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On the Dimension of Spaces of 
Automorphic Cohomology 

FIoyd L. Williams 

It has recently been shown (in response to a question of Wells and 
Wolf [16]) that the dimension of the space of V-r-automorphic cohomo
logy of any flag domain D is finite [18]. Here r is a discrete subgroup, 
with co-finite volume, of a connected semisimple Lie group of automorph
isms of D. This work concerns the computation of that dimension, at 
least in the rank 1 case where an explicit V-index formula is available [1]. 
We prove, in particular, the existence of non-zero, square-integrable auto
morphic cohomology classes. Such existence questions have previously 
been settled (via the Atiyah-Singer or holomorphic Lefschetz formulas, for 
example) often, but not exclusively, when D reduces to a bounded 
Hermitian domain and when r is co-compact. The space of automorphic
cohomology then reduces to a space of automorphic forms such as that 
considered, for example, in [6]. 

§ 1. Introduction 

Let X = GC j P be a complex flag manifold where P is a parabolic sub
group of a complex connected semisimple Lie group GC. Let G be a 
non-compact connected real form of GC such that V = Gnp is compact. 
Then D=GjV is a flag domain [20], i.e. an open real orbit in X with 
compact isotropy. D therefore carries a G-invariant holomorphic structure 
induced from X. Also if E,,---+D is a homogeneous vector bundle over D' 
induced by an irreducible representation l' of V then E" carries a G-invariant 
holomorphic structure. However, in general, E" may have no global 
holomorphic sections, so in particular there may be no E,,-valued auto
morphic forms on D corresponding to a given discrete subgroup r of G. 
There is however the more general notion (due to Griffiths [3], [13]) of 
E,,-valued automorphic cohomology on D. Namely, if E" is non-degenerate 
(in the sense of (3.3) below), if s is the dimension of a maximal compact 
subvariety of D, and if H*(D, (!}E,,) is the cohomology of D with coefficients 
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in the sheaf (!JEn of germs of local holomorphic sections of E~ then, by a 
result of Schmid [10], [16], Hq(D, (!JE~)=O for q=l=s and H'(D, (!JE.) is an 
infinite dimensional Frechet G module. The subspace H'(D, (!JEnY of F
invariant cohomology classes is the F-automorphic cohomology of D. 

In [18] we established finite-dimensionality of the subspace H;(D, (!JE~Y 
()f square-integrable classes in H'(D, (!JE~Y (cf. (3.7), (3.8) below). It is 
yet an open problem, raised in [16], to prove whether or not the full space 
H'(D, (!JE%Y is finite-dimensional. In the present paper we compute the di
mension of H;(D, (!JE.Y in the case when the real rank of Gis 1; this covers 
the important example of D=the period matrix domain SOe(2n, l)jU(n). 
Apart from the Hermitian case our dimension formula is rather quite 
'Simple; i.e. it involves no F -cuspidal terms. The main results presented 
here are Theorems 3.9, 4.7, and 4.12. These depend, firstly, on a vanish
ing theorem which we develop for the V-cohomologies of Hotta's elliptic 
-complex [5], though they could be obtained via a shorter route. Since the 
vanishing theorem, Theorem 2.16 below, is of independent interest (it is 
the best possible) we have therefore so written Section 2 as to make it 
-completely independent of the rest of the paper. 

We take this opportunity to express our heart-felt thanks to the 
mathematics faculty of Sophia University for their many kindnesses and 
for providing us the pleasant and stimulating environment, and resources, 
to conduct this research. 

§ 2. The Hotta complex 

In this section we recall the elliptic complex (a generalization of the 
Dolbeault complex) constructed by Hotta [5] whose "bootstrap" is the 
Dirac operator. We prove a sharp vanishing theorem for the V-cohomo-
10gies of this complex. Applications to automorphic cohomology are 
,given in Sections 3, 4. 

Let Kbe a maximal compact subgroup of G which contains a Cartan 
subgroup H of G. We denote by g, k, h the complexifications of the Lie 
.algebras go, ko, ho of G, K, H respectively. Let (, ) denote the Killing form 
of g, let go=ko+Po be a Cartan decomposition of go where Po is the ortho
-complement of ko in go with respect to ( , ), and let p denote the complex
ification of Po. We shall write Ll for the set of non-zero roots of (g, h), 
,and for QcLl we shall write <Q) for the sum L:aeQa. Let Llk' Ll" denote 
the set of compact, non-compact roots, respectively. Thus if g{i is the 
root space of f3 E Ll, f3 E Llk~g{ick; Ll,,=Ll-Llk. We assume that GC 
is simply connected. The character group of H is then identified with 
the lattice 

(2.1) .2"={1 E HomR(.f=Tho, R)ll is integral}. 
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Here of course R is the field of real numbers and integrality means that 
2(A, a)/(a, a) E Z, the ring of integers, for each a in .1. If I+ c.1 is a 
system of positive roots let I:, I:; =I+ n .1 k' I+ n .1n, respectively, and 
let 

(2.2) £'(ID={A E £'I(A, a»O for a E 2:}. 

