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§ 1. Introduction 

The purpose of this paper is to generalize the results of Phillips and 
Sullivan [3]. All the objects are of class c~ and all the manifolds are 
without boundary, unless stated otherwise. 

Two Riemannian manifolds (F" g,) and (F2' g2) are said to be quasi
isometric or to have the same quasi-isometry type if there exist a diffeomor
phismf: F,---+F2 and positive constants A, B such that 

A ·11 v Ilg,;'i:Jf*vll g2 ;;;;B ·11 v Il g , 

for all v E TF,. Now let M be a closed manifold, ff a foliation of M and 
F a leaf of ff. Take a Riemannian metric g of M and consider the 
induced metric g I F of F. Then the quasi-isometry type of (F, g I F) does 
not depend on the choice of g. We consider the following problem. 

Problem A. When can a non-compact manifold with a given quasi
isometry type be realized as a leaf of a foliation of a closed manifold? 

As a quasi-isometric invariant, we have the growth type of a Rieman
nian manifold. In [3], Phillips and Sullivan introduced a new invariant as 
follows. A non-compact Riemannian manifold (F, g) of dimension 2 is 
said to have average Euler characteristic zero if there exists a sequence Fl C 

F2c· .. cF of compact connected submanifolds with boundary such that 
(1) {Fi}iEN is comparable to {Dr(X)}rER+ for some x E F, that is, 

there are a constant Q and a sequence of radii r1, r2, ••• ---+00 satisfying 
Dr,(x)cFi cDQri(x) for all i, where Dr(x) denotes the set of y E F at 
distance;;;;r from x, 

(2) limi_~ X(Fi)/vol Fi =0. 
An answer to Problem A by Phillips and Sullivan is the following. 

Theorem ([3]). Let M be a closed manif(Jld, ff a 2-dimensional orien
table foliation of M and F a non-compact leaf of ff. If H2(M; R)=O and 
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F has non-exponential growth, then F has average Euler characteristic zero. 

We quote two examples from [3] in Figure 1.1. Both the Rieman
nian manifolds are diffeomorphic to T2 # T2 # . . .. On one hand, Jacob's 
ladder has polynomial growth of degree 1 and does not have average 
Euler characteristic zero. On the other hand, Infinite Loch Ness Monster 
has polynomial growth of degree 2 and has average Euler characteristic 
zero. Furthermore Cantwell and Conlon [1] realized Infinite Loch Ness 
monster as a leaf of a codimension-one foliation of S3. 

(a) Jacob's ladder (b) Infinite Loch Ness monster 

Fig. 1.1. 

For a Riemannian manifold of dimension >2, the above definition of 
average Euler characteristic becomes meaningless. The reason is as follows. 
Let (F, g) be an arbitrary non-compact Riemannian manifold of dimension 
n>2 and {FiLEN a sequence, as above, comparable to {Dr(X)}rER+ for 
some point x E F. Let Xi = X(Fi). When Xi is positive, take disjoint 
submanifolds-with-boundary K(l), ... , K(Xi) of F-Fi diffeomorphic to 
T 2XDn-2 in a small neighborhood of aF and let Fi be the submanifold 
with boundary obtained from Fi by connecting K(j)'s by small tubes in 
that neighborhood. It follows that X(F;) =0. When Xi is negative, make 
the similar construction as above by taking submanifolds-with-boundary 
diffeomorphic to S2XDn-2. When Xi=O, let F~=Fi. Then the sequence 
{FaiEN is clearly comparable to {Dr(X)}rER+. Therefore (F, g) has average 
Euler characteristic zero. 

In Section 2, we give a modified definition of the average Euler 
characteristic and prove that an odd dimensional non-compact Riemannian 
manifold, admitting a uniform triangulation and having non-exponential 
growth, has average Euler characteristic zero. 

