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On the Conjugation of Local Diffeomorphisms
Infinitely Tangent to the Identity

Hiroko Kawabe

§ 0. Introduction

Let G be the group of germs at 0 € R of smooth orientation preserving
diffeomorphisms of R. When we study transversely orientable codimen-
sion one foliation, the group G plays an important role. In fact, the
isomorphism problems of certain foliations are deeply related to the con-
jugacy problems of elements of G.

Let G., be the normal subgroup of G which consists of the elements
infinitely tangent to the identity at O.

Concerning the conjugacy problem, we have the following well-known
result due to Sternberg [7] and Takens [8]:

If f and g are elements of G— G, with f~'o g € G, then f'is conjugate
to g by an element of G...

Then, the problem which is left to us is:

For two elements f and g of G.., when is f conjugate to g in G, (or in
G)?

Now, consider the submonoid G¢, of G, consisting of the germ of the
identity of R and all the elements f of G, such that f(x)=x for x<{0 and
SO0 <x for x>0.

The main purpose of this paper is to give a sufficient condition under
which two elements of G%, are conjugate.

Our main result is the following.

Theorem 2.4. Let f be an element of G°, with a(f)+#1. (a(f) is a
non-negative number ( € [0, 1]) defined in Section 1.) Let g be an element of

G, satisfying the following (x), for s >Q—a(f))/(1 —a(f))*;
), [f(x)—gx)|<C{x—f0)}

for any x( & R) near 0. Here, the constant C depends on f, g and s. Then,
there exists a diffeomorphism h of R such that
(i) g=h""ofoh (in a neighbourhood of 0),
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(ii) A is of class C* on (0, + o) such that h|_ . g=1|-w,q> and
(iii) 4(0)=0, D'A(0) =1 and D h(0) =0 for 1 <r<(l—a(f))* - s—

@—alf)).

This paper is organized as follows.

We begin Section 1 with defining the number a(f) for an element
feG,. We see that the number « is invariant under conjugations by
elements of G.(or G). We also show the existence of an element f e G,
with a(f)=« for any « € [0, 1]. This implies that there are uncountably
many conjugacy classes in G° (Corollary 1.6). Since these f’s are not
conjugate even by elements of G, we see that there are uncountably many
Reeb foliations which are not C= isomorphic to each other (Theorem 1.7).

In Section 2, we study the properties of elements g e G¢, sufficiently
close to an element fe G. We prove our main result Theorem 2.4,
which says that an element g € G¢, ““sufficiently close” to f € G¢, is C"-con-
jugate to f.

In Section 3, as an application of Theorem 2.4, we give an alternative
proof of the perfectness of G, which is originally due to Sergeraert [6].
We show that, for any element f € G.,, there exists g € G¢, such that gofe
G°, (Proposition 3.2). We can in fact construct an element g € G¢, with
a(g)=0 so that g and gof satisfy the condition (x), of Theorem 2.4 for
any S. This implies that fis written as a commutator.

In Section 4, using Proposition 3.2, we show that the natural inclusion

j: G5 X GL—>G.,
induces isomorphisms on their homology groups. Here,
Go={(—Dofe(=D;feG}.

We introduce some notations.
Let f(a, b, ¢) and g(a, b, ¢) be real valued functions on R X RXR.

Following Sergeraert [5], an inequality
f@a,b,c) < g(a,b,c)
(b,c)
means that, for any b and c, there exists a constant C, . such that

f(a’ b: C)é Cb,c 'g(a9 b7 C)

for any a.
Let f be a function on an open subset of R. We denote by D’f(x)

the r-th derivative of f at x. By |f|, we mean sup,.,.,|D*f(x)|, where 4
FAP:}
is a subset of R. When A= R, we simply write | f|,.
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We write I for the identity of R, and fo g for the composition of f
and g.

§1. The invariant a

Let Diff5 (R, 0) be the group of the orientation preserving diffeomos-
phisms f of R with f(0)=0. We consider the subgroup D,, of Diff* (R, 0)
consisting of f which satisfies

(i) f(0)=0, Df(0)=1 and D"f(0)=0 for any r>>2, and

(i) f(x)=x-+b for sufficiently large x>0, where b is a constant.

