On the Dimension of Spaces of Automorphic Cohomology

Floyd L. Williams

It has recently been shown (in response to a question of Wells and Wolf [16]) that the dimension of the space of $L^{2}-\Gamma$-automorphic cohomology of any flag domain D is finite [18]. Here Γ is a discrete subgroup, with co-finite volume, of a connected semisimple Lie group of automorphisms of D. This work concerns the computation of that dimension, at least in the rank 1 case where an explicit L^{2}-index formula is available [1]. We prove, in particular, the existence of non-zero, square-integrable automorphic cohomology classes. Such existence questions have previously been settled (via the Atiyah-Singer or holomorphic Lefschetz formulas, for example) often, but not exclusively, when D reduces to a bounded Hermitian domain and when Γ is co-compact. The space of automorphic cohomology then reduces to a space of automorphic forms such as that considered, for example, in [6].

§ 1. Introduction

Let $X=G^{\mathrm{c}} / P$ be a complex flag manifold where P is a parabolic subgroup of a complex connected semisimple Lie group $G^{\mathbf{c}}$. Let G be a non-compact connected real form of G^{c} such that $V=G \cap P$ is compact. Then $D=G / V$ is a flag domain [20], i.e. an open real orbit in X with compact isotropy. D therefore carries a G-invariant holomorphic structure induced from X. Also if $E_{\pi} \rightarrow D$ is a homogeneous vector bundle over D induced by an irreducible representation π of V then E_{π} carries a G-invariant holomorphic structure. However, in general, E_{π} may have no global holomorphic sections, so in particular there may be no E_{π}-valued automorphic forms on D corresponding to a given discrete subgroup Γ of G. There is however the more general notion (due to Griffiths [3], [13]) of E_{π}-valued automorphic cohomology on D. Namely, if E_{π} is non-degenerate (in the sense of (3.3) below), if s is the dimension of a maximal compact subvariety of D, and if $H^{*}\left(D, \mathcal{O} E_{\pi}\right)$ is the cohomology of D with coefficients
in the sheaf $\mathcal{O} E_{\pi}$ of germs of local holomorphic sections of E_{π} then, by a result of Schmid [10], [16], $H^{q}\left(D, \mathcal{O} E_{\pi}\right)=0$ for $q \neq s$ and $H^{s}\left(D, \mathcal{O} E_{\pi}\right)$ is an infinite dimensional Fréchet G module. The subspace $H^{s}\left(D, \mathcal{O} E_{\pi}\right)^{\Gamma}$ of Γ invariant cohomology classes is the Γ-automorphic cohomology of D.

In [18] we established finite-dimensionality of the subspace $H_{2}^{s}\left(D, \mathcal{O} E_{\pi}\right)^{T}$ of square-integrable classes in $H^{s}\left(D, \mathcal{O} E_{\pi}\right)^{T}$ (cf. (3.7), (3.8) below). It is yet an open problem, raised in [16], to prove whether or not the full space $H^{s}\left(D, \mathcal{O} E_{\pi}\right)^{\Gamma}$ is finite-dimensional. In the present paper we compute the dimension of $H_{2}^{s}\left(D, \mathcal{O} E_{\pi}\right)^{r}$ in the case when the real rank of G is 1 ; this covers the important example of $D=$ the period matrix domain $\mathrm{SO}_{e}(2 n, 1) / \mathrm{U}(n)$. Apart from the Hermitian case our dimension formula is rather quite simple; i.e. it involves no Γ-cuspidal terms. The main results presented here are Theorems 3.9, 4.7, and 4.12. These depend, firstly, on a vanishing theorem which we develop for the L^{2}-cohomologies of Hotta's elliptic complex [5], though they could be obtained via a shorter route. Since the vanishing theorem, Theorem 2.16 below, is of independent interest (it is the best possible) we have therefore so written Section 2 as to make it completely independent of the rest of the paper.

We take this opportunity to express our heart-felt thanks to the mathematics faculty of Sophia University for their many kindnesses and for providing us the pleasant and stimulating environment, and resources, to conduct this research.

§ 2. The Hotta complex

In this section we recall the elliptic complex (a generalization of the Dolbeault complex) constructed by Hotta [5] whose "bootstrap" is the Dirac operator. We prove a sharp vanishing theorem for the L^{2}-cohomologies of this complex. Applications to automorphic cohomology are given in Sections 3, 4.

Let K be a maximal compact subgroup of G which contains a Cartan subgroup H of G. We denote by g, k, h the complexifications of the Lie algebras g_{0}, k_{0}, h_{0} of G, K, H respectively. Let (,) denote the Killing form of g, let $g_{0}=k_{0}+p_{0}$ be a Cartan decomposition of g_{0} where p_{0} is the orthocomplement of k_{0} in g_{0} with respect to (,), and let p denote the complexification of p_{0}. We shall write Δ for the set of non-zero roots of (g, h), and for $Q \subset \Delta$ we shall write $\langle Q\rangle$ for the sum $\sum_{\alpha \in Q} \alpha$. Let Δ_{k}, Δ_{n} denote the set of compact, non-compact roots, respectively. Thus if g_{β} is the root space of $\beta \in \Delta, \beta \in \Delta_{k} \Longleftrightarrow g_{\beta} \subset k ; \Delta_{n}=\Delta-\Delta_{k}$. We assume that $G^{\text {c }}$ is simply connected. The character group of H is then identified with the lattice

$$
\begin{equation*}
\mathscr{L}=\left\{\lambda \in \operatorname{Hom}_{\mathbf{R}}\left(\sqrt{-1} h_{0}, \mathbf{R}\right) \mid \lambda \text { is integral }\right\} . \tag{2.1}
\end{equation*}
$$

Here of course \mathbf{R} is the field of real numbers and integrality means that $2(\lambda, \alpha) /(\alpha, \alpha) \in \mathbb{Z}$, the ring of integers, for each α in Δ. If $\Sigma^{+} \subset \Delta$ is a system of positive roots let $\Sigma_{k}^{+}, \Sigma_{n}^{+}=\Sigma^{+} \cap \Delta_{k}, \Sigma^{+} \cap \Delta_{n}$, respectively, and let

$$
\begin{equation*}
\mathscr{L}\left(\sum_{k}^{+}\right)=\left\{\lambda \in \mathscr{L} \mid(\lambda, \alpha) \geq 0 \quad \text { for } \alpha \in \Sigma_{k}^{+}\right\} . \tag{2.2}
\end{equation*}
$$

For $\lambda \in \mathscr{L}\left(\Sigma_{k}^{+}\right)$let V_{λ} be the irreducible K module with Σ_{k}^{+}-highest weight入. Let

$$
\begin{equation*}
\mathscr{L}_{0}\left(\Sigma_{k}^{+}\right)=\left\{\lambda \in \operatorname{Hom}_{\mathbf{R}}\left(\sqrt{-1} h_{0}, \mathbf{R}\right) \left\lvert\, \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \in \mathbf{Z}^{+} \quad\right. \text { for } \alpha \in \Sigma_{k}^{+}\right\} \tag{2.3}
\end{equation*}
$$

where \mathbf{Z}^{+}is the set of non-negative integers, and let V_{λ} be the irreducible k module with Σ_{k}^{+}-highest weight λ for $\lambda \in \mathscr{L}_{0}\left(\Sigma_{k}^{+}\right)$. The $1 / 2$-spin modules for k will be denoted by $S^{ \pm}$, with the convention that $\left\{\delta_{n}\left(\Sigma^{+}\right)-\langle Q\rangle \mid Q \subset\right.$ $\left.\Sigma_{n}^{+},(-1)^{|Q|}= \pm 1\right\}$ is the set of weights of $S^{ \pm}$, where $2 \delta_{n}\left(\Sigma^{+}\right)=\left\langle\Sigma_{n}^{+}\right\rangle$, and where $|Q|$ is the cardinality of a set Q. For $\lambda \in \mathscr{L}$ such that $\lambda+\delta_{n}\left(\Sigma^{+}\right) \in$ $\mathscr{L}_{0}\left(\Sigma_{k}^{+}\right)$the k-representations $S^{ \pm} \otimes V_{\lambda+\delta_{n}(\Sigma)}$ integrate to representations of K. Thus we can form the induced homogeneous C^{∞} vector bundles $E_{\lambda}^{ \pm}, E_{\lambda} \rightarrow G / K$ with fibers $S^{ \pm} \otimes V_{\lambda+\dot{o}_{n}(\Sigma+)}, S \otimes V_{\lambda+\delta_{n}(\Sigma+)}$, where $S=S^{+} \oplus S^{-}$ and assuming, whenever necessary (without loss of generality), that G / K is a spin manifold we can consider the twisted Dirac operators $D_{2}^{ \pm}, D_{\lambda}$ on $G / K: D_{\lambda}: \Gamma^{\infty} E_{\lambda} \rightarrow \Gamma^{\infty} E_{\lambda}, D_{\lambda}^{ \pm}=\left.D_{\lambda}\right|_{\infty_{\infty} E_{\lambda}^{ \pm}}: \Gamma^{\infty} E_{\lambda}^{ \pm} \rightarrow \Gamma^{\infty} E_{\lambda}^{\mp},[9]$, where Γ^{∞} denotes the space of C^{∞} sections. Let $m=\frac{1}{2} \operatorname{dim} G / K, 2 \delta\left(\Sigma^{+}\right)=\left\langle\Sigma^{+}\right\rangle$, and let Ω be the Casimir operator of g.

