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Determinacy of Analytic Foliation Germs

Tatsuo Suwa

In this paper we consider the determinacy problem for codim 1
complex analytic foliation germs. For function germs (smooth or analytic),
the problem has been thoroughly worked out mostly by J. Mather and the
results are widely known ([5], [6] see also [8], [14]). Let f be a smooth or
analytic function germ at the origin 0 in R or C™ and let J(f) denote the
ideal generated by the partial derivatives of fin the ring of function germs
at 0. We also denote by m the maximal ideal of germs that are 0 at 0.
Then if (a) m*CmJ(f)+m**! for some natural number k, (b) fis (right)
k-determined, i.e., for any germ g with the same k-jet as f, there is a germ
¢ of local diffeomorphism or of local biholomorphic map at 0 with ¢(0)=0
such that g is equal to the pull-back ¢*f of f by ¢ (g is right equivalent to
f). Also, (b) implies that (c) m***cmJ(f). The condition (c) can be
referred to as “infinitesimal (right) k-determinacy”, since mJ(f) and m**!
are interpreted as, respectively, the tangent spaces at f to the sets of germs
right equivalent to f and of germs with the same k-jet as f. In general
(c) does not imply (b). Hewever, (c) implies that (d) f is “locally k-deter-
mined”, i.e., if a germ g has the same k-jet as f and is “close” to f, g is
right equivalent to f. There are statements corresponding to the above in
the right-left case. Note also that the problem is closely related to the
unfolding theory.

The main result of this paper is (4.1) Theorem, which asserts a state-
ment analogous to the implication (¢)=>(d) (local determinacy) for codim
1 foliation germs. As a special case, we also consider multiform functions.
In this case we can generalize not only the local determinacy ((5.6) Theo-
rem) but also, as already in the work of Cerveau and Mattei [1], the global
determinacy (a)=>(b) (Theorems (5.11) and (5.18)). The difficulty in the
foliation case in general is caused by the fact that the associated algebraic
objects have only vector space structures and may not be invariant under
multiplication by function germs, which prevents us from using such an
algebraic tool as Nakayama’s lemma. Thus we obtain the local deter-
minacy by actually solving some differential equations.
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In Section 1, we describe, for a given germ w of holomorphic 1-form
at 0 in C", the tangent space at w to the G,-orbit of o, ie., the set of
germs of holomorphic 1-forms that generate ‘analytically equivalent”
modules as the one generated by o ((1.5) Lemma). In Section 2, we recall
the unfolding theory for codim 1 foliation germs and study its relation
with infinitesimal transformations of such germs. Beside usual morphisms
for unfoldings of foliation germs, which generalize (strict) right morphisms
in the unfolding theory of function germs, we introduce RL-morphisms
((2.1) Definition), which turn out to generalize right-left morphisms in the
function case. We also define some algebraic objects associated with a
codim 1 foliation germ F=(w). These are used to describe the classes of
first order unfoldings of F under various types of equivalences as well as
other infinitesimal conditions for F. Infinitesimal transformations of G,
on F define RL-trivial first order unfoldings of F ((2.6) Lemma, (2.12)
Remark). We study transversality of unfoldings of foliation germs and
its relation with (infinitesimal) versality in Section 3. Some results
analogous to those in the function case are obtained ((3.5) Proposition,
(3.10) Theorem). In Section 4, we prove that if a codim 1 foliation germ
F is infinitesimally k-determined, then it is locally k-determined ((4.1) The-
orem) as mentioned above. The problem is to solve the differential equa-
tions (4.5) and (4.6) for ¢ and u under some conditions. We can linearlize
the equations by going from biholomorphic maps to vector fields as usual.
Thus we solve (4.8) and (4.9) for £ and g under the condition (4.10). We
do this by the power series method. The infinitesimal k-determinacy
guarantees the existence of formal solutions. As in [9], we compare the
series with series obtained by modifying the one in Kodaira-Spencer [3].
We use the Malgrange privileged neighborhoods theorem [4] in our esti-
mates. In Section 5, we mainly treat multiform functions. (5.6) Theorem
gives a local determinacy result. If we combine it with Nakayama’s
lemma, we obtain the global determinacy (Theorems (5.11) and (5.18)).

I would like to thank my colleagues at Hokkaido University, espe-
cially E. Hanzawa, T. Morimoto, I. Nakamura, H. Suzuki and N. Tanaka,
for their interest and helpful conversations.

§1. The action of G, on 2,

We denote by @, the ring of germs of holomorphic functions at the
origin 0 in C"={(x;, - - -, x,)}. The maximal ideal and the multiplicative
group of units in @, are denoted by m and U, respectively. Also we
denote by L, the group of germs at O of local biholomorphic maps ¢ of
C™ into itself with ¢(0)=0. The group L, acts on U, from the right by
pull-back. We form the semi-direct product U, X L,, which is denoted
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by G,. Thus as a set, G, is the product U, X L, and the group multiplica-
tion in G, is given by '

, ¢,) (u, ¢)=(u¢*u,s ¢,¢)

for u,#’ in U, and ¢, ¢’ in L,. If we denote by 2, the @,-module of
germs at 0 of holomorphic 1-forms on C”, the group G, acts on 2, from
the right by (4, §)o=ud*w for (u, §) in G, and w in 2,,.

For a germ f in @,, we denote by j*f the k-jet of f, i.e., the k-th
Taylor polynomial of f at 0. We set Ji={j*f|fe®,}. We also let
J¥(n, n) be the set of k-jets of germs of local holomorphic maps of C"
into itself leaving O fixed. Note that each of the sets J% and J*(n, n) has
a natural structure of complex Euclidean space. If o=> 7, fidx,, f,€ 0,
is a germ in 2, we define the k-jet j*w of @ by

Jro=3 41, dx,.
i=1

If we set J*Q,={j*0|w e 2,}, we have a map
(L.1) T 2,—>J*02,

sending w to j*w. The set J*2, has also a natural structure of complex
Euclidean space. Furthermore, we introduce the set J*Q2(n) of k-jets of
germs of local holomorphic 1-forms on C”. The set J*2(n) is naturally
identified with J*Q2,X C". We let

(1.2) , n: JEQn)—>J* 1,

be the canonical projection. If we set Ul={j*u|lue U,} and Li=
{j*¢| 4 € L,}, each of them has a natural structure of complex Lie group.
Using the natural action of L? on UE, we form the semi-direct product

GE=Uk x LE,

Thus as a set G¥ is the product U x Lk, which is embedded as an open set
in JE X J*(n, n). The group multiplication in G% is given by

G j ) - (G u, j* @)= (" (ugp*u'), j*(¢'P)-

With these, G% is a complex Lie group, which acts on J*2, from the right
by

(' u, j*9)-j o= j*(u¢*w).

Let O, denote the @,-module of germs at 0 of local holomorphic
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vector fields on C*. For X in @, and w in 2,, we have the Lie derivative
Lyo of  with respect to X. If

X=362, £,e0, and 0=>fdx, fi €0,
=1 0x; i=1 »

then

(1.3) Lyo=3fde+ > & Yt ax,
i=1 i 7=1 ox;

For an ideal Iin 0, we set
Lw)={Lyw|XeI-0,},
which is a C-vector space.

(1.4) Remark. If w=df, then L, (w)=d(I-J(f)), where J(f) is the
Jacobian ideal of f; the ideal generated by Jf/ox, - - -, 3f/0x,,.