Let D¢, be the submonoid of D, consisting of the identity and the
elements £ satisfying f(x)=x for x<0 and f(x)<x for x>0. Then, we
have the following exact sequences of groups and monoids:

D.—5G.—>1

]

D" Gl —l,

where z(f)=the germ of f at 0.
We define a number «(f) ¢ [0, 1] for an element f e D¢.

Definition 1.1.
a(f)=inf {a € [0, 1]; 4](x) g {47(x)}-= for x € R},

where 47 (x) x—f(x) and 4i(x)= SUPo<y 5z 4(y). We note that the
number a( /) depends only on the germ of 7 at 0. Hence, for an element
fe G, we can define the number a(f) to be a(f) for some f e D, with

w(/)=f.

We also introduce a mapping
ay: D:,——]0, 11X {min, inf}.

The mapping «, is defined by a,(f)="(a(f), min), if ,(f) attains the
minimum value. Otherwise, we define a,(f)=(a(f), inf). We can also
consider @, as a mapping from G%, to [0, 1] X {min, inf} in a natural way,
and we have the following commutative diagram:

D5—2% 5[0, 1] X {min, inf}

nl /
G~ ™

The following theorem motivates the definition of «.
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Theorem 1.2. (Sergeraert [6]) For an element fe Dt there exists a
unique C* vector field &= &(x)d|dx, with &x)=0 for x<0 and of class C*
on (0, o), such that f is the time one map of & Moreover, if a(f)<l/r
(r>2), &(x) is of class C™ at 0.

First, we show that « takes any value of [0, 1].
Let ¢ be a C* function of R such that

0<p(x)<1 for xe R,

o(x)=1 for x< 3,

o(x)=0 for x= %,

—2<D'p(x)<0 for xeR.
—14

of 1

Fig. 1. The graph of ¢.
Put
A min=az' (¢, min)C D%, and A, ;=az'(a, inf)CD:,.

Concerning the sets 4, ., and 4, ;,;, we have the following proposi-
tion.

Proposition 1.3. The sets A, ;,; (@ €[0, 1)) and A, ;. (@ €[0, 1]) are
not empty. (Note that A, ;. is empty by definition.)

Proof. First, we show that A4, (0<a<{1) isnon-empty. We
define a function % on (0, 1] as follows. We fix the following numbers: for
n=0, 13 2, )

a,=3%-exp (—37)
by=(a,)"".
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Note that 0<<8,<{1 and that b,<<a,. On [x,.,, x.]=[3"""%,3""], we
define % by

bn+1+(an_bn+1)'§0(“z‘i> for X € [xn+1’ yn]

h( ) 0 Xn+1
X)= .
bn+(an~bn)-§0(—x:l"——> for x e [y,, x,).
\ Xpn—YVa

It is easy to see that A(x) is a C* function on (0, 1]. We can calculate
the r-th derivative (r >>1), and we have

sup IDTh(x)Igsup{ a"—-b"r, a”_b””r}‘dup]D’go(x)]
2€[Tn+1,2n] (-xn'—yn) (yn—xn+1) z

= #{exp (—3")}-37*7"-sup | D7g(x)|.
Hence, D"h(x)—0 as x— 40 and 4 is of class C= and flat at 0. Put

X for x=<0,
S(xX)=<{x—h(x) for 0<x<1,
x—(E-e )« for 1<x.

Since

sup [ D'h(x) < {exp (—37)}-3"*sup  Dig()

Z2€[@n+1,2n]

A
%

<3"-exp(—37)

el

IA

fis an element of D¢,

.
.
. .
+

3
T

0 Va1 X+t Ya Xz
Fig. 2. The graph of 4.
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We can calculate a(f) as follows. For x € [y, .1, ¥.], we have
max 47(x)=max {h(x), h(Yus}s

o<y<z
where

h(yn-)-l):an+1=(bn+l)pn+l§{h(x)}ﬁn+l'

Hence, we have 4§(x)<{4’(x)}#*+* on [y,.;, ¥,). By the choice of 8,, we
have a(f)<a. Since 4i(x,)={47(x)}**, 1—B,>a and lim (1—B,)=a,

fis an element of 4, ;..