Theorem 2.4 (Lemma 3.3 of [5]). Let $\lambda \in \mathscr{L}$ such that $\lambda+\delta_{n}\left(\Sigma^{+}\right) \in$ $\mathscr{L}_{0}\left(\Sigma_{k}^{+}\right)$as above. Then there is a direct sum K module decomposition

$$
\begin{equation*}
S^{ \pm} \otimes V_{\lambda+\delta_{n}(\Sigma+)}=\sum_{(-1), q= \pm 1} V_{\lambda+2 \delta_{n}(\Sigma+)}^{q} \tag{2.5}
\end{equation*}
$$

and a sequence of first order G-invariant differential operators $D^{q}: \Gamma^{\infty} E_{\lambda_{1, q}}$ $\rightarrow \Gamma^{\infty} E_{2, q+1}$, where $E_{2, q} \rightarrow G / K$ is the homogeneous vector bundle induced by $V_{\lambda+2 \delta_{n}(\Sigma+)}^{q}, 0 \leq q \leq m-1, V_{\lambda+2 \delta_{n}(\Sigma+)}^{0}=V_{\lambda+2 \delta_{n}(\Sigma+)}$, such that

$$
0 \rightarrow \Gamma^{\infty} E_{\lambda, 0} \xrightarrow{D^{0}} \Gamma^{\infty} E_{\lambda, 1} \xrightarrow{D^{1}} \cdots \xrightarrow{D^{m-1}} \Gamma^{\infty} E_{\lambda, m} \rightarrow 0
$$

is an elliptic complex. If $\left(D^{q}\right)^{*}: \Gamma^{\infty} E_{\lambda, q+1} \rightarrow \Gamma^{\infty} E_{\lambda, q}$ is the formal adjoint of D^{q} (for suitable metrics on the $E_{\lambda, q}$ induced by K-invariant inner products on the $\left.V_{\lambda+2 \delta_{n}(\Sigma+)}^{q}\right)$ and $\square^{q}=\left(D^{q}\right)^{*} D^{q}+D^{q-1}\left(D^{q-1}\right)^{*}: \Gamma^{\infty} E_{2, q} \rightarrow \Gamma^{\infty} E_{\lambda, q}$ is the corresponding Laplacian then $D+D^{*}: \Gamma^{\infty} \sum_{(-1) q=1} E_{\lambda, q} \rightarrow \Gamma^{\infty} \sum_{(-1) q=-1} E_{\lambda, q}$ is the Dirac operator $D_{\lambda}^{+}: \Gamma^{\infty} E_{\lambda}^{+} \rightarrow \Gamma^{\infty} E_{\lambda}^{-}$(under the identification (2.5)) and

$$
\begin{equation*}
\square^{q}=-\Omega+\left(\lambda, \lambda+2 \delta\left(\Sigma^{+}\right)\right) 1 \tag{2.6}
\end{equation*}
$$

on $\Gamma^{\infty} E_{\lambda, q}$.
Now let $\Gamma \subset G$ be a finitely generated discrete torsion-free subgroup. Choosing an invariant measure $d x$ on $\Gamma \backslash G$ induced by Haar measure on G, and letting $\left(\Gamma^{\infty} E_{\lambda, q}\right)^{r}$ denote the space of Γ-invariant sections in $\Gamma^{\infty} E_{\lambda, q}$ we have the usual inner product

$$
\begin{equation*}
\left\langle s_{1}, s_{2}\right\rangle_{\Gamma}=\int_{\Gamma \backslash G}\left\langle s_{1}, s_{2}\right\rangle d x \tag{2.7}
\end{equation*}
$$

on the subspace of compactly supported Γ-invariant sections s_{1}, s_{2} where \langle,$\rangle is a K$-invariant inner product on $V_{\lambda+2 \delta_{n}(\Sigma+)}^{q}$. Let $L^{2}\left(E_{\lambda, q}\right)^{r}$ be the Hilbert space completion of the latter subspace; i.e. $L^{2}\left(E_{\lambda, q}\right)^{r}$ is the space of L^{2}-sections of $\Gamma \backslash E_{\lambda, q}$. The G-invariant operator \square^{q} (which is Γ-invariant in particular) descends to a differential operator \square_{T}^{q} on $\Gamma \backslash E_{2, q}$. The $q^{\text {th }}-L^{2}$-cohomology of the complex $\left\{E_{\lambda, q}, D^{q}\right\}$ with respect to Γ is defined by

$$
\begin{equation*}
H_{2}^{q}\left(\Gamma \backslash E_{\mathrm{\lambda}}\right)=\left\{s \in L^{2}\left(E_{\lambda, q}\right)^{T} \mid \square_{T}^{q} s=0 \text { in the sense of distributions }\right\} . \tag{2.8}
\end{equation*}
$$

Thus $H_{2}^{q}\left(T \backslash E_{2}\right)$ is the L^{2}-kernel of \square_{Γ}^{q}. By our assumptions on Γ the Riemannian metric on $\Gamma \backslash G / K$ is complete and thus, as pointed out in [5], one has

Theorem 2.9. The $q^{\text {th }}$ - L^{2}-cohomology space $H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right)$ coincides with the space

$$
\begin{equation*}
H_{2}^{q}\left(E_{2}\right)^{r} \stackrel{\text { def. }}{=}\left\{s \in\left(\Gamma^{\infty} E_{2, q}\right)^{r} \mid D^{q} S=\left(D^{q-1}\right)^{*} s=0, \quad\|S\|_{r}^{2}<\infty\right\} . \tag{2.10}
\end{equation*}
$$

The elliptic operators \square_{T}^{q} are locally invariant; i.e. they admit a G invariant lift to $E_{2, q}-$ via \square^{q}. Hence if Γ is a lattice in G, i.e. $\Gamma \backslash G$ has a finite G-invariant volume (in particular Γ is then finitely generated so that Theorem 2.9 applies), we can apply a recent theorem of Moscovici(Theorem 2.1 of [8]) to conclude that $\square_{T}^{\frac{q}{T}}$ has a finite dimensional L^{2}-kernel. More precisely we have the following

Theorem 2.11. Let $\Gamma \subset G$ be a torsion-free lattice. Assume in addition that Γ is subject to the mild technical condition ${ }^{1)}$ of Langlands' $[7]$ (also cf. (2.21) of [18]) so that under the right regular representation of $G, L^{2}(\Gamma \backslash G)$

[^0](and accordingly $L^{2}\left(E_{\lambda, q}\right)^{T}$) decomposes into a discrete and continuous spectrum:
\[

$$
\begin{align*}
& L^{2}(\Gamma \backslash G)=L_{d}^{2}(\Gamma \backslash G) \oplus L_{c}^{2}(\Gamma \backslash G) \\
& L^{2}\left(E_{\lambda, q}\right)^{r}=L_{d}^{2}\left(E_{\lambda, q}\right)^{\Gamma} \oplus L_{c}^{2}\left(E_{\lambda, q}\right)^{\Gamma} . \tag{2.12}
\end{align*}
$$
\]

Then the $q^{\text {th }}$ - L^{2}-cohomology space $H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right)$ in (2.8) (which coincides with $H_{2}{ }^{q}\left(E_{2}\right)^{\Gamma}$ in (2.10) by Theorem 2.9) is finite-dimensional and also

$$
\begin{equation*}
H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right)=\text { the } L^{2} \text {-kernel of } \square_{\Gamma}^{q} \text { on } L_{d}^{2}\left(E_{\lambda, q}\right)^{\Gamma} . \tag{2.13}
\end{equation*}
$$

Write \hat{G} for the set of equivalence classes of irreducible unitary representations of G and write \hat{G}_{d} for the subset of elements of \hat{G} occurring in the discrete spectrum of $L^{2}(\Gamma \backslash G)$:

$$
\begin{equation*}
L_{d}^{2}(\Gamma \backslash G)=\sum_{\pi \in \dot{\hat{G}} a} m_{\pi}(\Gamma) \pi \quad \text { (direct sum) } \tag{2.14}
\end{equation*}
$$

where $m_{\pi}(\Gamma)$ is the (finite) multiplicity of π. Let H_{π} be the Hilbert space of $\pi \in \hat{G}$.

