The Universal Verma Module and the b-Function

Masaki Kashiwara

§ 0. Introduction

In this paper, we study the universal Verma module and apply this to the determination of the b-functions of the invariants on the flag manifold.

Let \mathfrak{g} be a semi-simple Lie algebra over \mathbf{C}, \mathfrak{b} a Borel subalgebra of \mathfrak{g}, \mathfrak{n} the nilpotent radical of \mathfrak{b} and \mathfrak{h} a Cartan subalgebra in \mathfrak{b}. Let V be a finite-dimensional irreducible representation of \mathfrak{g} and let v be a lowest weight vector of V. Then there exists $f \in U(\mathfrak{h})$ and a commutative diagram

where g is given by the n-linear morphism from V to \mathbf{C} sending u to 1 . Note that $\operatorname{End}_{\left.\mathrm{V}_{(\Omega)}\right)}\left(U(\mathrm{~g}) \otimes_{\mathrm{U}(\mathrm{n})} \mathbf{C}\right) \cong U(\mathfrak{G})$.

The first problem is to determine the minimal f with such a property. In order to state the answer to this problem, we shall introduce further notations. Let Δ be the root system for $(\mathfrak{g}, \mathfrak{h})$. For $\alpha \in \Delta$, let h_{α} be the coroot of α. Let Δ^{+}be the set of positive roots given by \mathfrak{b} and ρ the half-sum of positive roots. Let $-\mu$ be the lowest weight of V.

Theorem . There exists a commutative diagram (0.1), with

$$
f=\prod_{\alpha \in A^{+}}\left(h_{\alpha}+h_{\alpha}(\rho)+1, h_{\alpha}(\mu)\right)
$$

where $(x, n)=x(x+1) \cdots(x+n-1)$. Conversely for any commutative diagram (0.1), f is a multiple of $\prod_{\alpha \in \Lambda^{+}}\left(h_{\alpha}+h_{\alpha}(\rho)+1, h_{\alpha}(\mu)\right)$.

By using this theorem, we can calculate the b-functions on the flag manifold. Let G be a simply connected algebraic group with Lie algebra \mathfrak{g}, and let B and N be the subgroup of G with Lie algebras \mathfrak{b} and \mathfrak{n}, respectively, and let B_{-}be the opposite Borel subgroup.

Received January 17, 1984.

Then the semi-group of $B_{-} \times B$-semi-invariants f on G, i.e. regular functions f on G which satisfies $f\left(b^{\prime} g b\right)=\chi^{\prime}\left(b^{\prime}\right) \chi(b) f(g)$ for $b^{\prime} \in B_{-}, g \in G$, $b \in B$ with characters χ^{\prime} and χ of B_{-}and B, is parametrized by the set P_{+} of dominant integral weights. More precisely, for $\lambda \in P_{+}$, let V_{λ} be a finite-dimensional irreducible representation of G with highest weight λ, v_{λ} a highest weight vector of V_{λ} and $v_{-\lambda}$ a lowest weight vector of the dual V_{λ}^{*} of V_{λ}. We normalize them such that $\left\langle v_{\lambda}, v_{-\lambda}\right\rangle=1$. Then, the regular function f^{λ} given by

$$
f^{\lambda}(g)=\left\langle g v_{\lambda}, v_{-\lambda}\right\rangle
$$

is a semi-invariant, and any semi-invariant is a constant multiple of some f^{2}. We have

$$
f^{\lambda+\lambda^{\prime}}(g)=f^{\lambda}(g) f^{\lambda^{\prime}}(g) .
$$

Theorem. For any dominant integral weight μ, we can find a differential operator P_{μ} on G such that

$$
P_{\mu} f^{\lambda+\mu}=b_{\mu}(\lambda) f^{\lambda} \quad \text { for any } \lambda .
$$

Here

$$
b_{\mu}(\lambda)=\prod_{\alpha \in \Delta^{+}}\left(h_{\alpha}(\lambda+\rho), h_{\alpha}(\mu)\right) .
$$

Notations

$\mathbf{Z}_{+} \quad$: the set of non-negative integers.
\mathbf{Z}_{++}: the set of positive integers.
$\mathrm{g} \quad$: a semi-simple Lie algebra over C.
$\mathfrak{b} \quad$: a Borel subalgebra of g.
$\mathfrak{n} \quad:[\mathfrak{b}, \mathfrak{b}]$
$\mathfrak{G} \quad$: a Cartan subalgebra of \mathfrak{b}.
$\mathfrak{b} \mathfrak{b}_{-} \quad$: the opposite Borel subalgebra of \mathfrak{b} such that $\mathfrak{G}-\cap \mathfrak{b}=\mathfrak{h}$.
$\mathfrak{H}_{-} \quad:\left[\mathfrak{b}_{-}, \mathfrak{b}_{-}\right]$
$\Delta \quad$: the root system of $(\mathfrak{g}, \mathfrak{h})$.
$\Delta^{+} \quad$: the set of positive roots given by \mathfrak{b}
$h_{\alpha} \quad$: the coroot of $\alpha \in \Delta$
$s_{\alpha} \quad:$ the reflection $\lambda \mapsto \lambda-h_{\alpha}(\lambda) \alpha$.
$W \quad$: the Weyl group of $\left(\Delta, \mathfrak{b}^{*}\right)$
$Q_{+}(\Delta): \sum_{\alpha \in \Delta+} \mathbf{Z}_{+} \alpha$
$Q(\Delta): \sum_{\alpha \in J} \mathbf{Z} \alpha$
$P_{+} \quad:\left\{\lambda \in h^{*} ; h_{\alpha}(\lambda) \in \mathbf{Z}_{+}\right.$for any $\left.\alpha \in \Delta^{+}\right\}$.
$\rho \quad:\left(\sum_{\alpha \in \Lambda^{+}} \alpha\right) / 2$
$S\left(\Delta^{+}\right)$: the set of simple roots of Δ^{+}.
$U(*)$: the universal enveloping algebra
$U_{j}(\mathrm{~g}): U_{0}(\mathrm{~g})=\mathbf{C}, U_{j}(\mathrm{~g})=U_{j-1}(\mathrm{~g}) \mathrm{g}+U_{j-1}(\mathrm{~g})$
$R \quad: S(\mathfrak{K})=U(\mathfrak{h})$
$c \quad:$ the canonical homomorphism $\mathfrak{G} \rightarrow R$
$U_{R}(*): R \otimes_{\mathrm{C}} U(*)$
$R_{c+\mu}$: for $\mu \in \mathfrak{h}^{*}$, the $U_{R}(\mathfrak{b})$-module $U_{R}(\mathfrak{b}) /\left(U_{R}(\mathfrak{b}) \mathfrak{n}+\sum_{h \in \mathfrak{G}} U_{R}(\mathfrak{b})(h-\right.$ $c(h)-\mu(h)))$
$1_{c+\mu} \quad$: the canonical generator of $R_{c+\mu}$
$\mathbf{C}_{\boldsymbol{2}} \quad:$ for $\lambda \in \mathfrak{G}^{*}$, the $U(\mathfrak{b})$-module $U(\mathfrak{b}) /\left(U(\mathfrak{b}) \mathfrak{I}+\sum_{h \in \mathfrak{H}} U(\mathfrak{b})(h-\lambda(h))\right)$
$\mathscr{Z}(\mathrm{g})$: the center of $U(\mathrm{~g})$
$\chi_{\lambda} \quad$: the central character $\mathscr{Z}(\mathrm{g}) \rightarrow \mathbf{C}$ of $U(\mathrm{~g}) \otimes_{U(6)} \mathbf{C}_{\lambda-\rho} ; \chi_{\lambda}=\chi_{w \lambda}$ for $w \in$ W
$V_{\lambda}:$ for $\lambda \in P_{+}$, a finite dimensional irreducible representation of g with highest weight λ
$v_{\lambda} \quad:$ a highest weight vector of V_{λ}
$v_{-\lambda}:$ a lowest weight vector of V_{2}^{*}
$(x, m): x(x+1) \cdots(x+m-1)$
G, B, N, B_{-}, N_{-}, T : the group with $\mathfrak{g}, \mathfrak{b}, \mathfrak{n}, \mathfrak{b}_{-}, \mathfrak{n}_{-}$and \mathfrak{G} as their Lie algebras.