In Section 3, we compute the average Euler characteristic of almost 
periodic Riemannian manifolds and show that our definition has meaning. 
For example, Jacob's ladder multiplied by S2n does not have average 
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Euler characteristic zero, but Infinite Loch Ness monster multiplied by 
S2n does. 

In Section 4, we prove the following. 

Main Theorem. Let M be a closed orientable manifold, :F a trans
versely-orientable codimension-one foliation of M and F a non-compact lea} 
of :F. Suppose that 

(1) HI(M; R)=O if dim F is even, 
(2) F has non-exponential growth. 

Then F has average Euler characteristic zero. 

§ 2. Average Euler characteristic 

We give preliminary definitions. 

Definition 2.1. Let (F, g) be a Riemannian manifold. A triangula
tion T of F is uniform if there exist positive constants v, V, d and N such 
that for each simplex a of T except vertices, 

v;£;vol a;£; V, 

and for each vertex a of T, 

diam a;£;d, 

# {a I a is a simplex of T containing a};£;N. 

Furthermore T is hereditarily uniform if there exists a sequence T(O) = T, 
T(I), ••• of uniform triangulations of F such that 

(1) pi+l) is a derived subdivision of T(i) for all i, 
(2) limi~oo d(i) =0, where we denote by v(i), V(i), d(i) and N(i) the 

constants corresponding to T(i). 

Definition 2.2. Let T be a triangulation of a manifold F. A T
submanifold is a subcomplex of F with respect to T which is also a p.l. 
manifold (possibly with boundary). 

Our modified definition of average Euler characteristic is the follow-
ing. 

Definition 2.3. A non-compact Riemannian manifold (F, g) of di
mension > 2 has average Euler characteristic zero if (F, g) has a hereditarily 
uniform triangulation T and there exists a sequence Fl cF2c· .. cF of 
compact connected T-submanifolds with boundary such that 

(1) {Fi}iEN is comparable to {Dr(X)}rER+ for some x E F (this is the 
same as the 2-dimensional case in Section 1), 

(2) limi~oo vol 8Fi/vol Fi =0, 
(3) limi~oo X(Fi)/vol Fi =0. 
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We can easily show that the average Euler characteristic is a quasi
isometric invariant. We give a precise formulation as follows and we omit 
the proof. 

Proposition 2.4. Let (Fl, gl) and (F2' g2) be quasi-isometric non-com
pact Riemannian manifolds. Then (Fl' gl) has average Euler characteristic 
zero ({ and only if (F2' g2) does. 

As an analogy to the fact that every closed manifold of odd dimension 
has Euler characteristic zero, we have the following result for the average 
Euler characteristic. 

Theorem 1. Let (F, g) be a non-compact orientable Riemannian mani
fold of odd dimension. If (F, g) has a hereditarily uniform triangulation 
and has non-exponential growth, then (F, g) has average Euler characteristic 
zero. 

Proof Let n be the dimension of F. Take a hereditarily uniform 
triangulation T of F and let v, V, d and N be the positive constants 
corresponding to T. We may suppose that T is a derived subdivision of 
some triangulation To of F. Let T* be the dual cell decomposition of To. 
Note that each cell of T* is a subcomplex of T. Take a point Xo E F and 
for r >0 denote by Gr the union of n-cells of T* intersecting Dlxo). Then 
Gr is a compact connected T-submanifold with boundary. Clearly Grc 
Dr+2ixo). Furthermore denote by a*Gr the union of simplices of T 
intersecting aGr. It follows that a*GrcDr+aixo)-D,o_ixo). 

Lemma 2.5. vol a*Gr 2. v vol aGr • 
- (n+ I)V 

Proof Since the number of (n-I)-simplices of T contained in aGr 
is not smaller than vol aGr/v and each n-simplex contains n+ 1 (n-l)
simplices, the number of n-simplices of T contained in a*Gr is not smaller 
than vol aGr/(n+ 1) V. This implies the above inequality. 

