimg(1)k)/2, and LI is the 
involutory operation on C[t]Q<.Jf[h])h (or on C[t]Q<.Jf[k]) k) defined in (2.3.6) 
(iii). 

For rb e C[t]Q<.Jf[h]), put 

(3.1.2) 

where T)c(U)=X(IC(C*,f(U») for u e U2,h(q). We also put 

indh , irb) = ind ~~%)(ah,irb». 

Assume that rb eC[t]Q<.Jf[h])h' Then we have LI(rb) e C[t]Q<.Jf[h])h by 
(2.3.6) (iii). Hence, by (1.3.6) (ii), 

where m(h)=(dimg(1)h)/2. By [13; (1.4.7) (i) (ii)], we also have 

(3.1.3) 

Hence, to prove (3.1.1), it is enough to show the following more general 

(3.1.4) Lemma. Let h, k e H(®(S», and let rb e C[t]Q<.Jf[h]), 'IF e 
C[t]Q<.Jf[k]). Then there exist E~,lI"' E~~lI" e C[t]Q such that 

and 

for any q e S. Moreover, one has 

E 'V (t)-( 1)·(C!l(S))t 2N+r(C!l(S))E' (t- 1) 
<D,lI" - - 4(<D),4(lI") • 

By (3.1.1), (3.1.4) and [13; (4.2.1)], we have 
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(3.1.5) Corollary. In the statements of (3.1.1) and (3.1.4), one can 
replace the Fourier transformation ffq with the duality operation D=Dq 
on Inv(go(q» (defined in [13; 2.2]). 

Before proving (3.1.4) we prepare several lemmas. 

(3.1.6) Lemma. Let IE J[h] and J E J[k]. For a nilpotent X E 

g(q), we have 

xJ{y E Pk(J); X E (n(I)°)WY}J, 

where P n(I)* is the F q-rational points of the algebraic subgroup of® whose 
Lie algebra is p,,(I)*, R(I)=R,,(I)cR is defined by 

W(R(I), R(J» is the set of (R(I), R(J»-reduced elements of Wand 

(n(I)t={X E g; K(X, n(I)*)=O}. 

This can be proved by an analogous way as [13; (4.1.5)]. 

(3.1.7) Lemma. Notations being as in (3.1.6), let Aw(t) and A;;(t) 
(w E W) be the polynomials in t such that 

and 

for q E Sand w E W. Then 

where 

a(I, J)=dim \l3,,(I)+dim \l3k(J)-dim Q3. 

This can be proved easily by noting that \l3,,(I)(q) and \l3,,(I)(q)* 
have a Levi subgroup in common. The next lemma follows from (3.1.2), 
(1.2.3) and (2.1.13). 

(3.1.8) Lemma. Let IE J[h]. Then 
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Proof of (3. 1.4). It is enough to prove this when tJ)=I E .9[h] and 
1Jf =J E .9[k]. The existence of E;,it) and E;~(t) follows from (3.1.5) 
and (3.1.7). By (3.1.6), <g;'q(indh,q(I)), indk,q(J)u is equal to 

(3.1.9) 
q -N I n(I) 12: I (P h(I)*)W n P k(J) I-II (n(It)W n n(J) I 

w 

=q-N ln(I)lln(J)I2: I (PhC!)*)W nPk(J)I-lln(I)W n n(J)I-I, 
W 

where the sums are both taken over W(R(I), R(J)). On the other hand, 
by (3.1.8), IP"I-IIPkl-\rj(I)' rj(J)G is equal to 

(3.1.10) q -Ch([)-ck(J) I n(I) I-II n(J)-1 2: IP h(I)w n P k(J) I-II n(I)w n n(J) I, 
w 

where the sum is again over WeRe!), R(J)). From (3.1.7), (3.1.9) and 
(3.1.10), we see that 

E;~(t)= (_I),(®(S)) t 2N H(®(S)) E',;U),J(J)(t -I). 