\S_{1}^{1}. The universal Verma module

For a ring R and a Lie algebra \mathfrak{a} over \mathbf{C}, we write $U_{R}(\mathfrak{a})$ for $R \otimes_{\mathbf{c}} U(\mathfrak{a})$ $=U\left(R \otimes_{\mathrm{c}} \mathfrak{a}\right)$. Hereafter we take $S(\mathfrak{h})=U(\mathfrak{h})$ for R, where \mathfrak{h} is a Cartan subalgebra of a semi-simple Lie algebra g. Let c be the canonical injection from \mathfrak{G} into R. We define R_{c} by $R_{c}=U_{R}(\mathfrak{G}) / U_{R}(\mathfrak{G}) \mathfrak{H}+\sum_{h \in \mathfrak{h}} U_{R}(\mathfrak{b})(h-c(h))$. Then R_{c} is isomorphic to R as R-module. We write 1_{c} for the canonical generator of R_{c}.

Definition 1.1. We call $U_{R}(\mathrm{~g}) \otimes_{U_{R^{(6)}}} R_{c}$ the universal Verma module.
As a g -module, $U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathrm{~b})} R_{c}$ is isomorphic to $U(\mathfrak{g}) \otimes_{U(\mathrm{n})} \mathbf{C}$. For $\lambda \in \mathfrak{G}^{*}$, let \mathbf{C}_{λ} be the $U(\mathfrak{b})$-module given by $U(\mathfrak{b}) /\left(U(\mathfrak{b}) \mathfrak{n}+\sum_{h \in \mathfrak{G}} U(\mathfrak{b})(h-\right.$ $\lambda(h)$)). We regard \mathbf{C}_{λ} also as an R-module by $R \hookrightarrow U(\mathfrak{b})$. Then $\mathbf{C}_{\lambda} \otimes_{R}$ $\left(U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathfrak{b})} R_{c}\right)$ is nothing but the Verma module with highest weight λ. Note that the universal Verma module is, as an R-module, isomorphic to $R \otimes_{\mathrm{c}} U\left(\mathfrak{n}_{-}\right)$, and in particular it is a free R-module.

For $\mu \in \mathfrak{h}^{*}$, we write $R_{c+\mu}$ for the $U_{R}(\mathfrak{b})$-module $\mathbf{C}_{\mu} \otimes_{\mathrm{C}} R_{c}$.
The following lemma is almost obvious.
Lemma 1.2. $\quad \operatorname{End}_{U_{R}(\mathrm{~g})}\left(U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathrm{~b})} R_{c}\right)=R$.
Now, we choose a non-degenerate W-invariant symmetric bilinear
form (,) on \mathfrak{b}^{*}.
Lemma 1.3. For $\mu \in \mathfrak{h}^{*}$, let f_{μ} be the function on \mathfrak{G}^{*} given by

$$
\begin{aligned}
f_{\mu}(\lambda) & =(\lambda+\mu+\rho, \lambda+\mu+\rho)-(\lambda+\rho, \lambda+\rho) \\
& =2(\mu, \lambda+\rho)+(\mu, \mu) .
\end{aligned}
$$

and regard this as an element of R.
Then we have

$$
f_{\mu} \operatorname{Ext}_{U_{R}(\mathrm{~g})}^{j}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(6)}{\otimes} R_{c}, U_{R}(\mathrm{~g}) \underset{U_{R}(6)}{\otimes} R_{c+\mu}\right)=0 \quad \text { for any } j .
$$

Proof. The Laplacian $\Delta \in \mathscr{Z}(\mathrm{g})$ acts on $U_{R}(\mathrm{~g}) \otimes_{U_{R^{(6)}}} R_{c}$ by the multiplication of $(\lambda+\rho, \lambda+\rho)$ and on $U_{R}(\mathrm{~g}) \otimes_{U_{R}(6)} R_{c+\mu}$ by $(\lambda+\mu+\rho, \lambda+$ $\mu+\rho)$. Hence $(\lambda+\mu+\rho, \lambda+\mu+\rho)-(\lambda+\rho, \lambda+\rho)$ annihilates Ext ${ }^{j}$.
Q.E.D.