For A, i, (@+1), we can construct a diffeomorphism belonging to
A, i, similarly by taking =1—e in place of §,.

When a=1, we replace j, by 1/n, that is, we replace b, by (a,)"; then,
the diffeomorphism f belongs to A4, i,

This completes the proof of Proposition 1.3.

Remark. The diffeomorphism given in [6], Theorem 4.1, is also an
element of A4, ;,.
We give other properties of a,.

Lemma 1.4. Let f and g be elements of D¢,. If they satisfy the ine-
qualities

4(x) < 45(x) < 4 (x)
¥ )

for any x e R, then a, (f)=a.(g).
Proof. For any ¢>0,
4(x) = sup 44(y)
0<y<x

< sup 47(y)

(f,8) 0<y<z

< /(s

)

< (o),

f:8)
This shows a(g)<a(f). By the above calculation, it is obvious that a(f)

attains the minimum value if and only if a(g) does so. This completes
the proof.

Lemma 1.5. For fe DS, and h e D, we have a,(f)=a,(h~'ofo h).
Proof. For any ¢>0, we have
477 Mx) < H(h(x))
< (WP
(<f (AP s (x)pimacn-s,
7o)
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This implies a(f)=oa(h~' o fo h). Moreover, it is also obvious that e, (1)
=ay(h'ofoh) as in Lemma 1.4.

Combining Lemma 1.3 with Lemma 1.5, we obtain the following
Corollary 1.6.

Corollary 1.6. The set of conjugacy classes of G¢, has the cardinal
number of the continuum.

Remark. The formula of Lemma 1.5 holds if 4 is the germ of a C*
diffeomorphism which fixes the origin.
Corollary 1.6 and Remark imply the following theorem.

Theorem 1.7. There are uncountably many C= isomorphism classes of
Reeb foliations.

Here, by a Reeb foliation % ;, we mean a transversely oriented
smooth foliation of S* whose leaves are diffeomorphic to R* except a
compact leaf diffeomorphic to a torus 72

For the proof, it is sufficient to recall the following well-known fact
concerning the holonomy of the torus 7%
The holonomy of the compact leaf 77 is a group homomorphism

HiE: w(TH—>G...

Moreover, we can find the generators a, b e n,(T?) such that s#°%#(a) € G,
and #7E(b) e Go.. It is well-known that two Reeb foliations & ,, and
F », are isomorphic if and only if 2£7#1(a) and H#5#:(b) are simultaneously
conjugate to s5r(a) and #7F«(b) in G. On the other hand, for any
element (f, g) of G5 XG<, it is easy to construct a Reeb foliation %,
such that #%2(a)=f and #%#(b)=g. These facts insure the theorem.

Lemma 1.8. Let f and g be elements of D, such that fog=gof.
Then, a,(f)=0a(g)- ‘

Proof. By Kopell [4] and Sergeraert (Theorem 1.2), there are positive
real numbers s, ¢ and a C’ vector field §=_£&(x)d/dx with &(x)<<0 for x>0
and &(x)=0 for x<<0 such that the diffeomorphisms f and g are the time s
map and the time £ map of &, respectively. We can assume s<t. Take
a positive integer K such that t<K-.s. Then, we have

Af(x)gdg(x)gAfK(x)(ng 47 ().

Hence, Lemma 1.8 follows from Lemma 1.4.
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Remark. From Lemma 1.5 arises the following problem:

Does the invariant a, determine the conjugacy class completely?

This is not the case for diffetomorphisms f with a(f)=1. Sergeraert
gives a diffeomorphism f with «(f)=1 which does not have a root ([6],
Theorem 4.1). Since a(f)=1, we have a(fof)=1 by Lemma 1.8. Itis
obvious, however, that f is not conjugate to fo f.

Lemma 1.9. For any two elements f, g € D%, we have the following
inequality:

al fo g)<Max{a(f), a(g)}-
Proof. We can assume that 0<a(g)<a(f)<<l. Puta=a(f) and
B=a(g). Then, for any ¢>0, we have
Af#(x) < M)+ 45(x)
S, WOyt ey
< {Afng(x)}l—a—e+{Afeg(x)}1_ﬁ_s
< 2{Af°g(x)}l—-a—s.