Now consider the sequence {GakdhEN. The condition that (F, g) has 
non-exponential growth is used to prove the following. 

Lemma 2.6. a=lim inf vol aGakd/vol G3kd =0. 
k~oo 

Proof Suppose that a>O. Then there exist Ie E Nand P>O such 
that if k>1e then vol aGakd/vol Gakd~P. Let vk=vol Gakd . It follows 
that 
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Uk +1 - Uk-I ~vol (D3kd +3aCXO)- D3kd -3d(Xo))~vol a*G3kd 

:;:::: u volaG > uP 
- (n+I)V 3kd= (n+I)V Uk' 

Let Q=uP/(n+I)V. Then Uk+I~QUk+Vk_I' By using these inequalities 
twice, we have 

Uk+2~ QVk+1 + Vk~(Q2Uk+ QVk- I)+ Vk ~(l + Q2)V k. 

Therefore for all kEN satisfying k~lC, 

v k :;:::: (1 + Q2)[k-'J/2U •. 

vol D(3k +2)ixo)~(l + Q2)[k-'J/2V,. 

This implies that (F, g) has exponential growth, which is a contradiction. 
This completes the proof of Lemma 2.6. 

According to Lemma 2.6, there exists a subsequence {Fi}iEN of 
{G3kd}kEN such that lim i _= vol aFt/vol Fi=O. Determine ri>O by Fi= 
GT ;. Then we have 

Therefore {FiLEN is comparable to {DT(xO)}TER+' Thus the conditions (1) 
and (2) of Definition 2.3 are satisfied. 

Consider the double Wi of F;. Since Wi is an odd dimensional 
closed p.l. manifold, we have 

X( Wi) = 2X(Fi) - X(aFi) = O. 

Lemma 2.7. [X(aFi)[«2njv).vol aFi' 

Proof The number of (n-I)-simplices of T contained in aFi is not 
greater than vol aFi/V, Since each (n-I)-simplices contains (2n -1) sim
plices, the total number of simplices of T contained in aFi is smaller than 
(2n/v) vol aFi' This implies the above inequality. 

Now we have 

lim sup [X(Fi) [/vol Fi =lim sup (I/2) [X(aFi) IJvol Fi 
i_oo i_oo 

~lim sup (2n/2v)·vol aFi/vol Fi =0. 
i_oo 

This implies that lim i _= X(Fi)/vol Fi =0. Therefore (F, g) has average 
Euler characteristic zero. 
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§ 3. Almost periodic Riemannian manifolds 

We introduce a class of Riemannian manifolds whose average Euler 
characteristics can be computed. 

Definition 3.1. (a) A triplet ({P,}j=1o {C,}j=I' {tdoEII') is called a 
boundary-designated system if 

(1) P/s are compact manifolds of the same dimension, say n, 
(2) C/s are closed connected manifolds of dimension n-l, and if 

i *' j then Ct and C j are not diffeomorphic, 
(3) C(j is the set of connected components of oPI , •• " oP. and to is 

a diffeomorphism from C to some Cj • 

(b) A non-compact Riemannian manifold (F, g) is almost periodic if 
there exist (i) a boundary-designated system ({P j }j=1o {CjB=I' {to}ou), 
(ii) a Riemannian metric gj of P, for each j, (iii) positive constants A, B, 
and (iv) a covering {KJIEA of F such that 

(1) K}. is a compact submanifold of F, K}. n Ke is a closed sub
manifold, and Int K;s are pairwise disjoint, 

(2) for each 1 E A, there exists a diffeomorphism ifJ}.: K}.~Pj(}.) satis
fying 

A·llvllg::::;:lIifJ}..vllgJ(}.,<B·lIvllg, VE TK}., 

(3) for each connected component C of K}. n Ke, 

t.p}.W) 0 ifJ}.1 C =t.puW) 0 ifJe I C. 