This proves (3.1.4). 

3.2. The generalized Gelfand-Graev characters of GLn(F q) and 
Un(Fq) 

Let S be the set of all prime powers. For q E S, let G(q)=GLn(Fq) 
and let (J q = (J q,' (e = ± 1) be defined by 

for (xij ) E ®(q). (Hence G(q) = ®(q ).q is either isomorphic to GLn(F q) 
or to Un(Fq).) For this system (S, ®(S),)=(S, {®(q), (Jq,,}qES)' the set 
H(®(S),) (see 2.2) can naturally be identified with the set 

9'n={(ml> m2, "', m r); mi E Z, ml>m2~'" >mr>O, n= 2: mil 
i 

of partitions of n. Hence, for fJ- E 9' n' lj3p, 01" U 2,p, ... will mean lj3", 0", 
U 2,,,, ••• respectively, if fJ- corresponds to h E H(®(S),). Then 01'=(01')' 
is an Ad (G(q))-orbit in g(q) by [32; III, 3.22]. We denote by rp.=rp.,q 
the generalized Gelfand-Graev character of G(q) associated with an 
element of 01" 

(3.2.1) Theorem. Let (S, ®(S),) (e= ±1) be as above. Let fJ-,}.I E 

9'n. There exist elements 'Hpjt) and 'H:'v(t) of C[t]Q (infact, of Z[t]; 
see (3.2.18) (i)) such that 

(3.2.2) 
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and 

hold for qe S, where Dq is the duality operation [1, 13]. Moreover, 

(3.2.4) 'H'/...(t) = ( _I)8(s)tn+n(I')+n(.) "HI',.(t-I), 

where 

S(E)=S(@(S)s)= . { 
n if E= 1; 

[nI2] if E= -1 

and 

n(p)= L; (i-I)pi 
i 

Proof For q) e C[t]Q<.J1[p]), we define 1q)J(t) e C[t]Q by 

1q)J(q)= IPP(q) I <aq(q), I U"I')pp(q), q e S. 

By (2.3.6), we have 

(3.2.5) 

where ap=dim U2,p + dim us,P" Let 11' be an element of C[t]Q<.J1[p])p 
defined in (2.3.4). Note that Ill'iCq)=IOp(q)nu2,iq)l. Hence, by [13; 
(1.4.7) (i) (ii)], 

Hence, by (3.1.4), the left hand side of (3.2.3) is equal to 

I PI' liP. 111. I (q)-Ill. J(q)-I <D(I op)' 10.) q 

= 111' l(q)-lll.l(q)-IEij"t.(q) 
(3.2.6) 

in the notation of (3.1.1). On the other hand, by (1.3.6) (i), [13; (1.4.7) 
(iii)] and the fact that J(lp)=d(t)lp for some d(t) e C[t]Q' the left hand 
side of (3.2.2) is equal to 

(3.2.7) I Us, I' Ilus,.11 .1(11')1 (q)-IIJ(l')l (q)-IE4<lI',4(1.,(q)· 

Hence we see the existence of 'Hp,.(t), sH'/...(t) e C[t]Q satisfying (3.2.2) 
and (3.2.3). Comparing (3.2.6) and (3.2.7), and using (3.1.1) and (3.2.5), 
we have 
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where 

But, using [32; IV, 1.13], one can check that 

n(p.)=N -dim g(1)p/2-dim U2.P" 

Hence (3.2.4) follows. 
Let Q~(t) e Z[t] (p, A e (JJ n) be the Green polynomials [9,21]. We 

define a nilpotentIy supported invariant function Qp(p e (JJ n) on g(q) by 

(3.2.8) 

(3.2.9) Lemma. Let D be the duality operation [13; 2.2] on the space 
of invariant functions on g(q). . For p e (JJ no we put 

sgn.(p)= e[n/2J( _l)n+r(p) 

where rep) is the number of parts of p. Then we have 

(3.2.10) pe(JJn. 