Take a germ o in 2, and set z=j*w. The holomorphic tangent
space T,(J*R,) of J¥Q, at z is identified with J*2,. Now we compute
the holomorphic tangent space T,(G%z) at z of the orbit G*z.

(1.5) Lemma. We have
T(Gin)=n(Ly(0)+ 0,0),
where 0, 0={gw|g € 0,}.

Proof. This is done as in the function case ([8] Ch. 7, Main Lemma
III, [14] Lemma 2.8). Let p,: GE—J*Q2, be the holomorphic map defined
by p.(")=7z for v in GE. Then we have T,(G:z)=du,(T,(GE)), where e
denotes the identity in G:. We think of G as a subset in J* X J*(n, n),
which is a complex Euclidean space. Hence T,(G%) is also a subspace in
J* X J*n,n). Thus for a vector v in T,(G%), we may write

v=(jkgajk$)a

where g is in @, and & is a germ of local holomorphic map of C™ into
itself with £(0)=0. For ¢ in a neighborhood U of 0 in C*, we set

u(x)=1+1g(x) and @,(x)=x+1&(x).
Then we have a holomorphic map
a,: U—>GE

defined by «,(t)=(j"u,,j*¢,). Its differential
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da,: T(v)—>T.(G})

sends the tangent vector d/dt to v. We compute
d
dp,(Vy=d(y, - a, (—)
eV = (s )| —
d iy ax
=t ugra)|

(-2 ugto)| )

where X is a germ in m@, given by X=> 7, £,0/dx,). Conversely, it is
clear that every element of the form z,(Lyw-+ gw) is in the image of dy,.
Q.E.D.

=ﬂk(uo%<¢:sw>rho+%

t

=n(Lxo+gw),

(1.6) Remark. In view of the above lemma, we may think of the
space L. (w)+ 0, as the “tangent space” at o of the orbit G,w in 2,.

§2. Infinitesimal transformations and unfoldings of codim 1 foliations

For generalities on complex analytic foliations with singularities and
their unfoldings, we refer to [9] and [10]. Let F=(w) be a codim 1 folia-
tion germ at 0 in C*, i.e., F is a rank 1 free sub-¢@,-module of 2, with a
generator o satisfying the integrability condition dw Aw=0. The germ
at 0 of the analytic set {x]|w(x)=0} is denoted by S(w) (or by S(F)) and
called the singular set of F. We always assume that codim S(F)>2 ([10]
(5.1) Lemma, [11] (1.1) Lemma). An unfolding of F=(w) is a codim 1
foliation germ & =(@) at 0 in C"X C™={(x, )} having a generator &
with *@=w, where ¢ denotes the embedding of C" into C"X C™ given
by «(x)=(x,0). We call C™ the parameter space of #.

(2.1) Definition. Let F =(®) and F'=(&’) be two unfoldings of F
with parameter spaces C™ and C*={(s,, - - -, 5;)}, respectively.
(I) A morphism from &’ to & is a triple (@, , u) such that
(a) @ and + are holomorphic map germs making the diagram

0
(C*xC, 0)—>(C" X C™ 0)

(€’ 00— —>(c™,0)
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commutative, where the vertical maps are the projections. u is a unit in
@n +1°

) O(x,0)=(x,0) and u(x, 0)=1.

© ud'=0%q.

(I) An RL-morphism from £’ to & is a quadruple (Q) W, U, ),
where @, » and u are germs satisfying (a) and (b) in (I) and a=(a;, - - -, ;)
is a germ in @, ,. Instead of (c), we require

©Y wd/=0%+ L, ardsy.
A morphism or an RL-morphism is said to be strong, if we further
have

Q(O: S) = (O’ ‘l’(s))

(2.2) Remark. The notions of a morphism and an RL-morphism
are generalizations of a (strict) right morphism and an right-left morphism,
respectively, in the unfolding theory of function germs ([6], [14] Definitions
3.2 and 3.3, [11] (3.1) Definition and (3.11) Remark, [13]).

A first order unfolding of F=(w) is a rank 1 free sub-0,,,-module
FO=(®) of 2,,, with a generator & such that ;*@=w, where ¢ denotes
the inclusion of C"={x} in C*X C={(x,?)} given by «(x)=(x, 0), and
that do A®@=0 mod ¢?, tdt (integrable to the first order). If we write

d=w+ oMt +hVdt mod 2, tdt

with 0® in 2, and A® in @,, it is not difficult to show that the first order
integrability is equivalent to

2.3 hdo+ (0 —dh™) Aw=0.
If &' is another generator of # with (*&'=w, write
o' =0+ oWt +h"'dt mod %, tdt.
There is a unit # in 0,,,, of the form
u=1+u®t mod #2
with 4® in @,, such that @’ =wu@. Then
hY=p" and o=0®+uVe.
Thus if we set
I(w)={he 0,|hdo=n/\o for some 5 in 2,},

each first order unfolding of F=(w) determines an element in I(»w) and
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vice versa. We also set
J(@)y={he 0, h={X, o) for some X in 6},
K@)={ae0,|ado=daNw} and
Rw)={0e 2,|0N\No=dh/\o—hdw for some hin 0},
where ( , > denotes the canonical pairing of vector fields and 1-forms.
If =277, f:dx,, f; € 0,, then J(w) is the ideal in @, generated by f, - - -,

fn- The set K(w) is in the ideal I(w) and is the C-vector space of integrat-
ing factors of w ([1] p. 34). The set 2(w) also forms a C-vector space.

(2.4) Remark. If o is another generator of F, then o’=uw for
some unit  in @,. We have I(w)=1I(0") and J(w)=J(w’). The corre-
spondence g—>ug gives an isomorphism of K(w) onto K(w’) and the corre-
spondence —uf gives isomorphisms of £2(w) onto (') and of L,(w)+
0,0 onto L,(0)+ 0,0 for any ideal I in 0,.

(2.5) Remark. If w=df, fe0,, then I(w)=0,, J(w)=J(f). We
also have K(w)={a € 0,|da Adf=0}. If we assume f(0)=0, then by the
factorization theorem in [7] p. 472, we may write

K(df)=1*0,,
since the condition codim S(df)>2 implies that f is power free.
If F=(w) is a codim 1 foliation germ, the set
?(F):{X €0,|Lyw=go for some g in 0,}

is independent of the chosen generator w of F and forms a Lie algebra
with respect to the Poisson bracket of vector fields. We call it the
Lie algebra of infinitesimal automorphisms of F. Also we consider the
annihilator

Fe={X € 6,[{X, u)=0}
of F.
(2.6) Lemma. We have
(X, wydo-+(Lzo—d{X, o)) Ao=0
Jfor any germ X in ©,.
Proof. If we denote by ¢, the inner product by X, we have

Lyo=d{X, 0)+tzdo.
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On the other hand, if we apply ¢; to do Aw=0, we get
(tzdo) Ao+ (X, w)do=0.
Hence we obtain the identity. Q.E.D.
(2.8) Corollary. J(w)CI(w).
(2.9) Corollary. For any germ X in 8, Lyw is in 2(w), in particular
L)+ 0,0 C2(w)
Jor any ideal I'in 0,,.

From the condition codim S(F)>2, if /A\w=0 for  in £2,, then
y=gw for some g in ¢,. Hence

(2.10) Corollary. F© is a Lie subalgebra of 4(F) and there is an
exact sequence of C-vector spaces

0—> Fo—>G(F)—2>J(0) N K(0)—>0,
where the map p sends X in 4(F) to {X, o).
The ideal I(w) and the vector space 2(w) are related by the following

(2.11) Proposition. For any ideal I in O, there is an isomorphism of
C-vector spaces

I(@)/I-J(0)+ K(0) = Nw)/ L)+ O,0.