(c) Let (F, g) satisfy the condition in (b). We call each (Pj , g,) a 
period. A period (P"gj) is essential if # {A E AIj(l)=j}=oo. For x E F 
and r>O, letfk; x)=# {A E AIK}.cDr(x),j(l)=j}. A period (Pj,gj) is 
frequent if lim sup fk; x)/vol Dr(x) >0 for some x E F. 

Note that for two quasi-isometric non-compact Riemannian mani
folds, one of them is almost periodic if and only if the other is. 

Proposition 3.2. If a non-compact Riemannian manifold (F, g) is 
almost periodic, then (F, g) has a hereditarily uniform triangulation. 

Proof We use notations in Definition 3.1. Firstly, for each C j take 
a triangulation T(C,) of C, (see Munkres [2] for example). Secondly for 
connected components C of each Pi' take the induced triangulations 
t~T(Cj) (where Cj is the range of to) and extend them to a triangulation 
T(P,) of Pj' Then the condition (3) in Definition 3.1 (b) guarantees the 
consistency of the induced triangulations ifJfT(Pj (}.» of K}.. Thus a trian
gulation T of F is obtained from ifJfT(Pj(}.,)'s. Since T is determined by a 
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finite number of triangulations T(PI ), •• " T(P.), it is easy to see that T 
is hereditarily uniform. This completes the proof of Proposition 3.2. 

We can compute the average Euler characteristic of almost periodic 
Riemannian manifolds, as follows. 

Theorem 2. Let (F, g) be a non-compact connected orientable Rieman
nian manifold of even dimension, say 2n. Suppose that (F, g) has non
exponential growth and is almost periodic. Take (Pj, gj)'s and so forth as 
in Definition 3.1. 

(a) If X(Pj)=O for each frequent period (P j , gj), then (F, g) has 
average Euler characteristic zero. 

(b) If X(Pj) > 0 for each essential period (Pj, gj), then (F, g) does not 
have average Euler characteristic zero. 

Proof By Proposition 3.2, (F, g) has a hereditarily uniform trian
gulation T such that KA is a T-submanifold with boundary for all A E A. 
Let u, V, d and N be positive constants corresponding to T. Since (F, g) 
is almost periodic, there exist positive constants uP' Vp, dp and Np such 
that for each A E A, 

(1) up:O:;:vol KA:O:;: Vp , diam KA:O:;:dp , 

(2) for each connected component C of aKA' 

(3) #{CJ C is a connected component of aKA}<Np • Now we have 
the rough estimates as in the following lemmas. 

Lemma 3.3. There exists a positive constant 0 such that Da(x)<2Vp 
for all x E F. 

Proof For each Pj' take.a collar R j of aPj. Let 

Furthermore let o=oo/2B. Then we see that for each x E F the set Da(x) 
is contained in at most two K/s. Therefore Dix):O:;:2Vp , which completes 
the proof of Lemma 3.3. 

Lemma 3.4. There exist positive constants ~ and 7J such that for each 
compact codimension-one T-submanifold Sand for r > 0, 

vol NrCS) < exp (~r+7J).vol S, 

where Nr(S) denotes the set ofx E Fat distance<r from S. 
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Proof Since T is hereditarily uniform, there exists a sequence T(O) = 
T, T(l), • •• of uniform triangulations of F as in Definition 2.1. As before 
we denote by v(t), V(t), dO) and N(t) the constants corresponding to T<t>. 
Since Iim,_= d(t) = 0, there exists lEN such that d(') < 0/15. Let T = T(') 
and denote by T* the dual cell decomposition of T(·-l). Let v=v('), 
V' = V(·>, d =d(') and N =N(·). Denote by 'Y(S) the set of veritices of T 
contained in s.n follows that NI2d(S) c U {DlSd(a) I a E 'Y(S)}. Let 
N*(S) = U {a* I a* is a 2n-cell of T* intersecting NlOaCS)}. Then N*(S) is 
a T-submanifold with boundary, and we have aN*(S)cNI2d(S)-NIO;z(S), 
Since 