The third inequality holds because 47(x)<<47°4(x) and A4&(x)<<47*%(x).
This shows the desired inequality.

Remark. For any «a < [0, 1],
{feD,:a(f)<a} and {feD%:a(f)<a}

are submonoids of D¢,, invariant under the conjugation by elements of G.
In particular, {f e D% : a(f)=0} is a submonoid. Note that, by Theorem
1.2, any f e D¢, with a f)=0 is the time one map of a C* vector field on
R.

§2. On the C"-conjugation in G¢,

In this section, we prove our main result, Theorem 2.4, which gives a
sufficient condition for C"-conjugation in G¢,. The following proposition
is due to Sergeraert [6] which is useful for us.

Proposition 2.1. Let f be an element of D¢,. By Theorem 1.2, there is
a unique C* vector field &£ =&(x)d|dx of which f is the time one map.
Then, for any x>0, we have the followings.

(i) D‘f"(x):%», where x,= f"(x).
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i §x) _
(i) Jim —7 ol

Drfr D‘ n -1 — $(x,,) Lyt
(iii) | f(x)l () {S( I )y x

for r=1.
. Drf-n < Xon S(x_n) =
(lV) l f ( )[ = {len(x_n)} {S(x—n)} {&( )} ( n)
for r=1.

Remark. We use the above inequalities later in the following forms:
For fe G, choose f e D, representing f approprlately Then, we
have, for any x € R and any r > 1,

ceny n Ai(x,
e

4 T n A (x—n) 7~ l
(1D < G )

The following propositions will be used frequently later.

Proposition 2.2. Let f and g be elements of D¢,. If there exists ¢>0
such that
[f(x)—g(x)| < {47}
(f:8:€)
for any x e R, then we have:
0 Af(x) < Ag(x) < Af(x)
?) g(x)> f o f(x) and f(x)>g g(x) for any x sufficiently close to 0.
Proof. The inequalities (1) follows directly from the assumption.
Put y(x)=g(x)— fo f(x). Then, we have
YX)=f(x)—fof(x)+g(x)— f(x)
> f1(6)- 4 (x)— C{A ()},
where f(x)<<f<x and C is a positive constant. This shows that g(x)>
fo f(x) for x sufficiently close to 0. On the other hand, from (1), we have
L) — g(X)l {4"5’(36)}1+s

By changing f and g in the above formula, we also have f(x)>g o g(x) for
x sufficiently close to 0. This completes the proof.
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Proeposition 2.3. Let fe D, with a(f)=~1 and g € D%,.  Suppose that:
[f()—gx)] < {4F
(f:8:9)

Jor s>Q—afN/A—alf)). Then, {g7% o f*(D}ocic is bounded.

Proof. By the mean value theorem, we have
g7 o f* (D) —g o fE+ (1) |=|D(g~*NO) - (8 —Sf) o S* (D),
where f¥+3(1)<A0< f*(1) for sufficiently large k (Proposition 2.2). By

Proposition 2.1, we have

1f o= k=1 45(g*-(6))
D'(g )(0)<)W,

where
45(g (@) =g ""(O)—g~"(6)
<g "0
<g o fH(1)
<g FofY(1)
&
and, by Proposition 2.2 (1), 42(8) > 47(#). Put a(f)=a. Since a<l,
[627:4]
for sufficiently small ¢ >0 with l—o:—e>0, we have
47(0) = {450)y ="
(€3]
> {Aof(fk+2(1))}1/(1-a-e)
> (e
(f>a)
> {4/ (FH)pe-e,
Hence, D'(g~*- 1)((9) < g Fof*(1)-{47(f*(Q1))}-V*-2-9 (¢>>0). From this
inequality and the assumptlon of the proposition, we have
87 o () =g o[ DS Alg ™ ofH (D} (A (£ 0007,
where A>>0 is a constant determined by fand g. Therefore, we have
g i frrY(] g i e fI*(D)
7= Jno gl f(1)
< T (- A/ (Fpp-c-eoy
j=
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< exp (4( % @@/ (rapy-e--om))

=0

=exp4,
where we used s—(1—a—¢)"*>1. g.e.d.
Now, we state the main theorem.