For A E £'(2D let Vl be the irreducible K module with 2: -highest weight 
1. Let 

(2.3) £'0(2D = {A E Hom& (r-T ho, R)\2(A, a) E Z+ for a E 2:} 
(a, a) 

where Z+ is the set of non-negative integers, and let Vl be the irreducible 
k module with 2:-highest weight A for A E £'0(2:). The I/2-spin modules 
for k will be denoted by S±, with the convention that {on(2+)-<Q)IQc 
.I:;, (-I)IQI=±I} is the set of weights of S±, where 2on(2+) = <I:;), and 
where IQI is the cardinality of a set Q. For A E £' such that A+on(2+) E 

£'0(2:) the k-representations S±@Vl+on (2'+) integrate to representations 
of K. Thus we can form the induced homogeneous COO vector bundles 
Ef, Ec~G/Kwith fibers S±@Vl +6n(2'+)' S@Vl+on(2'+), where S=S+tBS
and assuming, whenever necessary (without loss of generality), that G/K 
is a spin manifold we can consider the twisted Dirac operators Df, Dlon 
GIK: D.:Too El-+Too El, Df =D.lrooEf: Too Ef-+Too Ei, [9], where Too denotes 
the space of Coo sections. Let m=tdimGIK, 20(2+)=<2+), and let Q 
he the Casimir operator of g. 

Theorem 2.4 (Lemma 3.3 of [5]). Let A E £' such that A+on(2+) E 

..!l'o(ID as above. Then there is a direct sum K module decomposition 

{2.5) 

and a sequence of first order G-invariant differential operators Dq: Too El, q 

-+TooE.,q+b where E.,q-+GIK is the homogeneous vector bundle induced by 
VY+26n (2'+)' O<q~m-l, V~+26n(2'+) = Vl+26n(2'+)' such that 

DO Dl Dm-l 
O-+Too E.,o~Too E.,I~· .. ~Too E.,m-+O 

is an elliptic complex. If (Dq) * : Too E., q + I-+Too E., q is the formal adjoint of 
Dq (for suitable me tries on the E" q induced by K-invariant inner products on 
.the VJ+26n(2'+» and Dq=(Dq)*Dq+Dq-I(Dq-I)*: TooE.,q-+TooE1,q is the 
corresponding Laplacian then D+D*: Too I; (_1)'~IE1,q-+Too I;(-I)'~_IE.,q 
is the Dirac operator D;: Too E; -+Too E; (under the identification (2.5» and 
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(2.6) 

Now let T c G be a finitely generated discrete torsion-free subgroup. 
Choosing an invariant measure dx on T\ G induced by Haar measure on 
G, and letting (Too E1• qY denote the space of T -invariant sections in Too E1, q 

we have the usual inner product 

(2.7) 

on the subspace of compactly supported T-invariant sections Sl> S2 where 
< , > isa K-invariant inner product on VJ+20 n (S+)' Let V(E1,qY be the 
Hilbert space completion of the latter subspace; i.e. V(E1,qY is the space 
of V-sections of T\El, q' The G-invariant operator oq (which is T-invariant 
in particular) descends to a differential operator OJ. on T\E1,q. The 
qth-V-cohomology of the complex {El, q' Dq} with respect to T is defined 
by 

(2.8) Hi(T\E1)={s E V(E"qYIOj.s=O in the Sense of distributions}. 

Thus H!(T\E,) is the V-kernel of OJ.. By our assumptions on T the 
Riemannian metric on T\GjK is complete and thus, as pointed out in [5], 
one has 

Theorem 2.9. The qth-V-cohomology space H2q(T\E1) coincides with 
the space 

(2.10) llsll~<oo}. 