it follows that 

vol N*(S):=;;vol U {D13aCa) I a E 'Y(S)} 

:::;2Vp.#'Y(S)<2Vp.(2n/v)·vol S, 

vol aN*(S):::::: V'. # {a I a is a (2n-l)-simplexcaN*(S)} 

< V'. # 'Y(N*(S». N <NV'· (2n+ 1)· vol N*(S)/v 

< 4n(2n + 1)(NV'Vp/v2) vol S. 

Let K1=max {2, 4nVp/v} and Kz = max {2, 4n(2n+ I)NV'Vp/v2}. 
By the similar arguments as above for S' =aN*(S) in this time, we 

have 

vol N*(S')<K1 vol S', vol aN*(S'):=;;K2 vol S'. 

By repeating this process ([r/lOd]+ I)-times, we have a T-submanifold 
with boundary 

N*(S) U N*(aN*(S» U ... U N*(aN*( . .. (N*(aN*(S»)· .. » 

containing Nr(S), Let r'=[r/lOd]+1. Then we have 

vol Nr(S):=;;Kl(K2+K~+ . .. +Kn vol S 

< (K1K~/(K2 -1 »K;/lOd vol S. 

Let 1J=log (Kl~/(K2-1» and ~=(log KJ/lOd. Then it follows that 
vol Nr(S):::;exp (~r+1J) vol S, which completes the proof of Lemma 3.4. 

(a) Let xoEF. For each r>O, let Gr=U{KlIKlnDrCxohl::~}. 
Then Gr is a compact connected T-submanifold with boundary. As in 
the proof of Theorem 1, we have a subsequence {Fi}teN of {G3kctpheN 
such that 

(1) {F'}'EN is comparable to {Dr(Xo)}reR+, 
(2) lim,_= vol aF,/vol F, = 0. 
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Determine ri by Fi =Gr, and let apDr,(xo) = U {Kl/ Kl n aDr,(xoht:: (j}. 
Clearly apDr,(xo)CN2dpcaFi)' Let/Ii = #{K1cFi Jj(j/) = j}. Then we have 

/iki)-iji /:::::# {Kl/ K1capDr,(xo)} 

:::::(l/vp) vol N2d/aFi ) 

~(l/vp) exp (2dp~+r;) vol aFi. 

Lemma 3.5. limi~= vol Dr,(xo)/vol Fi = 1. 

/vol Fi-vol Dr/xo)/ ~vol N2d/aFi)~exp (2dp~+r;) vol aFi. 

Therefore we have 

lim sup /1- (vol Dr,(xo)Jvol Fi) / 
i-Hn 

:Slim sup exp (2dp~+r;) vol aFjvol Fi=O, 
i-co 

which completes the proof of Lemma 3.5. 
Now we have 

li~_:up /X(F,)//vol Fi =li~~up I tlijiX(Pj) I / vol Fi 

~li~~:up (tl Uki)+(exp (2dp~+r;)/vp) vol aFi)! X(P j ) !) / vol Fi 

. 
~ I: (lim sup i,/r i)/vol (Dr,(xo»! X(PJ! =0, 

j=l i_en 

by the assumption of (a). Therefore it follows that 

lim X(Fi)/vol Fi =0, 
i-co 

which completes the proof of (a). 
(b) Suppose that (F, g) has average Euler characteristic zero, from 

which we will bring out a contradiction. By the assumption, there exist a 
hereditarily uniform triangulation T' of (F, g) and a sequence Fi cF~c 
... cF of compact connected T'-submanifolds with boundary such that 

(1) {FaiEN is comparable to {Dr(XmrER+ for some x~ E F, 
(2) limi~= vol aF~/vol F~ = 0, 
(3) limi~= X(F;)/vol F; = 0. 