Proof. Assume, for the moment, that p (= char (F q) is large. Then. 
by Springer [29] and Hotta-Springer [11], the values of Qp can be expressed 
using Springer's trigonometric sums [30] associated with a strongly regular 
element in Lie (5tp)q. Hence, if5tp is not contained in any proper parabolic
Fq-subgroup of@, Qp is precuspidal in the sense of [13; 2.2] (see [29; 1.7 
(iii)]). Hence (3.2.10) follows from [30; 5.5] and [13; (2.1.7)], provided 
thatp is large. But (3.2.10) is equivalent to 

I: Q~(eq)IG(q)IIO.(q)l-l<D(lop)' lo.>g(q)=sgn.(p)Q~(eq), p, lJ e (JJn· 
p 

By the definition of D and (3.1.3) (with if) = 1,,), we see that this is, in fact, 
a finite number of identities between polynomials in q whose coefficients 
are independent of p. Hence it must be true for all p. (It is possible 
that a more elementary proof exists, since (3.2.10) is much weaker than 
the result of Hotta and Springer.) 

Let 5t1 =5t1(q) be the a-stable maximal torus of @ which consists of 
the diagonal elements of@=GLn(Fq). Then NfI!J(5t1)/5t1 can naturally be 
identified with the n-th symmetric group Sn. For s e Sn, take a represent
ative s of s in @. By Lang's theorem, there exists an elements g(s) e @ 
such that (g(S)")-lg(S)=S. The torus g(s)5t1g(S)-1 is clearly a-stable, and 
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the correspondence s---+g(s)~lg(S)-1 induces a well-defined bijection be
tween the conjugacy classes of S" and the ®a-conjugacy classes of a-stable 
maximal torus of ® (see [32; I, § 2]). Hence the latters can be para
metrized by flji n' For p E flji no we shall denote by ~p (resp. Tp) a a-stable 
maximal torus corresponding to p (resp. the finite group (~p)a). Then, 
by [32; II, 1.7], 

where 

ep(t)= IT (l-t P,) 
i 

if P=(Pl> pz, " .). We also put 

which, as an abstract group, is independent of e and is isomorphic to 
Zs,,(sp), where sp is an element of Sn contained in the conjugacy class 
>corresponding to P E flji n' 

(3.2.11) Theorem. Let fl., lJ E flji. 

(i) Let sHp,.(t), sH':,.(t) E C[t]Q be as in (3.2.1). Then we have 

'(3.2.12) SH'j,.(t) = 2: I Wpl~1 sgns(p)tnep(et)-I)Q~(et)Q;(et) 
p 

and 

(3.2.13) SHp,.(t) = en(p) +n(.) 2: I Wp 1-ltnep«et)-I)X~(et)X;(et), 
p 

where X~(t) E Z[t] (p, fl. E flji n) is defined by 

XW)= tn(I')Q~(t -I) 

(see [21; III, 7] and [31], where combinatorial and geometrical descriptions 
of X;'s are given). 

(ii) Let a. be a unipotent element of G(q) contained in the inverse 
image f -1(0.) of the Springer map f (see 1.2). Then 

(3.2.14) rp(a.)=en(l') 2: I Wpl- I sgn.(p)qnep«eq)-I)X;(eq)Q;(eq). 
p 

Proof. (i) By the orthogonality relations [21; III, (7.9)] of the 
Green polynomials, we have 
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!G!!Op!-ll op = L:! Wp!-lqne/(eq)-I)Q;(eq)Qp' 
p 

Hence (3.2.12) and (3.2.13) follow from (3.2.10), (3.2.4) and (3.2.8). 
(ii) Let r; be the unipotently supported class function on G(q) 

whose value at av is given by the right hand side of (3.2.14). Then, by 
the orthogonality relations [21; III, (7.10)] and (3.2.13), we see that 

(3.2.15) 

Using [21; III, (7.11)] and the orthogonal relations, we also have 

(3.2.16) 

and 

(3.2.17) 

{
I if p= {P}, 

<r~, 10)0= 0 
otherwise, 

where "<" is the natural ordering [21; I, 1] on £Yin. We note that the 
conditions (3.2.15)-(3.2.17) determine the class function r; on G uniquely. 
Since rp also satisfy the same conditions, we have r;=rp' This proves 
(ii). 

