Advanced Studies in Pure Mathematics 6, 1985 Algebraic Groups and Related Topics pp. 1-15

On the Dimension of Spaces of Automorphic Cohomology

Floyd L. Williams

It has recently been shown (in response to a question of Wells and Wolf [16]) that the dimension of the space of L^2 - Γ -automorphic cohomology of any flag domain D is finite [18]. Here Γ is a discrete subgroup, with co-finite volume, of a connected semisimple Lie group of automorphisms of D. This work concerns the computation of that dimension, at least in the rank 1 case where an explicit L^2 -index formula is available [1]. We prove, in particular, the *existence* of non-zero, square-integrable automorphic cohomology classes. Such existence questions have previously been settled (via the Atiyah-Singer or holomorphic Lefschetz formulas, for example) often, but not exclusively, when D reduces to a bounded Hermitian domain and when Γ is co-compact. The space of automorphic cohomology then reduces to a space of automorphic *forms* such as that considered, for example, in [6].

§1. Introduction

Let $X=G^c/P$ be a complex flag manifold where P is a parabolic subgroup of a complex connected semisimple Lie group G^c . Let G be a non-compact connected real form of G^c such that $V=G\cap P$ is compact. Then D=G/V is a flag domain [20], i.e. an open real orbit in X with compact isotropy. D therefore carries a G-invariant holomorphic structure induced from X. Also if $E_{\pi} \rightarrow D$ is a homogeneous vector bundle over D induced by an irreducible representation π of V then E_{π} carries a G-invariant holomorphic structure. However, in general, E_{π} may have no global holomorphic sections, so in particular there may be no E_{π} -valued automorphic forms on D corresponding to a given discrete subgroup Γ of G. There is however the more general notion (due to Griffiths [3], [13]) of E_{π} -valued automorphic cohomology on D. Namely, if E_{π} is non-degenerate (in the sense of (3.3) below), if s is the dimension of a maximal compact subvariety of D, and if $H^*(D, \mathcal{O}E_{\pi})$ is the cohomology of D with coefficients

Research supported by NSF Grant No. PRM 8205819

Received September 26, 1983.

in the sheaf $\mathcal{O}E_{\pi}$ of germs of local holomorphic sections of E_{π} then, by a result of Schmid [10], [16], $H^{q}(D, \mathcal{O}E_{\pi})=0$ for $q \neq s$ and $H^{s}(D, \mathcal{O}E_{\pi})$ is an infinite dimensional Fréchet G module. The subspace $H^{s}(D, \mathcal{O}E_{\pi})^{\Gamma}$ of Γ -invariant cohomology classes is the Γ -automorphic cohomology of D.

In [18] we established finite-dimensionality of the subspace $H_{\underline{s}}^{s}(D, \mathcal{O}E_{\pi})^{r}$ of square-integrable classes in $H^{s}(D, \mathcal{O}E_{\pi})^{r}$ (cf. (3.7), (3.8) below). It is yet an open problem, raised in [16], to prove whether or not the full space $H^{s}(D, \mathcal{O}E_{\pi})^{r}$ is finite-dimensional. In the present paper we compute the dimension of $H_{\underline{s}}^{s}(D, \mathcal{O}E_{\pi})^{r}$ in the case when the real rank of G is 1; this covers the important example of D = the period matrix domain SO_e(2n, 1)/U(n). Apart from the Hermitian case our dimension formula is rather quite simple; i.e. it involves no Γ -cuspidal terms. The main results presented here are Theorems 3.9, 4.7, and 4.12. These depend, firstly, on a vanishing theorem which we develop for the L^{2} -cohomologies of Hotta's elliptic complex [5], though they could be obtained via a shorter route. Since the vanishing theorem, Theorem 2.16 below, is of independent interest (it is the best possible) we have therefore so written Section 2 as to make it completely independent of the rest of the paper.

We take this opportunity to express our heart-felt thanks to the mathematics faculty of Sophia University for their many kindnesses and for providing us the pleasant and stimulating environment, and resources, to conduct this research.

§ 2. The Hotta complex

In this section we recall the elliptic complex (a generalization of the Dolbeault complex) constructed by Hotta [5] whose "bootstrap" is the Dirac operator. We prove a sharp vanishing theorem for the L^2 -cohomologies of this complex. Applications to automorphic cohomology are given in Sections 3, 4.

Let K be a maximal compact subgroup of G which contains a Cartan subgroup H of G. We denote by g, k, h the complexifications of the Lie algebras g_0 , k_0 , h_0 of G, K, H respectively. Let (,) denote the Killing form of g, let $g_0 = k_0 + p_0$ be a Cartan decomposition of g_0 where p_0 is the orthocomplement of k_0 in g_0 with respect to (,), and let p denote the complexification of p_0 . We shall write Δ for the set of non-zero roots of (g, h), and for $Q \subset \Delta$ we shall write $\langle Q \rangle$ for the sum $\sum_{\alpha \in Q} \alpha$. Let Δ_k , Δ_n denote the set of compact, non-compact roots, respectively. Thus if g_β is the root space of $\beta \in \Delta$, $\beta \in \Delta_k \iff g_\beta \subset k$; $\Delta_n = \Delta - \Delta_k$. We assume that G^c is simply connected. The character group of H is then identified with the lattice

(2.1)
$$\mathscr{L} = \{\lambda \in \operatorname{Hom}_{\mathbf{R}}(\sqrt{-1}h_0, \mathbf{R}) | \lambda \text{ is integral} \}.$$

2

Here of course **R** is the field of real numbers and integrality means that $2(\lambda, \alpha)/(\alpha, \alpha) \in \mathbb{Z}$, the ring of integers, for each α in Δ . If $\Sigma^+ \subset \Delta$ is a system of positive roots let $\Sigma_k^+, \Sigma_n^+ = \Sigma^+ \cap \Delta_k, \Sigma^+ \cap \Delta_n$, respectively, and let

(2.2)
$$\mathscr{L}(\Sigma_k^+) = \{\lambda \in \mathscr{L} | (\lambda, \alpha) \ge 0 \text{ for } \alpha \in \Sigma_k^+\}.$$

For $\lambda \in \mathscr{L}(\Sigma_k^+)$ let V_{λ} be the irreducible K module with Σ_k^+ -highest weight λ . Let

(2.3)
$$\mathscr{L}_{0}(\Sigma_{k}^{+}) = \left\{ \lambda \in \operatorname{Hom}_{\mathbf{R}}(\sqrt{-1}h_{0}, \mathbf{R}) \middle| \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \in \mathbf{Z}^{+} \quad \text{for } \alpha \in \Sigma_{k}^{+} \right\}$$

where \mathbb{Z}^+ is the set of non-negative integers, and let V_{λ} be the irreducible k module with Σ_k^+ -highest weight λ for $\lambda \in \mathscr{L}_0(\Sigma_k^+)$. The 1/2-spin modules for k will be denoted by S^\pm , with the convention that $\{\delta_n(\Sigma^+) - \langle Q \rangle | Q \subset \Sigma_n^+, (-1)^{|Q|} = \pm 1\}$ is the set of weights of S^\pm , where $2\delta_n(\Sigma^+) = \langle \Sigma_n^+ \rangle$, and where |Q| is the cardinality of a set Q. For $\lambda \in \mathscr{L}$ such that $\lambda + \delta_n(\Sigma^+) \in \mathscr{L}_0(\Sigma_k^+)$ the k-representations $S^\pm \otimes V_{\lambda+\delta_n(\Sigma^+)}$ integrate to representations of K. Thus we can form the induced homogeneous C^∞ vector bundles $E_{\lambda}^\pm, E_{\lambda} \rightarrow G/K$ with fibers $S^\pm \otimes V_{\lambda+\delta_n(\Sigma^+)}, S \otimes V_{\lambda+\delta_n(\Sigma^+)}$, where $S = S^+ \oplus S^-$ and assuming, whenever necessary (without loss of generality), that G/K is a spin manifold we can consider the twisted Dirac operators $D_{\lambda}^\pm, D_{\lambda}$ on G/K: $D_{\lambda}: \Gamma^\infty E_{\lambda} \rightarrow \Gamma^\infty E_{\lambda}, D_{\lambda}^\pm = D_{\lambda}|_{\Gamma^\infty E_{\lambda}^\pm}: \Gamma^\infty E_{\lambda}^\pm \rightarrow \Gamma^\infty E_{\lambda}^\pm, [9]$, where Γ^∞ denotes the space of C^∞ sections. Let $m = \frac{1}{2} \dim G/K, 2\delta(\Sigma^+) = \langle \Sigma^+ \rangle$, and let Ω be the Casimir operator of g.