The elliptic operators OJ. are locally invariant; i.e. they admit a G
invariant lift to E"q -via oq. Hence if T is a lattice in G, i.e. T\G has a 
finite G-invariant volume (in particular T is then finitely generated so that 
Theorem 2.9 applies), we can apply a recent theorem of Moscovici (Theorem 
2.1 of [8]) to conclude that OJ. has a finite dimensional V-kernel. More 
precisely we have the following 

Theorem 2.11. Let T c G be a torsion-free lattice. Assume in addition 
that T is subject to the mild technical condition!) of Langlands' [7] (also cf 
(2.21) of[18]) so that under the right regular representation of G, V(T\G) 

1) In the rank 1 case this condition is automatically satisfied, as Warner points 
out [12]. It is also satisfied if G has no compact simple factors-as was pointed 
out to the author by Prof. M. Osborne. 
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(and accordingly V(E.,qY) decomposes into a discrete and continuous 
spectrum: 

(2.12) 
V(T\G) =L~(T\G)ffiL~(T\G) 

V(E., qy =L~(E;., qY ffi L~(E;., qY. 

Then the qth-V-cohomology space Hf(T\E.) in (2.8) (which coincides with 
Hl(E;.Y in (2.10) by Theorem 2.9) is finite-dimensional and also 

(2.13) HlCT\E;.) = the V-kernel of OJ, on L~(E;.,qY. 

Write G for the set of equivalence classes of irreducible unitary repre
sentations of G and write G d for the subset of elements of G occurring in 
the discrete spectrum of V(T\G): 

(2.14) L~(T\G)= L, m.(T)rr (direct sum) 
trEOd, 

where m.(T) is the (finite) multiplicity of rr. Let H. be the Hilbert space 
of rr E G. 

Corollary 2.15. For T as in the statement of Theorem 2.11, q>O, and 
A as in Theorem 2.4 

dim H2q(T\E.) = L, m.(T) dim HomK (H., V.Q+2a n cl' +) 
xEGa 

rr(Q)=(A, A +20(1:+»1. 

Proof. Using (2.13) and (2.14), Hl(T\E;.) = L,'EGdm.(T) ker rr(Oj\), 
where rr(Oj,): (Hg® V/.zoCl'+)K-+(H.® Vl+ 2aCl'+)K is given by rr(Oj,)= 
-rr(Q)+(A, A+20(1:+»I; see (2.6). Of course rr(Q) is a scalar multiple of 
1, say rr(Q)=cgl. Hence Kerrr(Oj,) is zero unless c.=(A, A +20(1:+»1, in 
which case it is the full space. That is Hl(T\E;.) = L,.EGd m.(T)(H.® 
Vl-r2aC l'+))K, rr(Q)=(A, A + 20(1:t » 1. If rr* is the contragradient of rr, then 
m.(T) =m.*(T) and dim (H. ® VJ+20Cl'+)K =dim HomK (H.*, Vtr2acl'+) so 
that Corollary 2.15 follows. 

The following vanishing theorem improves the vanishing theorem 
obtained in Section 6 of [5]. 

Theorem 2.16. Let A E 2 such that A+On(1:+) E 20(1:;). Suppose 
(A, a»O for every a in 1:;. Then H2q(T\E;.) =0 for q>O (again for T 
satisfying the conditions of Theorem 2.11). Moreover dim Hg(T\E.) equals 
the multiplicity mgW(l'+,(T) (in the discrete spectrum of V(T\G» of Harish
Chandra's discrete series representation rrHacl'+) [2] corresponding to the 
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regular element A+O(.E+); cf remarks preceding (2.18) below. 

We base the proof of Theorem 2.16 on Corollary 2.15 and on the 
following result, which is a special case of a more general result proved in 
[17]. See Corollary 2.9 and Theorem 2.13 there. 

Theorem 2.17. Let A E!l' such that (A + o(.E+), a»Oforevery a in.Et; 
and(A, {3»Ofor every {3 in .E:;. Let rr E G such that rr(Q)=(A, A+2o(.E+»L 
Then Homx (H%, S- @ Vl+6n(.~' +) =0. If Homx (H%, S+ @ Vl+ 6n(.!.'+):;i:0, '" 
is unitarily equivalent to rrl+o(l'+) (in which case dim Homx(H%, S+@Vl+6n (l'+) 

= 1). In particular (by Schmid's lowest K-type theorem) rr Ix contains no 
K-type of the form Vl+ 2on (l'+)-<Q)' where Qc.E:; is non-empty, and rrlx 
contains Vl+ 20n(l'+) exactly once. 