Proof. 1If 6 is in 2(w), there is a germ # in @, such that I ANw=dhAw
—hdw. Such an 4 is determined uniquely modulo K(w). Thus the cor-
respondence §—[A] defines a surjective C-linear map

Aw)—>I(w)/I- J(0)+ K(v).
Moreover, if h is in I- J(w)+ K(w), we may write
h={(X, )+« for XinlI.0, and « in K(w).
Then by (2.6) Lemma, we have
INo=(Lyw)\o.
Hence §= L0+ go for some g in @, Q.E.D.

(2.12) Remark. The quotients /(w)/J(w) and I{w)/J(w)+ K(w) are
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interpreted, respectively, as the sets of isomorphism classes and RL-isomor-
phism classes of first order unfoldings of F=(w) ([10] §6, [9] 1, [13]). If
F =(@) is an unfolding of F with parameter space C™={(#,, - - -, t,,)}, we
expand @ as a power series in f;

(2.13) cb=cu-{—i w(‘f)tj—l—i h,dt;+ higher order terms
= =1

with 0 in 2, and A; in 0,. We say that & is infinitesimally versal it
the classes [A,], - - -, [A,] of Ay, - - -, B, in I(w)/J(w) span the vector space
and that & is infinitesimally RL-versal if the classes [#,], - - -, [A,.] span the
vector space I(w)/J(w)-+ K(w) or equivalently the classes [w®?], - - -, [@®™]
span the vector space 2(w)/L, (w)+ 0,0. Ttis proved that if # is infini-
tesimally versal or infinitesimally RL-versal, then % is versal or RL-versal,
respectively ([9], [13]).

(2.14) Remark. By (1.6) Remark and (2.9) Corollary, it is rea-
sonable to say that a germ in £, which is “close” to w may not possibly
be in the G ,-orbit of w unless it is connected to @ by some unfolding of w.

§ 3. Transversal unfoldings

Let F=(w) be a codim 1 foliation germ at 0 in C* and let & =(&)
be an unfolding of F with parameter space C™. We take a representative
of @ in some neighborhood of 0 in C* X C™ and for each ¢ near 0 in C™
and x near 0 in C*, let w,,, denote the germ at x of the 1-form w,=¢¥a,
where ¢, denotes the embedding C*"CC*XC™ given by ¢ (x)=(x, 1).
We define the map germ

J¥@: (C" % C™, O)——>(J*2(n), j*w)

by j¥a(x, t)=j*w,, ,. Consider the differential of the composition of ji@
and 7 in (1.2):

d(z o jt@): T(C" X C™)—>T,(J*2,), z=j*o.

(3.1) Definition. An unfolding & of F=(w) is k-transversal if it
has a generator @ such that (*@=w and that

d(z o jioXT(C" X C™N+T(Gr2) =7, 2w),  z=j'o.

For X=0/0x,, we denote Lyw simply by L. If F=(®) is an
unfolding of F=(w) with parameter space C™, we write @ as (2.13). A
straightforward computation shows the following
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(3.2) Lemma. We have

0
0x;

d(z Oji‘d))( ):j"(Lia)), i=1,---,m,

d(TC o.licd))(—a—> zjkw(lj)9 j'_" ]1 s, M
at,

(3.3) Remark. Let &' be another generator of & with *¢'=w.
Using Lemmas (1.4) and (3.2), it is not difficult to show that if & satisfies
the condition in (3.1), so does @'.

For vectors v, - - -, v, in a C-vector space V, we denote by [v,, - - -, U,]¢
the subspace in V spanned by v;, - - -, v,. Also for F=(w), we set

(B4)  I%(w)={he 0, hdw+(@—dh) Aw=0 for some 6 in 7;*(0)}.

(3.5) Proposition. For an unfolding & = (@) of F =(w), the following
three conditions are equivalent:

(@) & is k-transversal.

®) 2o)=[0", - -, 0""]c+ L, (0)+ O,0+7:'(0) N Q(w).

© IHw)=lhy, - -+, hplo+ J(@)+ K(@)+1* ().

Proof. By Lemmas (1.4) and (3.2), & is k-transversal if and only if
7rk‘Q(w)z71'1«:([141(09 DR an]0+[w(ll): DY w(lm)]C+Lm(a))+ (9"((0)-

Noting that [Le, - - -, L,0]¢+ L. (0)=L, (0), we see that (a) and (b) are
equivalent. The equivalence of (b) and (c) is straightforward. Q.E.D.

It is easily seen that
m** (@) I%* Y(w).
Here we propose the following

(3.6) Question. I**"(w)CJ(w)+ K(w)+m* ' I(w)?
Thus if (3.6) is true, the conditions in (3.5) Proposition are all equiva-
lent to

l(@)=[h;, - - -, hule+ I @)+ K(0)+m* - I(o).

(3.7) Remark. If w=df, f e m, then I(w)=0,, J(w)=J(f), K(0)=
f*0, and

1%+ Yg)y={he 0, |j"(dh——gdf)-——~0 for some g € 0,}.
We denote the last space by I**(f). Let f be an unfolding of f; i.e., a
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germ in @,., for some m such that fx, )= J&x). We set f9(x)=
af/ox,(x,0) for j=1, -- -, m. Also, if we let d=df, # =(®) is an unfold-
ing of F=(df) and 4, in (2.13) is equal to £, Hence by (3.5), F isa
k-transversal unfolding of F if and only if

On=1f, <+, [+ T(f)+f* O+ 1 2(f).

Moreover, if (3.6) is true, then this is equivalent to

Ou=1f, -, [t T+ f*O, e,

which is exactly the condition that f be a right-left k-transversal unfolding
of ' (J4] Lemma 3.13).

Now we consider the relation between k-transversality and (infinitesi-
mal) versality.

(3.8) Definition. An unfolding # of F=(w) with parameter space
C™ is k-trivial if it has a generator @ such that (*®=w and that

J*w,=j*w for all t near 0 in C™,

where o, =¢¥d, ¢, denotes the embedding ¢,(x)=(x, t) of C" into C" X C™
and ¢=¢,

Let & be a k-trivial unfolding of F and let @ be a generator satisfying
the conditions in (3.8). If we write & as (2.13), we see that the w?’s are
in 77'(0) N 2(w). Conversely, any element in z;'(0) N 2(w) determines a
(may not be unique) first order unfolding which is k-trivial. Hence we
give the following (cf. (1.6) Remark).

(3.9) Definition. A codim 1 foliation germ F=(w) is infinitesimally
k-determined if

7z (0) N (w)C L(0)+ 0, 0.

Note that the above condition does not depend on the choice of the
generator w of F. Also the condition is equivalent to

I+ Y(w)ycmJ(w)+ K(o).

The following is a direct consequence of (3.5) Proposition (see also
(2.12) Remark).

(3.10) Theorem. Let F be an unfolding of a codim 1 foliation germ
F.
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(@) If & is infinitesimally RL-versal, then it is k-transversal for all k.

(b) Suppose that F is infinitesimally k-determined for some k. If #
is k-transversal, then it is infinitesimally RL-versal, thus it is an RL-versal
unfolding of F.