Theorem 2.4 (Lemma 3.3 of [5]). Let $\lambda \in \mathcal{L}$ such that $\lambda + \delta_n(\Sigma^+) \in \mathcal{L}_0(\Sigma_k^+)$ as above. Then there is a direct sum K module decomposition

(2.5)
$$S^{\pm} \otimes V_{\lambda+\delta_n(\Sigma^+)} = \sum_{(-1)^q = \pm 1} V^q_{\lambda+2\delta_n(\Sigma^+)}$$

and a sequence of first order G-invariant differential operators $D^q: \Gamma^{\infty}E_{\lambda,q} \rightarrow \Gamma^{\infty}E_{\lambda,q+1}$, where $E_{\lambda,q} \rightarrow G/K$ is the homogeneous vector bundle induced by $V_{\lambda+2\delta_n(\Sigma^+)}^q, 0 \le q \le m-1, V_{\lambda+2\delta_n(\Sigma^+)}^q = V_{\lambda+2\delta_n(\Sigma^+)}$, such that

$$0 \to \Gamma^{\infty} E_{\lambda,0} \xrightarrow{D^0} \Gamma^{\infty} E_{\lambda,1} \xrightarrow{D^1} \cdots \xrightarrow{D^{m-1}} \Gamma^{\infty} E_{\lambda,m} \to 0$$

is an elliptic complex. If $(D^q)^*$: $\Gamma^{\infty}E_{\lambda,q+1} \rightarrow \Gamma^{\infty}E_{\lambda,q}$ is the formal adjoint of D^q (for suitable metrics on the $E_{\lambda,q}$ induced by K-invariant inner products on the $V^q_{\lambda+2\delta_n(\Sigma^+)}$) and $\square^q = (D^q)^*D^q + D^{q-1}(D^{q-1})^*$: $\Gamma^{\infty}E_{\lambda,q} \rightarrow \Gamma^{\infty}E_{\lambda,q}$ is the corresponding Laplacian then $D + D^*$: $\Gamma^{\infty}\sum_{(-1)^q=1}E_{\lambda,q} \rightarrow \Gamma^{\infty}\sum_{(-1)^q=-1}E_{\lambda,q}$ is the Dirac operator $D^+_{\lambda}: \Gamma^{\infty}E^+_{\lambda} \rightarrow \Gamma^{\infty}E^-_{\lambda}$ (under the identification (2.5)) and

(2.6)
$$\square^{q} = -\Omega + (\lambda, \lambda + 2\delta(\Sigma^{+}))1$$

on $\Gamma^{\infty}E_{\lambda,q}$.

Now let $\Gamma \subset G$ be a finitely generated discrete torsion-free subgroup. Choosing an invariant measure dx on $\Gamma \setminus G$ induced by Haar measure on G, and letting $(\Gamma^{\infty} E_{\lambda,q})^{\Gamma}$ denote the space of Γ -invariant sections in $\Gamma^{\infty} E_{\lambda,q}$ we have the usual inner product

(2.7)
$$\langle s_1, s_2 \rangle_{\Gamma} = \int_{\Gamma \setminus G} \langle s_1, s_2 \rangle dx$$

on the subspace of compactly supported Γ -invariant sections s_1, s_2 where \langle , \rangle is a K-invariant inner product on $V_{\lambda+2\delta_n(\Sigma^+)}^q$. Let $L^2(E_{\lambda,q})^r$ be the Hilbert space completion of the latter subspace; i.e. $L^2(E_{\lambda,q})^r$ is the space of L^2 -sections of $\Gamma \setminus E_{\lambda,q}$. The G-invariant operator \prod^q (which is Γ -invariant in particular) descends to a differential operator \prod^q_{Γ} on $\Gamma \setminus E_{\lambda,q}$. The q^{th} - L^2 -cohomology of the complex $\{E_{\lambda,q}, D^q\}$ with respect to Γ is defined by

(2.8)
$$H_2^q(\Gamma \setminus E_\lambda) = \{ s \in L^2(E_{\lambda,q})^{\Gamma} | \prod_{l=1}^{q} s = 0 \text{ in the sense of distributions} \}.$$

Thus $H_2^q(\Gamma \setminus E_\lambda)$ is the L^2 -kernel of \square_{Γ}^q . By our assumptions on Γ the Riemannian metric on $\Gamma \setminus G/K$ is complete and thus, as pointed out in [5], one has

Theorem 2.9. The q^{th} - L^2 -cohomology space $H_2^q(\Gamma \setminus E_\lambda)$ coincides with the space

$$(2.10) H_2^q(E_\lambda)^{\Gamma} \stackrel{\text{def.}}{=} \{ s \in (\Gamma^{\infty} E_{\lambda,q})^{\Gamma} | D^q s = (D^{q-1})^* s = 0, \qquad ||s||_{\Gamma}^2 < \infty \}.$$

The elliptic operators \Box_{Γ}^{q} are *locally invariant*; i.e. they admit a *G*-invariant lift to $E_{\lambda,q}$ —via \Box^{q} . Hence if Γ is a lattice in *G*, i.e. $\Gamma \backslash G$ has a finite *G*-invariant volume (in particular Γ is then finitely generated so that Theorem 2.9 applies), we can apply a recent theorem of Moscovici (Theorem 2.1 of [8]) to conclude that \Box_{Γ}^{q} has a finite dimensional L^{2} -kernel. More precisely we have the following

Theorem 2.11. Let $\Gamma \subset G$ be a torsion-free lattice. Assume in addition that Γ is subject to the mild technical condition¹⁾ of Langlands' [7] (also cf. (2.21) of [18]) so that under the right regular representation of G, $L^2(\Gamma \setminus G)$

4

¹⁾ In the rank 1 case this condition is automatically satisfied, as Warner points out [12]. It is also satisfied if G has no compact simple factors—as was pointed out to the author by Prof. M. Osborne.

(and accordingly $L^2(E_{\lambda,q})^{\Gamma}$) decomposes into a discrete and continuous spectrum:

(2.12)
$$L^{2}(\Gamma \backslash G) = L^{2}_{d}(\Gamma \backslash G) \oplus L^{2}_{c}(\Gamma \backslash G)$$
$$L^{2}(E_{\lambda,q})^{\Gamma} = L^{2}_{d}(E_{\lambda,q})^{\Gamma} \oplus L^{2}_{c}(E_{\lambda,q})^{\Gamma}.$$

Then the $q^{th}-L^2$ -cohomology space $H_2^q(\Gamma \setminus E_\lambda)$ in (2.8) (which coincides with $H_2^q(E_\lambda)^{\Gamma}$ in (2.10) by Theorem 2.9) is finite-dimensional and also

(2.13)
$$H_2^q(\Gamma \setminus E_{\lambda}) = the \ L^2-kernel \ of \ \Box_{\Gamma}^q \ on \ L^2_d(E_{\lambda,q})^{\Gamma}.$$

Write \hat{G} for the set of equivalence classes of irreducible unitary representations of G and write \hat{G}_a for the subset of elements of \hat{G} occurring in the discrete spectrum of $L^2(\Gamma \setminus G)$:

(2.14)
$$L^2_a(\Gamma \backslash G) = \sum_{\pi \in \hat{G}_d} m_{\pi}(\Gamma) \pi$$
 (direct sum)

where $m_{\pi}(\Gamma)$ is the (finite) multiplicity of π . Let H_{π} be the Hilbert space of $\pi \in \hat{G}$.