Now, let F be a finite-dimensional \mathfrak{b}-module generated by a weight vector u of a weight $\lambda_{0} \in \mathfrak{b}^{*}$. Hence \mathfrak{G} acts semisimply on F. We shall choose a decreasing finite filtration $\left\{F^{j}\right\}$ of F by \mathfrak{b}-modules such that

$$
\begin{gather*}
F^{0}=F \tag{1.1}\\
F^{j} / F^{j+1} \quad \text { has a unique weight } \lambda_{j} . \tag{1.2}\\
\lambda_{j} \neq \lambda_{j^{\prime}} \quad \text { for } j \neq j^{\prime} . \tag{1.3}
\end{gather*}
$$

Therefore, we have $F^{1}=\mathfrak{n} F$ and $F^{0} / F^{1} \cong \mathbf{C}_{2_{0}}$. Hence there exists an isomorphism

$$
\varphi_{1}: U_{R}(\mathrm{~g}){\underset{U R R}{ }(\mathrm{G})}_{\otimes}^{\otimes} R_{c+\lambda_{0}} \xrightarrow{\sim} U_{R}(\mathrm{~g}) \underset{V_{R}(\mathrm{~F})}{\otimes}\left(R_{c} \underset{\mathrm{C}}{\otimes} F^{0} / F^{1}\right) .
$$

Now, we shall construct a commutative diagram
${ }^{(1.4)_{j}}{ }^{\text {: }}$

with $f_{j} \in R$, by the induction on j.
Assuming that (1.4) ${ }_{j}$ has been already constructed ($j \geqq 1$), we shall construct $(1.4)_{j+1}$. We have an exact sequence

$$
0 \longrightarrow U_{R}(\mathrm{~g}){\underset{U R}{R(5)}}_{\otimes}^{\otimes}\left(R_{c} \otimes F^{j} / F^{j+1}\right) \longrightarrow U_{R}(\mathrm{~g}) \underset{U_{R}(6)}{\otimes}\left(R_{c} \otimes F^{0} F^{j+1}\right) \longrightarrow
$$

$$
\longrightarrow U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{b})}{\otimes}\left(R_{c} \otimes F^{0} / F^{j}\right) \longrightarrow 0
$$

This gives an exact sequence

$$
\begin{aligned}
& \operatorname{Hom}_{U_{R}(\mathrm{~g})}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathrm{~b})}{\otimes} R_{c+\lambda_{0}}, \quad U_{R}(\mathrm{~g}) \underset{U_{R}(\mathrm{~b})}{\otimes}\left(R_{c} \otimes F^{0} / F^{j+1}\right)\right) \\
& \longrightarrow \operatorname{Hom}_{U_{R}(\mathrm{~g})}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c+\lambda_{0}}, U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{G})}{\otimes}\left(R_{c} \otimes F^{0} / F^{j}\right)\right) \\
& \xrightarrow{\delta} \operatorname{Ext}_{U_{R}(\mathrm{~g})}^{1}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathrm{G})}{\otimes} R_{c+\lambda_{0}}, \quad U_{R}(\mathrm{~g}) \underset{U_{R}(\mathrm{G})}{\otimes}\left(R_{c} \otimes F^{j} / F^{j+1}\right)\right) .
\end{aligned}
$$

On the other hand, F^{j} / F^{j+1} is a direct sum of copies of $R_{c+\lambda_{j}}$. Therefore, by Lemma 1.3, we have

$$
g_{j} \operatorname{Ext}_{U_{R}(\mathrm{~g})}^{1}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c+\lambda_{0}}, \quad U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{b})}{\otimes}\left(R_{c} \otimes F^{j} / F^{j+1}\right)\right)=0
$$

where $g_{j} \in R$ is given by $g_{j}(\lambda)=\left(\lambda+\lambda_{j}+\rho, \lambda+\lambda_{j}+\rho\right)-\left(\lambda+\lambda_{0}+\rho, \lambda+\lambda_{0}+\rho\right)$. Hence $g_{j} \delta\left(\varphi_{j}\right)=0$, which shows that $g_{j} \varphi_{j}$ lifts to $\psi: U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathrm{~b})} R_{c+\lambda_{0}} \rightarrow$ $U_{R}(\mathrm{~g}) \otimes_{U_{R}(5)}\left(R_{c} \otimes F^{0} / F^{j+1}\right)$.

If ψ is divisible by g_{j}, then φ_{j} itself lifts and we obtain (1.4) $)_{j+1}$ with $f_{j+1}=f_{j}$.

Assume that ψ is not divisible by g_{j}. For $\lambda \in \mathfrak{b}^{*}$, let us denote by $\psi(\lambda)$ the specialization of ψ, i.e. $\mathbf{C}_{\lambda} \otimes_{R} \psi$. Then, for a generic point λ of $g_{j}^{-1}(0), \psi(\lambda) \neq 0$. Hence we obtain a diagram

Since $g_{j}(\lambda)=0$, we obtain a nonzero homomorphism $h: U(\mathfrak{g}) \otimes_{U(5)} \mathbf{C}_{\lambda+\lambda_{0}} \rightarrow$ $U(\mathrm{~g}) \otimes_{U(\mathfrak{b})}\left(\mathbf{C}_{\lambda} \otimes F^{j} / F^{j+1}\right)$. Since $U(\mathrm{~g}) \otimes_{U(\mathrm{~b})}\left(\mathbf{C}_{\lambda} \otimes F^{j} / F^{j+1}\right)$ is a direct sum of copies of $U(\mathrm{~g}) \otimes_{U(6)} \mathbf{C}_{\lambda+\lambda_{j}}$, the central character of $U(\mathrm{~g}) \otimes_{U(\mathrm{~b})} \mathbf{C}_{\lambda+\lambda_{0}}$ and that of $U(\mathrm{~g}) \otimes_{U(5)} \mathbf{C}_{\lambda+\lambda_{j}}$ must coincide. Hence there exists $w \in W$ such that $w\left(\lambda+\lambda_{0}+\rho\right)=\lambda+\lambda_{j}+\rho$. This shows that $w\left(\lambda+\lambda_{0}+\rho\right)=\lambda+\lambda_{j}+\rho$ holds for any $\lambda \in g_{j}^{-1}(0)$. Since $\lambda_{j} \neq \lambda_{0}, w \neq 1$. Since w fixes the hyperplane $\left(\lambda, \lambda_{j}-\lambda_{0}\right)=0$, w must be the reflection s_{α} for some $\alpha \in \Delta^{+}$. Hence we obtain

$$
0=\lambda+\lambda_{j}+\rho-s_{a}\left(\lambda+\lambda_{0}+\rho\right)=\lambda_{j}-\lambda_{0}+h_{\alpha}\left(\lambda+\lambda_{0}+\rho\right) \alpha .
$$

This implies that $\lambda_{j}=\lambda_{0}+k \alpha$ for some $k \in \mathbf{C}$. Since $\lambda_{j}-\lambda_{0} \in Q_{+}(\Delta) \backslash\{0\}, k$ is a strictly positive integer. Moreover $h_{\alpha}\left(\lambda+\lambda_{0}+\rho\right)+k=0$ holds on $g_{j}^{-1}(0)$. Hence g_{j} is a constant multiple of $h_{a}\left(\lambda+\lambda_{0}+\rho\right)+k$.