§4. Determinacy of foliation germs

If # =(®) is an unfolding (with parameter space C) of a codim 1
foliation germ F=(w) at 0 in C*, let ¢, be the embedding of C* into
C™ X C defined by ¢,(x)=(x, t) and set w,=¢f® as in the previous sections.
In this section, we prove the following

(4.1) Theorem. Let F=(w) be a codim 1 foliation germ at 0 in C™.
Suppose that , '

(i) dim¢K(w)/mJ(w)N K(w)< + oo and that

(ii) F is infinitesimally k-determined, i.e.,

77 ' (0) N A w)C L)+ 0,0

Jfor some non-negative integer k. Then every k-trivial unfolding of F is
strongly RL-isomorphic to the trivial unfolding F. More precisely, for any
unfolding & = (&) of F with parameter space C such that j*w,= j o for all t
near 0 in C, there exists a triple (@, u, a) such that

(d) @ is.a holomorphic map germ making the diagram

@
(C"XC,0)—(C"XC,0)

c0—2 5o

commutative, where the vertical maps are the projections. u is a unitin 0, ,,
ande isin 0, ;.

() O(x,0)=(x, 0), D(0, t)=(0, t) and u(x, 0)=1.

© ud*@@+adt)=o,
where we think of w as a germ at 0 in C* X C.

(4.2) Remark. From the condition (a) above, we may write @(x, t)
=(¢(x, t), t) for some holomorphic map germ ¢: (C" X C, 0)—(C", 0)
and the condition (b) is equivalent to

®) ¢(x,0)=x, &0, 1)=0 and u(x, 0)=1.

Hence if we set, for each ¢ near 0, ¢,=¢f¢ and u,=c}u, then ¢, is in L,
and v, isin U,. From the condition (c), we have u,¢}w, = w, which means
that o, is in the G, orbit of w. Thus the foliation F,=(w,) is equivalent
to F=(w).
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(4.3) Remark. Consider the following conditions -

(A) dimel(0)/J(@)<+ oo,

(B) dim¢I(w)/mJ(0)<+ oo,

(C) dimcl(w)/mJ(w)+ K(@)<+ oo,

(D) dimgK(w)/mJ(w) N K(w)<+ oo,

(E) m**'«I(w)CmJ(w) for some k,

(F) m**'-I(w)CmJ(w)-+ K(w) for some k,

(G) I**Y(w)cmJ(w)+ K(w) for some k,

(H) =" (0)N 2Aw)c L. (w)+0,0 for some k.
Then we have the implications

©
PR

BN

&) & ®) ;S (6) &> (),
I~ 7
® ® F

In fact, (A)&(B) and (B)=(C) are obvious. Since K(w)/mJ(w)N K(w)=~
mJ (w)+ K(w)/mJ (@), (B)=>(D). From (B), we have m**'. I(w) CmJ(w)-+
m¥+2. I(w) for some k. Then using Nakayama’s lemma, we get (E). We
have (E)=(B) and (F)=>(C) since /(o) is finitely generated. The implica-
tions (G)=>(F) and (G)&(H) are obvious (see Section 3). If the answer
to (3.6) is yes, then (F) implies (G). We also propose

Question. (C)=(F)=(E)?

(44) Remark. If we assume that K(w)CmJ(w) in (4.1) Theorem,
the subsequent proof shows that we may let «=0. Thus in this case, #
is strongly isomorphic to the trivial unfolding F.

The rest of this section is spent for the proof of the theorem.

Proof of (4.1) Theorem. Let & =(®) be an arbitrarily given k-trivial
unfolding of F with parameter space C and let #( € @, ,,) be the coefficient
of dt in @. We set h,=c*h for each ¢ near 0. If we also set w,=c¢Fa,
then the condition (¢) is equivalent to

“4.5) u,pfo,=w and
(46) <Zza ¢;kw:>+¢;khz+¢;kaz=os

where Z, denotes the vector field > 7, 8¢,/ (x, t) 8/ox;. If ¢(x,0)=x
and u(x, 0)=1, then (4.5) holds when #=0. Hence we may replace (4.5)
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by the equation obtained by differentiating the both sides with respect to ¢;
ou d
45 / ubad 25 U, —— * :O_
4.5) Y drw,+u, o (¢ w,)

(4.7) Lemma. Suppose there exist a holomorphic map germ
£:(C"XC,0—>(C",0)and a germ g in 0, ., such that

4.8) g 0+ Lyw,+ %mt —0,
(4.9) (X, 0> +h,+a,=0 and
4.10) &0, 1)=0,

where

n 3
X¢=i=Z£&(x, t)—a— and g,=:fg,

X
then there exist ¢, u and a satisfying the conditions of the theorem.

Proof. First we solve the differential equations
@.11) %’(x, 1)=&(g(x, ), 1) and f’aftl(x, 1)=g(d(x, 1), 1)

for ¢ and v under the initial condition ¢(x, 0)=x and v(x, 0)=0 and set
u(x, t)=e"*", Then using

1
4@, 0)=— % . gro, and
u, ot
¢?(LX”“"+—aat wt)z——aat ($Fa),

we get (4.5) from (4.8). Also, since

¢;k<Xu a’s> = <Zta ¢Z“wt>,

we get (4.6) from (4.9). If we set x=0 in the first equation in (4.11), we
get

%’:.(0, N=&@(0, 1), 1) with $(0, 0)=0.

The above equation has also 0 as a solution. Hence by the uniqueness of
solution, we have ¢(0, t)=0. Q.E.D.
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Thus it suffices to solve (4.8) and (4.9) for & (or X, =2 7., &,(x, 1)0/ox,),
g and « under the condition (4.10). First we find solutions as formal
power series in z, then we show the existence of convergent solutions.

We express &(x, t), g(x, t) and «(x, t) as power series in ¢,

&(x, 1)=2,§P(x)?,  g(x,1)=2, gP(x)t* and

alx, )=, a'P(x)t?.
p20
In general, for a series a(x, 1)=2 5, 0P(x)t?, we set
D
d?(x, 1)=>2" 0 2(x)t? and [a(x, t)],=0P(x)".
q=0

If we set

X(p)zi &(p)i and lezi X(q)tq,
i=1 a

X q=0

then (4.8) and (4.9) are equivalent to the congruences

@38), g‘p»wt—i—LX,pa),-}—%a—t—w,EO and

¥4

“.9), (X2, 0> +aP+h,=0,
¥4

for all p>0, where = denotes the equality mod ¢**'. Also, (4.10) is

¥4
equivalent to

4.10), Evem, I<i<n, 0<qg<p
for all p>0.

Now from the integrability dé A@=0 of @, we get
4.12) hyd o, + (—gt—w,—d,ht> Aw,=0,

where d, denotes the exterior derivative with respect to x=(x,, - - -, x,,).
If we write

W= Z a)(")tp, w<0):w,
p=0

then the condition that j*w,=j*® for all ¢ near 0 implies that

(4.13) o™ e z;%(0) for p>1.
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The following is proved in [1] p. 47, Théoréme 5.1 and [13].

(4.14) Lemma. For any germ B in K(w), there is a unique germ f[in
K(@) that unfolds B.

Thus § is a germ in @,,, such that §(x, 0)=p(x) and that fdo=
diNe. If we write (x, 1)=2,5, B2 (x)t?, from the last condition, we
have

E‘szmt%dzﬁ“’/\w, for allpzo,

which implies that

(B?* Y dw—dBP+Y Nw)t?*' = —[ﬁ'pdzw;—dx,g“’/\wt]pn

4.15)
for all p>0.