Corollary 2.15. For Γ as in the statement of Theorem 2.11, $q \ge 0$, and λ as in Theorem 2.4

dim
$$H_2^q(\Gamma \setminus E_{\lambda}) = \sum_{\pi \in \widehat{G}_d} m_{\pi}(\Gamma)$$
 dim $\operatorname{Hom}_K(H_{\pi}, V_{\lambda+2\widehat{\sigma}_{\pi}(\Sigma^+)}^q)$
 $\pi(\Omega) = (\lambda, \lambda + 2\delta(\Sigma^+))1.$

Proof. Using (2.13) and (2.14), $H_2^q(\Gamma \setminus E_{\lambda}) = \sum_{\pi \in \partial_d} m_{\pi}(\Gamma) \ker \pi([\Box_{\ell}^q])$, where $\pi([\Box_{\ell}^q])$: $(H_{\pi} \otimes V_{\lambda+2\delta(\Sigma^+)}^q)^K \to (H_{\pi} \otimes V_{\lambda+2\delta(\Sigma^+)}^q)^K$ is given by $\pi([\Box_{\ell}^q]) = -\pi(\Omega) + (\lambda, \lambda + 2\delta(\Sigma^+))1$; see (2.6). Of course $\pi(\Omega)$ is a scalar multiple of 1, say $\pi(\Omega) = c_{\pi}1$. Hence Ker $\pi([\Box_{\ell}^q])$ is zero unless $c_{\pi} = (\lambda, \lambda + 2\delta(\Sigma^+))1$, in which case it is the full space. That is $H_2^q(\Gamma \setminus E_{\lambda}) = \sum_{\pi \in \partial_d} m_{\pi}(\Gamma)(H_{\pi} \otimes V_{\lambda+2\delta(\Sigma^+)}^q)^K$, $\pi(\Omega) = (\lambda, \lambda + 2\delta(\Sigma^+))1$. If π^* is the contragradient of π , then $m_{\pi}(\Gamma) = m_{\pi^*}(\Gamma)$ and dim $(H_{\pi} \otimes V_{\lambda+2\delta(\Sigma^+)}^q)^K = \dim \operatorname{Hom}_K(H_{\pi^*}, V_{\lambda+2\delta(\Sigma^+)}^q)$ so that Corollary 2.15 follows.

The following vanishing theorem improves the vanishing theorem obtained in Section 6 of [5].

Theorem 2.16. Let $\lambda \in \mathcal{L}$ such that $\lambda + \delta_n(\Sigma^+) \in \mathcal{L}_0(\Sigma_k^+)$. Suppose $(\lambda, \alpha) > 0$ for every α in Σ_n^+ . Then $H_2^q(\Gamma \setminus E_\lambda) = 0$ for q > 0 (again for Γ satisfying the conditions of Theorem 2.11). Moreover dim $H_2^0(\Gamma \setminus E_\lambda)$ equals the multiplicity $m_{\pi_{\lambda+\delta}(\Sigma^+)}(\Gamma)$ (in the discrete spectrum of $L^2(\Gamma \setminus G)$) of Harish-Chandra's discrete series representation $\pi_{\lambda+\delta}(\Sigma^+)$ [2] corresponding to the

regular element $\lambda + \delta(\Sigma^+)$; cf. remarks preceding (2.18) below.

We base the proof of Theorem 2.16 on Corollary 2.15 and on the following result, which is a special case of a more general result proved in [17]. See Corollary 2.9 and Theorem 2.13 there.

Theorem 2.17. Let $\lambda \in \mathscr{L}$ such that $(\lambda + \delta(\Sigma^+), \alpha) > 0$ for every α in Σ_k^+ and $(\lambda, \beta) > 0$ for every β in Σ_n^+ . Let $\pi \in \hat{G}$ such that $\pi(\Omega) = (\lambda, \lambda + 2\delta(\Sigma^+))1$. Then $\operatorname{Hom}_{\mathcal{K}}(H_{\pi}, S^- \otimes V_{\lambda+\delta_n(\Sigma^+)}) = 0$. If $\operatorname{Hom}_{\mathcal{K}}(H_{\pi}, S^+ \otimes V_{\lambda+\delta_n(\Sigma^+)}) \neq 0$, π is unitarily equivalent to $\pi_{\lambda+\delta(\Sigma^+)}$ (in which case dim $\operatorname{Hom}_{\mathcal{K}}(H_{\pi}, S^+ \otimes V_{\lambda+\delta_n(\Sigma^+)}) \neq 0$. =1). In particular (by Schmid's lowest K-type theorem) $\pi|_{\mathcal{K}}$ contains no K-type of the form $V_{\lambda+2\delta_n(\Sigma^+)-\langle Q \rangle}$, where $Q \subset \Sigma_n^+$ is non-empty, and $\pi|_{\mathcal{K}}$ contains $V_{\lambda+2\delta_n(\Sigma^+)}$ exactly once.

Proof of Theorem 2.16. Suppose $H_2^q(\Gamma \setminus E_{\lambda}) \neq 0$. Then by Corollary 2.15 $\operatorname{Hom}_{\kappa}(H_{\pi}, V_{\lambda+2\delta_n(\Sigma^+)}^q) \neq 0$ for some $\pi \in \hat{G}_d$ satisfying $\pi(\Omega) = (\lambda, \lambda + 2\delta(\Sigma^+))1$. Thus there is a K-type V_{μ} contained in $\pi|_{\kappa}$ and in $V_{\lambda+2\delta_n(\Sigma^+)}^q$. By (2.5) $V_{\mu} \subset S^{\pm} \otimes V_{\lambda+\delta_n(\Sigma^+)}$. Since $\operatorname{Hom}_{\kappa}(H_{\pi}, S^{-} \otimes V_{\lambda+\delta_n(\Sigma^+)}) = 0$ by Theorem 2.17 we actually have $V_{\mu} \subset S^{+} \otimes V_{\lambda+\delta_n(\Sigma^+)}$; i.e. $\operatorname{Hom}_{\kappa}(H_{\pi}, S^{+} \otimes V_{\lambda+\delta_n(\Sigma^+)}) \neq 0$. By Theorem 2.17, again, $\pi = \pi_{\lambda+\delta(\Sigma^+)}$ and μ cannot have the form $\mu = \lambda + 2\delta_n(\Sigma^+) - \langle Q \rangle$ for $Q \subset \Sigma_n^+, Q \neq \phi$. But by (i), $\mu = a$ weight of S^+ $+\lambda + \delta_n(\Sigma^+) = \delta_n(\Sigma^+) - \langle Q \rangle + \lambda + \delta_n(\Sigma^+) = \lambda + 2\delta_n(\Sigma^+) - \langle Q \rangle$, where $Q \subset \Sigma_n^+, (-1)^{|Q|} = 1$. Moreover $Q \neq \phi$ for q > 0 since then $\mu \neq \lambda + 2\delta_n(\Sigma^+)$. This forces $H_2^q(\Gamma \setminus E_{\lambda}) = 0$ for q > 0. Our argument, in conjunction with Corollary 2.15, shows that

$$\dim H_{2}^{0}(\Gamma \setminus E_{\lambda}) = m_{\pi_{\lambda+\delta(\Sigma^{+})}}(\Gamma) \dim \operatorname{Hom}_{K}(H_{\pi_{\lambda+\delta(\Sigma^{+})}}, V_{\lambda+2\delta_{n}(\Sigma^{+})}^{0}) = m_{\pi_{\lambda+\delta(\Sigma^{+})}}(\Gamma),$$

since $V_{\lambda+2\delta_n(\Sigma+)}^0 = V_{\lambda+2\delta_n(\Sigma+)}$ is contained in $\pi_{\lambda+\delta(\Sigma+)}|_K$ exactly once. This proves Theorem 2.16.