Corollary 2.15. For Γ as in the statement of Theorem $2.11, q \geq 0$, and λ as in Theorem 2.4

$$
\begin{aligned}
\operatorname{dim} H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right) & =\sum_{\pi \in \hat{\hat{G}} a} m_{\pi}(\Gamma) \operatorname{dim} \operatorname{Hom}_{K}\left(H_{\pi}, V_{\lambda+2 \delta_{n}(\Sigma+)}^{q}\right) \\
\pi(\Omega) & =\left(\lambda, \lambda+2 \delta\left(\Sigma^{+}\right)\right) 1 .
\end{aligned}
$$

Proof. Using (2.13) and (2.14), $H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right)=\sum_{\pi \in \hat{G}_{d}} m_{\pi}(\Gamma)$ ker $\pi\left(\square_{\Gamma}^{q}\right)$, where $\pi\left(\square \square_{\Gamma}^{q}\right):\left(H_{\pi} \otimes V_{\lambda+2 \delta(\Sigma+)}^{q}\right)^{K} \rightarrow\left(H_{\pi} \otimes V_{\lambda+2 \delta(\Sigma+)}^{q}\right)^{K}$ is given by $\pi\left(\square_{\Gamma}^{q}\right)=$ $-\pi(\Omega)+\left(\lambda, \lambda+2 \delta\left(\Sigma^{+}\right)\right) 1$; see (2.6). Of course $\pi(\Omega)$ is a scalar multiple of 1 , say $\pi(\Omega)=c_{\pi} 1$. Hence $\operatorname{Ker} \pi\left(\square_{T}^{q}\right)$ is zero unless $c_{\pi}=\left(\lambda, \lambda+2 \delta\left(\Sigma^{+}\right)\right) 1$, in which case it is the full space. That is $H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right)=\sum_{\pi \in \hat{\epsilon}_{d}} m_{\pi}(\Gamma)\left(H_{\pi} \otimes\right.$ $\left.V_{\lambda+2 \delta(\Sigma+)}^{q}\right)^{K}, \pi(\Omega)=\left(\lambda, \lambda+2 \delta\left(\Sigma^{+}\right)\right) 1$. If π^{*} is the contragradient of π, then $m_{\pi}(\Gamma)=m_{\pi^{*}}(\Gamma)$ and $\operatorname{dim}\left(H_{\pi} \otimes V_{\lambda+2 \delta(\Sigma+)}^{q}\right)^{K}=\operatorname{dim} \operatorname{Hom}_{K}\left(H_{\pi^{*}}, V_{\lambda+2 \delta(\Sigma+)}^{q}\right)$ so that Corollary 2.15 follows.

The following vanishing theorem improves the vanishing theorem obtained in Section 6 of [5].

Theorem 2.16. Let $\lambda \in \mathscr{L}$ such that $\lambda+\delta_{n}\left(\Sigma^{+}\right) \in \mathscr{L}_{0}\left(\Sigma_{k}^{+}\right)$. Suppose $(\lambda, \alpha)>0$ for every α in Σ_{n}^{+}. Then $H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right)=0$ for $q>0$ (again for Γ satisfying the conditions of Theorem 2.11). Moreover $\operatorname{dim} H_{2}^{0}\left(\Gamma \backslash E_{\lambda}\right)$ equals the multiplicity $m_{\pi_{\lambda+\delta\left(\Sigma^{+}\right)}}(\Gamma)$ (in the discrete spectrum of $L^{2}(\Gamma \backslash G)$) of HarishChandra's discrete series representation $\pi_{\lambda+\delta(\Sigma+)}$ [2] corresponding to the
regular element $\lambda+\delta\left(\Sigma^{+}\right)$; cf. remarks preceding (2.18) below.
We base the proof of Theorem 2.16 on Corollary 2.15 and on the following result, which is a special case of a more general result proved in [17]. See Corollary 2.9 and Theorem 2.13 there.

Theorem 2.17. Let $\lambda \in \mathscr{L}$ such that $\left(\lambda+\delta\left(\Sigma^{+}\right), \alpha\right)>0$ for every α in Σ_{k}^{+} and $(\lambda, \beta)>0$ for every β in Σ_{n}^{+}. Let $\pi \in \hat{G}$ such that $\pi(\Omega)=\left(\lambda, \lambda+2 \delta\left(\Sigma^{+}\right)\right) 1$. Then $\operatorname{Hom}_{K}\left(H_{\pi}, S^{-} \otimes V_{\lambda+\delta_{n}(\Sigma+)}\right)=0$. If $\operatorname{Hom}_{K}\left(H_{\pi}, S^{+} \otimes V_{\lambda+\delta_{n}(\Sigma+)}\right) \neq 0$, π is unitarily equivalent to $\pi_{\lambda+\delta(\Sigma+)}$ (in which case $\operatorname{dim} \operatorname{Hom}_{K}\left(H_{\pi}, S^{+} \otimes V_{\lambda+\delta_{n}(\Sigma+)}\right)$ $=1$). In particular (by Schmid's lowest K-type theorem) $\left.\pi\right|_{K}$ contains no K-type of the form $V_{\lambda+2 \delta_{n}(\Sigma+)-\langle Q\rangle}$, where $Q \subset \Sigma_{n}^{+}$is non-empty, and $\left.\pi\right|_{K}$ contains $V_{\lambda+2 \delta_{n}(\Sigma+)}$ exactly once.

Proof of Theorem 2.16. Suppose $H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right) \neq 0$. Then by Corollary $2.15 \operatorname{Hom}_{K}\left(H_{\pi}, V_{\lambda+2 \delta_{n}(\Sigma+)}^{q}\right) \neq 0$ for some $\pi \in \hat{G}_{d}$ satisfying $\pi(\Omega)=(\lambda, \lambda+$ $\left.2 \delta\left(\Sigma^{+}\right)\right) 1$. Thus there is a K-type V_{μ} contained in $\left.\pi\right|_{K}$ and in $V_{\lambda^{+}+2 \delta_{n}(\Sigma+)}^{q}$. By (2.5) $V_{\mu} \subset S^{ \pm} \otimes V_{\lambda+\delta_{n}(\Sigma+)}$. Since $\operatorname{Hom}_{K}\left(H_{\pi}, S^{-} \otimes V_{\lambda+\delta_{n}(\Sigma+)}\right)=0$ by Theorem 2.17 we actually have $V_{\mu}{ }^{(\mathrm{i})} \subset S^{+} \otimes V_{\lambda+\delta_{n}(\Sigma+)}$; i.e. $\operatorname{Hom}_{K}\left(H_{\pi}, S^{+} \otimes V_{\lambda+\delta_{n}(\Sigma+)}\right)$ $\neq 0$. By Theorem 2.17, again, $\pi=\pi_{\lambda+\delta(\Sigma+)}$ and μ cannot have the form $\mu=\lambda+2 \delta_{n}\left(\Sigma^{+}\right)-\langle Q\rangle$ for $Q \subset \Sigma_{n}^{+}, Q \neq \phi . \quad$ But by (i), $\mu=a$ weight of S^{+} $+\lambda+\delta_{n}\left(\Sigma^{+}\right)=\delta_{n}\left(\Sigma^{+}\right)-\langle Q\rangle+\lambda+\delta_{n}\left(\Sigma^{+}\right)=\lambda+2 \delta_{n}\left(\Sigma^{+}\right)-\langle Q\rangle$, where $Q \subset$ $\Sigma_{n}^{+},(-1)^{|Q|}=1$. Moreover $Q \neq \phi$ for $q>0$ since then $\mu \neq \lambda+2 \delta_{n}\left(\Sigma^{+}\right)$. This forces $H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right)=0$ for $q>0$. Our argument, in conjunction with Corollary 2.15, shows that

$$
\begin{aligned}
\operatorname{dim} H_{2}^{0}\left(\Gamma \backslash E_{\lambda}\right) & =m_{\pi_{\lambda+\delta\left(\Sigma^{+}\right)}}(\Gamma) \operatorname{dim} \operatorname{Hom}_{K}\left(H_{\pi_{\lambda+\dot{\partial}\left(\Sigma^{+}\right)}},\right. \\
\left.V_{\lambda+2 \delta_{n}(\Sigma+)}^{0}\right) & =m_{\pi_{\lambda+\delta\left(\Sigma^{+}\right)}}(\Gamma)
\end{aligned}
$$

since $V_{\lambda+2 \delta_{n}(\Sigma+)}^{0}=V_{\lambda+2 \delta_{n}(\Sigma+)}$ is contained in $\left.\pi_{\lambda+\delta(\Sigma+)}\right|_{K}$ exactly once. This proves Theorem 2.16.