Proof of Theorem 2.16. Suppose H2Q(r\E1):;i:0. Then by Corollary 
2.15 Homx (H., VJ+ 2on(l'+):;i:0 for some rr E Gd, satisfying rr(Q)=(A, A+ 
2o(.E+»1. Thus there is a K-type V" contained in rrlx and in Vl~2on(l'+)' By 
(2.5) V"cS±@Vl+6n (l'+)' Since Homx (H%, S-@Vl+on(l'+)=ObyTheorem 

(i) 

2.17 we actually have VI' C S+@V1+on(l'+); i.e. Homx(H%, S+@Vl+6n(l'+) 
*0. By Theorem 2.17, again, rr=rrl+6(l'+) and p cannot have the form 
p=A+2o .. (.E+)-<Q) for Qc.E:;, Q:;i:</J. But by (i), p=a weight of S+ 
+A+On(.E+)=on(.E+)-<Q)+A+On(.E+) =A+2on(.E+)-<Q), where Qc 
.E:;, (-I)1QI = 1. Moreover Q:;i:</J for q>O since then p:;i:A+2on(.E+). 
This forces H:j(r\E1)=0 for q>O. Our argument, in conjunction with 
Corollary 2.15, shows that 

dimH~(r\E1)=m'1+6Cl'+)(r) dim Homx (H'l+oCl'+" 

V~+26n(l'+)=m%l+oCl'+,(r), 

since V~+26n(l'+) = Vl+ 26n (l'+) is contained in rr1+6(l'+) Ix exactly once. This 
proves Theorem 2.16. 

Remarks. The discrete series representation rr1H(l'+) corresponds to 
the character 01 given on the compact Cartan subgroup H by the formula 

(_I)m sgn IT (A+o(.E+), a) I: detO'eq (1+6(l'+))(X) 
(2.18) Ol(expx)= aEl'+ qEW(X,H) IT (ea (X)/2_ e-a(X)/2) 

aEl'+ 

for x E ho, where W(K, H) is the Weylgroup of(K, H) [2]. rrl+6(l'+) satisfies 
rrW(l'+lQ) = (A, A + 2o(.E+» 1. 

The Dirac operators Df which we considered earlier also descend to 
locally invariant elliptic differential operators rDf on r\ G/ K which have 
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finite V-kernels, again by Moscovici's theorem [8]. The V-index of rDi 
is defin,ed by 

(2.19) ind (rD:) = dim V-KerrDi -dim V-KerrD.l. 

A consequence of Theorem 2.4 is 

m 
(2.20) L: (-I)q dim H2q(T\El)=ind (rDi) 

q=O 

since Dq and Dq+{Dq-l)* have the same V-kernel. The vanishing 
Theorem 2.16, therefore gives 

Corollary 2.21. In Theorem 2.16 we also have dim Hg(T\El) = 
ind{rDi). 

Remark. In Theorem 2.7 of [19] we have proved that, in particular. 
for A satisfying Theorem 2.16 

(2.22) 

Thus Corollary 2.21 also follows by (2.22). 

The A'S which we shall consider in later applications will satisfy, in 
addition, the so-called # condition: 

(2.23) 
O+On(.S+)+O{.4'+)-<Q), a»O 

for every a in .4't and Qc.4';;. 

Under the # condition the first differential operator DO: T~ El,O~T~ El ,1 

in Theorem 2.4 coincides with Schmid's differential operator ~=~(.4'+), 
constructed using the positive system .4'+; see [11]; also cf. Section 2 of 
[18]. If, moreover, .4'+ satisfies an "admissibility" condition the above 
elliptic complex coincides with the (cohomologically constructed) complex 
of [4]. In summary, (with some slight changes in notation), Theorems 2.9, 
2.16 and Corollary 2.21 yield the following 

Theorem 2.24. Let T c G be a torsion-free lattice as in Theorem 2.11. 
Let A E 2 such that A+On{.4'+) E 20(.4't) (see (2.3), and such that A satisfies 
the # condition (2.23). Let EA~G/K be the homogeneous vector bundle 
over G/K induced by the irreducible K module Vl+ 2a ,,(x+) with .4't-highest 
weight A+2on{.4'+). Let Hg(E.y={s E T~Ells is T-invariant, 9J{.4'+)s=O, 
and II s W < 00 }; cf. (2.7). Then Hg(Ef coincides with the (finite-dimens
ional) V-kernel of Dr on the V-sections of T\EA' where Dr is the descent 
ofD=~(.4'+)*~(.4'+) to T\EA' Suppose moreover that 0, a»Ofor every 
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a in I:. Then dim Hg(E.Y =mnHiI(z+,(r) (cf (2.18)) = the V-index of the 
Dirac operator rDt: r~(r\Et)~r~(r\El)' where the bundles Ef~G/K 
are induced by the K modules S± ® V.Hn(z+). 