(4.16), Induction hypothesis. There exist £? in 0y, g‘© and a'? in
0,and &% in @,,, for g=0, - <+, p such that (4.8),, (4.9), and (4.10),
bold and that if we write @9 =3,.,a'®"(x)t", then

() a®” e K(w) and &9 e K(®),
q

b (D) =37 glrma=7),

(b @ ;:o“

For the existence of formal solutions, it suffices to show that (4.16),
holds and that (4.16), implies (4.16),,,. First we note that the following
follows from (2.6) Lemma.

(4.17) Lemma. Suppose that
edo+(0—de) N\w=0

forein0,and 0in 2,. If § is in L (0)+ 0,0, then there exist g, in 0,
X, in m0O, and a, in K(w) such that

gw+Ly,+0=0 and (X, 0)+a,+e=0.
Thus e is in mJ(0)+ K(w).
(4.18) Lemma. (4.16), holds.
Proof. (4.8), and (4.9), read
g8P0+ Lywot+oP=0 and <(XO, w)+4+a®+4r0=0,
where A(x)="h(x,0). Now from (4.12), we have
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hOdo+(@® —dh®) Aw=0.

On the other hand, o® is in z;(0) N 2(w) ((4.13)). . Using the assumption
(ii) of (4.1) Theorem, we see that (4.17) Lemma implies the existence of
g9, X and o® satisfying the two equations above. We set a®?=q®
and let @@=3,.,a®"t" be the unfolding of ™ with &® e K(@) (cf.
4.14)).

(4.19) Lemma. (4.16), implies (4.16),.,.

Proof. Suppose (4.16), holds and set

0(1’“)11’”:[glpwt_i..Llewt_*_iwt] and
ot P+l

P [(X7, 0y @,
:[<X|Z7, wt>+hl]p +1

Then (4.8), ” and (4.9), ., are equivalent to
(48)* g(p+1)'w+Lx(p+1)(l)+0(p+l):0 and
(49)* <X(p+1)’ w>+a(p+l)+e(p+1‘)=0.

Thus we look for g+9, X®+b and @®*" satisfying (4.8)* and (4.9)*.
First we set

(P+D =e(p+1)dw+(g(p+1) —de(,p“))/\a)

and compute this quantity. We claim that the following three identities
hold:

[htdw-{—( 9 w;—dzh,)/\m]
ot p+1
(4.20)

= I:hipdwc‘i' (iwc “dxhz)lp/\wt] s

ot : p+l
“.21) [Kx'e, wc>dw+(LXIPwt_dz<le: P VANC)
) = _[(<le> wt>)|pdwl+(LX]Pwt——d.t<X}p9 wt>)|p/\wt]p +1

and
(4.22) [g'pa)t/\w]p+l= _[(glpa)t)lp/\wt]p+l'

In fact, (4.20) follows from (4.12), (4.21) follows from (2.6) Lemma with
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o and X replaced by w, and X'?, respectively, and (4.22) follows from
2"%w, \Nw,=0. Now substituting (4.20), (4.21) and (4.22) in the expression
of 47+" and e**" and using (4.8), and (4.9),, we obtain

PP =o' ?d @, —d,a'? ANw]p .1

We have
P r 4q
alp:Z oc“”t"=z Z al1-"ga
g=0 g=0r=0
D (P4 P
:Z( a”’”t’)tqzz (&(q))lp—qtq_
g=0 \r=0 g=0

Thus applying (4.15) to each &' and noting that the term of order
p—gq+1in &? is @@?-9+Hgr-9+1 we obtain

4.23) 2P+ — *i (@ P=2+0dy —do@P- 14D A o),

g=0
Thus if we set e=e(?+’>-|—Zg:0 at®?-2+Y_ then
edo+ (0% —de) Aw=0.

This shows that 8+ is in 2(w). On the other hand, by (4.13), §+" is
also in #;'(0). Hence

920 e /(0 N 2(w) C Ly(0)+ 0,0.
Therefore, by (4.17) Lemma, there exist g;, X, and «, such that
gy o+Lyot+0?"=0 and (X, o)+a,+e=0.

We set g?+V =g, X®*D=X, a?*:9=q, and

yd p+1
a(p+1)___ao+z a(q,p—q+1)=Z aleP-a+D)
q=0 q=0

and let @®*Y be the unfolding of «®*"® with @**" e K(@). Then
(4.16),,, holds. Q.E.D.

Now we prove the existence of convergent solutions. First we recall
the Malgrange privileged neighborhoods theorem ([4]). For an n-tuple
o=(py, - - -, p,) Of positive real numbers, we set

Plo)={x e C"||x:|<ps, 1<i<n.

For a germ f in 0,, we write f(X)=> .0 d.%" Where a=(ay, - - -, &) is



Analytic Foliation Germs 445

an n-tuple of non-negative integers, x*=x%. --x5* and |a|=a;+ - - +a,
as usual, and set | f],=2,204.0% Iff=(fi, - - -, f) isin OF, we set|f|,=
7_|fil,- The @,-modules 2, and O, are both naturally identified with
or.
We fix a basis [B,], - - -, [Bx] of the C-vector space K(w)/mJ(w) N K(w).
We choose open neighborhoods U and V of the origins in C” and C,
respectively, so that the germs o, §,, - - -, By have representatives on U
and that the germ & has a representative on U X V. Consider the @,-
homomorphisms

i 60,—>0,, AX)Y=LX, w),

JI @Z“——‘)@n, F‘(Xla R Xn)zi xi<Xi9 (0> and
i=1

v: 0,—>82,, v(g)=go.

By Malgrange [4] Théoréme (1.1), there exists p such that P(p) CU and
that the homomorphisms 4, ¢ and v have fissions simultaneously adapted
to p, i.e., we have

(424) Lemma. There exist p=(p,, - - -, pa), p:>0, and a positive
constant K such that P(p)C U and that
(a) every germ e in J(w) (=1Im 2) can be written as

e={X,, w) for X, in O, with
[ X, <Klel,,  for3<a<l,

(b) every germ e in mJ(w) (=Im p) can be written as

e=f‘. x{ Xy, 0y  for (Xy, -+, X,) in OF with
i=1
lXi|a,p_<_K[e[a,a for %_<_a£l,

(©) every germ 8 in 0,0 (=1Im ) can be written as =g for g, in
0, with

18olee <K[0.,  for $<a<l.
Note that g, in (4.24) (¢) is uniquely determined by 6, since v is
injective.
We choose p with the properties in (4.24) Lemma and fix it once for
all.

(4.25) Lemma. There is a positive constant K, such that every germ
e in mJ(w) can be written as e={X,, w) for X, in mO, with
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IXfaPSKIIeLM Sfor %éagl-

Proof. Let(X, ---,X,) be as in (4.24) (b). If we set e,=(X;, 0D
for i=1, - - -, n, then )

|ei|aP£KO|Xila,ﬂ % Sl

where K,=|w|,. On the other hand, by (4.24) (a), there exist X7, - - -, X
in ©, such that e,={X}, w> and that

!Xgla.péKleilam %‘< <1

If we set X,=>7_, x, X}, then X, e mO,,, {X,, wp=e and
I‘X'OItL,DSiZ:=1 |xilapIX§|aﬂ£K0K2 ;1 Pi'le!ap'

Thus K, =K,K* > 7_, p, satisfies the requirement of the lemma. Q.E.D.