Remarks. The discrete series representation $\pi_{\lambda+\delta(\Sigma+)}$ corresponds to the character θ_{2} given on the compact Cartan subgroup H by the formula

$$
\begin{equation*}
\theta_{\lambda}(\exp x)=\frac{(-1)^{m} \operatorname{sgn} \prod_{\alpha \in \Sigma^{+}}\left(\lambda+\delta\left(\Sigma^{+}\right), \alpha\right) \sum_{\sigma \in W(K, H)} \operatorname{det} \sigma e^{\sigma(\lambda+\delta(\Sigma+))(x)}}{\prod_{\alpha \in \Sigma^{+}}\left(e^{\alpha(x) / 2}-e^{-\alpha(x) / 2}\right)} \tag{2.18}
\end{equation*}
$$

for $x \in h_{0}$, where $W(K, H)$ is the Weyl group of $(K, H)[2] . \quad \pi_{\lambda+\delta(\Sigma+)}$ satisfies $\pi_{\lambda+\delta(\Sigma+)}(\Omega)=\left(\lambda, \lambda+2 \delta\left(\Sigma^{+}\right)\right) 1$.

The Dirac operators $D_{\lambda}^{ \pm}$which we considered earlier also descend to locally invariant elliptic differential operators ${ }_{r} D_{\lambda}^{ \pm}$on $\Gamma \backslash G / K$ which have
finite L^{2}-kernels, again by Moscovici's theorem [8]. The L^{2}-index of ${ }_{\Gamma} D_{2}^{+}$ is defined by

$$
\begin{equation*}
\operatorname{ind}\left({ }_{\Gamma} D_{\lambda}^{+}\right)=\operatorname{dim} L^{2}-\operatorname{Ker}_{\Gamma} D_{\lambda}^{+}-\operatorname{dim} L^{2}-\operatorname{Ker}_{\Gamma} D_{\lambda}^{-} \tag{2.19}
\end{equation*}
$$

A consequence of Theorem 2.4 is

$$
\begin{equation*}
\sum_{q=0}^{m}(-1)^{q} \operatorname{dim} H_{2}^{q}\left(\Gamma \backslash E_{\lambda}\right)=\operatorname{ind}\left({ }_{\Gamma} D_{\lambda}^{+}\right) \tag{2.20}
\end{equation*}
$$

since \square^{q} and $D^{q}+\left(D^{q-1}\right)^{*}$ have the same L^{2}-kernel. The vanishing Theorem 2.16, therefore gives

Corollary 2.21. In Theorem 2.16 we also have $\operatorname{dim} H_{2}^{0}\left(\Gamma \backslash E_{\lambda}\right)=$ $\operatorname{ind}\left({ }_{r} D_{\lambda}^{+}\right)$.

Remark. In Theorem 2.7 of [19] we have proved that, in particular, for λ satisfying Theorem 2.16

$$
\begin{equation*}
m_{\pi_{\lambda+\delta(\Sigma}+,}(\Gamma) \equiv \operatorname{ind}\left({ }_{\Gamma} D_{\lambda}^{+}\right) \tag{2.22}
\end{equation*}
$$

Thus Corollary 2.21 also follows by (2.22).
The λ 's which we shall consider in later applications will satisfy, in addition, the so-called $\#$ condition:

$$
\begin{align*}
& \left(\lambda+\delta_{n}\left(\Sigma^{+}\right)+\delta\left(\Sigma^{+}\right)-\langle Q\rangle, \alpha\right) \geq 0 \\
& \text { for every } \alpha \text { in } \Sigma_{k}^{+} \text {and } Q \subset \Sigma_{n}^{+} . \tag{2.23}
\end{align*}
$$

Under the $\#$ condition the first differential operator $D^{0}: \Gamma^{\infty} E_{\lambda, 0} \rightarrow \Gamma^{\infty} E_{\lambda, 1}$ in Theorem 2.4 coincides with Schmid's differential operator $\mathscr{D}=\mathscr{D}\left(\Sigma^{+}\right)$, constructed using the positive system Σ^{+}; see [11]; also cf. Section 2 of [18]. If, moreover, Σ^{+}satisfies an "admissibility" condition the above elliptic complex coincides with the (cohomologically constructed) complex of [4]. In summary, (with some slight changes in notation), Theorems 2.9, 2.16 and Corollary 2.21 yield the following

Theorem 2.24. Let $\Gamma \subset G$ be a torsion-free lattice as in Theorem 2.11. Let $\lambda \in \mathscr{L}$ such that $\lambda+\delta_{n}\left(\Sigma^{+}\right) \in \mathscr{L}_{0}\left(\Sigma_{k}^{+}\right)$(see (2.3), and such that λ satisfies the \# condition (2.23). Let $E_{\lambda} \rightarrow G / K$ be the homogeneous vector bundle over G / K induced by the irreducible K module $V_{\lambda+2 \delta_{n}(\Sigma+)}$ with Σ_{k}^{+}-highest weight $\lambda+2 \delta_{n}\left(\Sigma^{+}\right)$. Let $H_{2}^{0}\left(E_{\lambda}\right)^{r}=\left\{s \in \Gamma^{\infty} E_{\lambda} \mid s\right.$ is Γ-invariant, $\mathscr{D}\left(\Sigma^{+}\right) s=0$, and $\left.\|s\|^{2}<\infty\right\}$; cf. (2.7). Then $H_{2}^{0}\left(E_{\lambda}\right)^{r}$ coincides with the (finite-dimensional) L^{2}-kernel of \square_{r} on the L^{2}-sections of $\Gamma \backslash E_{\lambda}$, where \square_{r} is the descent of $\square=\mathscr{D}\left(\Sigma^{+}\right)^{*} \mathscr{D}\left(\Sigma^{+}\right)$to $\Gamma \backslash E_{\lambda}$. Suppose moreover that $(\lambda, \alpha)>0$ for every
α in $\Sigma_{n}^{+} . \quad$ Then $\operatorname{dim} H_{2}^{0}\left(E_{\lambda}\right)^{T}=m_{\pi_{\lambda+\delta\left(\Sigma^{+}\right.}}(\Gamma)(c f .(2.18))=$ the L^{2}-index of the Dirac operator ${ }_{\Gamma} D_{\lambda}^{+}: \Gamma^{\infty}\left(\Gamma \backslash E_{\lambda}^{+}\right) \rightarrow \Gamma^{\infty}\left(\Gamma \backslash E_{\lambda}^{-}\right)$, where the bundles $E_{\lambda}^{ \pm} \rightarrow G / K$ are induced by the K modules $S^{ \pm} \otimes V_{\lambda+\delta_{n}(\Sigma+)}$.

§ 3. A general dimension formula

Before restricting attention to the rank 1 case altogether we express the dimension of automorphic cohomology, more generally, as a discrete series multiplicity in the discrete spectrum of $L^{2}(\Gamma \backslash G)$ or, equivalently, as the L^{2}-index of a twisted Dirac operator.

We retain the notation of Sections 1,2 and denote by $\underset{\sim}{p}, v_{0}$ the Lie algebras of P, V. Choose a system of positive roots $\Delta^{+} \subset \Delta$ such that

$$
\begin{equation*}
\underset{\sim}{p} \supset \quad \text { the Borel subalgebra } \underset{\sim}{b}=h+\sum_{\alpha \in \Delta} g_{-\alpha} . \tag{3.1}
\end{equation*}
$$

We can arrange the inclusions $H \subset V \subset K$ and write
(3.2) $\quad \underset{\sim}{p}=v \oplus \underset{\sim}{n}$ where v (the reductive part of $\underset{\sim}{p}$) is the complexification of $v_{0}, v=h+\sum_{\alpha \in \Lambda_{v}} g_{\alpha}, \underset{\sim}{n}=\sum_{\alpha \in \Delta^{++}-A_{v}} g_{-\alpha}=$ the unipotent radical of $\underset{\sim}{p}$,
and Δ_{v} is the set of roots of $(v, h) ; \Delta_{v} \subset \Delta_{k}$. With Δ^{+}fixed we shall always write $2 \delta=\left\langle\Delta^{+}\right\rangle, 2 \delta_{k}=\left\langle\Delta_{k}^{+}\right\rangle, 2 \delta_{n}=\left\langle\Delta_{n}^{+}\right\rangle, \Delta_{v}^{+}=\Delta^{+} \cap \Delta_{v}$. Next let $E_{\pi \lambda} \rightarrow D$ be a homogeneous (necessarily holomorphic) vector bundle over D induced by an irreducible representation π_{λ} of V with Δ_{v}^{+}-highest weight λ. We always assume that $E_{\pi_{\lambda}}$ is non-degenerate; i.e. λ satisfies

$$
\begin{align*}
& \left(\lambda+\delta_{k}+\langle Q\rangle, \alpha\right)>0 \quad \text { for all } \alpha \in \Delta_{v}^{+} \tag{3.3}\\
& \text {and } \\
& \left(\lambda+\delta_{k}+\langle Q\rangle, \alpha\right)<0 \quad \text { for all } \alpha \in \Delta_{k}^{+}-\Delta_{v}^{+} \\
& \text {for arbitrary } Q \subset \Delta_{n}^{+} .
\end{align*}
$$