Theorem 2.4. Let f be an element of G, with o f)+#1. Let g be an
element of G¢, satisfying the following (x), for s >Q—a(fN/(1 —a());

0. 10920 = fr—rG

for any x( € R) near 0.

Then, there exists a diffeomorphism h of R such that

(i) g=h""tofoh (in a neighbourhood of 0),

(ii) A is of class C= on (0, + o) such that h| _..,=1|_ .« and

(i) A0)=0, D'A0)=1 and D"H0)=0 for 1<r<(l—a(f)*-s—
Q—a(f)).

Hence, if g satisfies (x), for any s, then, 4 is of class C~ at 0. (Note
that, by Proposition 2.2, a,(f)=a.(g).)

To prove Theorem 2.4, we take elements 7 and § of D, such that
n(f)=f and =(§)=g appropriately. It is sufficient to show the existence
of a diffeomorphism 4 of R which satisfies (i), (i) and (iii) with respect to
fand 2.

The proof is divided into three steps.

In the first step, we construct an approximating sequence {g,} which
converges to g.

~In the second step, we construct a sequence {/,} such that g, o h,=
hyof.

Finally, in the third step, we prove that the sequence {#,} converges
to a diffeomorphism %, which satisfies (i), (ii) and (iii).

To simplify the notations, hereafter, we write f and g instead of f and
&, respectively, and we put a=a(f).

Step 1. (The approximating sequence {g,}.)

Let ¢(x) be a C function defined in Section 1. Define C= functions

. (k=1,2,---)on R by

pu)—gp Xl ),

Ar— Ay g

where a, = f*(1). We define C* functions {g;};-s,.,... on R by
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8:(¥)= (%) -f(x) + {1 — pu(x)} - g (x).

The following lemma shows that g, is a diffeomorphism of R for
sufficiently large k and that g, converges to g.

Lemma 2.5.
: f(x) for x<ay,
(i) &= o
g(x) for X 2 ak,
(ii) there are constants 0<m<<M such that, for any sufficiently large
k, m<D'g (x)< M for any x € R.

Proof. The assertion (i) is obvious by the definition.
For (ii), we have positive constants C; and C, such that

G

k kE+1

>min {le(x), D’g(x)}—_i__. {‘f_Il[(:)llk+ullk]}s_

T U+t

D'g (x)>min {D'f(x), D'g(x)} — | f — g e masl

Moreover,

T < dia) < (/@)

(¢>0). Since (1—~a—e)s—1>0 for sufficiently small ¢>0, we have
D'g (x)>m>0 for sufficiently large k¥ and any x € R. In a similar way,
we can prove D'g,(x)<< M for sufficiently large k. This completes the proof
of the lemma.

By replacing f by g,, with sufficiently large k, if necessary, we may
assume that the inequality of Lemma 2.5 (ii) holds for any k>1.
The following lemma is an estimate on the norms of g,,, —g,.

Lemma 2.6. For the diffeomorphisms {g,}, we have;
(1) 18ke1— 8l = (@—a,)*07*?
/8
for any >0, and

(ii) |gk+1—gk|r(f_<_ ) (ar—ay.)™" forr>1.
&

Proof. Note that g;.,—g,=(0r.1— @) (f — 2).
Then,

[ 8kv1— &kl = |(@ur1— 1) - (f —8))o
g If_glg‘lk+2,ark]
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< {17 Tfpesnny

(f.8:9)

< {4f(@y

< Wy 0.

(f88)

On the other hand, for r >1,
|D790kl0 < (@e—ay.)".
(9,7)
Then, we have

|8k s1—8klr = |(€0k+1'—§0k)'(f_g)[r
1

< —F) q.e.d.
e (@—ayir)”

Step 2. (The sequence {/,}.)
Put hk(x)zglc-n of"(x) (k= 1: 2, . ')3

where n is an integer such that f*(x)<a,,,. Since g,=f on [0, a;.,]
(Lemma 2.5 (i), A, is well-defined.

By definition, we see that

(i) supp b=l {x € R|h,(x)+x} is contained in [a,,,, + o0),

(i) geoh=hyof.

Now, we have the following lemma which is useful for calculating
norms of i,,,—h,. By changing f by g,, with sufficiently large k, again
if necessary, we may assume that the inequality of Proposition 2.2 (2)
holds for x ¢ [0, 1].