§ 3. A general dimension formula 

Before restricting attention to the rank 1 case altogether we express 
the dimension of automorphic cohomology, more generally, as a discrete 
series multiplicity in the discrete spectrum of V(r\G) or, equivalently, as 
the V-index of a twisted Dirac operator. 

We retam the notation of Sections 1, 2 and denote by l!., Vo the Lie 
algebras of P, V. Choose a system of positive roots LI+ cLl such that 

(3.1) the Borel subalgebra b =h+ I: g -a. 
- aEJ+ 

We can arrange the inclusions Hc VcK and write 

(3.2) .e=vEB~ where v (the reductive part of e) is the complexification 

of vo, v=h+ I: ga, n= I: g_a=the unipotent radical ofp, 
aEJu - aEJ+-J" ... 

and LI. is the set of roots of (v, h); LlvcLl k • With LI+ fixed we shall always 
write 2o=<LI+), 2ok =<LI:), 2on =<LI:), LI:=LI+ nLlv. Next let E%,~D 
be a homogeneous (necessarily holomorphic) vector bundle over D induced 
by an irreducible representation lrl of V with LI:-highest weight.:1.. We 
always assume that E%, is non-degenerate; i.e . .:1. satisfies 

(3.3) for all a E LI: 

and 

for all a E LIt - LI: 

for arbitrary Q c LI:. 

Let W k , Wv be the Weyl groups of (k, h), (v, h) respectively; W k coincides 
with W(K, H) in the notation of (2.18). Let wC W k be the unique element 
such that 

(3.4) for every a E LIt 

and define /C E Wk , lJ E h* (the dual space) by 

(3.5) dt=-Llt, 

Then by Corollary 2.14 of [18] one has (3.6) and (3.7) below: 
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(3.6) WE WV , wLl;=-Ll;, wLl;;=LI;;, w(Llt-Ll;)=Llt-Ll;, 

and (J..I+<Q), a):::;:O for a E LIt, QcLl;;. 

Moreover if s is the dimension of the maximal compact complex subvariety 
Y=K/V of D, and Ev-+G/K is the homogeneous vector bundle over G/K 
induced by the irreducible K module with LIt -lowest weight J..I (by the Borel
Weil theorem the latter module can be taken to be HS(Y, (!)E~)), then the 
T-automorphic cohomology HS(D, (!)E~lY of D is given, up to isomorphism 
[15], by 

(3.7) HS(D, (!)E~y = the T-invariant Coo sections s of Ev such that .@s=O 

where.@ is Schmid's differential operator constructed relative to the choice 

of positive system 2+ ~ -KLI+, and T C G is a torsion-free discrete sub
group. Again if we choose an invariant measure on T\ G induced by Haar 
measure on G and Hermitian metrics along the fibers of E. induced by a 
K-invariant unitary structure on the inducing module HS(Y, (!)E~) then we 
have an inner product <, ) To given as in (2.7), on the compactly supported 
T-invariant Coo sections of E.. We define the V-T-automorphic cohom
ology H~(D, (!)E~y by 

(3.8) H~(D, (!)E~y={s E H'(D, (!)E~YlllsW<oo}; see (3.7). 

Define AI=KJ..I-20n(2+)=KJ..I+K20n (by(ii))E2'. Then AI+On(2+)= 
(iii) 

K(J..I+On) = K(J..I+20n)-KOn=?(AI+On(2+), a»O for a E LIt by (3.6) (where 
we take Q=LI;;). That is, noting that 2t = LIt of course, we can write 
the LIt-highest weight KJ..I (cf. (3.5)) as KJ..I=2 1+20n(2+), where 21 E 2' such 
that 21+on(2+) E 2'0(2;). Moreover for a E LIt and Q l c2;; = -KL1;; 
(again by (ii)), using KO k = -Ok and QI = -KQ, QcLl;;, we see that 
OI+on(2+)+0(2+)- <QI), a) = (KJ..I+ Ok +K<Q), a) =(J..I + <Q)-Ok' w»O 
by (3.6). In other words 21 also satisfies the # condition (2.23) and hence 
Theorem 2.24 is applicable. By (3.8) H~(D, (!)E~)=H~(E).'y, in the nota-

tion of Theorem 2.24. The condition (210 a)(>O for a in 2;; translates to 
the condition (KJ..I+K20n, -Ka»O for a in LI;;; i.e. (li+20n, LI;;)<O; i.e. 
(by (3.5)) (w(2+ok)+Ok+2on, LI;;)<O. Also AI+0(2+)=K(J..I+On)+Ok= 
K[w(2 + Ok) + Ok + On] + Ok = K[w(2+ok)+onJ (again since KOk = -Ok)= 
Kw(2+0), since on=won by (3.6). That is, 21 +0(2+) and 2+0 lie in the 
same Wk orbit, which implies that the corresponding discrete series re
presentations ITl,+,(S+) and IT).+, are unitarily equivalent. Therefore by 
Theorem 2.24 (for LI+ chosen as in (3.1)) we have 