Let W_{k}, W_{v} be the Weyl groups of $(k, h),(v, h)$ respectively; W_{k} coincides with $W(K, H)$ in the notation of (2.18). Let $w \subset W_{k}$ be the unique element such that

$$
\begin{equation*}
\left(w\left(\lambda+\delta_{k}\right), \alpha\right)<0 \quad \text { for every } \alpha \in \Delta_{k}^{+} \tag{3.4}
\end{equation*}
$$

and define $\kappa \in W_{k}, \nu \in h^{*}$ (the dual space) by

$$
\begin{equation*}
\kappa \Delta_{k}^{+}=-\Delta_{k}^{+}, \quad \nu=w\left(\lambda+\delta_{k}\right)+\delta_{k} . \tag{3.5}
\end{equation*}
$$

Then by Corollary 2.14 of [18] one has (3.6) and (3.7) below:

$$
\begin{equation*}
w \in W_{v}, w \Delta_{v}^{+}=-\Delta_{v}^{+}, \quad w \Delta_{n}^{+}=\Delta_{n}^{+}, \quad w\left(\Delta_{k}^{+}-\Delta_{v}^{+}\right)=\Delta_{k}^{+}-\Delta_{v}^{+}, \tag{3.6}
\end{equation*}
$$

$$
\text { and }(\nu+\langle Q\rangle, \alpha) \leq 0 \quad \text { for } \alpha \in \Delta_{k}^{+}, \quad Q \subset \Delta_{n}^{+}
$$

Moreover if s is the dimension of the maximal compact complex subvariety $Y=K / V$ of D, and $E_{\nu} \rightarrow G / K$ is the homogeneous vector bundle over G / K induced by the irreducible K module with Δ_{k}^{+}-lowest weight ν (by the BorelWeil theorem the latter module can be taken to be $\left.H^{S}\left(Y, \mathcal{O} E_{\pi_{i}}\right)\right)$, then the Γ-automorphic cohomology $H^{S}\left(D, \mathcal{O} E_{\pi_{2}}\right)^{\Gamma}$ of D is given, up to isomorphism [15], by
(3.7) $\quad H^{S}\left(D, \mathcal{O} E_{\pi_{\lambda}}\right)^{T}=$ the Γ-invariant C^{∞} sections s of E_{ν} such that $\mathscr{D} s=0$
where \mathscr{D} is Schmid's differential operator constructed relative to the choice of positive system $\Sigma^{+} \stackrel{(\text { (ii) }}{=}-\kappa \Delta^{+}$, and $\Gamma \subset G$ is a torsion-free discrete subgroup. Again if we choose an invariant measure on $\Gamma \backslash G$ induced by Haar measure on G and Hermitian metrics along the fibers of E_{ν} induced by a K-invariant unitary structure on the inducing module $H^{S}\left(Y, \mathcal{O} E_{\pi_{\lambda}}\right)$ then we have an inner product \langle,\rangle_{Γ}, given as in (2.7), on the compactly supported Γ-invariant C^{∞} sections of E_{ν}. We define the $L^{2}-\Gamma$-automorphic cohomology $H_{2}^{s}\left(D, \mathcal{O} E_{\pi_{2}}\right)^{\Gamma}$ by

$$
\begin{equation*}
H_{2}^{s}\left(D, \mathcal{O} E_{\pi_{2}}\right)^{T}=\left\{s \in H^{s}\left(D, \mathcal{O} E_{\pi_{2}}\right)^{T} \mid\|s\|^{2}<\infty\right\} ; \text { see (3.7). } \tag{3.8}
\end{equation*}
$$

Define $\lambda_{1}=\kappa \nu-2 \delta_{n}\left(\Sigma^{+}\right)=\kappa \nu+\kappa 2 \delta_{n}$ (by (ii)) $\in \mathscr{L}$. Then $\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right)=$ $\kappa\left(\nu+\delta_{n}\right) \stackrel{(\text { iii) }}{=} \kappa\left(\nu+2 \delta_{n}\right)-\kappa \delta_{n} \Rightarrow\left(\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right), \alpha\right) \geq 0$ for $\alpha \in \Delta_{k}^{+}$by (3.6) (where we take $Q=\Delta_{n}^{+}$). That is, noting that $\Sigma_{k}^{+}=\Delta_{k}^{+}$of course, we can write the Δ_{k}^{+}-highest weight $\kappa \nu$ (cf. (3.5)) as $\kappa \nu=\lambda_{1}+2 \delta_{n}\left(\Sigma^{+}\right)$, where $\lambda_{1} \in \mathscr{L}$ such that $\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right) \in \mathscr{L}_{0}\left(\Sigma_{k}^{+}\right)$. Moreover for $\alpha \in \Delta_{k}^{+}$and $Q_{1} \subset \Sigma_{n}^{+}=-\kappa \Delta_{n}^{+}$ (again by (ii)), using $\kappa \delta_{k}=-\delta_{k}$ and $Q_{1}=-\kappa Q, Q \subset \Delta_{n}^{+}$, we see that $\left(\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right)+\delta\left(\Sigma^{+}\right)-\left\langle Q_{1}\right\rangle, \alpha\right)=\left(\kappa \nu+\delta_{k}+\kappa\langle Q\rangle, \alpha\right)=\left(\nu+\langle Q\rangle-\delta_{k}, \kappa \alpha\right)>0$ by (3.6). In other words λ_{1} also satisfies the \# condition (2.23) and hence Theorem 2.24 is applicable. By (3.8) $H_{2}^{s}\left(D, \mathcal{O} E_{\pi_{2}}\right) \equiv H_{2}^{0}\left(E_{\lambda_{1}}\right)^{T}$, in the notation of Theorem 2.24. The condition $\left(\lambda_{1}, \alpha\right) \stackrel{(\mathrm{iv})}{>} 0$ for α in Σ_{n}^{+}translates to the condition $\left(\kappa \nu+\kappa 2 \delta_{n},-\kappa \alpha\right)>0$ for α in Δ_{n}^{+}; i.e. $\left(\nu+2 \delta_{n}, \Delta_{n}^{+}\right)<0$; i.e. (by (3.5)) $\left(w\left(\lambda+\delta_{k}\right)+\delta_{k}+2 \delta_{n}, \Delta_{n}^{+}\right)<0$. Also $\lambda_{1}+\delta\left(\Sigma^{+}\right)=\kappa\left(\nu+\delta_{n}\right)+\delta_{k}=$ $\kappa\left[w\left(\lambda+\delta_{k}\right)+\delta_{k}+\delta_{n}\right]+\delta_{k}=\kappa\left[w\left(\lambda+\delta_{k}\right)+\delta_{n}\right]$ (again since $\left.\kappa \delta_{k}=-\delta_{k}\right)=$ $\kappa w(\lambda+\delta)$, since $\delta_{n}=w \delta_{n}$ by (3.6). That is, $\lambda_{1}+\delta\left(\Sigma^{+}\right)$and $\lambda+\delta$ lie in the same W_{k} orbit, which implies that the corresponding discrete series representations $\pi_{\lambda_{1}+\delta(\Sigma+)}$ and $\pi_{\lambda_{+\delta}}$ are unitarily equivalent. Therefore by Theorem 2.24 (for Δ^{+}chosen as in (3.1)) we have