(3.2.18) Corollary. (i) £Hp,v(t), £H:'v(t) E Z[t]. 
(ii) Let e= 1. (See Remark (3.2.24) (i) below for the case e= -1.) 

Let r; be an irreducible character of G. Since the values of r; at unipotent 
elements can be written as polynomials in q [9], one can define a polynomial 
M/r;)[t] (with coefficients in Z) by 

<rp, r;)o=M/r;)[q]. 

Then 

D(r;)(ap)= ±qn(p)M/r;)(q-I). 

(iii) Let e= 1 (see Remark (3.2.24) (i)). For any irreducible character 
r; of G, there exists a partition per;) of n such that 

<rp(~), r;)o= 1. 

The correspondence r;---""p(r;) is well defined if 
(a) q is large, 

or if 
(b) r; is a unipotent character. 

Moreover, under this correspondence, the set of unipotent irreducible char
acters is sent bijectively to the set £Yin. 
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Proof (i) This follows from (3.2.12) and (3.2.13) using orthogo
nality relations of the irreducible characters of S" 

(ii) This is a consequence of (3.2.10), (3.2.14) and the result of 
J.A. Green [9]. 

(iii) In Ohmori [23], it is shown that, for any Yj, there exists a p(Yj)* 
e [!l n such that 

This, together with (ii), implies the existence of p(Yj). The uniqueness of 
p(Yj) in the case (b) and the last assertion follow from (ii) and the formula 
[21; III, (6.5)] for the values of unipotent characters at the unipotent 
elements. By [9] (cf. also [23]), to prove the uniqueness of p(Yj) under the 
condition (a), it is enough to show: 

(3.2.19) Lemma. Let m and d be positive integers. For 1.1 e [!l m' 

let X; (p e [!l m) be the values of the irreducible character Xv of Sm, and d· 1.1 = 

(d .1.11, d .1.12, ••• ) e [!l d.m if 1.1= (1.110 1.12, ••• ). Then, for A e [!l d.m, 

(3.2.20) I: I Wp 1-IX~X~.lt)= 1 
pE§m 

if and only if A=d·l.I. 

Proof By using almost the same argument as that in [23; (2.8)], 
one can show: 

" I W I-IX.XP = {I if p=d .1.1, 
L....J p p a.p n1 d 

pE§m 0 U ess ps:. .1.1 

for P e [!ld.m. (Notice that our "<" is the natural ordering, whereas the 
author of [23] uses lexicographical one.) By this formula and [21; III, 
(6.5), (7.6')], we see that the left hand side of (3.2.20) is monic of degree 
n(A)-n(d·l.I) if A<d·1.I and is equal to 0 otherwise. Hence we get (3.2.19). 

(3.2.21) Theorem. Let .s= 1. (See Remark (3.2.24) (i).) Let 
Char (G)unlp. be the Z-module of generalized characters of G supported by 
the set of unipotent elements. 

( i ) A unipotently supported class function I; on G is an element of 
Char (G)unIP. if and only if it can be written as 

(3.2.22) I; = I: I Wp I-II Tp I a(sp)Qp, 
p 

where a is a generalized charactor of Sn= WI!"! and sp is an element of S". 
.contained in the conjugacy class corresponding to p e [!In. 
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(ii) {r P; p E 8i' n} is a Z-basis of Char (G)uniP. 