Let 6=>,0P(x)t? be a series with ¢® in @7 and let > a‘”t? be a
series with a® positive real numbers. We say that > a‘®¢? dominates ¢
in P(p) and write

Z o-(p)tp<<Z qa®r in P(p)
if|o®],<a'® for all p>0. Consider the series ([3] p. 291, [2] p. 50, here
we set b=c'*)
VIQESLE Wad
166‘2/3 mip

where ¢ is a positive constant to be determined later. We let A’(z) be the
series obtained by differentiating A(¢) with respect to #;

1

P+
A(t)= €.
®= 1602/3 pzzzo p+1

We have ([3] (19), [2] Lemma 3.6)

(4.26) A(t)2<

From this we get

(4.27) AMAN L L_40).

2/
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We set A4,(1)=c'PA(t), A(t)=c*?*A(t) and A}(¢)=c¥*4A'(t) and prove
that there exist & (or X,=> % ,&(x, 1)3/0x,), g and « such that if we
choose ¢ sufficiently large, then the following estimates hold for all non-
negative integers p:

(4.28), g'r —§(°)<<A2(1—t——) or equivalently

—d

X'p—X(°’<<A2( ! >’

1—a
(4.29), oz"’-—a(°)<<A2<1 t ) and

-—da
(4.30), 87 <~ 1 A;( 1 t ) in P(ap) for § <a<1.

_—a —

First we need some estimates. If we let 3, be the unfolding of B,
with §; € K(@) for each i=1, - --, N, then we have ([13] (A.2) Theorem
and (4.7) Remark)

(4.31) Lemma. If ¢ is sufficiently large, then
Bi—ﬁi<<c’/6A<—1—t—) in P(ap), %<a<l.
—a
Using (4.25) Lemma, the following is proved similarly as [9] (3.18)
Lemma.

(4.32) Lemma. There exists a positive constant K, such that every
element e in mJ(w)-+ K(w) can be written as

N
e=(X, C0>+Z:1 ¢:B;
for some X, in mO, and constants c; with
]XOIaPSKZIe,am [Ci!£K2lelup fOl‘ %Saé 1

By [4] Lemma (2.4), there exists a constant ¢; such that for every
germ fin @,

a

0x,

< |fh, for }<a<b<I
ap b—a

From this we have

(4.33) Lemma. There exists a positive constant K, such that for every
Xo in @m
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K, 1
ILXOw]apé_——b ‘[Xolbp’ 3 <a<bL1.
—a

The following is proved similarly as in [9] p. 42.

(4.34) Lemma. If, for a series >, 0'Pt?,

S g <<7LA< 1 tb ) in P(ap) for 3<a<b<1,
_a —

then
STePtr & K _‘1_AI(AI__), in P(ap) for $<a<l,
¢ l—a 1—a

where K, is a positive constant.

(4.35), Induction hypothesis. There exist £¢ in Oy (or X? in 8,), -
g9 in @, and constants ¢{?, i=1, .--, N, for g=0, - - -, p such that if
we write D7, c{P8,=>,5,a'®"t" and set a?=>7¢_ a7, then
(4.8),, (4.9), and (4.10), hold and that we have the estimates (4.28),,
(4.29),, (4.30), and

t

(4.36), écﬁ‘”’“@‘l( ; ) 1<a<l.

(4.37) Lemma. If we take c sufficiently large, then (4.35), holds.

Proof. As in (4.18) Lemma, A® is in mJ(w)+ K(w). Hence by (4.32)
Lemma, we may write

N
(Xy 0>+ 25 ¢,pi+HP=0
=1
for some X, in m@, and constants ¢; with

[Xolap <KAoy || S K| AV, F<a<l.

If we set XO=X, c{"=¢c, and a®@=a®"=3"", "B, then (4.9), and
(4.10), hold. Using the identity

o+ (0® —dh") ANo=0
and (2.6) Lemma, we get

(Lx(n)a) +(1)(1))/\ o=0.
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Since codim S(w)>>2, this shows that Lywo+o® is in @,0. Thus by
(4.24) Lemma (c), there exists g, in @, such that Lywo-+o=gw and
that

[golapéK]Lxmﬂ)‘l‘CD(l) |a,o’ %gagl

If we set g®= g, then we have (4.8),, Using (4.33) Lemma and the
estimate for X® above, we get

|g® Ia,,SKK(I)(%Ig’—‘f' 1), 3 <a<b<l,
—a

where K@ =max {|{h?|,, |[0”|,}. Thus we have

4
189, < IK , i<a<l

for some constant K. On the other hand, the constant term in
1/(1—a)Ai(t/(1—a)) is ¢/16 (1/(1 —a)). Therefore, if ¢ is sufficiently large,
then we have the estimate (4.30),. Q.E.D.

(4.38) Lemma. If we take c sufficiently large, then (4.35), implies
(4.35),41 for all p=>0.

Proof. Let 8+ and e®*" be as in the proof of (4.19) Lemma and
set e=eP*0 4 570 (@2-2+D_ Then since e is in mJ(w)+ K(w), by (4.32)
Lemma, we have

{X, cu)—i—ﬁ}l ¢ +e=0
for some X, in m®, and constants ¢; with
(4.39) [Xolop < Kollans  [€i|<Kslel,, F<a<l.
If we set

N
X(p+1)=X0, C§p+1)=ci’ a(p+1,0)=zc§p+l)‘3i and
=1

yii p+1
P+ = p(P+1,0) +Z alDP-a+D) — Z a(q,p—q+1)’
q=0 g=0

then (4.9),., and (4.10),,, hold. Using the identity
edw+0P*Y —de) Nw=0

and (2.6) Lemma, we get
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(thp+1)a)+0(p+1))/\a):0.

Thus by (4.24) Lemma (c), there exists g, in @, such that Ly,.no-+6P*0
=g,o and that

(4.40) 18olep <K|Lypino+602+0],,, F<a<l.

If we set g?*V= —g,, then we have (4.8),.,, Now we show the estimates
(4.28),.,,, (4.29),.,, (4.30),., and (4.36),,,. Since @ is holomorphic in
U %V, if c is sufficiently large, we have

w,—w<<A(1’ ) and

—a
h,—h<l><<A(_l_’.) in Pap), y<a<l.
—a

First we estimate §7+" and e?*». Using (4.30), and (4.27), we have

(8" 0]y =[g"" (@ — )],: < lia Aé( : )A< : )

l1—a l1—a

1 1 ,( t )
A .
e T—a M=z
Recalling the expression (1.3), using (4.28), and (4.26) and noting that
| X9, <KK® (cf. (4.37)) and that 1/(1 —a)<1/(1—b), we have

[Lxlpwt]zﬂ-l = [wa(wz - “))]pu

o {a( (ko a1 55)
<<b—~a{ l—a /\ +21—b

+(K2K(l)+AZ( 1—ta ))A( lib )

2nc1(K2K(‘>+1)A< t )
< b—a 1-b/

Hence by (4.34) Lemma,

2ne, K (K, K™ ,
[Llewz]p+1<< 6 4( :/f +1 _1_ Az( i )
c l—a l—a

Also we have

d ] 1 ( t ) 1 1 ,( t )
= A = A .
[ath p+1<< 1—a l—a ¢ 1l—ag \l—a

In what follows we assume that ¢ >>1. Then from the above, we obtain
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+ + 1 t :
(4.41)  G@roge 1<< 2/3 - A’(T;—) in P(ap), $<a<1

for some constant K;. Using (4.28), and (4.26), we get
e(p+l,)tp+1=[<X’p> wt>+ht]p+1= [<X1p: wt"‘w>+ht]p+1

(442) (ke ra( (L) ()

«BELF2 4L ) i P@p), d<a<t.
c¥ 1—a

Next we estimate > 2, a(®?-¢ +n, Using (4.36), and (4.31) and noting
that |¢{? | <K, K™ (cf. (4.37)), we have