Theorem 3.9. Let $E_{\pi_{2}} \rightarrow D$ be a non-degenerate homogeneous vector
bundle over D induced by an irreducible representation π_{2} of V with Λ_{v}^{+}highest weight λ (cf. (3.3)). Suppose $\left(w\left(\lambda+\delta_{k}\right)+\delta_{k}+2 \delta_{n}, \alpha\right)<0$ for every α in Δ_{n}^{+}, where w is the Weyl group element given by (3.4) (also cf. (3.6)). Then if $\Gamma \subset G$ is a torsion-free lattice satisfying Langlands' condition, as in Theorem 2.11, (the latter condition is satisfied if for example Γ is arithmetic or if the real rank of G is 1) the L^{2} - Γ-automorphic cohomology $H_{2}^{s}\left(D, \mathcal{O} E_{\pi}\right)^{T}$ (see (3.8)). has dimension equal to the multiplicity $m_{\pi_{2+o}}(\Gamma)$ of the discrete series representation $\pi_{\lambda+\delta}$ in the discrete spectrum of $L^{2}(\Gamma \backslash G)$ (cf. (2.12), (2.14)). The character θ_{λ} of $\pi_{2+\delta}$ is given in (2.18); there replace Σ^{+}by Δ^{+}. Moreover the multiplicity $m_{\pi++\delta}(\Gamma)$ coincides with the L^{2}-index (cf. (2.19)) of the Dirac operator ${ }_{5} D_{\lambda}^{+} \lambda: \Gamma^{\infty}\left(\Gamma \backslash E_{\lambda}^{+}\right) \rightarrow \Gamma^{\infty}\left(\Gamma \backslash E_{\lambda}^{-}\right)$, where the bundles $E_{\lambda}^{ \pm} \rightarrow$ G / K are induced by the K-modules $S^{ \pm} \otimes V_{\lambda_{1}+\delta_{n}(\Sigma+)}$, with $\lambda_{1}=\kappa \nu-2 \delta_{n}\left(\Sigma^{+}\right)$ $=\kappa\left(\nu+\delta_{n}\right)$, for κ, ν given by $(3.5)^{2)}, \Sigma^{+}=-\kappa \Delta^{+}=\Delta_{k}^{+} \cup-\kappa \Delta_{n}^{+}$, and where the weights of the $\frac{1}{2}$-spin modules $S^{ \pm}$are $\left\{\delta_{n}\left(\Sigma^{+}\right)-\left\langle Q_{1}\right\rangle \mid(-1)^{\left|Q_{1}\right|}= \pm 1, Q_{1} \subset\right.$ $\left.\Delta_{n}^{+}\right\}=\left\{-\kappa\left(\delta_{n}-Q\right) \mid(-1)^{|Q|}= \pm 1, Q \subset \Delta_{n}^{+}\right\} ; \lambda_{1}+\delta\left(\Sigma^{+}\right)=\kappa w(\lambda+\delta)$.
§ 4. Dimension formula for rank 1 groups
Theorem 3.9 reduces the dimension computation to an L^{2}-index computation for the Dirac operator. For rank one groups the latter (nontrivial) computation has been carried out by Barbasch and Moscovici in [1], using the Selberg trace formula developed in [12]. We therefore assume henceforth that G is simple and the real rank of G is 1 . The symmetric space G / K then has strictly negative sectional curvature and coincides with one of the four hyperbolic spaces $\mathrm{SO}_{e}(2 n, 1) / \mathrm{SO}(2 n), \mathrm{SU}(n, 1) / \mathrm{U}(n), \mathrm{Sp}(n$, $1) /(\operatorname{Sp}(n) \times \operatorname{Sp}(1))$, of $F_{4} / \operatorname{Spin}(9)$. If $\Gamma \subset G$ is a lattice we shall assume as in [1], the following condition (which implies in particular that Γ is torsionfree): the group generated by the eigenvalues of any $\gamma \in \Gamma$ contains no roots of unity. $\quad \Gamma$ is then called neat. The Iwasawa decomposition $G=$ KAN gives rise to a standard normalization of Haar measure on G : $\int_{G} f(x) d x=\int_{K} \int_{A} \int_{N} f($ kan $) e^{2 \rho(\log a)} d k d a d n$ for $f \in C_{C}(G)$ where the Lie algebra of A is a maximal abelian (1 -dimensional) subspace of p_{0}, the Lie algebra of N is a sum of positive restricted root spaces, and 2ρ is the sum (with multiplicity) of those corresponding positive restricted roots. Then if $\lambda^{\prime} \in \mathscr{L}$ is a regular element the formal degree $d_{\lambda^{\prime}}$ of the corresponding discrete series representation $\pi_{\alpha^{\prime}}$ takes the form

$$
\begin{equation*}
d_{\lambda^{\prime}}=c(G)\left|\prod_{\alpha \in \Delta+}\left(\lambda^{\prime}, \alpha\right)\right| \tag{4.1}
\end{equation*}
$$

where

[^1]\[

$$
\begin{equation*}
\frac{1}{c(G)}=(2 \pi)^{m} 2^{m-1 / 2} \prod_{\alpha \in \Theta_{k}^{+}}\left(\delta_{k}, \alpha\right) . \tag{4.2}
\end{equation*}
$$

\]

If $G \neq \operatorname{SU}(1,1)$ and $\operatorname{SU}(2 n, 1)$ the formula for the L^{2}-index of the Dirac operator is surprisingly simple. Namely, using the notation of Theorem. 3.9, one has

$$
\begin{equation*}
\operatorname{ind}\left({ }_{T} D_{\lambda}^{+}\right)=c(G) \prod_{\alpha \in \Sigma+=-\kappa A^{+}}\left(\lambda_{1}+\delta\left(\Sigma^{+}\right), \alpha\right) \operatorname{vol}(\Gamma \backslash G) \tag{4.3}
\end{equation*}
$$

by the key result Theorem 7.1(a) of [1], where we are using the fact that $\lambda_{1}+\delta\left(\Sigma^{+}\right)$is regular. In fact $\left(\lambda_{1}+\delta\left(\Sigma^{+}\right), \alpha\right) \stackrel{(\mathrm{V})}{>} 0$ for every α in Σ^{+}, under the hypotheses of Theorem 3.9 (compare the inequality (iv) following (3.8)). In applying results of [1] we take $\mu=\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right), \psi_{c}=\Delta_{k}^{+}=\Sigma_{k}^{+}, \rho_{c}=\delta_{k}, \psi=$ Σ^{+}, to match the notation there. Of course $\operatorname{vol}(\Gamma \backslash G)$ means the G-invariant volume of $\Gamma \backslash G$. Since $\lambda_{1}+\delta\left(\Sigma^{+}\right)=\kappa w(\lambda+\delta)$ (by Theorem 3.9) and since $\Sigma_{n}^{+}=-\kappa \Delta_{n}^{+}$the inequality (v) along with $w \Delta_{n}^{+}=\Delta_{n}^{+}$in (3.6) forces the inequality

$$
\begin{equation*}
(\lambda+\delta, \alpha)<0 \text { for every } \alpha \mathrm{n} \Delta_{n}^{+} \tag{4.4}
\end{equation*}
$$

Writing $\Delta^{+}=\Delta_{n}^{+} \cup \Delta_{k}^{+}=\Delta_{n}^{+} \cup \Delta_{v}^{+} \cup \Delta_{k}^{+}-\Delta_{v}^{+}$and using (3.6) we obtain

$$
\begin{align*}
\prod_{\alpha \in \Sigma^{+}} & \left(\lambda_{1}+\delta\left(\Sigma^{+}\right), \alpha\right) \tag{4.5}\\
& =(-1)^{m+s} \prod_{\alpha \in \Delta_{n}^{+}}(\lambda+\delta, \alpha) \prod_{\alpha \in S_{v}^{+}}(\lambda+\delta, \alpha) \prod_{\alpha \in S_{k}^{+}-S_{v}^{+}}(\lambda+\delta, \alpha)
\end{align*}
$$

since $m=\left|\Delta_{n}^{+}\right|$and $s=\left|\Delta_{k}^{+}-\Delta_{v}^{+}\right|$. That is (3.3) and (4.4) imply

$$
\begin{equation*}
\prod_{\alpha \in \Sigma^{+}}\left(\lambda_{1}+\delta\left(\Sigma^{+}\right), \alpha\right)=\left|\prod_{\alpha \in \Delta^{+}}(\lambda+\delta, \alpha)\right| . \tag{4.6}
\end{equation*}
$$

This combined with (4.3) and Theorem 3.9 yields the following main result.
Theorem 4.7. Let $E_{\pi_{2}} \rightarrow D$ be a non-degenerate homogeneous vector bundle over a flag domain $D=G / V$ where π_{2} is an irreducible representation (which induces $E_{\pi_{\lambda}}$) of V with Δ_{v}^{+}-highest weight λ and G is one of the rank 1 simple groups $\mathrm{SO}_{e}(2 n, 1)(n \geq 2), \mathrm{SU}(n, 1)(n$ odd, $n \neq 1), \mathrm{Sp}(n, 1)(n$ arbitrary), or F_{4}. Suppose λ satisfies

$$
\begin{equation*}
\left(w\left(\lambda+\delta_{k}\right)+\delta_{k}+2 \delta_{n}, \alpha\right)<0 \quad \text { for every } \alpha \text { in } \Delta_{n}^{+} \tag{4.8}
\end{equation*}
$$

where w is the Weyl group element given by (3.4) (also cf. (3.6)). Then if Γ is a neat lattice in G the dimension of the $L^{2}-\Gamma$-automorphic cohomology $H_{2}^{s}\left(D, \mathcal{O} E_{\pi_{2}}\right)^{r}$ in (3.8) is given by

$$
\begin{equation*}
\operatorname{dim} H_{2}^{s}\left(D, \mathcal{O} E_{\pi_{\lambda}}\right)^{\Gamma}=c(G)\left|\prod_{\alpha \in \Delta^{+}}(\lambda+\delta, \alpha)\right| \operatorname{vol}(\Gamma \backslash G) \tag{4.9}
\end{equation*}
$$

$c(G)$ is specified in (4.2) (for the above normalization of Haar measure on $G)$ and Δ^{+}is chosen according to (3.1). In particular $H_{2}^{s}\left(D, \mathcal{O} E_{\pi_{2}}\right)^{T} \neq 0$; i.e. there exists non-zero square integrable automorphic cohomology classes on D.