Let v', V', d' and N' be constants corresponding to T'. By taking a 
subdivision of T' if necessary, we may suppose that 2d' < o. Denote by 
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Fi the union of cells of T* intersecting F~. . The proof of Lemma 3.4 
implies that -

vol Nr(aF,)~exp (~r+7J) vol aFi 

for all r >0. Let G, = U {K~ I K~ n F~ *~} and H, = U {O' 10' is simplex of 
T'intersecting G,}. It follows that F,-F~cN2d,(aF~), G,-F,cNd/aF,) 
and H,-G,cNd,(aG,). 

Lemma 3.6. There exists a constant Kg such that 

for all i. 

Proof. Denote by a* F, the union of simplices of T intersecting aFi 
and by "Y'(aF~) the set of vertices of T' contained in aF~. It follows that 

a*FiCNlaFi)cNglaF~)C U{Dia)la E "Y'(aFD}. 

Since vol a*F,<2Vp·#"Y'(aF~) and #"Y'(aF~<2n vol aF~/v', we have 
vola*F,«4nVp/v')volaF~. Since the number of (2n-I)-simplices of 
T contained in a* F, is not greater than (2n+ 1) vol a* F,/v, it follows that 

vol aF, < V # {O' I 0' is a (2n-l)-simplex of T contained in aF,} 

< (2n + 1 )(V/v) vol a* F, 

< 4n(2n + l)(VpV/v'v) vol aF~. 

This completes the proof of Lemma 3.6. 

Lemma 3.7. There exists a constant K4 such that 

for all i. 

Proof. By the way of choosing 0, the subset Hi - G, is contained in 
a collar W, of aGio Let a: G,-F~-+H,-F~ and~: Hi-F~-+(Gi U Wi) 
-F~ be the inclusion maps. Since (~o a)*: H!(G,-F~; R)-+H!«G, U Wi) 
-F~; R) is an isomorphism, a*: H!(Gi-F~; R)-+H!(Hi-F~; R) is injec-
tive. Therefore we have 

I X( G i) - X(FD I = I X( G, - F~) I 
2n 2n 

<:E dim HI(Gi-F~; R)::;:E dimH!(H,-F~; R) 
1=0 1=0 

< # {O' I 0' is a simplex of T' contained in CI (Hi - F~)}. 
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Since CI (Hi -F;)cNdp+d,(aFi), the number of simplices of T' contained 
in CI (Hi - F~) is not greater than 22n +1 ·vol Ndp+d,(aFi)/v'. Since 
.L:;'!o dim Hz(Hi - F~; R) is not greater than the number of simplices of 
T' contained in CI (Hi - Fi), it follows that 

IX(Gi)-X(F~)1<22n+l vol Ndp+d,(aFi)/v' 

::;;:22n +1 exp (.;(dp+d')+r;) vol aFJv' 

::;;:22n +1 exp (.;(dp+d')+r;)Kg vol aF~/v'. 

This completes the proof of Lemma 3.7. 
By Lemma 3.7, we have 

lim X(G i)/vol Fi =Iim X(Fi)/vol Fi =0. 
i--co i-DO 

Now we find a contradiction, as follows. Let X=min {X(Pj) I (P j, gj) is an 
essential period}. By the assumption of (b), it follows that X>O. Let 
A(i) = {A I K. c G i} and K5 = .L: {I X(K,l) I; K,l corresponds to an inessential 
period}. Clearly K5<=. Since #A(i)~voIFUVp, we have 

and 

lim inf X(Gi)/vol Fi~X/Vp>O. 
i-co 

This contradiction completes the proof of (b). 

Remark 3.8. By the similar arguments as in the proof of (b) of 
Theorem 2, we see that 

(b') If X(Pj)<O for each essential period (PJ, gJ)' then (F, g) does 
not have average Euler characteristic zero. 