Summing up, we obtain
Lemma 1.4. (i) If λ_{j} is not of the form $\lambda_{0}+k \alpha$ with $\alpha \in \Delta_{+}, k \in \mathbf{Z}_{++}$, then φ_{j} lifts to $\varphi_{j+1}: U_{R}(\mathfrak{g}) \otimes_{U_{R^{(5)}}} R_{c+\lambda_{0}} \rightarrow U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathfrak{b})}\left(R_{c} \otimes F^{0} / F^{j+1}\right)$
(ii) If $\lambda_{j}=\lambda_{0}+k \alpha$ for some $\alpha \in \Delta^{+}$and $k \in \mathbf{Z}_{++}$, then $\left(c\left(h_{\alpha}\right)+h_{\alpha}\left(\lambda_{0}+\rho\right)\right.$ $+k) \varphi_{j}$ lifts to φ_{j+1}.

Repeating this procedure we obtain
Theorem 1.5. There exists a commutative diagram

Here $f=\prod_{(\alpha, k) \in \Phi(F)}\left(h_{\alpha}+h_{\alpha}\left(\lambda_{0}+\rho\right)+k\right)$ and $\widetilde{S}(F)$ is the set of pairs (α, k) of positive root α and a positive integer k such that $\lambda_{0}+k \alpha$ is a weight of F.

Example 1.6. We set $F_{k}=U(\mathfrak{b}) /\left(U(\mathfrak{b}) \mathfrak{G}+U(\mathfrak{b}) \mathfrak{n}^{k}\right)$. Let K be the quotient field of R. Then for any k, there exists a unique

$$
\varphi_{k}: U_{K}(\mathrm{~g}){\underset{U_{R}(\mathfrak{b})}{ }}_{\otimes} R_{c} \rightarrow U_{K}(\mathrm{~g}){\underset{U R}{ }(\mathfrak{b})}_{\otimes}^{\otimes}\left(R_{c} \otimes F_{k}\right)
$$

such that the following diagram commutes

Hence, taking the projective limit, we obtain

$$
\hat{\varphi}: U_{K}(\mathrm{~g}) \underset{U_{R}(\mathrm{f})}{\otimes} R_{c} \rightarrow \underset{k}{\lim _{k}} U_{K}(\mathrm{~g}) \underset{U_{R}(\mathrm{~b})}{\otimes}\left(R_{c} \otimes F_{k}\right) .
$$

When $\mathrm{g}=s l_{2}$, we shall calculate $\hat{\varphi}$. Let us take the generator X_{+}, X_{-}, h such that $\left[h, X_{ \pm}\right]= \pm 2 X_{ \pm},\left[X_{+}, X_{-}\right]=h . \quad$ Set $\lambda=c(h)$. We can write $P=\hat{\varphi}(1)$ in the following form

$$
P=\sum_{j=0}^{\infty} a_{j} X_{-}^{j} \otimes X_{+}^{j}\left(1_{c} \otimes 1\right)
$$

with $a_{0}=1$. Then

$$
\begin{aligned}
X_{+} P & =\sum a_{j} X_{+} X_{-}^{j} \otimes X_{+}^{j}\left(1_{c} \otimes 1\right) \\
& =\sum a_{j} X_{-}^{j} \otimes X_{+}^{j+1}\left(1_{e} \otimes 1\right)+\sum j a_{j} X_{-}^{j-1}(h-j+1) \otimes X_{+}^{j}\left(1_{c} \otimes 1\right) \\
& =\sum a_{j} X_{-}^{j} \otimes X_{+}^{j+1}\left(1_{c} \otimes 1\right)+\sum j(\lambda+j+1) a_{j} X_{-}^{j-1} \otimes X_{+}^{j}\left(1_{c} \otimes 1\right) .
\end{aligned}
$$

Here we have used the relation $\left[X_{+}, X_{-}^{j}\right]=j X_{-}^{j-1}(h-j+1)$.
Hence we obtain the recursion formula

$$
a_{j}=-\frac{1}{j(\lambda+j+1)} a_{j-1} \quad \text { for } j \geqq 1
$$

Solving this, we obtain

$$
\begin{equation*}
P=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!(\lambda+2, j)} X_{-}^{j} \otimes X_{+}^{j}\left(1_{c} \otimes 1\right) \tag{1.7}
\end{equation*}
$$

Let V_{μ}^{*} be a finite-dimensional irreducible representation of g with a lowest weight $-\mu$ and $v_{-\mu}$ a lowest weight vector. As well-known, $-\mu$ $+k \alpha$ is a weight of V_{μ}^{*} if and only if $0 \leqq k \leqq h_{\alpha}(\mu)$. Hence Theorem 1.5 implies the following Theorem.

Theorem 1.7. There exists a homomorphism

$$
\varphi_{0}: U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{6})}{\otimes} R_{c} \longrightarrow U_{R}(\mathfrak{g}) \underset{U_{R}(\mathrm{G})}{\otimes}\left(R_{c+\mu} \otimes V_{\mu}^{*}\right)
$$

such that $g \circ \varphi_{0}=\prod_{\alpha \in \Lambda^{+}}\left(h_{\alpha}+h_{\alpha}(\rho)+1, h_{\alpha}(\mu)\right)$, where $g: U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathfrak{5})}\left(R_{c+\mu}\right.$ $\left.\otimes V_{\mu}^{*}\right) \rightarrow U_{R}(\mathrm{~g}) \otimes_{U_{R}(6)} R_{c}$ is given by $g\left(1 \otimes 1_{c+\mu} \otimes v_{-\mu}\right)=1 \otimes 1_{c}$.

Now, we shall show the converse.

Proposition 1.8. For any homomorphism

$$
\varphi: U_{R}(\mathfrak{g}) \underset{U_{R}(6)}{\otimes} R_{c} \longrightarrow U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{b})}{\otimes}\left(R_{c+\mu} \otimes V_{\mu}^{*}\right)
$$

set $f=g \circ \varphi \in R$. Then f is a multiple of $\prod_{\alpha \in \Delta^{+}}\left(h_{\alpha}+h_{\alpha}(\rho)+1, h_{\alpha}(\mu)\right)$.
Proof. Note that $h_{\alpha}+h_{\alpha}(\rho)+k=c\left(h_{\alpha^{\prime}}+h_{\alpha^{\prime}}(\rho)+k^{\prime}\right)$ with $\alpha, \alpha^{\prime} \in \Delta^{+}, k$, $k^{\prime}, c \in \mathbf{C}$ implies, $\alpha=\alpha^{\prime}, k=k^{\prime}$. Hence we can construct another φ such that $g \circ \varphi$ is the greatest common divisor of f and $\prod\left(h_{\alpha}+h_{\alpha}(\rho)+1, h_{\alpha}(\mu)\right)$. Therefore, we may assume from the beginning that f is a divisor of $\prod\left(h_{\alpha}+\rho\left(h_{\alpha}\right)+1, h_{\alpha}(\mu)\right)$.