D O WD L)

g=0 g=0 ¢=1

< N(K2K<1>+A,< t ))c‘/6A<It )
1—a 1—a
K,K® 1 t
<<N< ¢l + c¥® )AZ( l1—a )
From this and (4.42), we have

tp+1<< 1/3 Z(T;%)ZﬁA]( —t—a> iIlP(ap), '21“£11<1

cls 1

for some constant K;. Thus, by (4.39), if ¢ is sufficiently- large, then we
have (4.28),., and (4.36),.,. Also, since

prl b3 N
a(ml):Z a(q,p—qﬂ)zz a(qm—qﬂ)_{_z cépﬂ)ﬂﬂ
i=1

g=0 g=0

we have

t
(p+)gp+1

l—a

for some constant X,. Hence if ¢'*>K,, we have (4.29),,,. Finally,
using (4.33) and (4.28),.,, we have

K ¢
Lysvo-t?*! _3#,4(#).
S S

Hence by (4.34) Lemma,

Lypsnm 1241 KK, 1 A;( t )
c l1—a 1—a
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Thus, by (4.40) and (4.41), if K(K./c**+K,K,/c)<1, then we have
(4.30),,. Q.E.D.

§5. Some special cases

Except for the determinacy results (Theorems (5.1) and (5.6) below)
for germs close to the given one (the “local” determinacy), the material in
this section are essentially in [1]. (5.1) Theorem is independent of the rest
of this section, where we treat multiform functions. We refine ((5.15)
Lemma, (5.16) Corollary and (5.17) Lemma) some of the arguments in [1]
and use (5.6) Theorem to obtain “‘global” determinacy (Theorems (5.11)
and (5.18)). We also specify the order of determinacy.

If #=(®) is an unfolding (with parameter space C) of a codim 1
foliation germ F=(w) at 0 in C”, we set w,=¢f@® and h,=c¢}h as before,
where h={3/dt, ®) (€ 0, .,).

(5.1) Theorem. Let F=(w)be a codim 1 foliation germ at 0 in C™.
Suppose that

m*+' N I{w)Cmd ()

Jor some non-negative integer k. Then any unfolding F =(®) of F with
parameter space C such that j*w,= j*w and j*h,=0, for all t near 0 in C, is
strongly isomorphic to the trivial unfolding F, i.e., there exists a pair (9, u)
with the properties (a) and (b) in (4.1) Theorem and

ud*o=aw.

Proof. We prove that we may let =0 in (4.1) Theorem under the
given condition. Thus we show that (4.16), hold for all p >0 with ¢/ =0
and @?=0 for ¢=0, ---,p. First, from the assumption j*h,=0, we
have

B € m*1 (1 I(0) C mJ ().

Hence we may let =0 in the proof of (4.18) Lemma. If we assume
that (4.16), holds with «‘?=0 and &? =0 for ¢=0, - - -, p, then we have

e Vdw (0P —deP* N Aw=0

in the proof of (4.19) Lemma. Thus we see that e®*? is in I(w). On the
other hand, from the assumption j*w,=j*®w and j*h,=0, e?+? is also in
m**'. Hence

e+ e m*+1 N I(w) C mJ (o).

Therefore, (4.16),,, holds with a**Y=0 and &?+"=0. The proof of the
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existence of convergent solutions is a special case of that part of the proof
of (4.1) Theorem. Q.E.D.

(5.2) Remark. If F=(w) has an isolated singularity at 0 in C~,
then m* CJ(w) for some k. Thus the above theorem is a generalization
of [1] p. 149, Lemma 2.1. Note that their proof can be easily modified
to obtain @=(¢, ) with ¢(0, £)=0, i.e., we may choose u;,, - - -, u; , in
[1] p. 150 from (x)=m0,, .

Now we consider a multiform function f=f-..f}!, where f, € 0,
and 2, € C,i=1, ---, [ ([1], [12]). If we set

fz

ﬁ

then w is an integrable germ in £, and the unfolding theory for f is closely
related to the unfolding theory for the foliation germ F=(w) ([12]). By
regrouping the f;’s, if necessary, we may always assume that

5.3) AEA (#0) if izj.
We also assume that codim S(w)>2, which implies that

(5.4) each f; is reduced, i.e., for any non-unit g in @,, f; is not divisible
by g%, and that

(5.5) f: and f; are relatively prime.

We set Fi=f---f; - fi (omit f), i=1, ---, 1, and let I(f) denote the
ideal of 0, generated by F, ---, F, (if l_l we set I(f)=0,). Further-
more, we set J(f)=J(w) (the Jacobian ideal of f) and C(f)=S(w) (the
critical set of f). In general, we have I(f)CI(w) (see the proof of [12]
(1.7) Proposition). If the conditions in [12] (1.11) Theorem are satisfied,
then I(f)=1I(w) and the unfolding theory for f is equivalent to that for
F=(w) ([12] Section 2).

(5.6) Theorem. Letf=f---f} be a multiform function with (5.3)
and codim C(f)>2. Suppose that

m** L I(f)cmI(f).

Then if, for eachi=1, - - -, I, f; is an unfolding of f, (with parameter space
C) such that j*f, .= j*f, for all t near 0 in C, there exists a map germ @
with the properties (2) and (b) of (4.1) Theorem and

*f=1,
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where ﬁ,:z;“fi and f=fiu...fi  Thus if we write &(x, t)=(¢(x, t), t)
and let ¢,=f and f,=f11,- - - f¥, for t near O, then ¢, is in L, and
$Hfi=1.
Proof. If we let
L ; d
=/ szlid—f’ and CD:fl fLZZ fi
S A

i
then & =(&) is an unfolding of F=(w). We set w,=¢¥® and h,=(}h,
h={0/dt, @) as before. First we show that the following hold for all
p=>0.

(5.7, Induction hypothesis. There exist X© in m@, and 5{® in @, for
qg=0,---,pand i=1, - -, [ such that

(5.8), (X'?, wt>+htEO,
(5'9)11 X[p.fzt+ af‘it ———-5|Pfit i=15 "'317 and
(5.10), ST 2,817 =0,
i=1
where

XP=31X@t7 and §P=> §0re.
g=0

g=0
We claim (5.7), holds. In fact, if we set AV =h, and
(1) = ___af‘i’t

T >
t=0

we have

1 l
hO=fio o fi >0 ﬁfﬁ):Z AL fOF,.
i=1 f; i=1

From the assumption that j*f; ,= j*f; for all ¢ near 0, we see that A e
m* I(f)=mJ(f)=mJ(»). Hence there exists X in m®, such that

(X, @)+ hD=0.

This equation can be written as
l

Z thi(X(O)fi +fz§l))=0'
i=1

Thus, by (5.5), there exist §°, i=1, - - -, [, in @, such that



Analytic Foliation Germs 455

14
X(O)ﬁ +f1(:1) — 5§o)fi and Z 2i5§°) =0.
i=1
Next we claim that (5.7), implies (5.7),.,. In fact, if we set

e =[(X'" w,>+h,],.; and
Fo=fi" 'fi,t' - fi,. (omit f; ,),

then we have

e prfen ),

=3 A X05f, o P |
ic1 ot lp+a1

. |
+ z [1F<X'f+%_) ]

If we use (5.9),, the second term is equal to

1 l 14
3 0 ) = Fua - fi 23200 =3 AFIOC Fodpon
i=1 i= 23 i=

in which the first term vanishes by (5.10),. Therefore, we obtain

p+1

et par= ZzF[ 'm,t+——agt-‘—ay'ﬂ,t]

p+1

Since X9, ¢=0, - .., p, are in mO, and j*f; ,= j*f, for ¢ near 0, we see
that

e e m*+1 I(f)cmI(f)=mJ ()
(note that [3}7f;, )1 =101 (fs,e = flp+0)-

Hence there exists X @+Y in m®,, such that
<X(p+1)’ w>+e(p+l)=0.