Example 3.9. Jacob's ladder multiplied by S2n is almost periodic 
and satisfy the condition of (b') in Remark 3.8. Therefore it does not 
have average Euler characteristic zero. On the other hand, we can directly 
show that Infinite Loch Ness monster multiplied by S2n has average Euler 
characteristic zero. 

Remark 3.10. By a result of Tsuchiya [5], we can show that a leaf, 
of finite depth, of a codimension-one foliation of a closed manifold M 
with H 1(M; R)=O satisfies the condition of (a) in Theorem 2. Therefore 
such a leaf has average Euler characteristic zero. This result and the above 
examples guaranteed the justice of our definition of average Euler char-
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acteristic and encouraged us. This result is included in Main Theorem 
since a leaf of finite depth has polynomial growth. 

§ 4. The proof of Main Theorem 

Let M be a closed orientable manifold of dimension n, ofF a trans
versely orientable codimension-one foliation of M and F a non-compact 
leaf of ofF, satisfying the conditions (1) and (2) of Main Theorem. Take a 
Riemannian metric g of M. We take a vector field Z tangent to ofF gener
ically with respect to ofF and denote by Zero (Z) the set {x E MI Z(x) =O}. 
Then we may suppose the following conditions. 

(1) Zero (Z) consists of a finite number of connected components 
Ch ••• , C •. 

(2) For each Ck , there exists an imbedding 1h: SI---+M with Ck = 
tk(S} 

(3) Each Ck is transverse to F and tangent to ofF at at most finite 
points. Denote by 2 k(Z) the set of such points and let 2(Z) = 2 1(Z) U 
... U2k(Z). 

(4) If Ck is tangent to ofF at z (that is, Z E 2 k(Z», then there exist a 
compact neighborhood U(z) of z in M and a diffeomorphism h: U(z)---+ 
r- 1 XJ such that 

ofF 1 U(z)=h;({r- 1 x{t}lt E J}), 

hiCk n U(z» = {(t, 0, ···,0, 4t 2) 1 t E J}, 

where J=[ -1, 1]. Furthermore U(ZI) n U(Z2) = 0 if ZI =/=Z2. (See Figure 
4.1.) 

Denote by 2? k the set of the closures of connected components of 
C k - 2 k(Z). We number the elements of 2? k in such a way that 

2?k={L~, ... ,L~(k)}' 

L~nL}=/=0 if j=i+l modv(k). 

Denote by Fx the leaf of ofF passing through x, by Z 1 Fx the vector field 
of Fx induced from Z, and by lex, Z 1 Fx) the index of Z 1 Fx at x. Easily 
we have the following lemma and we omit the proof. 

Lemma 4.1. (1) if x, y dnt L~, then ley, ZI Fy)=l(x, ZI Fx). 
(2) if x dnt L~ and y E Int L} where j=i+ 1 mod v(k), then ley, 

ZI Fy) = - lex, ZI Fx). 

Take a non-singular vector field X transverse to ofF such that each 
connected component of Zero (Z)- U {U(z) 1 z E 2(Z)} is contained in an 
orbit of X and X is tangent to h;l(ar -1 X J) for all z E 2(Z). 
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Fig. 4.1. 

Definition 4.2. An (§', X)-box is a compact subset B of Mforwhich 
there exists a p.d. imbeddingt: Dn-lXJ~M with t(Dn-1XJ)=B such 
that 

(1) for each t e J, the image t(Dn-1 X {tD, called a plaque of B, is 
contained in a leaf of §', 

(2) for each x e Dn-I, the image t({x} X J), called a pin of B, is 
contained in an orbit of X. 

For each (§', X)-box B, let o .... B=t(Dn-1X{-I, ID, F(B)=t(Dn-1 
X{-I}), C(B)=t(Dn-1X{ID and ox(B)=t(oDn-lxJ), where t is as in 
Definition 4.2. Clearly U(z) is an (§', X)-box for all z e 2(Z). The 
proof of the following lemma is a tedious routine work and we omit it. 