Set $M=U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathrm{~b})}\left(R_{c+\mu} \otimes V_{\mu}^{*}\right) \cong U(\mathrm{~g}) \otimes_{U(\mathrm{n})} V_{\mu}^{*}$ and let M_{j} be the image of $U_{j}(\mathrm{~g}) \otimes V_{\mu}^{*}$ in M. Then we can easily show

$$
\operatorname{gr} M=\oplus M_{j} / M_{j-1}=(S(\mathfrak{g}) / S(\mathrm{~g}) \mathfrak{n}) \underset{\mathbf{c}}{\otimes} V_{\mu}^{*}
$$

as an \mathfrak{n}-module.
Now, $v=\varphi(1)$ is a non-zero element of M which is \mathfrak{n}-invariant. Let j be the smallest integer such that $v \in M_{j}$ and let \bar{v} be the image of v in M_{j} / M_{j-1}. Then \bar{v} is also \mathfrak{n}-invariant. By the Killing form we identify g and \mathfrak{g}^{*}. Then $S(\mathrm{~g}) / S(\mathrm{~g}) \mathfrak{n}$ is isomorphic to $\mathbf{C}[\mathfrak{b}]$, the polynomial ring of \mathfrak{b}. Hence we can regard \bar{v} as a V_{μ}^{*}-valued function on \mathfrak{b}, and we denote it Ψ. By the assumption, v has the form

$$
v=f \otimes v_{-\mu} \bmod U\left(\mathfrak{b}_{-}\right) \mathfrak{H}_{-} \otimes \mathfrak{n} V_{\mu}^{*}
$$

Hence $j \geqq \operatorname{deg} f$ and we have either

$$
\begin{equation*}
j>\operatorname{deg} f \quad \text { and } \Psi \mid \mathfrak{G}=0 \tag{1.8}
\end{equation*}
$$

or

$$
\begin{equation*}
j=\operatorname{deg} f \quad \text { and } \quad \Psi(h)=\bar{f}(h) v_{-\mu} \quad \text { for } \quad h \in \mathfrak{h} . \tag{1.9}
\end{equation*}
$$

Here \bar{f} is the homogeneous part of f. Since $N \mathfrak{h}$ is an open dense subset of $\mathfrak{b}, \Psi \mid \mathfrak{h}=0$ implies $\Psi=0$. Hence the first case (1.8) does not occur and we have (1.9).

Let $S\left(\Delta^{+}\right)$be the set of simple roots. For $\alpha \in \Delta$, let x_{α} be a root vector with root α. We normalize as $\left[x_{\alpha}, x_{-\alpha}\right]=h_{\alpha}$. We set

$$
x_{+}=\sum_{\alpha \in S(\Delta+)} x_{\alpha} \quad x_{-}=\sum_{\alpha \in S(\Delta+)} x_{-\alpha} .
$$

We take the element $h_{0} \in \mathfrak{G}$ such that $h_{0}(\alpha)=2$ for $\alpha \in S\left(\Delta^{+}\right)$. Then $h_{0}=$ $\sum_{\alpha \in \Lambda^{+}} h_{\alpha}$. Now, we can show easily $\left[h_{0}, x_{ \pm}\right]= \pm 2 x_{ \pm},\left[x_{+}, x_{-}\right]=h_{0}$ and hence $\left\langle h_{0}, x_{+}, x_{-}\right\rangle_{\mathbf{c}}$ forms a Lie algebra isomorphic to $s l_{2}$. We have

$$
e^{t x+} h_{0}=h_{0}-2 t x_{+}
$$

Therefore, we obtain

$$
\begin{aligned}
\Psi\left(a h_{0}-2 x_{+}\right) & =\Psi\left(a e^{a-1 x}+h_{0}\right)=e^{a-1 x}+\Psi\left(a h_{0}\right) \\
& =\bar{f}\left(a h_{0}\right) e^{a-1 x_{+}} v_{-\mu} \\
& =\sum_{k \geqq 0} \frac{\left(a^{-1}\right)^{k}}{k!} \bar{f}\left(a h_{0}\right) x_{+}^{k} v_{-\mu} .
\end{aligned}
$$

The representation theory of $s l_{2}$ implies that $x_{+}^{k} v_{-\mu} \neq 0$ for $\left(0 \leqq k \leqq h_{0}(\mu)\right)$ and $x_{+}^{k} v_{-\mu}=0$ for $k>h_{0}(\mu)$. Since $\Psi\left(a h_{0}-2 x_{+}\right)$is a polynomial in a, $\bar{f}\left(a h_{0}\right) a^{-h_{0}(\mu)}$ is also a polynomial in a. Moreover $\bar{f}\left(h_{0}\right) \neq 0$ because \bar{f} is a
factor of $\prod h_{\alpha}^{h_{\alpha}(\mu)}$. This shows that

$$
\operatorname{deg} f=\operatorname{deg} \bar{f} \geqq h_{0}(\mu)=\sum_{\alpha \in \Lambda^{+}} h_{\alpha}(\mu) .
$$

Hence f is $\prod\left(h_{\alpha}+h_{\alpha}(\rho)+1, h_{\alpha}(\mu)\right)$ up to constant multiple.
Q.E.D.

For a \mathfrak{g}-module V and a \mathfrak{b}-module F, we have a canonical isomorphism

$$
\begin{equation*}
U(\mathrm{~g}) \underset{U(\mathrm{~b})}{\otimes}(F \otimes V) \longrightarrow V{\underset{\mathrm{c}}{ }}_{\otimes}(U(\mathrm{~g}) \underset{U(\mathrm{~b})}{\otimes} F) \tag{1.10}
\end{equation*}
$$

by $1 \otimes(f \otimes v) \mapsto v \otimes(1 \otimes f)$ for $v \in V, f \in F$.
Similarly, we have

$$
\begin{equation*}
U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{b})}{\otimes}\left(R_{c+\mu} \otimes V_{\mu}^{*}\right) \xrightarrow[\mu]{\sim} \underset{\mathbf{C}}{*} \underset{V_{R}}{*}\left(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{6})}{\otimes} R_{c+\mu}\right) . \tag{1.11}
\end{equation*}
$$