Theorem 3.9. Let E~l-+D be a non-degenerate homogeneous vector 
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bundle over D induced by an irreducible representation 7r;. of V with J:
highest weight A (cf (3.3)). Suppose (W(A+Ok)+Ok+2on, a)<O for every 
a in J;i, where w is the Weyl group element given by (3.4) (also cf (3.6)). 
Then if r c G is a torsion-free lattice satisfying Langlands' condition, as in 
Theorem 2.11, (the latter condition is satisfied if for example r is arithmetic 
or if the real rank ofG is 1) the V-r-automorphic cohomology H~(D, (!}E%Y 
(see (3.8)). has dimension equal to the multiplicity m%J.+Q(T) of the discrete 
series representation 7r;'+J in the discrete spectrum of v(r\G) (cf (2.12), 
(2.14)). The character 8;. of7r1.+O is given in (2.18); there replace 2+ by J+. 
Moreover the multiplicity m%J.+Q(r) coincides with the V-index (cf (2.19)) of 
the Dirac operator rDt A: r"'(T\Ei)-+r"'(r\E-;), where the bundles Ef-+ 
G/Kare induced by the K-modules S±0V;'1+on(.~+)' with A1=ICIJ-2on(2+) 
=IC(IJ+on),for IC, IJ given by (3.5)2), 2+ = -d+ =Jt U -d;i, and where the 
weights of the ~-spin modulesS± are {on(2+)-<QI)t(-I)[Qd=±I, Q1c 
J;i}={ -IC(On -Q)t( -I)[Q[ = ± 1, QcJ;i}; A1+o(2+)=ICW(A+O). 

§ 4. Dimension formula for rank 1 groups 

Theorem 3.9 reduces the dimension computation to an V-index com
putation for the Dirac operator. For rank one groups the latter (non
trivial) computation has been carried out by Barbasch and Moscovici in 
[1], using the Selberg trace formula developed in [12]. We therefore assume 
henceforth that G is simple and the real rank of G is 1. The symmetric 
space G/ K then has strictly negative sectional curvature and coincides with 
one of the four hyperbolic spaces SOe(2n, I)/SO(2n), SU(n, I)/U(n), Sp(n, 
l)/(Sp(n)X Sp(I)), of F4/Spin(9). If rcG is a lattice we shall assume as 
in [1], the following condition (which implies in particular that r is torsion
free): the group generated by the eigenvalues of any r E r contains no 
roots of unity. r is then called neat. The Iwasawa decomposition G= 
KAN gives rise to a standard normalization of Haar measure on G: 

Lf(x)dX= tL Lf(kan)e2P (log a) dkdadn forf E CcCG) where the Lie algebra 

of A is a maximal abelian (I-dimensional) subspace of Po, the Lie algebra 
of N is a sum of positive restricted root spaces, and 2p is the sum (with 
multiplicity) of those corresponding positive restricted roots. Then if 
A' E Sf is a regular element the formal degree d;.' of the corresponding dis
crete series representation 7r;.' takes the form 

(4.1) 

where 

2) We have already observed that Al +on (1'+) e .2oCdt). 
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(4.2) 

If G*SU(I, 1) and SU(2n, 1) the formula for the V-index of the Dirac 
operator is surprisingly simple. Namely, using the notation of Theorem 
3.9, one has 

by the key result Theorem 7.I(a) of[I], where we :are using the fact that 

AI+D(S+) is regular. In fact OI+D(S+), a);;:O for every a in S+, under 
the hypotheses of Theorem 3.9 (compare the inequality (iv) following (3.8». 
In applying results of [1] we take P=A1+Dn(S+), 1/rc = LIt =St, pc =Dk' 1/r= 
S+, to match the notation there. Of course vol (r\G) means the G-invariant 
volume of T\G. Since AI+D(S+)=.tw(A+D) (by Theorem 3.9) and since 
S:; = -d:; the inequality (v) along with wLI:;=LI:; in (3.6) forces the in
equality 

(4.4) (A+D, a)<O for every an LI:;. 