Proof (i) ("only-if" part) By the orthogonalities [21; III, (7.10)] 
of Q~'s, {Qp; p E 8i' n} is a C-basis of C®z Char (G)uniP.. Hence t; can be 
written in the form (3.2.22) with some complex numbers {a(sp)}. Since t; 
is a generalized character, we have 

(3.2.23) 

where r;P is the unipotent irreducible character of G which corresponds to 
p E 8i' n under the mapping in (3.2.18) (iii). Recall that 

r;p(a.) = .L; I Wpl-IX~'Q~(q), 
p 

where p* is the dual partition of p. Hence by (3.2.23) and the orthogo
nalities of Q~'s, we have 

.L; I Wp 1-la(sp)X~' E Z, 
p 

which implies that {a(sp)} are the values of a generalized character of Sn. 
(i) ("if" part), (ii) These can be shown simultaneously, if one 

proves: a class function t; on G which has the form (3.2.22) with a=X· 
for some)) E 8i' n can be written as a Z-linear combination of {r 1'; p E 8i' n}. 
But this follows from (3.2.14) and [21; III, (7.6')] by induction on )). 

(3.2.24) Remark. (i) The results (3.2.18) (ii), (iii) and (3.2.21) 
which were proved only for s= 1 in the above are, in fact, true also in the 
case s= -1, by the Ennola duality proved in Section 4. 

(ii) It might be interesting to know the values of rp. in a form more 
explicit than (3.2.14). For example, it can be shown: 

where rIO) is the number of parts =1= 1 of A; 

where p=(2S P) and A=(2U t V ). But the author does not know such a 
formula valid for any rp.. 
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3.3. Conjectures for a general finite reductive group 
Here we collect some conjectural statements concerning generalized 

Gelfand-Graev characters of a general finite reductive group G=®a 
over Fq • The first one generalizes (3.2.21) (ii). 

(3.3.1) Conjecture. The set {ro} of generalized Gelfand-Graev 
characters (indexed by the set of nilpotent Ad (G)-orbits 0) is a Z-basis of 
the space of unipotently supported generalized characters of G. 

To state the next conjecture, we need terminologies and results of 
T. Shoji [26], [27] and W.M. Beynon and N. Spaltenstein [4]. For sim
plicity, we assume that ® is split over F q' Let A E g= Lie (®)a be a 
distinguished (or F q-split) nilpotent element in the sence of [27,4]. Let 
C(A)" be the set of irreducible characters of the component group C(A) 
=Z®(A)/Z®(A)O of Z®(A). For ifi E C(A)" we put 

rA[ifi]=IC(A)I-1 L: ifi(c)rAc' cEC(A) 

where Ac (c E C(A)) are representatives of G-orbits of (Ad (®)A)a. Let 
St w be a a-stable maximal torus of G corresponding to W E W, and, for 
nilpotent C E g, let Q%w(C)(t) be the Green polynomial [4,26,27] of G. 
We define another polynomial X%w(C)(t) by 

X%w( C)(t)= tn(C)Q%w(C)(t -I), 

where n(C) is the dimension of the variety of Borel subgroups 58' such 
that Lie (58') 3 C. For ifi E C(A)", we put 

We also put 

C(A)t={ifi E C(A)I\; X%w(A)[ifiJ*O for some W E W}. 

Then, generalizing (3.2.14), we expect the following; 

(3.3.2) Conjecture. (i) Let ifi E C(A)t. Then 

r A[ifi](u) = I WI-I L: (-l)'(®) -S(%w) I Tw IX%w(A)[ifi](q)Q%jf(u)) 
wEW 

for any unipotent element u of G, where f is a Springer map (see 1.2). 
(ii) Let ifi E C(AY\\C(A)t. Then rA[ifi] is orthogonal to the space 

of uniform functions on G. The next one generalizes (3.2.18) (iii). 