Therefore, we have

$$
\begin{align*}
& \operatorname{Hom}_{U_{R}(\mathrm{~g})}\left(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{ } R_{c}, \quad U_{R}(\mathfrak{g}){\underset{U}{R_{R}(\mathfrak{G})}}^{\otimes}\left(R_{c+\mu} \otimes V_{\mu}^{*}\right)\right) \\
& =\operatorname{Hom}_{U_{R}(\mathfrak{g})}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c}, \quad V_{\mu}^{*} \otimes\left(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{G})}{\otimes} R_{c+\mu}\right)\right) \\
& =\operatorname{Hom}_{U_{R}(\mathrm{~g})}\left(V_{\mu} \otimes\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{G})}{\otimes} R_{c}\right), \quad U_{R}(\mathrm{~g}) \underset{U_{R^{(\mathfrak{G})}}}{\otimes} R_{c+\mu}\right) \tag{1.12}\\
& =\operatorname{Hom}_{U_{R}(\mathrm{~g})}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{b})}{\otimes}\left(R_{c} \otimes V_{\mu}\right), \quad U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c+\mu}\right) .
\end{align*}
$$

We choose a lowest weight vector $v_{-\mu}$ of V_{μ}^{*} and a highest weight vector v_{μ} of V_{μ}, normalized by $\left\langle v_{\mu}, v_{-\mu}\right\rangle=1$. We define $g: U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathfrak{\xi})}\left(R_{c+\mu} \otimes\right.$ $\left.V_{\mu}^{*}\right) \rightarrow U_{R}(\mathrm{~g}) \otimes_{U_{R^{(5)}}} \cdot R_{c}$ and $h: U_{R}(\mathrm{~g}) \otimes_{U_{\left.R^{(}\right)}(\mathfrak{b})} R_{c+\mu} \rightarrow U_{R}(\mathrm{~g}) \otimes_{U_{R}(\mathrm{~b})}\left(R_{c} \otimes V_{\mu}\right)$ by $g\left(1 \otimes 1_{c+\mu} \otimes v_{-\mu}\right)=1 \otimes 1_{c}$ and $h\left(1 \otimes 1_{c+\mu}\right)=1 \otimes 1_{c} \otimes v_{\mu}$

Theorem 1.9. Assume that

$$
\varphi \in \operatorname{Hom}_{U_{R}(\mathrm{~g})}\left(U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{5})}{\otimes} R_{c}, U_{R}(\mathfrak{g}) \underset{U_{R^{(\mathfrak{b})}}}{\otimes}\left(R_{c+\mu} \otimes V_{\mu}^{*}\right)\right)
$$

and

$$
\psi \in \operatorname{Hom}_{U_{R}(\mathrm{~g})}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathfrak{G})}{\otimes}\left(R_{c} \otimes V_{\mu}\right), U_{R}(\mathfrak{g}) \underset{U_{R}(\mathfrak{b})}{\otimes} R_{c+\mu}\right)
$$

correspond by the isomorphism (1.12). Set $f=g \circ \varphi \in R$ and $f^{\prime}=\psi \circ h \in R$. Then, we have

$$
\begin{equation*}
f^{\prime}=\prod_{\alpha \in \Delta+} \frac{h_{\alpha}+h_{\alpha}(\rho)}{h_{\alpha}+h_{\alpha}(\rho+\mu)} f \tag{1.13}
\end{equation*}
$$

Proof. For $\lambda \in \mathfrak{G}^{*}$, we shall denote by $\varphi(\lambda), \psi(\lambda), h(\lambda)$ and $g(\lambda)$ their specializations at λ. Identifying $V_{\mu}^{*} \otimes\left(U(\mathrm{~g}) \otimes_{U(\text { () }} \mathbf{C}_{\lambda+\mu}\right)$ with $U(\mathrm{~g}) \otimes_{U(\mathrm{~b})}$ $\left(\mathbf{C}_{\lambda+\mu} \otimes V_{\mu}^{*}\right)$, etc., we have commutative diagrams
and

Letting λ be a dominant integral weight and employing the homomorphism $U(\mathrm{~g}) \otimes_{U(\mathrm{~b})} \mathbf{C}_{\lambda} \rightarrow V_{\lambda}$, etc. we obtain

and

Here \bar{g} and \bar{h} are characterized by $\bar{g}\left(v_{-\mu} \otimes v_{\lambda+\mu}\right)=v_{\lambda}$ and $\bar{h}\left(v_{\lambda+\mu}\right)=v_{\mu} \otimes v_{\lambda}$. Moreover, $\bar{\varphi}$ and $\bar{\psi}$ are related by

$$
\left(c \otimes \mathrm{id}_{V_{\lambda+\mu}}\right)(w \otimes \bar{\varphi}(v))=\bar{\psi}(w \otimes v) \quad \text { for } v \in V_{\lambda} \quad \text { and } w \in V_{\mu},
$$

where c is the contraction $V_{\mu} \otimes V_{\mu}^{*} \rightarrow \mathbf{C}$.
Now, $V_{\mu} \otimes V_{\lambda}$ contains $V_{\lambda+\mu}$ with multiplicity 1 . Let us denote by p the projector form $V_{\mu} \otimes V_{\lambda}$ onto $\bar{h}\left(V_{\lambda+\mu}\right)$, and regard this as an endomorphism of $V_{\mu} \otimes V_{\lambda}$. Then by (1.15), we have

$$
\bar{h} \circ \bar{\psi}=f^{\prime}(\lambda) p
$$

On the other hand, we have a commutative diagram

where $\iota: \mathbf{C} \rightarrow V_{\mu}^{*} \otimes V_{\mu}$ is the canonical injection. Therefore we have

$$
f(\lambda) \mathrm{id}_{V_{\lambda}}=f^{\prime}(\lambda)\left(c \otimes V_{\lambda}\right) \circ\left(V_{\mu}^{*} \otimes p\right) \circ\left(c \otimes V_{\lambda}\right) .
$$

Taking the trace, we have

$$
\begin{equation*}
f(\lambda) \operatorname{dim} V_{\lambda}=f^{\prime}(\lambda) \operatorname{tr}_{V_{\lambda}}\left(c \otimes V_{\lambda}\right) \circ\left(V_{\mu}^{*} \otimes p\right) \circ\left(c \otimes V_{\lambda}\right) . \tag{1.16}
\end{equation*}
$$

In order to calculate the right-hand side, we shall take bases $\left\{w_{j}\right\}$ of V_{λ}. $\left\{u_{k}\right\}$ of V_{μ} and their dual bases $\left\{w_{j}^{*}\right\}$ and $\left\{u_{k}^{*}\right\}$. Then

$$
\begin{aligned}
\left(c \otimes V_{\lambda}\right) & \circ\left(V_{\mu}^{*} \otimes p\right) \circ\left(c \otimes V_{\lambda}\right)\left(w_{j}\right) \\
& =\sum_{k}\left(c \otimes V_{\lambda}\right) \circ\left(V_{\mu}^{*} \otimes p\right)\left(u_{k}^{*} \otimes u_{k} \otimes w_{j}\right) \\
& =\sum_{k}\left(c \otimes V_{\lambda}\right)\left(u_{k}^{*} \otimes p\left(u_{k} \otimes w_{j}\right)\right) .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& \operatorname{tr}_{V_{\lambda}}\left(c \otimes V_{\lambda}\right) \circ\left(V_{\mu}^{*} \otimes p\right) \circ\left(c \otimes V_{\lambda}\right) \\
&=\sum_{j, k}\left\langle w_{j}^{*},\left(c \otimes V_{\lambda}\right)\left(u_{k}^{*} \otimes p\left(u_{k} \otimes w_{j}\right)\right)\right\rangle \\
&=\sum_{j, k}\left\langle u_{k}^{*} \otimes w_{j}^{*}, p\left(u_{k} \otimes w_{j}\right)\right\rangle \\
&=\operatorname{tr}_{V_{\mu} \otimes V_{\lambda}} p=\operatorname{dim} V_{\lambda+\mu} .
\end{aligned}
$$