This equality can also be written as

- Ip+1 0fue Ip
éziFi[X fi,z'f‘a—t’—‘ai ﬁ,t =0.

p+1

Thus, by (5.5), there exist 5", i=1, - - -, [, in @, such that

[Xw“ﬁ,, af“ 5“’f“] —57 et and 3] 4370 =0,
im1

+1

Therefore, (5.7),,., holds.
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Note that when /=1, (5.7), hold for all p>0 with §©=0, ¢=0,

ey, p_

After this, we are able to prove the theorem by either one of the
following arguments (I) and (II):

(I) We can easily see that (4.16), hold for all p>0 with «/?=0
and @?=0, ¢=0, -- -, p, which implies the existence of @ and u as
formal power series in ¢ such that

ud*o=o.

The proof of the existence of convergent solutions is a special case of that
part of the proof of (4.1) Theorem. Thus there is an isomorphism (@, u)
from the trivial unfolding (w) to &# =(@). Then by [12] (2.4) Lemma, @
is an isomorphism from f to 7

0*f=f.

(I)  We can show, as a very special case of the convergence part of
the proof of (4.1) Theorem, that there exists

with &, e md,.,

u 0
Xzzz Ei(xs t)
i=1 ox,
such that
<Xc: wt>+ht=0,

or if we set X =X,+0/0¢, (X, @>=0. If we solve the differential equation
a
—a?;(xa t)=5(¢(x’ t)’ t)

for ¢ under the initial condition ¢(x, 0)=x, and set O(x, 1)=(4(x, 1), ?),
then we have @*f=f. Q.E.D.

We say that a multiform function f=f{. .. f# is k-determined (de
détermination finie faible d’ordre & in [1]) if for any germ (g, ---, g;) in
Oy, with j*g,=j*f,, i=1, - - -, I, there is a germ ¢ in L, such that ¢*g=f;
where g=g#-.-g#%. Also, fis finitely determined if fis k-determined for
some non-negative integer k.

(5.11) Theorem, Letf=f}---f} be a multiform function with (5.3)
and codim C(f)>2. Suppose that

m*cmJ(f).
Then f is k-determined.
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Proof. Let(g, ---,g) be a germ in @, with j*g,=j*f,, i=1, - -, 1,
and set

(.12) Filx, )= fi(x)+ 1(g(x)— fu(x))-

Also, for each ¢ in C, we setfi,t(x)zﬂ(x, 1) and f,=(f;,)"- - -(f1,)". By
(5.6) Theorem and by the compactness of the interval [0, 1] in C, it suffices
to show that

m* I(f)cmI(f)
for all ¢in [0, 1]. Now from (5.12), we have
J(NI(f)+m*.
Hence we have
m*cmJ()cmJ(f)+m*

By Nakayama’s lemma, we have m*CmJ(f)). Since m**I(f,)Cm*, the
theorem is proved.

(5.13) Remark. We may replace the condition in the above theorem
by

m*CcmJ(f)+mAl

Since the critical set C(f) of f is the analytic set of the ideal J(f),
we have

(5.14) Corollary. If C(f)={0} or ¢, or equivalently, if dim¢; O/J(f)
< + oo, then fis finitely determined.

For a multiform function f= ... f®, we set f=(f;, ---,f) (e OY)
and let X(f), Q(F), N(f), S(f) and R(f) be as in pp. 157-158 of [1].
Thus if we naturally identify X(f) with 0%, then Q(f) is the sub-0,-module
of O generated by (£;,0,---,0), ---, (0, ---, 0, f}), N(f) is the sub-0,-
module of ¢% generated by

(A O S

ox, T ox, ox, " ox,
S(f)=N(f)+0(f) and R(f)=Xf)/S(f).
The following gives a more direct proof of a result obtained by com-
bining Proposition 1.2 and Lemma 2.1 of [1] p. 154 and p. 158.

(5.15) Lemma. There is a surjective 0,-homomorphism
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I(N)I(f)—>R(f).
Iiroof. Recall that I(f) is generated by F,, ---, F,, where F,=
fire fire o fio E20L a,F, =2k diF,, a;, d; € O, then by (5.5), for each

i=1, ..., aj—a, is divisible by f; in ¢,. Thus the map
p: I()—>X(f)1O(f)

Azien) =[5 5]

is a well defined surjective O,-homomorphism. It is easily seen that
eI(NNCTN(FIN(FYNQ(f). Thus p induces a surjective homomorphism
LD —=UFIN)+O(f)=R(S). QED.

(5.16) Corollary. If m*I(f)CJ(f), then m*X(f)CS(f).

given by

The following is proved by modifying the arguments in [1] p. 158,
Proposition 2.2 (cf. also [5]).

(5.17) Lemma. For non-negative integers k and r, set ki;=k-+r if
r>0and ky=k+1ifr=0. Letf=(f,, ---,f,) be agerm in O}, such that

mx(f)S(f).

Then for any germ g=(gi, --+,8;) in O, with jrg,=j*f, i=1,..-,],
there is a germ ¢ in L, and units u, - - -, u, in O, with j"¢=j"x and j'u,=1
such that

up*gi=ri, i=1,.--,1L

(5.18) Theorem. Let f=f#-.-f{ be a multiform function with
(5.3) and codim C(f)>2. Suppose that

m*I(f)cmI(f)
for some positive integer k. Then f is 2k-determined.

Proof. By (5.16) Corollary, we have m*X(f)cS(f). Given a germ
g=(gy, - -+, &) in O}, with j**g,=j**f,. Then by (5.17) Lemma, there is a
germ ¢ in L, and units u,, - - -, u, in @, with j*¢=x and j*u,=1 such that
u,$*g,=f;. Since j*u;'=1, we may assume from the beginning that g,=
v.f; for some v, in 0, with j*v,=1,i=1, ---,l. We set

(.19)  filx, )=Fi0)+ (20— fil)=(1+1(v;— Dfi().
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Also, for each ¢ in C, we set f; (x)=fi(x, t) and f,=f3,- - - f%, By (5.6)
Theorem and by the compactness of [0, 1] in C, it suffices to show that

mF I (fycmI(f)
for all in [0, 1]. Now by (5.19),
I(N)=1(f) and J(N)TI(f)+m*I(f).
Hence we have
w I(fy=m*I(f)cmI(HTmI(f)+m*I(f).

Thus by Nakayama’s lemma, we have m*I(f)cmJ(f). Since m**+I(f,)
cm*I(f), the theorem is proved.

(5.20) Remark. By a similar argument, we may prove that if
m*I(f)I(f)
for some non-negative integer k, then fis (2k+ 1)-determined.

(5.21) Remark. We may replace the condition in the above theo-
rem by

m*I(f)CmI (f)+m* ().

Since the support of the @,-module I(f)/J(f) is the strict critical set
C'(f) of £ ([1] p. 154, Proposition 1.2), we have

(5.22) Corollary ({1] p. 161, Théoréme 3.1). If C'(f)={0} or ¢, or
equivalently, if dimg I(f)/J(f)< -+ oo, then f is finitely determined.
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