(3.3.3) Conjecture. For any irreducible character X of G(q), there 
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exists a unique element hz of H(®(S)) (see 2.2) such that the multiplicity 

<x, rA,q)G(q) 

for some A E (Ohz)u is non-zero and "independent of q". (Rigorously, this 
must be defined using suitable parametrizations of A's and X's.) Moreover, 
the correspondence X~hD(Z) would be essentially the one appearing in a 
work of Lustzig [19; 13. 4]. In particular, the set 

{hz; X is a unipotent irreducible character} 

parametrizes the special unipotent classes [19; 13.1] of ®, and two unipotent 
characters Xl and X2 would be in the same family [19] if and only if hl1 = 
hzs· 

Notice that the idea of using Gelfand-Graev representations for a 
classification of irreducible representations goes back to a paper [7] of 
Gelfand and Graev themselves. 

§ 4. Ennola duality between GLn{Fq) and Un(Fq) 

4.1. Preliminaries 
We use the notations of 3.2. For p E fJ' n' we denote by:lt'p the set 

of all q-stable subgroups ~c® of the forin: 

t E 5rp • 

For HE:It'p and a character 0 of Tp, let rfp[O] be the character of the 
Deligne-Lusztig virtual representation .Rfp[O] (see [5]) of H =~u. The 
restriction ofrfp[O] to the set of unipotent elements is independent of () 
and is denoted by Qfp. Let x=su be the Jordan decomposition of x E H. 
Then, by [5], 

(4.1.1) 

where Z(s)=Z~(s) and the summation is taken over the set {h E H; h5rph-1 

CZ(s)}. In [20], G. Lusztig and B. Srinivasan have shown that the irre
ducible characters of GLn{F q) and U n{F q) can be written, in a unified 
way, as explicit Q-Iinear combinations of the r:p[O]'s. This result implies 
that, for a proof of Ennola conjecture [6], it is enough to show: 

(4.1.2) Theorem. For A E fJ' n' 

Q:p(U.) = Q~(eq). 

Note that, if e= 1, this is well known and follows, e.g., from [5] and [28; 
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I, 5.3] or [17; 40]. Let Hand 0 be as above. Following D. Kazhdan [15] 
(see also Lusztig [18; 2.14]), we define a generalized character ktp[O] of 
H = ~a inductively by 

(4.1.3) rt [0]= L: ind~ (kWp[O]), 
p IDl 

where the summation is taken over {an e :It'p; anc~}. If x=su is the 
Jordan decomposition of x e H =~., then 

(4.1.4) k~ [O](su)= p . {
O. (s)kt [l](u) if s e Z(H); 

p 0 otherwIse, 

where Z(H) is the center of H. Note that, in particular, supp (ktp[O]) is 
contained in Z(H) X {unipotent elements of H}. 

In 4.2 we also need the following: 

(4.1.5) Lemma. Let G be afinite group and (t') afinite cyclic group 
which acts on G. We assume that (I<~)I, IG.\)=1. Let H be a ~-stable 
subgroup of G and let 'IF be a class function on the semi-direct product 
<~)H. Define a class function ton H. by 

'IF(u)=t(x), x e H •. 

Then 

This is aversion ofT. Shintani [25; Lemma 2.8], and can be proved 
easily using the fact that two elements of the coset ~G, are <~)G-conjugate 
if and only if they are G.-conjugate (see the proof of [12; (13.6)]; cf. also 
{l4; II]). 

4.2. Proof of Theorem (4.1.2) 
For p. e f!J .. and a character t of Z(CM)a=Z(G(q)), let rp,.;,q be the 

generalized Gelfand-Graev character of G(q) associated with (AI" t) 
(see (1.3.9)). If x=su is the Jordan decomposition of xe G, we have 

{
(q-e)-It(s)rp,iu) if s e Z(G(q)); 

rp,t,q(x)= 0 . th' o erwlse. 
(4.2.1) 

(4.2.2) Lemma. Let e= 1. (See (4.2.9)for the case e= -1.) For 
p e f!J n and a character 0 of Tp , let ktp[O]q be the Kazhdan's generalized 
character (see 4.1) of G(q). Then there exists integers c~(p, p. e f!J .. ) inde
pendent of 0 and q e S such that 
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(4.2.3) 

where Z=Z(G(q». 