By (1.16), we obtain

$$
f(\lambda) \operatorname{dim} V_{\lambda}=f^{\prime}(\lambda) \operatorname{dim} V_{\lambda+\mu}
$$

Then the assertion follows from Weyl's dimension formula

$$
\operatorname{dim} V_{\lambda}=\prod_{\alpha \in \Delta^{+}} \frac{h_{\alpha}(\lambda+\rho)}{h_{\alpha}(\rho)}
$$

Corollary 1.10. For a dominant integral weight μ, there exists a commutative diagram

where $f=\prod_{\alpha \in \Delta^{+}}\left(h_{\alpha}+h_{\alpha}(\rho), h_{\alpha}(\mu)\right)$ and $h\left(1 \otimes 1_{c+\mu}\right)=1 \otimes 1_{c} \otimes v_{\mu}$.
Remark 1.11. This corollary is also obtained either by a similar argument as the proof of Theorem 1.5 or directly from Theorem 1.7 by the following argument. First note that for any $U_{R}(\mathfrak{b})$-module F, we have

$$
\begin{aligned}
& \mathbf{R ~ H o m}_{U_{R}(\mathrm{~g})}\left(U_{R}(\mathrm{~g}) \underset{U_{R}(\mathrm{~b})}{\otimes} F, U_{R}(\mathrm{~g})\right) \\
& \quad=U_{R}(\mathrm{~g}) \underset{U_{\left.R^{(}\right)}^{(\mathrm{b})}}{\otimes} \mathbf{R o m}_{U_{R^{\prime}}(\mathrm{b})}\left(F, U_{R}(\mathfrak{b})\right) .
\end{aligned}
$$

On the other hand, for a finite dimensional \mathfrak{b}-module V

$$
\mathbf{R} \operatorname{Hom}_{U_{R}(\mathfrak{b})}\left(R_{c} \otimes V, U_{R}(\mathfrak{b})\right)=R_{-c-2 \rho} \otimes V^{*}[-\operatorname{dim} \mathfrak{b}]
$$

where $R_{-c-2 \rho}$ is the $U_{R}(\mathfrak{b})$-module R with weight $-c-2 \rho$. Hence the commutative diagram

with $f^{\prime}=\prod_{\alpha}\left(h_{\alpha}+h_{\alpha}(\rho)+1, h_{\alpha}(\mu)\right)$ gives

Now, the isomorphism $h \mapsto-h-h(2 \rho+\mu)$ gives Corollary 1.10.

\S 2. The \boldsymbol{b}-functions of $\boldsymbol{B}_{-} \times \boldsymbol{B}$-semi-invariants

For a dominant integral weight λ, let V_{λ} be an irreducible representation of \mathfrak{g} with highest weight λ. Let v_{λ} be a highest weight vector of V_{λ} and $v_{-\lambda}$ the lowest weight vector of V_{λ}^{*}, normalized by $\left\langle v_{\lambda}, v_{-\lambda}\right\rangle=1$.

Let f^{λ} be the regular function on G defined by

$$
\begin{equation*}
f^{\lambda}(g)=\left\langle g v_{\lambda}, v_{-\lambda}\right\rangle . \tag{2.1}
\end{equation*}
$$

Then f^{λ} is $B_{-} \times B$-semi-invariant such that

$$
\begin{equation*}
f^{\lambda}\left(b^{\prime} g b\right)=\chi_{2}^{-}\left(b^{\prime}\right) \chi_{2}^{+}(b) f^{\lambda}(g) \quad \text { for } g \in G, b^{\prime} \in B_{-} \text {and } b \in B \tag{2.2}
\end{equation*}
$$

where $\chi_{\lambda}^{ \pm}$is the character of B and B_{-}such that

$$
\chi_{\lambda}^{ \pm}\left(e^{h}\right)=e^{\lambda(h)} \quad \text { for } h \in \mathfrak{h}
$$

Moreover we have

$$
\begin{equation*}
f^{\lambda}(e)=1 \tag{2.3}
\end{equation*}
$$

Note that any $B_{-} \times B$-semi-invariant with character $\chi_{\lambda}^{-} \otimes \chi_{\lambda}$ is a constant multiple of f^{2} and any $B_{-} \times B$-semi-invariant has a character $\chi_{2}^{-} \otimes \chi_{2}$ for some $\lambda \in P^{+}$. This follows from the well-known formula

$$
\mathcal{O}(G)=\underset{\lambda \in P_{+}}{\oplus} V_{\lambda}^{*} \otimes V_{\lambda}
$$

In particular, we have

$$
\begin{equation*}
f^{\lambda+\lambda^{\prime}}(g)=f^{\lambda}(g) f^{\lambda^{\prime}}(g) \tag{2.4}
\end{equation*}
$$

Theorem 2.1. For any dominant integral weight μ, there exists a differential operator P_{μ} such that

$$
\begin{equation*}
P_{\mu} f^{\lambda+\mu}=b_{\mu}(\lambda) f^{\lambda} \quad \text { for any } \lambda . \tag{2.5}
\end{equation*}
$$

Here $b_{\mu}(\lambda)=\prod_{\alpha \in \Lambda^{+}}\left(h_{\alpha}(\lambda+\rho), h_{\alpha}(\mu)\right)$.
Proof. Let us denote by \mathscr{D} the sheaf of differential operators on G. Then the right-action of G on itself gives a homomorphism $R: U(g) \rightarrow$ $\mathscr{D}(G)$. In particular, $R(U(\mathrm{~g}))$ is the set of left invariant differential operators on G.