Writing LI+ =LI:; U LIt =LI:; U LI: U LIt - LI: and using (3.6) we obtain 

(4.5) n (A1+D(S+), a) 
aEI+ 

=(_I)mu n (A+D, a) n 0+15, a) n (A +15, a) 
aEdt aE.::t: «EAt -LIt 

since m=ILI:;1 and s=ILlt-Ll:I. That is (3.3) and (4.4) imply 

(4.6) 

This combined with (4.3) and Theorem 3.9 yields the following main result. 

Theorem 4.7. Let E~i"-+D be anon-degenerate homogeneous vector bundle 
over aflag domain D=GjVwhere 1':l is an irreducible representation (which 
induces E~}.) of V with LI: -highest weight A and G is one of the rank 1 simple 
groups SO. (2n, 1) (n>2), SU(n, 1) (n odd, n*I), Sp(n, 1) (n arbitrary), or 
F4• Suppose A satisfies 

(4.8) for every a in LI:; 

where w is the Weyl group element given by (3.4) (also cf (3.6». Then if 
T is a neat lattice in G the dimension of the V-T-automorphic cohomology 
H~(D, (()EnYin (3.8) is given by 
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(4.9) dim H~(D, lTJEKY =c(G)1 IT (A+o, a)1 vol (F\G). 
aE.4+ 

c( G) is specified in (4.2) (for the above normalization of Haar measure on 
G) and A+ is chosen according to (3.1). In particular H;(D, lTJEKY=I=O; i.e. 
there exists non-zero square integrable automorphic cohomology classes on 
D. 

Remark. The coefficient c(G)1 ITaEd+O+O, a)1 of the volume of F\G 
in formula (4.9) is the formal degree of the discrete series representation 
trw of G corresponding to the regular element A+o; see (4.1). In the 
Hermitian case when G=SU(n, 1), s is zero and H~(D, lTJEKY therefore is 
a space of square integrable automorphic forms on D=SU(n, l)jS(U(n) X 
U(1». 

An important example of a flag domain, apart from the classical 
bounded Hermitian symmetric domains or the Cartan domains GjH, is the 
period matrix domain D=SO.(2n, l)jU(n) (or more generally the domain 
D n,r=SO.(2n, r)j(U(n) X SO (r»). Here P is a maximal parabolic sub
group of GC, KJV is the compact irreducible Hermitian symmetric space 
SO(2n)jU(n) and A+ in (3.1) can be chosen so that A;:- = {aj}j= I, At = 

{ I .>.} A+ {. I .>.} . h ( )(Vi) Otj f S . 3 aj±at J " "'v = aj-at J " WIt ai, a j = ; c. ecbon 
2(2n-l) 

of [18]. For an irreducible representation tr:l of V = U (n) with A: -highest 
weight A one has A= L;j=lmpj, with ml<m2 -::;'· •• <mn and 2mt, mj±mk 

E Z for 1 <i<n,j>k. 

Proposition 4.10. The induced bundle EK1---+D is non-degenerate if and 
only if (i) ml<m2<· .. <mn and (ii) mn+n+mn_l+n-l <0. 

Proof If EKl is non-degenerate apply (3.3) firstly with Q ={at}CA;:
and aUI-at E A;. Noting that A+ok=L;f=l(mz+l-l)az we get 0< 
(A+olG+at, aUI-ai) = (mi+l-mt)j2(2n-l) by (vi); i.e. mi+1>mt for 
1 <i<n-l=?(i). Secondly, taking Q={an- b an}CA;:- and an +an_1 E 

..1t - A; in (3.3) we obtain (ii) by a similar argument. Conversely, assume 
(i), (ii) and let QCA;:- be arbitrary. Then C<Q), aj-at)= L;aeia, a j)
.L;aeia, ai» -lj2(2n-l) and C<Q), a j+ai)<2j2(2n-l) by (vi). Hence 
for j>i, i.e. aj-at E A;, aj+ai EAt-A;, O+Ok+<Q), aj-at)= 
(A+o lG , aj-ai)+«Q), a j-ai)=(mj-mt +(j-i»j2(2n-l)+C<Q), a j-
at) (again by (vi»>(mj-mi+j-i-l)j2(2n-l»0 by (i). Similarly 
O+OlG+ <Q), a j+ai)=(mj+mt+j+i-2)j2(2n-l)+C<Q), aj-ai)< 
(mj+mt+j+i)j2(2n-l)<Oby (ii) since mj+mt+j+i<mn+mn_l+n+ 
n-l. Thus (3.3) follows. Q.E.D. 