Remark. The coefficient $c(G)\left|\prod_{\alpha \in \Lambda^{+}}(\lambda+\delta, \alpha)\right|$ of the volume of $\Gamma \backslash G$ in formula (4.9) is the formal degree of the discrete series representation $\pi_{\lambda+\delta}$ of G corresponding to the regular element $\lambda+\delta$; see (4.1). In the Hermitian case when $G=\operatorname{SU}(n, 1), s$ is zero and $H_{2}^{s}\left(D, \mathcal{O} E_{\pi_{\lambda}}\right)^{\Gamma}$ therefore is a space of square integrable automorphic forms on $D=\mathrm{SU}(n, 1) / \mathrm{S}(\mathrm{U}(n) \times$ $\mathrm{U}(1)$).

An important example of a flag domain, apart from the classical bounded Hermitian symmetric domains or the Cartan domains G / H, is the period matrix domain $D=\mathrm{SO}_{e}(2 n, 1) / \mathrm{U}(n)$ (or more generally the domain $\left.D_{n, r}=\mathrm{SO}_{e}(2 n, r) /(\mathrm{U}(n) \times \mathrm{SO}(r))\right)$. Here P is a maximal parabolic subgroup of $G^{\mathbf{c}}, K / V$ is the compact irreducible Hermitian symmetric space $\mathrm{SO}(2 n) / \mathrm{U}(n)$ and Δ^{+}in (3.1) can be chosen so that $\Delta_{n}^{+}=\left\{\alpha_{j}\right\}_{j=1}^{n}, \quad \Delta_{k}^{+}=$ $\left\{\alpha_{j} \pm \alpha_{i} \mid j>i\right\}, \Delta_{v}^{+}=\left\{\alpha_{j}-\alpha_{i} \mid j>i\right\}$, with $\left(\alpha_{i}, \alpha_{j}\right) \stackrel{(\text { (i) })}{=} \frac{\delta_{i j}}{2(2 n-1)} ;$ cf. Section 3 of [18]. For an irreducible representation π_{λ} of $V=\mathrm{U}(n)$ with Δ_{v}^{+}-highest weight λ one has $\lambda=\sum_{j=1}^{n} m_{j} \alpha_{j}$, with $m_{1} \leq m_{2} \leq \cdots \leq m_{n}$ and $2 m_{i}, m_{j} \pm m_{k}$ $\in \mathbf{Z}$ for $1 \leq i \leq n, j>k$.

Proposition 4.10. The induced bundle $E_{\pi_{2}} \rightarrow D$ is non-degenerate if and only if (i) $m_{1}<m_{2}<\cdots<m_{n}$ and (ii) $m_{n}+n+m_{n-1}+n-1<0$.

Proof. If $E_{\pi_{\lambda}}$ is non-degenerate apply (3.3) firstly with $Q=\left\{\alpha_{i}\right\} \subset \Delta_{n}^{+}$ and $\alpha_{i+1}-\alpha_{i} \in \Delta_{v}^{+}$. Noting that $\lambda+\delta_{k}=\sum_{l=1}^{n}\left(m_{l}+l-1\right) \alpha_{l}$ we get $0<$ $\left(\lambda+\delta_{k}+\alpha_{i}, \alpha_{i+1}-\alpha_{i}\right)=\left(m_{i+1}-m_{i}\right) / 2(2 n-1)$ by (vi); i.e. $m_{i+1}>m_{i}$ for $1 \leq i \leq n-1 \Rightarrow$ (i). Secondly, taking $Q=\left\{\alpha_{n-1}, \alpha_{n}\right\} \subset \Delta_{n}^{+}$and $\alpha_{n}+\alpha_{n-1} \in$ $\Delta_{k}^{+}-\Delta_{v}^{+}$in (3.3) we obtain (ii) by a similar argument. Conversely, assume (i), (ii) and let $Q \subset \Delta_{n}^{+}$be arbitrary. Then $\left(\langle Q\rangle, \alpha_{j}-\alpha_{i}\right)=\sum_{\alpha \in Q}\left(\alpha, \alpha_{j}\right)-$ $\sum_{\alpha \in Q}\left(\alpha, \alpha_{i}\right) \geq-1 / 2(2 n-1)$ and $\left(\langle Q\rangle, \alpha_{j}+\alpha_{i}\right) \leq 2 / 2(2 n-1)$ by (vi). Hence for $j>i$, i.e. $\alpha_{j}-\alpha_{i} \in \Delta_{v}^{+}, \alpha_{j}+\alpha_{i} \in \Delta_{k}^{+}-\Delta_{v}^{+}, \quad\left(\lambda+\delta_{k}+\langle Q\rangle, \quad \alpha_{j}-\alpha_{i}\right)=$ $\left(\lambda+\delta_{k}, \alpha_{j}-\alpha_{i}\right)+\left(\langle Q\rangle, \alpha_{j}-\alpha_{i}\right)=\left(m_{j}-m_{i}+(j-i)\right) / 2(2 n-1)+\left(\langle Q\rangle, \alpha_{j}-\right.$ α_{i}) (again by (vi)) $\geq\left(m_{j}-m_{i}+j-i-1\right) / 2(2 n-1)>0$ by (i). Similarly $\left(\lambda+\delta_{k}+\langle Q\rangle, \alpha_{j}+\alpha_{i}\right)=\left(m_{j}+m_{i}+j+i-2\right) / 2(2 n-1)+\left(\langle Q\rangle, \alpha_{j}-\alpha_{i}\right) \leq$ $\left(m_{j}+m_{i}+j+i\right) / 2(2 n-1)<0$ by (ii) since $m_{j}+m_{i}+j+i \leq m_{n}+m_{n-1}+n+$ $n-1$. Thus (3.3) follows.
Q.E.D.

By (3.10) of [18], $w\left(\lambda+\delta_{k}\right)+\delta_{k}+2 \delta_{n}=\sum_{l=1}^{n}\left(m_{n-l+1}+n\right) \alpha_{l}$ for w in
(3.6). From (vi) it follows that (4.8) holds $\Leftrightarrow m_{n-j+1}+n<0$ for $1 \leq j \leq n \Leftrightarrow$ $m_{n}+n<0$. The last inequality implies (ii) of Proposition 4.10. Also from the above data

$$
\begin{align*}
& \prod_{\alpha \in \Lambda^{+}}\left(\alpha_{k}, \alpha\right)=\left[\frac{1}{2(2 n-1)}\right]^{n(n-1)} \prod_{1 \leq i<j \leq n}(j+i-2)(j-i), \\
& \prod_{\alpha \in \Delta^{+}}(\lambda+\delta, \alpha)=\left[\frac{1}{2(2 n-1)}\right]^{n^{2}} \prod_{j=1}^{n}\left(m_{j}+j-\frac{1}{2}\right) \tag{4.11}\\
& \prod_{1 \leq i<j \leq n}\left(m_{j}+m_{i}+j+i-1\right)\left(m_{j}-m_{i}+j-i\right) .
\end{align*}
$$

$c(G)$ is now determined in (4.2) since $m=n$. Therefore by Theorem 4.7 and Proposition 4.10 we can state

Theorem 4.12. Suppose $m_{1}<m_{2}<\cdots<m_{n}$ and $m_{n}+n<0$ for $\lambda=$ $\sum_{j=1}^{n} m_{j} \alpha_{j}$ as above, where D is the period matrix domain $\mathrm{SO}_{e}(2 n, 1) / \mathrm{U}(n)$, $(n \geq 2)$. Then if $\Gamma \subset \mathrm{SO}_{e}(2 n, 1)$ is a neat lattice, the dimension of the $L^{2}-$ Γ-automorphic cohomology $H_{2}^{s}\left(D, \mathcal{O} E_{\pi_{\lambda}}\right)^{r}$ in (3.8) is non-zero and is given by

$$
\begin{aligned}
& c(n) \prod_{j=1}^{n}\left|m_{j}+j-\frac{1}{2}\right| \\
& . \prod_{1 \leq i<j \leq n} \frac{\left|m_{j}+m_{i}+j+i-1\right|\left(m_{j}-m_{i}+j-i\right)}{(j+i-2)(j-i)} \operatorname{vol}(\Gamma \backslash G)
\end{aligned}
$$

where $1 / c(n)=(2 \pi)^{n} 2^{n-1 / 2}(2(2 n-1))^{n}, s=n(n-1) / 2$, and where Haar measure on $G=\mathrm{SO}_{e}(2 n, 1)$ is normalized as earlier.