Remarks. The discrete series representation $\pi_{\lambda+\delta(\Sigma^+)}$ corresponds to the character θ_{λ} given on the compact Cartan subgroup H by the formula

(2.18)
$$\theta_{\lambda}(\exp x) = \frac{(-1)^{m} \operatorname{sgn} \prod_{\alpha \in \Sigma^{+}} (\lambda + \delta(\Sigma^{+}), \alpha) \sum_{\sigma \in W(K, H)} \det \sigma e^{\sigma(\lambda + \delta(\Sigma^{+}))(x)}}{\prod_{\alpha \in \Sigma^{+}} (e^{\alpha(x)/2} - e^{-\alpha(x)/2})}$$

for $x \in h_0$, where W(K, H) is the Weyl group of (K, H) [2]. $\pi_{\lambda+\delta(\Sigma^+)}$ satisfies $\pi_{\lambda+\delta(\Sigma^+)}(\Omega) = (\lambda, \lambda+2\delta(\Sigma^+))1$.

The Dirac operators D_{λ}^{\pm} which we considered earlier also descend to locally invariant elliptic differential operators ${}_{\Gamma}D_{\lambda}^{\pm}$ on $\Gamma \setminus G/K$ which have

finite L^2 -kernels, again by Moscovici's theorem [8]. The L^2 -index of ${}_{\Gamma}D^+_{\lambda}$ is defined by

(2.19)
$$\operatorname{ind} ({}_{\Gamma}D_{i}^{+}) = \dim L^{2} \operatorname{Ker}_{\Gamma}D_{i}^{+} - \dim L^{2} \operatorname{Ker}_{\Gamma}D_{i}^{-}.$$

A consequence of Theorem 2.4 is

(2.20)
$$\sum_{q=0}^{m} (-1)^{q} \dim H_{2}^{q}(\Gamma \setminus E_{\lambda}) = \operatorname{ind} ({}_{\Gamma}D_{\lambda}^{+})$$

since \square^q and $D^q + (D^{q-1})^*$ have the same L^2 -kernel. The vanishing Theorem 2.16, therefore gives

Corollary 2.21. In Theorem 2.16 we also have dim $H_2^0(\Gamma \setminus E_{\lambda}) = \operatorname{ind}({}_{\Gamma}D_{\lambda}^+)$.

Remark. In Theorem 2.7 of [19] we have proved that, in particular, for λ satisfying Theorem 2.16

(2.22)
$$m_{\pi_{\lambda+\delta(\Sigma^+)}}(\Gamma) \equiv \operatorname{ind}(_{\Gamma}D_{\lambda}^+).$$

Thus Corollary 2.21 also follows by (2.22).

The λ 's which we shall consider in later applications will satisfy, in addition, the so-called # condition:

(2.23)
$$(\lambda + \delta_n(\Sigma^+) + \delta(\Sigma^+) - \langle Q \rangle, \alpha) \ge 0$$
 for every α in Σ_k^+ and $Q \subset \Sigma_n^+$.

Under the \sharp condition the first differential operator D^0 : $\Gamma^{\infty}E_{\lambda,0} \rightarrow \Gamma^{\infty}E_{\lambda,1}$ in Theorem 2.4 coincides with Schmid's differential operator $\mathscr{D} = \mathscr{D}(\Sigma^+)$, constructed using the positive system Σ^+ ; see [11]; also cf. Section 2 of [18]. If, moreover, Σ^+ satisfies an "admissibility" condition the above elliptic complex coincides with the (cohomologically constructed) complex of [4]. In summary, (with some slight changes in notation), Theorems 2.9, 2.16 and Corollary 2.21 yield the following

Theorem 2.24. Let $\Gamma \subset G$ be a torsion-free lattice as in Theorem 2.11. Let $\lambda \in \mathscr{L}$ such that $\lambda + \delta_n(\Sigma^+) \in \mathscr{L}_0(\Sigma^+_k)$ (see (2.3), and such that λ satisfies the \sharp condition (2.23). Let $E_{\lambda} \rightarrow G/K$ be the homogeneous vector bundle over G/K induced by the irreducible K module $V_{\lambda+2\delta_n(\Sigma^+)}$ with Σ^+_k -highest weight $\lambda+2\delta_n(\Sigma^+)$. Let $H_2^0(E_{\lambda})^{\Gamma} = \{s \in \Gamma^{\infty}E_{\lambda}|s \text{ is } \Gamma\text{-invariant}, \mathscr{D}(\Sigma^+)s=0,$ and $||s||^2 < \infty\}$; cf. (2.7). Then $H_2^0(E_{\lambda})^{\Gamma}$ coincides with the (finite-dimensional) L^2 -kernel of \Box_{Γ} on the L^2 -sections of $\Gamma \setminus E_{\lambda}$, where \Box_{Γ} is the descent of $\Box = \mathscr{D}(\Sigma^+)^* \mathscr{D}(\Sigma^+)$ to $\Gamma \setminus E_{\lambda}$. Suppose moreover that $(\lambda, \alpha) > 0$ for every

 α in Σ_n^+ . Then dim $H_2^0(E_{\lambda})^{\Gamma} = m_{\pi_{\lambda+\delta(\Sigma^+)}}(\Gamma)$ (cf. (2.18)) = the L²-index of the Dirac operator $_{\Gamma}D_{\lambda}^+$: $\Gamma^{\infty}(\Gamma \setminus E_{\lambda}^+) \to \Gamma^{\infty}(\Gamma \setminus E_{\lambda}^-)$, where the bundles $E_{\lambda}^{\pm} \to G/K$ are induced by the K modules $S^{\pm} \otimes V_{\lambda+\delta_n(\Sigma^+)}$.

§ 3. A general dimension formula

Before restricting attention to the rank 1 case altogether we express the dimension of automorphic cohomology, more generally, as a discrete series multiplicity in the discrete spectrum of $L^2(\Gamma \setminus G)$ or, equivalently, as the L^2 -index of a twisted Dirac operator.

We retain the notation of Sections 1, 2 and denote by p, v_0 the Lie algebras of P, V. Choose a system of positive roots $\Delta^+ \subset \Delta$ such that

(3.1)
$$p \supset$$
 the Borel subalgebra $b = h + \sum_{\alpha \in \mathcal{A}^+} g_{-\alpha}$.