By Corollary 1.10, there exists an \mathfrak{n}-invariant element P of $V_{\mu}^{*} \otimes$ $\left(U_{R}(\mathfrak{g}) \otimes_{U_{R}(\mathfrak{b})} R_{c+\mu}\right)$ with weight c, whose coefficient of $v_{-\mu}$ is $\prod_{\alpha \in \Lambda+}\left(c\left(h_{\alpha}\right)\right.$ $\left.+h_{\alpha}(\rho), h_{\alpha}(\mu)\right)$. Hence P is written in the following form

$$
P=\sum_{j=0}^{N} v_{j} \otimes P_{j} \otimes 1_{c+\mu}
$$

where

$$
\begin{equation*}
v_{0}=v_{-\mu}, \quad P_{0}=\prod_{\alpha \in \Delta^{+}}\left(h_{\alpha}+h_{\alpha}(\rho-\mu), h_{\alpha}(\mu)\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{j} \in \mathfrak{H} V_{\mu}^{*}, \quad P_{j} \in U\left(\mathfrak{b}_{-}\right) \mathfrak{H}_{-} \quad \text { for } j \geqq 1 \tag{2.7}
\end{equation*}
$$

We shall define the differential operator P_{μ} on G by

$$
\begin{equation*}
\left(P_{\mu} u\right)(g)=\sum_{j}\left\langle v_{\mu} . g v_{j}\right\rangle\left(R\left(P_{j}\right) u\right)(g) . \tag{2.8}
\end{equation*}
$$

Lemma 2.2. For any $y \in \mathfrak{n}$, we have

$$
\left[R(y), P_{\mu}\right] \in \mathscr{D}(G) R(\mathfrak{n}) .
$$

Proof. We have $\left[R(y),\left\langle v_{\mu}, g v_{j}\right\rangle\right]=\left\langle v_{\mu}, g y v_{j}\right\rangle$. Hence we have

$$
\begin{aligned}
\left(\left[R(y), P_{\mu}\right] u\right)(g)= & \sum_{j}\left\langle g^{-1} v_{\mu}, y v_{j}\right\rangle\left(R\left(P_{j}\right) u\right)(g) \\
& +\sum_{j}\left\langle g^{-1} v_{\mu}, v_{j}\right\rangle\left(R\left(\left[y, P_{j}\right]\right) u\right)(g)
\end{aligned}
$$

Since $\sum v_{j} \otimes P_{j} \otimes 1_{c+\mu}$ is \mathfrak{n}-invariant, we have

$$
\sum_{j} y v_{j} \otimes P_{j} \otimes 1_{c+\mu}+\sum_{j} v_{j} \otimes\left[y, P_{j}\right] \otimes 1_{c+\mu}=0
$$

in

$$
V_{\mu}^{*} \otimes U_{R}(\mathfrak{g}) \underset{U_{R}(\mathrm{~b})}{\otimes} R_{c+\mu}=V_{\mu}^{*} \otimes(U(\mathrm{~g}) / U(\mathrm{~g}) \mathfrak{n}) .
$$

Therefore we can write, as the identity in $V_{\mu}^{*} \otimes_{\mathbf{c}} U(\mathfrak{g})$,

$$
\sum_{j} y v_{j} \otimes P_{j}+\sum v_{j} \otimes\left[y, P_{j}\right]=\sum w_{k} \otimes S_{k}
$$

with $w_{k} \in V_{\mu}^{*}$ and $S_{k} \in U(\mathfrak{g}) \mathfrak{n}$. This shows

$$
\left(\left[R(y), P_{\mu}\right] u\right)(g)=\sum_{k}\left\langle g^{-1} v_{\mu}, w_{k}\right\rangle\left(R\left(S_{k}\right) u\right)(g)
$$

Since $R\left(S_{k}\right) \in \mathscr{D}(G) R(\mathfrak{n})$, we have the desired result.
By this lemma, we have for $y \in \mathfrak{H}$

$$
R(y) P_{\mu} f^{\lambda+\mu}=\left[R(y), P_{\mu}\right] f^{\lambda+\mu}+P_{\mu} R(y) f^{\lambda+\mu}=0
$$

because $f^{\lambda+\mu}$ is right invariant by N. Therefore $P_{\mu} f^{\lambda+\mu}$ is also right $N-$ invariant. Since $B_{-} N$ is an open dense subset of G, it is sufficient to show (2.5) on B_{-}. Now for $g \in B_{-}$, we have

$$
\left(P_{\mu} f^{\lambda+\mu}\right)(g)=\sum_{j}\left\langle v_{\mu}, g v_{j}\right\rangle\left(R\left(P_{j}\right) f^{\lambda+\mu}\right)(g)
$$

Note that all P_{j} belongs to $U\left(\mathfrak{b}_{-}\right)$and $P_{j} \in U\left(\mathfrak{b}_{-}\right) \mathfrak{n}_{-}$for $j \neq 0$. Since $f^{\lambda+\mu}\left(n_{-} h\right)=f^{\lambda+\mu}\left(h n_{-}\right)=h^{\lambda+\mu}$ for $h \in T$ and $n_{-} \in N_{-},\left.f^{\lambda+\mu}\right|_{B_{-}}$is right N_{--} invariant. This shows $\left.R\left(P_{j}\right) f^{\lambda+\mu}\right|_{B_{-}}=0$ for $j \neq 0$. It is easy to see for $g \in B_{-}$

$$
\begin{aligned}
R\left(P_{0}\right) f^{\lambda+\mu}(g) & =\prod_{\alpha}\left(h_{\alpha}(\lambda+\mu)+h_{\alpha}(\rho-\mu), h_{\alpha}(\mu)\right) f^{\lambda+\mu} \\
& =b_{\mu}(\lambda) f^{\lambda+\mu}
\end{aligned}
$$

and $\left\langle v_{\mu}, g v_{0}\right\rangle=1 / f^{\mu}$.
This completes the proof of Theorem 2.1.
Remark 2.3. We can show $b_{\mu}(\lambda)$ in Theorem 2.1 is the best possible one. This follows from the similar argument as Proposition 1.8, or we can use the result in [3]. In fact if w_{0} is the longest element of W, then $T_{B-w_{0 B}}^{*} G$ is a good Lagrangian variety in the sense in [3], which is equivalent to saying that \mathfrak{n} is a prehomogeneous vector space over \mathfrak{b}. Hence we can. show the degree of the local b-function is $\sum_{\alpha \in \Delta_{+}} h_{\alpha}(\mu)$.

Bibliography

[1] Bernstein, I. N., Gelfand, I. M. and Gelfand, S. I., Differential operators on the base affine space and a study of g-modules, Proc. of the Summer School on Group Representations, Bolyai János Mathematical Society, Budapest, (1971), 21-64.
[2] Verma, D. N., Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc., 74 (1968), 160-166.
[3] Sato, M., Kashiwara, M., Kimura, T. and Oshima, T., Microlocal analysis. of prehomogeneous vector spaces, Invent. Math., 62 (1980), 117-179.

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606, Japan