Lemma 2.7. Theset {g;" of"(x)|k>1,n>0 and x € [0, 11} is bounded.

Proof. 1t is sufficient to prove that {g;"of*()|k>1,n>0} is
bounded. We note that, for 0<{n<k, g;"of"(1)=g "o f"(1), which is
bounded by Proposition 2.3.

For k+1<n, we have, by Proposition 2.2,

gitof™(1) = gz **V o frr1(1)
< g Frtogite fH(1)
S g—k+1 ofk-—s(l)
< g~ g "o fF3(1)),

which is bounded by Proposition 2.3. This completes the proof.
Now, we have the following estimates on the sequence {#}.
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Lemma 2.8. For sufficiently small >0, we have:
(i) lhk‘_hknlgo'l] = (ak—‘ak+1)(1_a’5)3-(1_a_5)_1,
(f1818)
(ii) |hk'—hk+1[5‘0’1] (/é )(ak_akn)_r/(i_a-s):
1&T
Sor r=1.

Proof. Note that A (x)=h;.,(x)=x for x<a,.,. For a,.,<x and
the first # such that a,,,< f"(x)<a,.,, we have

|hk(x)—hk+1(x)] = (85" —8&xt) o S ()]
=|(g " ogi —g " ogid) o f"(x)]
< D(g="**)0.)-1(g%° o ghe1—D o giiio f* (X)),

where 6, € [min {g5° o f"(x), gicf1 o f"(x)}, max {g;° o f"(x), gy o f (M)}
By Proposition 2.1 and Lemma 2.7, we have

1y —n+6 4%5(g~"*%(6.))
D'(g="**)(0.) <) VTN
< {d (@) (£>0),
e

where the second inequality follows by an argument similar to that in the
proof of Proposition 2.3. On the other hand, we have

lgitiogi—1l < |8ks1—8&kb
/&)

= l(90k+1'—50k)'(f—g)|o

L < W@, (>0,

These two inequalities imply the assertion (i) of the lemma. As to (ii),
we have, for r >1 and x € [0, 1],

Dm0 < | Z I(D’gz: ") f*X)[[ DX - | D)),

.....

where the sum is taken over all partitions r=(ry, - - -, r;) with r,4 - - - +r;
=rand r;>1 (1<i<j). By Proposition 2.1 and Lemma 2.7, we have

pho| < 3 B @Y ()Y
N e IRV
1
(f%r) {47 (x)}”'
because 45+(f "(x))(fz A7 (f"(x)) (Proposition 2.2 (1)).
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Moreover, for x>>a,,,, we have, in a similar way to that in the proof
of Proposition 2.3,
269> {4 @)oo,
0]

This completes the proof of the lemma.

Lemma 2.9. For 0<c<{1 and sufficiently small >0, we have
e —RJod <1

(SF18s750)

for r>1.

Proof. In Lemma 2.8, we have the inequality for 0<j<r,
Dith,—h, ., )(x
D—hed W < s
where the right hand side is bounded on [c, 1].

Step 3. (The convergence of {,}.)

Now, we complete the proof of Theorem 2.4.

To estimate the C™ norm of 4,, we deform %, to a function with
compact support.

Choose a sufficiently small ¢,>>0, and define a C= function g by

Boo=g( =220

where ¢ is a C* function given in Section 1.

S+ o s o s o 4

0 1—¢, 1
Fig. 3. The graph of 8.
Using this (x), we define C~ functions h, by h(x)= B(x)- h(x).
Lemma 2.10.
(1) hx)=h(x) for xe[0,1—¢]
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) l};k“—il’knlo = (alc'—ak+1)(1_a-5)s‘(1-a—s>~l
’ D)

and

“;k—;;k-i—l!r < (@—ayyp) 7020
(f28,7)
for ¥ =1 and sufficiently small ¢>0.

(3) The sequence {};k} converges with respect to the C” topology for
0<r<s(l—ay—Q—a).