We can arrange the inclusions $H \subset V \subset K$ and write

(3.2)
$$p = v \oplus n$$
 where v (the reductive part of \underline{p}) is the complexification
of v_0 , $v = h + \sum_{\alpha \in A_v} g_\alpha$, $\underline{n} = \sum_{\alpha \in A^+ - A_v} g_{-\alpha} =$ the unipotent radical of \underline{p} ,

and Δ_v is the set of roots of (v, h); $\Delta_v \subset \Delta_k$. With Δ^+ fixed we shall always write $2\delta = \langle \Delta^+ \rangle$, $2\delta_k = \langle \Delta_k^+ \rangle$, $2\delta_n = \langle \Delta_n^+ \rangle$, $\Delta_v^+ = \Delta^+ \cap \Delta_v$. Next let $E_{\pi_\lambda} \rightarrow D$ be a homogeneous (necessarily holomorphic) vector bundle over D induced by an irreducible representation π_λ of V with Δ_v^+ -highest weight λ . We always assume that E_{π_λ} is *non-degenerate*; i.e. λ satisfies

(3.3)
$$(\lambda + \delta_k + \langle Q \rangle, \alpha) > 0$$
 for all $\alpha \in \mathcal{A}_v^+$

and

 $(\lambda + \delta_k + \langle Q \rangle, \alpha) < 0$ for all $\alpha \in \Delta_k^+ - \Delta_v^+$

for arbitrary $Q \subset \mathcal{A}_n^+$.

Let W_k , W_v be the Weyl groups of (k, h), (v, h) respectively; W_k coincides with W(K, H) in the notation of (2.18). Let $w \subset W_k$ be the unique element such that

(3.4)
$$(w(\lambda + \delta_k), \alpha) < 0$$
 for every $\alpha \in \mathcal{A}_k^+$

and define $\kappa \in W_k$, $\nu \in h^*$ (the dual space) by

(3.5)
$$\kappa \Delta_k^+ = -\Delta_k^+, \qquad \nu = w(\lambda + \delta_k) + \delta_k.$$

Then by Corollary 2.14 of [18] one has (3.6) and (3.7) below:

On the Dimension of Spaces of Automorphic Cohomology

(3.6)
$$w \in W_v, w\Delta_v^+ = -\Delta_v^+, w\Delta_n^+ = \Delta_n^+, w(\Delta_k^+ - \Delta_v^+) = \Delta_k^+ - \Delta_v^+,$$

and $(\nu + \langle Q \rangle, \alpha) \le 0$ for $\alpha \in \Delta_k^+, Q \subset \Delta_n^+.$

Moreover if s is the dimension of the maximal compact complex subvariety Y = K/V of D, and $E_{\nu} \rightarrow G/K$ is the homogeneous vector bundle over G/K induced by the irreducible K module with Δ_k^+ -lowest weight ν (by the Borel-Weil theorem the latter module can be taken to be $H^s(Y, \mathcal{O}E_{\pi_2})$), then the Γ -automorphic cohomology $H^s(D, \mathcal{O}E_{\pi_2})^r$ of D is given, up to isomorphism [15], by

(3.7)
$$H^{s}(D, \mathcal{O}E_{\pi})^{\Gamma} = \text{the } \Gamma \text{-invariant } C^{\infty} \text{ sections } s \text{ of } E_{\nu} \text{ such that } \mathscr{D}s = 0$$

where \mathscr{D} is Schmid's differential operator constructed relative to the choice of positive system $\Sigma^+ \stackrel{(\mathrm{ii})}{=} -\kappa \Delta^+$, and $\Gamma \subset G$ is a torsion-free discrete subgroup. Again if we choose an invariant measure on $\Gamma \setminus G$ induced by Haar measure on G and Hermitian metrics along the fibers of E_{ν} induced by a K-invariant unitary structure on the inducing module $H^s(Y, \mathscr{O}E_{\pi_2})$ then we have an inner product $\langle , \rangle_{\Gamma}$, given as in (2.7), on the compactly supported Γ -invariant C^{∞} sections of E_{ν} . We define the L^2 - Γ -automorphic cohomology $H_2^s(D, \mathscr{O}E_{\pi_2})^r$ by

(3.8)
$$H_2^s(D, \mathcal{O}E_{\pi_2})^{\Gamma} = \{s \in H^s(D, \mathcal{O}E_{\pi_2})^{\Gamma} | ||s||^2 < \infty\}; \text{ see } (3.7).$$

Define $\lambda_1 = \kappa \nu - 2\delta_n(\Sigma^+) = \kappa \nu + \kappa 2\delta_n$ (by (ii)) $\in \mathscr{L}$. Then $\lambda_1 + \delta_n(\Sigma^+) =$ $\kappa(\nu+\delta_n) \stackrel{\text{(iii)}}{=} \kappa(\nu+2\delta_n) - \kappa\delta_n \Rightarrow (\lambda_1+\delta_n(\Sigma^+), \alpha) \ge 0 \text{ for } \alpha \in \mathcal{A}_k^+ \text{ by (3.6) (where}$ we take $Q = \Delta_n^+$). That is, noting that $\Sigma_k^+ = \Delta_k^+$ of course, we can write the Δ_k^+ -highest weight $\kappa\nu$ (cf. (3.5)) as $\kappa\nu = \lambda_1 + 2\delta_n(\Sigma^+)$, where $\lambda_1 \in \mathscr{L}$ such that $\lambda_1 + \delta_n(\Sigma^+) \in \mathscr{L}_0(\Sigma_k^+)$. Moreover for $\alpha \in \mathcal{A}_k^+$ and $Q_1 \subset \Sigma_n^+ = -\kappa \mathcal{A}_n^+$ (again by (ii)), using $\kappa \delta_k = -\delta_k$ and $Q_1 = -\kappa Q$, $Q \subset \mathcal{A}_n^+$, we see that $(\lambda_1 + \delta_n(\Sigma^+) + \delta(\Sigma^+) - \langle Q_1 \rangle, \alpha) = (\kappa \nu + \delta_k + \kappa \langle Q \rangle, \alpha) = (\nu + \langle Q \rangle - \delta_k, \kappa \alpha) > 0$ by (3.6). In other words λ_1 also satisfies the # condition (2.23) and hence Theorem 2.24 is applicable. By (3.8) $H_2^s(D, \mathcal{O}E_{\pi_2}) \equiv H_2^0(E_{\lambda_2})^r$, in the notation of Theorem 2.24. The condition $(\lambda_1, \alpha) \stackrel{(iv)}{>} 0$ for α in Σ_n^+ translates to the condition $(\kappa\nu + \kappa 2\delta_n, -\kappa\alpha) > 0$ for α in Δ_n^+ ; i.e. $(\nu + 2\delta_n, \Delta_n^+) < 0$; i.e. (by (3.5)) $(w(\lambda + \delta_k) + \delta_k + 2\delta_n, \Delta_n^+) < 0$. Also $\lambda_1 + \delta(\Sigma^+) = \kappa(\nu + \delta_n) + \delta_k =$ $\kappa[w(\lambda + \delta_k) + \delta_k + \delta_n] + \delta_k = \kappa[w(\lambda + \delta_k) + \delta_n]$ (again since $\kappa \delta_k = -\delta_k$) = $\kappa w(\lambda + \delta)$, since $\delta_n = w \delta_n$ by (3.6). That is, $\lambda_1 + \delta(\Sigma^+)$ and $\lambda + \delta$ lie in the same W_k orbit, which implies that the corresponding discrete series representations $\pi_{\lambda_1+\delta(\Sigma^+)}$ and $\pi_{\lambda+\delta}$ are unitarily equivalent. Therefore by Theorem 2.24 (for Δ^+ chosen as in (3.1)) we have