For $G=\operatorname{SU}(n, 1)$ with n even, $n \neq 2$, there is an additional term which contributes to the dimension formula in (4.9); there are two such terms when $n=2$ (and when $G=S U(1,1)$). The extra terms (or term) account for the presence of cusps, as one would expect. For example assume $G=$ $\mathrm{SU}(2 n, 1)$; this case is not covered by Theorem 4.7. Then by Proposition 4.6 of [1] there is a unipotent contribution to the Selberg trace formula of the form $\pm C_{2}(\Gamma) c_{n} \operatorname{dim} V_{\mu}$, where as above we take $\mu=\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right)$, where c_{n} is a positive constant depending on G and $C_{2}(\Gamma)$ is a positive constant depending on the number of cusps of $\Gamma,\left(c_{n}\right.$ and $C_{2}(\Gamma)$ are explicitly known) and were the sign \pm is determined as follows. Let $z_{0}=\sqrt{-1}$ diagonal $\left(I_{2 n-1},-2 n\right) \in h_{0}$. Here h_{0} consists of the diagonal matrices in $g=$ $\operatorname{sl}(2 n+1, C)$ with pure imaginary entries and $I_{2 n-1}$ is the $(2 n-1)^{2}$ identity matrix. We choose $\Delta^{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq 2 n+1\right\}$, using the usual notation; $\Delta_{n}^{+}=\left\{\alpha_{i 2 n+1} \mid 1 \leq i \leq 2 n\right\}$. Choosing the G-invariant complex structure on
G / K which is compatible with Δ^{+}we have $\kappa \Delta_{n}^{+}=\Delta_{n}^{+}$, since $\kappa \in W_{k}$, and hence $\Sigma_{n}^{+}=-\Delta_{n}^{+}$. The sign \pmis given by $\pm 1=\operatorname{sgn} \sum_{\alpha \in \Sigma_{n}^{+}} \alpha\left(z_{0}\right)=$ $\operatorname{sgn}(\sqrt{-1}(1+2 n))^{2 n}=(-1)^{n}$. We remark that the factor $(2 n+1)^{n}$ which appears on page 38 of [1] should be corrected to read $(2 n+1)^{2 n}$. By Theorem 7.1(a) of [1] and Theorem 3.9 above, for $\Gamma=$ a neat lattice in $G=\mathrm{SU}(2 n, 1)$ and $n \neq 1$

$$
\begin{equation*}
\operatorname{dim} H_{2}^{0}\left(D, \mathcal{O} E_{\pi_{\lambda}}\right)^{\Gamma}=c(G)\left|\prod_{\alpha \in \Delta^{+}}(\lambda+\delta, \alpha)\right| \operatorname{vol}(\Gamma \backslash G)+\text { the } \tag{4.14}
\end{equation*}
$$

unipotent contribution
where the unipotent contribution $=(-1)^{n} C_{2}(\Gamma) c_{n} \operatorname{dim} V_{\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right)}$. Here $\operatorname{dim} V_{\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right)}=\prod_{\alpha \in S_{k}^{+}}(\lambda+\delta, \alpha) / \prod_{\alpha \in S_{k}^{+}}\left(\delta_{k}, \alpha\right)$ as we note that with $V=K$ $D=\mathrm{SU}(2 n, 1) / \mathrm{S}(\mathrm{U}(2 n) \times \mathrm{U}(1)), \Delta_{v}^{+}=\Delta_{k}^{+}$, and $\lambda_{1}+\delta\left(\Sigma^{+}\right)=\lambda+\delta$ since now w in (3.6) coincides with κ in (3.5); i.e. $\kappa w=\kappa^{2}=1$. The conditions on the Δ_{k}^{+}-highest weight λ in (4.14) are the non-degenerate condition (3.3) as usual and the condition (4.8). These, in the present case, simplify as follows:

$$
\begin{align*}
& \left(\lambda+\delta_{k}+\langle Q\rangle, \alpha\right)>0 \text { for every } \alpha \text { in } \Delta_{k}^{+} \text {and } Q \subset \Delta_{n}^{+}, \\
& \text {and }\left(\lambda+2 \delta_{n}, \alpha\right)<0 \text { for every } \alpha \text { in } \Delta_{n}^{+} . \tag{4.15}
\end{align*}
$$

In the two remaining cases $G=S U(2,1), \operatorname{SU}(1,1)$ a third term, in addition to the unipotent contribution, contributes to the right hand side of (4.14). This term (the weighted unipotent contribution to the Selberg trace formula) has the form (see Theorem 7.1 (a) of [1]) $\pm \frac{1}{2}(-1)^{1+m} c(\Gamma)$ $\sum_{\sigma \in W_{k}}(\operatorname{det} \sigma) \operatorname{sgn}(K(\lambda+\delta))$ where $K(\lambda+\delta)$ is an integer uniquely determined by the regular element $\lambda+\delta(\lambda+\delta$ also uniquely determines the sign $\pm)$ and $c(\Gamma)$ is the exact number of cusps of Γ. The dimension formula is now obtained (applying Theorem 3.9 again) for all the rank 1 groups.

References

[1] Barbasch, D. and Moscovici, H., L^{2}-index and the Selberg trace formula, J. Funct. Anal., 53, No. 2 (1983), 151-201.
[2] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math., 116 (1966), 1-111.
[3] Griffiths, P., Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc., 76 (1970), 228-296.
[4] Hotta, R., Elliptic complexes on certain homogeneous spaces, Osaka J. Math., 7 (1970), 117-160.
[5] Hotta, R. and Parthasarathy, R., Multiplicity formulae for discrete series, Invent. Math., 26 (1974), 133-178.
[6] Langlands, R., The dimension of spaces of automorphic forms, Amer. J. Math., 85 (1963), 99-125.
[7] -, On the functional equation satisfied by Eisenstein series, Lecture Notes in Math., 544 (1976), Springer-Verlag.
[8] Moscovici, H., L^{2}-index of elliptic operators on locally symmetric spaces of finite volume, in "Operator Algebras and K Theory", Contemporary Math., 10 (1982), 129-137.
[9] Parthasarathy, R., Dirac operator and the discrete series, Ann. of Math., 96 (1972), 1-30.
[10] Schmid, W., Homogeneous complex manifolds and representations of semisimple Lie groups, Ph. D. thesis, Univ. Calif., Berkeley, 1967.
[11] - , On the realization of the discrete series of a semisimple Lie group, Rice Univ. Studies, 56, no. 2 (1970), 99-108.
[12] Warner, G., Selberg's trace formula for non-uniform lattices, Adv. in Math. supplementary studies, 6 (1979), Academic Press.
[13] Wells, R., Jr., Automorphic cohomology on homogeneous complex manifolds, Rice Univ. Studies, 59, no. 2 (1973), 147-155.
[14] Wells, R., Jr. and Wolf, J., Poincaré theta series and L^{1}-cohomology, Proc. of Symposia in Pure Math. (Several complex variables) 30 (1977), 59-66.
[15] -, Poincaré series and automorphic cohomology of flag domains, 1975, preprint.
[16] —— Poincaré series and automorphic cohomology of flag domains, Ann. of Math., 105 (1977), 397-448.
[17] Williams, F., Discrete series multiplicities in $L^{2}(\Gamma \backslash G)$, Amer. J. Math., 106, No. 1 (1984), 137-148.
[18] - On the finiteness of the L^{2}-automorphic cohomology of a flag domain, to appear in J. Funct. Anal.
[19] -, Note on a theorem of H. Moscovici, to appear in J. Funct. Anal.
[20] Wolf, J., The action of a real semisimple group on a complex flag manifold I, Bull. Amer. Math. Soc., 75 (1969), 1121-1237.

Department of Mathematics
University of Massachusetts
Amherst, MA 01003
U.S.A.
and
Sophia University, Tokyo

[^0]: ${ }^{1)}$ In the rank 1 case this condition is automatically satisfied, as Warner points out [12]. It is also satisfied if G has no compact simple factors-as was pointed out to the author by Prof. M. Osborne.

[^1]: ${ }^{2)}$ We have already observed that $\lambda_{1}+\delta_{n}\left(\Sigma^{+}\right) \in \mathscr{L}_{0}\left(\Delta_{k}^{+}\right)$.