By (3.10) of [18], W(A+ok)+OlG+2on= L;f=l(mn - I + I+n)a l for W in 
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(3.6). From (vi) it follows that (4.8) holds~mn_j+l+n<O for l~j<n~ 
mn + n < O. The last inequality implies (ii) of Proposition 4.10. Also 
from the above data 

[ 1 ]n(n-l) IT (a k , a)= IT U+i-2) U-i), 
aEJ+ 2(2n-l) lsVjsn 

(4.11) IT (A+O, a)= IT mj+J--[ 1 ]n2 n ( . 1 ) 
aEJ+ 2(2n-l) j~l 2 

c(G) is now determined in (4.2) since m=n. Therefore by Theorem 4.7 
and Proposition 4.10 we can state 

Theorem 4.12. Suppose m1<m2<··· <mn and mn+n<O for A= 
L,j~lmjaj as above, where D is the period matrix domain SO.(2n, l)jU(n), 
(n22). Then if rcSOe(2n, 1) is a neat lattice, the dimension of the D
r-automorphic cohomology H~(D, @E.y in (3.8) is non-zero and is given by 

(4.13) 

where Ijc(n) = (2rr)n 2n-l/2(2(2n-l)t, s=n(n-l)j2, and where Haar meas
ure on G=SOe(2n, 1) is normalized as earlier. 

For G=SU(n, 1) with n even, n=j::.2, there is an additional term which 
contributes to the dimension formula in (4.9); there are two such terms 
when n=2 (and when G=SU(I, 1»). The extra terms (or term) account 
for the presence of cusps, as one would expect. For example assume G= 
SU (2n, 1); this case is not covered by Theorem 4.7. Then by Proposition 
4.6 of [1] there is a unipotent contribution to the Selberg trace formula of 
the form ± C2(r)cn dim Vp , where as above we take .u=A1+OnC2;'+), where 
Cn is a positive constant depending on G and C2(r) is a positive constant 
depending on the number of cusps of r, (c n and C2(r) are explicitly 
known) and were the sign ± is determined as follows. Let Zo =.;=-r 
diagonal (I2n - b -2n) E ho. Here ho consists of the diagonal matrices in g= 
sl(2n+ 1, C) with pure imaginary entries and 12n - 1 is the (2n-l)2 identity 
matrix. We choose L/+={aijll~i<j<2n+l}, using the usual notation; 
L/;:-={ai2n +ll1<i<2n}. Choosing the G-invariant complex structure on 



14 F. L. Williams 

GJKwhich is compatible with £1+ we have KA;=A;, since KE W., and 
hence 2:; = - A;. The sign ± is given by ± 1 =sgn L.;aE.r+a(ZO) = 

n 

sgn(-I=1(1+2n)yn=(-I)n. We remark that the factor (2n+l)n which 
appears on page 38 of [1] should be corrected to read (2n+ lyn. By 
Theorem 7.1(a) of [1] and Theorem 3.9 above, for r=a neat lattice in 
G=SU(2n, 1) and n::;t=1 

dim H~(D, @E.Y=c(G)[ [1 (.:1+0, a)[ vol (r\G) + the 
(4.14) aEJ+ 

unipotent contribution 

where the unipotent contribution = (_I)n C2 (r)cn dim V1,+On(.r+). Here 
dim V1, +On(.r+) = [1 aEdt (A + 0, a) j [1 aEdt (0., a) as we note that with V =K 
D=SU(2n, l)jS(U(2n)XU(I)), A:=At, and .:1 1+0(2:+)=.:1+0 since now 
w in (3.6) coincides with K in (3.5); i.e. KW =K2 = 1. The conditions on the 
.LIt-highest weight .:1 in (4.14) are the non-degenerate condition (3.3) as 
usual and the condition (4.8). These, in the present case, simplify as 
follows: 

(4.15) 
(.:1+0.+ <Q), a»O for every a in At and QcA;, 

and (.:1+20 n , a)<O for every a in A;. 

In the two remaining cases G=SU(2, 1), SU(1, 1) a third term, in 
addition to the unipotent contribution, contributes to the right hand side 
of (4.14). This term (the weighted unipotent contribution to the Selberg 
trace formula) has the form (see Theorem 7.1 (a) of [1]) ±iC -1)1+mc(T) 
1::. EWk( det a) sgn (K(.:1 + 0)) where KCA + 0) is an integer uniquely determined 
by the regular element .:1 + a CA + a also uniquely determines the sign ±) 
and c(r) is the exact number of cusps of r. The dimension formula is 
now obtained (applying Theorem 3.9 again) for all the rank 1 groups. 
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