Theorem 3.9. Let $E_{\pi_2} \rightarrow D$ be a non-degenerate homogeneous vector

bundle over D induced by an irreducible representation π_{λ} of V with Δ_{n}^{+} highest weight λ (cf. (3.3)). Suppose $(w(\lambda + \delta_k) + \delta_k + 2\delta_n, \alpha) < 0$ for every α in Δ_n^+ , where w is the Weyl group element given by (3.4) (also cf. (3.6)). Then if $\Gamma \subset G$ is a torsion-free lattice satisfying Langlands' condition, as in Theorem 2.11, (the latter condition is satisfied if for example Γ is arithmetic or if the real rank of G is 1) the L^2 - Γ -automorphic cohomology $H^s_2(D, \mathcal{O}E_{\pi})^{\Gamma}$ (see (3.8)). has dimension equal to the multiplicity $m_{\pi_{1+\pi}}(\Gamma)$ of the discrete series representation $\pi_{\lambda+\delta}$ in the discrete spectrum of $L^2(\Gamma \setminus G)$ (cf. (2.12), The character θ_{λ} of $\pi_{\lambda+\delta}$ is given in (2.18); there replace Σ^+ by Δ^+ . (2.14)).Moreover the multiplicity $m_{\pi_{1+\alpha}}(\Gamma)$ coincides with the L²-index (cf. (2.19)) of the Dirac operator $_{\Gamma}D_{\lambda}^{+}\lambda$: $\Gamma^{\infty}(\Gamma \setminus E_{\lambda}^{+}) \to \Gamma^{\infty}(\Gamma \setminus E_{\lambda}^{-})$, where the bundles $E_{\lambda}^{\pm} \to$ G/K are induced by the K-modules $S^{\pm} \otimes V_{\lambda_1+\delta_n(\Sigma^{\pm})}$, with $\lambda_1 = \kappa \nu - 2\delta_n(\Sigma^{\pm})$ $=\kappa(\nu+\delta_n)$, for κ, ν given by $(3.5)^{2}$, $\Sigma^+=-\kappa\Delta^+=\Delta^+_k\cup-\kappa\Delta^+_n$, and where the weights of the $\frac{1}{2}$ -spin modules S^{\pm} are $\{\delta_n(\Sigma^+) - \langle Q_1 \rangle | (-1)^{|Q_1|} = \pm 1, Q_1 \subset$ $\Delta_n^+ = \{-\kappa(\delta_n - Q) | (-1)^{|Q|} = \pm 1, \ Q \subset \Delta_n^+ \}; \ \lambda_1 + \delta(\Sigma^+) = \kappa w(\lambda + \delta).$

§ 4. Dimension formula for rank 1 groups

Theorem 3.9 reduces the dimension computation to an L^2 -index computation for the Dirac operator. For rank one groups the latter (nontrivial) computation has been carried out by Barbasch and Moscovici in [1], using the Selberg trace formula developed in [12]. We therefore assume henceforth that G is simple and the real rank of G is 1. The symmetric space G/K then has strictly negative sectional curvature and coincides with one of the four hyperbolic spaces $SO_e(2n, 1)/SO(2n)$, SU(n, 1)/U(n), Sp(n, 1)/SO(2n), SU(n, 1)/U(n), Sp(n, 1)/SO(2n), SU(n, 1)/SO(2n)1)/(Sp(n)×Sp(1)), of F_4 /Spin(9). If $\Gamma \subset G$ is a lattice we shall assume as in [1], the following condition (which implies in particular that Γ is torsionfree): the group generated by the eigenvalues of any $\gamma \in \Gamma$ contains no roots of unity. Γ is then called *neat*. The Iwasawa decomposition G =KAN gives rise to a standard normalization of Haar measure on G: $\int_{G} f(x) dx = \int_{K} \int_{A} \int_{N} f(kan) e^{2\rho (\log a)} dk da dn \text{ for } f \in C_{c}(G) \text{ where the Lie algebra}$ of A is a maximal abelian (1-dimensional) subspace of p_0 , the Lie algebra of N is a sum of positive restricted root spaces, and 2ρ is the sum (with multiplicity) of those corresponding positive restricted roots. Then if $\lambda' \in \mathscr{L}$ is a regular element the formal degree $d_{\lambda'}$ of the corresponding discrete series representation $\pi_{\lambda'}$ takes the form

(4.1)
$$d_{\lambda'} = c(G) |\prod_{\alpha \in \mathcal{A}^+} (\lambda', \alpha)|$$

where

²⁾ We have already observed that $\lambda_1 + \delta_n(\Sigma^+) \in \mathscr{L}_0(\mathcal{A}_k^+)$.

On the Dimension of Spaces of Automorphic Cohomology

(4.2)
$$\frac{1}{c(G)} = (2\pi)^m 2^{m-1/2} \prod_{\alpha \in \mathcal{A}_k^+} (\delta_k, \alpha).$$

If $G \neq SU(1, 1)$ and SU(2n, 1) the formula for the L^2 -index of the Dirac operator is surprisingly simple. Namely, using the notation of Theorem 3.9, one has

(4.3)
$$\operatorname{ind} (_{\Gamma}D_{\lambda}^{+}) = c(G) \prod_{\alpha \in \Sigma^{+} = -\epsilon d^{+}} (\lambda_{1} + \delta(\Sigma^{+}), \alpha) \operatorname{vol} (\Gamma \setminus G)$$

by the key result Theorem 7.1(a) of [1], where we are using the fact that $\lambda_1 + \delta(\Sigma^+)$ is *regular*. In fact $(\lambda_1 + \delta(\Sigma^+), \alpha) \gtrsim^{(v)} 0$ for every α in Σ^+ , under the hypotheses of Theorem 3.9 (compare the inequality (iv) following (3.8)). In applying results of [1] we take $\mu = \lambda_1 + \delta_n(\Sigma^+)$, $\psi_c = \Delta_k^+ = \Sigma_k^+$, $\rho_c = \delta_k$, $\psi = \Sigma^+$, to match the notation there. Of course vol($\Gamma \setminus G$) means the *G*-invariant volume of $\Gamma \setminus G$. Since $\lambda_1 + \delta(\Sigma^+) = \kappa w(\lambda + \delta)$ (by Theorem 3.9) and since $\Sigma_n^+ = -\kappa \Delta_n^+$ the inequality (v) along with $w \Delta_n^+ = \Delta_n^+$ in (3.6) forces the inequality

(4.4)
$$(\lambda + \delta, \alpha) < 0$$
 for every α n Δ_n^+ .

Writing $\Delta^+ = \Delta_n^+ \cup \Delta_k^+ = \Delta_n^+ \cup \Delta_v^+ \cup \Delta_k^+ - \Delta_v^+$ and using (3.6) we obtain

(4.5)
$$\prod_{\alpha \in \Sigma^+} (\lambda_1 + \delta(\Sigma^+), \alpha) = (-1)^{m+s} \prod_{\alpha \in J_n^+} (\lambda + \delta, \alpha) \prod_{\alpha \in J_v^+} (\lambda + \delta, \alpha) \prod_{\alpha \in J_k^+ - J_v^+} (\lambda + \delta, \alpha)$$

since $m = |\Delta_n^+|$ and $s = |\Delta_k^+ - \Delta_v^+|$. That is (3.3) and (4.4) imply

(4.6)
$$\prod_{\alpha \in \mathcal{I}^+} (\lambda_1 + \delta(\mathcal{I}^+), \alpha) = |\prod_{\alpha \in \mathcal{I}^+} (\lambda + \delta, \alpha)|.$$

This combined with (4.3) and Theorem 3.9 yields the following main result.