Proof. We already know, by (4.1.4), (4.2.1) and (a slight generali
zation of) (3.2.21), that there exist integers c~=c~(q) which are independ
ent of 0 and satisfy (4.2.3). Next we prove that c~(q)'s are independent of 
q. By [35], we can assume, by induction, that the corresponding state
ments for kfp[O]q (~ e ;/fp, ~::j::®) are true. Let r:p[O]q be the Deligne
Lusztig generalized character of G(q). Then, by (4.1.3) and the induction 
assumption, 

(4.2.4) 

where r H,q is a Z-linear combination of generalized Gelfand-Graev 
characters of H(q) with coefficients independent of q. Comparing the 
values of the both hand sides of (4.2.4) at unipotent elements and noting 
that c~(q) e Z for any q e S, we have 

(4.2.5) 

where D is a multiplicatively closed subset of Z generated by a finite 
number of primes. Hence, to prove that these are actually independent 
of q, we can assume that q is large. Then there exists a 0 such that 
{we Wp; O=OW}={I}. We fix such q and O. Then, by [5], a.r:p[O] is 
irreducible for some a= ap = ± 1. Consider the set Eq of prime numbers 
e which does not divide I G(q) I. For e e Eq, we can assume that ~iqe)= 
~p(q) and that uq.=ue, where u=uq,l" Let Oe be the unique character of 
Tp(qe) satisfying 

and 

Oe(tU)=Oe(t), t e Tiqe). 

Consider a cyclic group (r:e> of order e which acts on G(qe) by 

x'· = xu, x e G(qe). 

Put Ze=Z(G(qe». Then, by (4.1.5), there exist natural extensions 

r;;:6.IZ.,q. (resp. indZ.~~~))(r H,q.)-(~ e ;/fp(qe)=;/fp(q») 

of 



202 N. Kawanaka 

to characters of the semi-direct product <1:e>G(qe) such that 

r;'u.IZ"q.(1: ,g) = rl', DIZ,q(g) 

(resp. ind~~~~)(r H,q.)-(1:.g)=ind~W)(r H,q)(g» 
(4.2.6) 

for g E G(q). Using these characters, one can define the generalized 
character r:p[O.];. of <1:e>G(q') by 

Since £'p(q)=£'p(q'), we see, from (4.2.4), that r:p[Oe];.1 G(q')=r:p[O,]q •. 
Moreover, by (4.2.6), 

for g E G(q). By a theorem of G. Glauberman (see [12; (13.6), (13.14)]), 
(4.1.1) and (4.1.2) for 5= 1, we have, for g e G(q), 

(4.2.8) 

where ~2' is a 2e-th root of unity. But, by (4.2.4), (4.2.5), (4.2.7) and 
(4.2.8), 

(1-~2e)a.rUO]q(1) E eZn, 

if eeEq\D. Since e does not divide I G(q) I, this implies that ~2e=1. 
Hence, by (4.2.4), (4.2.7) and (4.2.8), we have 

c;(qe)=c;(q), e e Eq\D. 

This, together with (4.2.5), implies that c;(q)'s are independent of q. 
This proves the lem.ma. 

(4.2.9) Remark. (i) Lemma (4.2.2) is also true in the case 
5= -1, because of the Eunola duality. 

(ii) It is likely that an analogue of (4.2.2) holds for a general 
reductive group. A weaker result of this type was proved by A. Gyoja 
[10]. For GLn , n<4, he also verified a version of (4.2.2) by direct calcula
tions. This result was one of the main motivations of the present work. 