Proof. The assertion (1) is obvious by the definition of /,. As to
(2), we show it easily by the formula &, —7,,,= B-(h,—h,.,) and Lemma
2.8. For (3), since r<s(1—a)*—-(2-a), we can choose a sufficiently
small positive real ¢ and a sufficiently large integer n>0 such that

ﬁ:{(l——a—e)s—l 1 —}-(1—L> T >

—a—ce n 1—a—e

Then, by the interpolation theorem (Hérmander [3]), we have

Iﬁk—ﬁknlr (—<_n) {ll;k_ﬁki»l lo}(n-r)/?z : {'i;k_;;k+1]n}r/"

< (@r—a 1)5-
(f:8s0,7)

This insures the convergence of the sequence {%,} with respect to the C’-
topology. This completes the proof of Lemma 2.10.

By Lemma 2.10, the sequence {#,} converges to some C’-diffeomor-
phism 4 on [0, 1] for 0<r <s(1—a)*—(2—«a). Hence, {h,} converges on
[0, + o). '

Since 7, is the identity on [0, a,.,], we have

[A—1 IEO‘%H] <>.(a,—a, +1)'§
t>k
< a,.

Thus, we have (iii) of Theorem 2.4.
To show Theorem 2.4 (ii), for a small positive real ¢, we define a C*

function 7, by
1= {1 _90( i )} .Sa(x—(el—e,))

for sufficiently small ¢;,>0.
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1+ v

ol ¢ e, 1—¢, 1

Fig. 4. The graph of 7..

We consider a C= function /,, which is defined by ,(x)=7.(x)- k().
Then, we have the following lemma corresponding to Lemma 2.10.

Lemma 2.11.

M Zk(x):hk(x)forx €lcte, 1—el

®) lizlc—flk+l|0 < (alc—‘ak+1)(l—o‘_6)8_“““—”—1
(f:89)

and |h,—hy.,), < 1, where r>1 and sufficiently small ¢>>0.
(

f18:75¢)

(3) The sequence {17,,} converges with respect to the C>-topology.

We can show this in a way similar to that of the proof of Lemma
2.10 by using Lemma 2.9. Theorem 2.4 (ii) follows from Lemma 2.11
and we complete the proof of Theorem 2.4.

Remark. The argument used in the proof cannot be applied to the
case where a(f)=1. The author does not know whether or not Theorem
2.4 holds in this case.

§ 3. On a theorem of Sergeraert

In this section, we show that Theorem 2.4 can be applied to giving
an alternative proof of the following theorem due to Sergeraert [6].

Theorem 3.1. For any f e G.., there exist g € G, and h € G*, such that
f:g‘]oh"logoh,

In fact, the following proposition together with Theorem 2.4 implies
Theorem 3.1.

Proposition 3.2.  For a finite number of diffeomorphisms f, fy, - - 5 fx
in D, there exists g € D°, such that
0) o(g)=0
(1) geofieD:
@ ¥—f] < {2
(f4:8:8)

for any integer s >0, xe Rand i=1,2, ---, N.
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Proof. We prove this proposition in the case N=1. The case when
N >2 can be proved similarly.

We choose a sequence of positive numbers {a,},_, ;... and a sequence
of diffeomorphisms {g,},-s,s,... of [0, + c0) such that the following condi-
tions hold:

(i) 0<a,.,<a,andlima,=0,

n—oo

(i) £.(0)=0, D'g,(0)=1, D"g,(0)=0 2=r<n) and D"*'g,(0)=0.
(i) g.(¥)=gn(x)<x and g,(x)<f'(x),

i) g(x)=gn(x) for x=a,,
(V) [x—=f(x)|={45"(x)}*  for x<La,,
and [x—fx) {45 (x)}"~" for x=Za,_y,

(Vi) |gn+l_gn|n-1__<__2_n.
Then, gl .., Will be obtained as lim g,.

N> o

We construct sequences {e,} and {g,} inductively on n. First, for
n=2, put a,=1 and let g, be the time one map of the vector field &,=
&,(x) d/dx, where &,(x) is a C*= function such that £,(x)<<0 for x>0, &(x)
=cx® on some neighbourhood of 0 and g, satisfies the second part of (iii)
together with the first part of (v).

Assume that we have chosen g, which is the time one map of a vector
field &,=&,(x)d/dx. Let 5(x) be a C> function on [0, 4 o0) such that

=2x if 0=Zx<1
7 e[, 1) if $<x<1

=1 if 1<x.
1._
1l .
2 .
ol 1 1

Fig. 5. The graph of 7(x).