Theorem 4.7. Let $E_{\pi_{\lambda}} \rightarrow D$ be a non-degenerate homogeneous vector bundle over a flag domain D = G/V where π_{λ} is an irreducible representation (which induces $E_{\pi_{\lambda}}$) of V with Δ_{v}^{+} -highest weight λ and G is one of the rank 1 simple groups $SO_{e}(2n, 1)$ ($n \geq 2$), SU(n, 1) (n odd, $n \neq 1$), Sp(n, 1) (n arbitrary), or F_{4} . Suppose λ satisfies

(4.8)
$$(w(\lambda + \delta_k) + \delta_k + 2\delta_n, \alpha) < 0$$
 for every α in Δ_n^+

where w is the Weyl group element given by (3.4) (also cf. (3.6)). Then if Γ is a neat lattice in G the dimension of the L²- Γ -automorphic cohomology $H_2^s(D, \mathcal{O}E_{\pi})^{\Gamma}$ in (3.8) is given by

(4.9)
$$\dim H_2^s(D, \mathcal{O}E_{\pi_\lambda})^{\Gamma} = c(G) |\prod_{\alpha \in \mathcal{A}^+} (\lambda + \delta, \alpha)| \operatorname{vol}(\Gamma \setminus G).$$

c(G) is specified in (4.2) (for the above normalization of Haar measure on G) and Δ^+ is chosen according to (3.1). In particular $H_2^s(D, \mathcal{O}E_{\pi})^{\Gamma} \neq 0$; i.e. there exists non-zero square integrable automorphic cohomology classes on D.

Remark. The coefficient $c(G) |\prod_{\alpha \in J^+} (\lambda + \delta, \alpha)|$ of the volume of $\Gamma \setminus G$ in formula (4.9) is the formal degree of the discrete series representation $\pi_{\lambda+\delta}$ of G corresponding to the regular element $\lambda+\delta$; see (4.1). In the Hermitian case when G = SU(n, 1), s is zero and $H_2^s(D, \mathcal{O}E_{\pi\lambda})^{\Gamma}$ therefore is a space of square integrable automorphic forms on $D = SU(n, 1)/S(U(n) \times U(1))$.

An important example of a flag domain, apart from the classical bounded Hermitian symmetric domains or the Cartan domains G/H, is the period matrix domain $D=\mathrm{SO}_e(2n, 1)/\mathrm{U}(n)$ (or more generally the domain $D_{n,r}=\mathrm{SO}_e(2n, r)/(\mathrm{U}(n)\times\mathrm{SO}(r))$). Here P is a maximal parabolic subgroup of G^c , K/V is the compact irreducible Hermitian symmetric space $\mathrm{SO}(2n)/\mathrm{U}(n)$ and Δ^+ in (3.1) can be chosen so that $\Delta_n^+ = \{\alpha_j\}_{j=1}^n, \quad \Delta_k^+ =$ $\{\alpha_j \pm \alpha_i | j > i\}, \ \Delta_v^+ = \{\alpha_j - \alpha_i | j > i\}, \ \text{with } (\alpha_i, \alpha_j) \stackrel{(\text{vi})}{=} \frac{\delta_{ij}}{2(2n-1)}$; cf. Section 3 of [18]. For an irreducible representation π_λ of $V = \mathrm{U}(n)$ with Δ_v^+ -highest weight λ one has $\lambda = \sum_{j=1}^n m_j \alpha_j$, with $m_1 \le m_2 \le \cdots \le m_n$ and $2m_i, m_j \pm m_k$ $\in \mathbb{Z}$ for $1 \le i \le n, j > k$.

Proposition 4.10. The induced bundle $E_{\pi_1} \rightarrow D$ is non-degenerate if and only if (i) $m_1 < m_2 < \cdots < m_n$ and (ii) $m_n + n + m_{n-1} + n - 1 < 0$.

Proof. If E_{π_i} is non-degenerate apply (3.3) firstly with $Q = \{\alpha_i\} \subset \Delta_n^+$ and $\alpha_{i+1} - \alpha_i \in \Delta_v^+$. Noting that $\lambda + \delta_k = \sum_{i=1}^n (m_i + l - 1)\alpha_i$ we get $0 < (\lambda + \delta_k + \alpha_i, \alpha_{i+1} - \alpha_i) = (m_{i+1} - m_i)/2(2n-1)$ by (vi); i.e. $m_{i+1} > m_i$ for $1 \le i \le n-1 \Rightarrow$ (i). Secondly, taking $Q = \{\alpha_{n-1}, \alpha_n\} \subset \Delta_n^+$ and $\alpha_n + \alpha_{n-1} \in \Delta_k^+ - \Delta_v^+$ in (3.3) we obtain (ii) by a similar argument. Conversely, assume (i), (ii) and let $Q \subset \Delta_n^+$ be arbitrary. Then $(\langle Q \rangle, \alpha_j - \alpha_i) = \sum_{\alpha \in Q} (\alpha, \alpha_j) - \sum_{\alpha \in Q} (\alpha, \alpha_i) \ge -1/2(2n-1)$ and $(\langle Q \rangle, \alpha_j + \alpha_i) \le 2/2(2n-1)$ by (vi). Hence for j > i, i.e. $\alpha_j - \alpha_i \in \Delta_v^+, \alpha_j + \alpha_i \in \Delta_k^+ - \Delta_v^+, (\lambda + \delta_k + \langle Q \rangle, \alpha_j - \alpha_i) = (\lambda + \delta_k, \alpha_j - \alpha_i) + (\langle Q \rangle, \alpha_j - \alpha_i) = (m_j - m_i + (j-i))/2(2n-1) + (\langle Q \rangle, \alpha_j - \alpha_i)$ (again by (vi)) $\ge (m_j - m_i + j - i - 1)/2(2n-1) > 0$ by (i). Similarly $(\lambda + \delta_k + \langle Q \rangle, \alpha_j + \alpha_i) = (m_j + m_i + j + i - 2)/2(2n-1) + (\langle Q \rangle, \alpha_j - \alpha_i) \le (m_j + m_i + j + i)/2(2n-1) < 0$ by (ii) since $m_j + m_i + j + i \le m_n + m_{n-1} + n + n - 1$. Thus (3.3) follows. Q.E.D.

By (3.10) of [18], $w(\lambda + \delta_k) + \delta_k + 2\delta_n = \sum_{l=1}^n (m_{n-l+1} + n)\alpha_l$ for w in

12

(3.6). From (vi) it follows that (4.8) holds $\Leftrightarrow m_{n-j+1} + n < 0$ for $1 \le j \le n \Leftrightarrow m_n + n < 0$. The last inequality implies (ii) of Proposition 4.10. Also from the above data

(4.11)
$$\prod_{\alpha \in J^+} (\alpha_k, \alpha) = \left[\frac{1}{2(2n-1)}\right]^{n(n-1)} \prod_{1 \le i < j \le n} (j+i-2) (j-i),$$
$$\prod_{\alpha \in J^+} (\lambda + \delta, \alpha) = \left[\frac{1}{2(2n-1)}\right]^{n^2} \prod_{j=1}^n \left(m_j + j - \frac{1}{2}\right)$$
$$\cdot \prod_{1 \le i < j \le n} (m_j + m_i + j + i - 1) (m_j - m_i + j - i).$$

c(G) is now determined in (4.2) since m=n. Therefore by Theorem 4.7 and Proposition 4.10 we can state

Theorem 4.12. Suppose $m_1 < m_2 < \cdots < m_n$ and $m_n + n < 0$ for $\lambda = \sum_{j=1}^n m_j \alpha_j$ as above, where D is the period matrix domain SO_e(2n, 1)/U(n), $(n \ge 2)$. Then if $\Gamma \subset SO_e(2n, 1)$ is a neat lattice, the dimension of the L^2 - Γ -automorphic cohomology $H_2^*(D, \mathcal{O}E_n)^{\Gamma}$ in (3.8) is non-zero and is given by

$$c(n)\prod_{j=1}^{n} \left| n \right|$$
(4.13)

$$(n) \prod_{j=1}^{n} \left| m_{j} + j - \frac{1}{2} \right|$$
$$\prod_{1 \le i < j \le n} \frac{|m_{j} + m_{i} + j + i - 1|(m_{j} - m_{i} + j - i)|}{(j + i - 2)(j - i)} \operatorname{vol}(\Gamma \setminus G)$$

where $1/c(n) = (2\pi)^n 2^{n-1/2} (2(2n-1))^n$, s = n(n-1)/2, and where Haar measure on $G = SO_e(2n, 1)$ is normalized as earlier.