From now on, unless otherwise stated, we consider exclusively the 
case 5= -1. Let c~ (p, p. e g; n) be as in (4.2.2), and let 0 be the character 
of Tp(q)cUn(Fq). Using c;'s appearing in (4.2.3) (where G(q)=GL~(Fq», 
we define a generalized character k:)O]~ of G(q) = Un(F q) by 
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(4.2.10) k® [0]# = '\' c p(_I)n+[n/2J+n(p)r 
:tp q L.J p p,OIZ(G(q)),q· 

p 

Analogously we can also define a generalized character kUO]~ of H = SJu 
for any SJ E:;/fp- Thus we can define 

(4.2.11) r® [0]# = '\' indG(q)(kf! [0]#) 'itp q L.J H(q) 'itp q. 
f!EJt'p 

By [35], (4.1.3), (4.2.1), (4.2.10) and (3.2.14), this is just the class function 
BP(hp) defined by Ennola [5]. (Thus we have proved that Ennola's 
BP(hp),s are actually generalized characters of Un(Fq). Hence Theorem 
(4.1.2) (for c:= -1) will follow if one shows: 

(4.2.12) 

But the generalized characters r~p[O]~ and r~p[O]q of Un(Fq) satisfy the 
same-type character formula (see (4.1.1)) and the same-type orthogonality 
relations (see [5; Th. 6.8]). Hence, by Kazhdan's argument in the proof 
of [15; Th. 3], we see that (4.2.12) is true if q is sufficiently large (for any 
characteristic p). We now fix an arbitrary q. Let e be a prime number 
such that (e, JG(q)l)= 1 and that (4.2.12) is true if q is replaced by qe. By 
[20], there exist integers d~(p, f1 E f!i' n) independent of q such that 

(4.2.13) r~p[l]q,= L: d~r;~, 
p 

and 

(4.2.14) r~p[l]q = L: d~r;~, 
p 

where r;~:s Crespo r;~'s) are the unipotent irreducible characters of G(qe) 
(resp. G(q)). As in the proof of (4.2.2), we consider a cyclic group (ce> 
which acts on G(qe) by 

and consider the natural extension r:p[1];, of r~p[I]~,=r~p[l]q, to a gener
alized character of (ce>G(qe). Then 

(4.2.15) 

for g E G(q) (cf. (4.2.7)). For f1 E f!i'n, let r;~# be the irreducible character 
of G(q) which corresponds to r;~, under the Glauberman correspondence 
(see [12; Ch. 13] and [14; II]), in other words, we have 

(4.2.16) 
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for g E G(q), where ~~;-js an extension of ~~. to an irreducible character 
of <-c.)G(qe) and C2e is a 2e-th root of unity. 

(4.2.17) Lemma. Let d;(p, p E [JJn) be as in (4.2.14). Then we have 

r:p[I]~= I: d;~~#. 
p 

Proof By (4.2.13), (4.2.15), (4.2.16) and the fact that r:p[l]q is a 
generalized character, we have 

(4.2.18) 

with d;# E Z (p E [JJ".) such that 

(4.2.19) 

But, since 

we have, from (4.2.14), (4.2.18) and (4.2.19), 

(4.2.20) 

On the other hand, by (4.2.11), (4.2.10), (4.2.1) and (3.2.14), 

r:p[I]~.(g)-r:p[I]~(g) E eZ 

for any g E G(q). Hence, by [12; (13.14)], (4.2.13), (4.2.18) and the 
validity of (4.2.12) with q replaced by q., we have 

d;lI=d; (mod e) 

for any p, p E [JJ".. This, together with (4.2.20) implies that 

(4.2.21) 

at least when e is sufficiently large. But, since d;'s are independent of e, 
(4.2.21) always holds. This proves the lemma. 

By (4.2.14), for a proof of (4.2.12) (and, hence, of Ennola conjecture), 
it is enough to show: 

(4.2.22) 

But, by the argument of T. Asai [2, 3], one has 
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~~I(g)=~~(ge), geG(q). 

Hence (4.2.22) follows from (4.2.17) and the fact that 

r:p[I]~(g)= r:p[l]~(ge), g E G(q). 
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