Put £.(x)=1x(x/e)- £,(x) for e>0.

Then, the time one map g, of the vector field &, =¢&.(x)d/dx satisfies
(ii), (iii) and (vi) for sufficiently small ¢>>0. We note that g.(x)=g.(x)
for x>g,'(e). This means that if we take ¢ smaller than g,(a,), then
g.(x) satisfies the condition corresponding to (iv). Moreover, since
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D *(I—g)(0)#0 and x—g,(x)>x—g.Ax)>x—g.(x) for 0<e' ¢, by
taking ¢>0 sufficiently small, we have
x—f)|<{45e(x)}"*" for x<e
and
[x— f(x)|<{45(x)}" for x<a,.
Then, we put a,,,=¢ and g,.,=g.. Here, ¢ can be taken smaller
than, for example, 1a, so that {a,} converges to zero.
The desired diffeomorphism g is defined by
x for x<0
lim g,(x) for x>0.

n— oo

g(X)={

By (ii), (iii) and (vi), g belongs to D:. Since the function x—g,(x) is
monotonously increasing, o is x—g(x). Hence, we have a(g)=0. Itis
obvious that go fe D2, by (iii). Thus g satisfies the conditions (0) and (1).
As to (2), it is enough to show that, for s>2,

|x—f)|<{45 )} (0
for any x<a, and any n=>s. First, by (v), we have
|x—f()|= {45 ()}
and
lx—f(x)|= {45+ (x)}°
for x<a,. For g,., (iv) and (v) insures that

gs+o(X)=8,ux(x) for a, ., <x< -,
and
[x—f(x)|< {482 (x)}+* for x<a,.,.

This shows that
[x— f(o)|< {48 +(x)}*, for x<a,.

Iterating this procedure, we have (x). This completes the proof of Pro-
position 3.2.

Remark. The strategy of the proof of Proposition 3.2 is due to
Sergeraert [6],
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§4. The monoid G, and the homology of G<,

As we mentioned before, the group G., and its submonoid G¢, are
closely related to the theory of smooth foliations of codimension one. In
this section, we show that the natural inclusion j: G¢ X G¢—G.. induces
isomorphisms of their Eilenberg-MacLane homology groups.

First, we recall the definition of the homology of a group and that of
a monoid.

The Eilenberg-MacLane homology of a group G (simply, we say the
homology of a group G) is the homology of a chain complex {C,(G), 3},
where C,(G) is the free Z-module generated by G!=GXGX --- XG
(g-times) for g>1 and C(G)=Z. The map 9: C,(G)—C,_,(G) is defined
by

q-1
g, -5 8)=(8 - - -,z;'q)+iZ=1 (—D(gw - +» 81 =+ 7> 84)

+(—1)q(g1’ St gq-l)

for g=2 and 9: C,(G)—C(G) is defined to be the zero map. The homo-
logy of a monoid M is defined in a similar way. Concerning the relation
between the homology of groups and that of monoids, we have the follow-
ing theorem.

Theorem 4.1. (H. Cartan and S. Eilenberg [1])
Let G be a group and M a submonoid of G such that each element of G
has the form x~'y for some x, y € M. Then, the homomorphisms

ixt H(M)—>H,(G) (n=0)

induced by the natural inclusion j: M —G are isomorphisms.

Applying this theorem to G°, X G¢, and G.,, we have the following.

Proposition 4.2. We have the isomorphisms

jxt H(GLXGL)—>H,(G.) (n=0),
which are induced by the natural inclusion
it G X GL—G.,.
The proof follows from Proposition 3.2.

Remark 1. If we consider the subgroup G., which consists of ele-
ments f of G, such that f(x)=x for any x<0, then we have also the
isomorphisms as above, induced by the natural inclusion j: G,—GY..
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Remark 2. As we mentioned in Remark after Lemma 1.8, the mon-
oid G% contains an interesting submonoid 4,={fe G%;(f)=0}. By
Proposition 3.2 and Theorem 2.4, we can see that the inclusion

ji Ay=—>G¢,

induces isomorphisms in homology groups.
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