For G = SU(n, 1) with n even, $n \neq 2$, there is an additional term which contributes to the dimension formula in (4.9); there are two such terms when n=2 (and when G=SU(1, 1)). The extra terms (or term) account for the presence of cusps, as one would expect. For example assume G =SU(2n, 1); this case is not covered by Theorem 4.7. Then by Proposition 4.6 of [1] there is a unipotent contribution to the Selberg trace formula of the form $\pm C_2(\Gamma)c_n \dim V_{\mu}$, where as above we take $\mu = \lambda_1 + \delta_n(\Sigma^+)$, where c_n is a positive constant depending on G and $C_2(\Gamma)$ is a positive constant depending on the number of cusps of Γ , $(c_n \text{ and } C_2(\Gamma)$ are explicitly known) and were the sign \pm is determined as follows. Let $z_0 = \sqrt{-1}$ diagonal $(I_{2n-1}, -2n) \in h_0$. Here h_0 consists of the diagonal matrices in g =sl(2n+1, C) with pure imaginary entries and I_{2n-1} is the $(2n-1)^2$ identity matrix. We choose $\Delta^+ = \{\alpha_{ij} | 1 \le i \le 2n+1\}$, using the usual notation; $\Delta_n^+ = \{\alpha_{i2n+1} | 1 \le i \le 2n\}$. Choosing the G-invariant complex structure on

G/K which is compatible with Δ^+ we have $\kappa \Delta_n^+ = \Delta_n^+$, since $\kappa \in W_k$, and hence $\Sigma_n^+ = -\Delta_n^+$. The sign \pm is given by $\pm 1 = sgn \sum_{\alpha \in \Sigma_n^+} \alpha(z_0) =$ $sgn (\sqrt{-1}(1+2n))^{2n} = (-1)^n$. We remark that the factor $(2n+1)^n$ which appears on page 38 of [1] should be corrected to read $(2n+1)^{2n}$. By Theorem 7.1(a) of [1] and Theorem 3.9 above, for $\Gamma = a$ neat lattice in G = SU(2n, 1) and $n \neq 1$

dim
$$H_2^0(D, \mathcal{O}E_{\pi_2})^{\Gamma} = c(G) |\prod_{\alpha \in \mathcal{A}^+} (\lambda + \delta, \alpha)| \operatorname{vol} (\Gamma \setminus G) + \operatorname{the}$$

unipotent contribution

where the unipotent contribution $= (-1)^n C_2(\Gamma)c_n \dim V_{\lambda_1+\delta_n(\Sigma^+)}$. Here dim $V_{\lambda_1+\delta_n(\Sigma^+)} = \prod_{\alpha \in A_k^+} (\lambda + \delta, \alpha) / \prod_{\alpha \in A_k^+} (\delta_k, \alpha)$ as we note that with V = K $D = \operatorname{SU}(2n, 1) / \operatorname{S}(\operatorname{U}(2n) \times \operatorname{U}(1)), A_v^+ = A_k^+$, and $\lambda_1 + \delta(\Sigma^+) = \lambda + \delta$ since now w in (3.6) coincides with κ in (3.5); i.e. $\kappa w = \kappa^2 = 1$. The conditions on the A_k^+ -highest weight λ in (4.14) are the non-degenerate condition (3.3) as usual and the condition (4.8). These, in the present case, simplify as follows:

(4.15) $\begin{array}{l} (\lambda + \delta_k + \langle Q \rangle, \alpha) > 0 \text{ for every } \alpha \text{ in } \mathcal{A}_k^+ \text{ and } Q \subset \mathcal{A}_n^+, \\ \text{and } (\lambda + 2\delta_n, \alpha) < 0 \text{ for every } \alpha \text{ in } \mathcal{A}_n^+. \end{array}$

In the two remaining cases G = SU(2, 1), SU(1, 1) a third term, in addition to the unipotent contribution, contributes to the right hand side of (4.14). This term (the *weighted* unipotent contribution to the Selberg trace formula) has the form (see Theorem 7.1 (a) of [1]) $\pm \frac{1}{2}(-1)^{1+m}c(\Gamma)$ $\sum_{\sigma \in W_k} (\det \sigma) \operatorname{sgn}(K(\lambda + \delta))$ where $K(\lambda + \delta)$ is an integer uniquely determined by the regular element $\lambda + \delta$ ($\lambda + \delta$ also uniquely determines the sign \pm) and $c(\Gamma)$ is the exact number of cusps of Γ . The dimension formula is now obtained (applying Theorem 3.9 again) for all the rank 1 groups.

References

- Barbasch, D. and Moscovici, H., L²-index and the Selberg trace formula, J. Funct. Anal., 53, No. 2 (1983), 151-201.
- [2] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math., 116 (1966), 1-111.
- [3] Griffiths, P., Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc., 76 (1970), 228-296.
- [4] Hotta, R., Elliptic complexes on certain homogeneous spaces, Osaka J. Math., 7 (1970), 117-160.
- [5] Hotta, R. and Parthasarathy, R., Multiplicity formulae for discrete series, Invent. Math., 26 (1974), 133-178.
- [6] Langlands, R., The dimension of spaces of automorphic forms, Amer. J. Math., 85 (1963), 99-125.

(4.14)

- [7] —, On the functional equation satisfied by Eisenstein series, Lecture Notes in Math., 544 (1976), Springer-Verlag.
- [8] Moscovici, H., L²-index of elliptic operators on locally symmetric spaces of finite volume, in "Operator Algebras and K Theory", Contemporary Math., 10 (1982), 129-137.
- [9] Parthasarathy, R., Dirac operator and the discrete series, Ann. of Math., 96 (1972), 1-30.
- [10] Schmid, W., Homogeneous complex manifolds and representations of semisimple Lie groups, Ph. D. thesis, Univ. Calif., Berkeley, 1967.
- [11] —, On the realization of the discrete series of a semisimple Lie group, Rice Univ. Studies, 56, no. 2 (1970), 99–108.
- [12] Warner, G., Selberg's trace formula for non-uniform lattices, Adv. in Math. supplementary studies, 6 (1979), Academic Press.
- [13] Wells, R., Jr., Automorphic cohomology on homogeneous complex manifolds, Rice Univ. Studies, 59, no. 2 (1973), 147–155.
- [14] Wells, R., Jr. and Wolf, J., Poincaré theta series and L¹-cohomology, Proc. of Symposia in Pure Math. (Several complex variables) 30 (1977), 59-66.
- [15] —, Poincaré series and automorphic cohomology of flag domains, 1975, preprint.
- [16] —, Poincaré series and automorphic cohomology of flag domains, Ann. of Math., 105 (1977), 397-448.
- [17] Williams, F., Discrete series multiplicities in $L^2(\Gamma \setminus G)$, Amer. J. Math., 106, No. 1 (1984), 137–148.
- [18] —, On the finiteness of the L^2 -automorphic cohomology of a flag domain, to appear in J. Funct. Anal.
- [19] —, Note on a theorem of H. Moscovici, to appear in J. Funct. Anal.
- [20] Wolf, J., The action of a real semisimple group on a complex flag manifold I, Bull. Amer. Math. Soc., 75 (1969), 1121-1237.

Department of Mathematics University of Massachusetts Amherst, MA 01003 U.S.A. and

Sophia University, Tokyo