Lemma 4.3. There exists a finite (§', X)-box covering 8i={B,hEA of 
M such that 

(I) U(z) e 8i for all z e 2(Z), 
(2) Int B.'s are disjoint, 
(3) oB,e U{oBplp e A,P*A}, O .... B,nF=~, and oxB.nZero(Z)=~ 

for all A e A. (See Figure 4.2.) 

Denote by pri: B.~F(B.) the projection along the pins of B,. By 
an induction on the dimension of strata of a certain stratifications of 
U.EA of(B.) determined by 8i and by perturbing OX(B,)'S if necessary, we 
can take a triangulation T(oF(B,» of each of(B,) such that 
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x 
X 

C(BJ 
ofF 

ax(B~) BA 

x F(BA) Bp 

ofF 
Fig. 4.2. 

(1) for all A E A and all DcA, the intersection 

n pd{(ax(B,)-C(B,) n ax(B,,») 
pEO 

is a subcomplex with respect to T(aF(B.», 
(2) Z is transverse to each simplex of T(aF(B.». (See Figure 4.3.) 

a leaf of §" 

Fig. 4.3. 
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By the way of taking X, there exists a triangulation T(F(B.)) of F(B.) 
such that 

(1) T(aF(B.)) is the restriction of T(F(B.)) to aF(BJ, 
(2) prHZero (Z) n B.) c Int (J for some (n-I)-simplex (J of T(F(B.)). 

For each plaque PcB. - C(B;), let T(P) be the induced triangulation 
(pr} I P)*T(F(B.)) of P. By decomposing B/s more finely and perturbing 
aB/s if necessary, we ll:!ay suppose that Z is transverse to each simplex of 
T(P). These triangulations determine a triangulation T of F. The 
finiteness of ~ implies that T is hereditarily uniform with respect to g I F. 
When dim F = n -1 is odd, the proof of Main Theorem is completed by 
applying Theorem 1. Hereafter we suppose that dim F is even. 

We may suppose that T is a derived subdivision of some triangulation 
T' of F and let F* be the dual cell decomposition of T'. By the similar 
arguments as in the proof of Theorem 1, we have the following lemma 
and omit the proof. 

Lemma 4.4. There exists a sequence Fl cF2 c ... cF of compact 
connected T-submanifolds with boundary such that 

(1) {Fi}iEN is comparable to {Dr(X)}rER+ for some x E F, 
(2) limi~~ vol aFi/vol Fi = 0. 

According to Plante [4], we have an asymptotic homology class AF E 

Hn-1(M; R) of F constructed from {Fi}iEN' Precisely this means that 
(1) there exists a subsequence {F~LEN of {Fi}iEN such that for any 

closed (n-I)-form YJ of M the sequence {f YJ/vol F~} is convergent, 
Fj lEN 

(2) AF is well-defined as an element in the dual of Hn-l(M; R) by 

Now we are going to construct an (n-I)-form e of M representing 
the Euler class of T.'IF. In the first place, we take a function a: Dn-l-+ 
[0, 00 [ such that 

(1) a=O in a neighborhood of aDn-t, 
(2) a(x)=a(y) if x, y E Dn-l and Ilxll=IIYII, 
(3) f adxJ\ ... /\dxn_1 = 1, 

nn-I 

where 

Let 7r1 : Dn-1XS1-+Dn-l and 7r2 : Dn-1XR-+Dn-l be the projections. We 
will use the induced (n-I)-forms $j=7rj(adx1/\··· /\dxn- 1), j=I, 2. 
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Clearly d~l=d~2=0. 
Secondly consider the connected components CI , •• " C • .of Zero (Z). 

For Ck transverse to oF, take a small tubular neighborhood Wf of Ck in 
M and an orientation preserving diffeomorphism Ikl: Wf~Dn-1 xS such 
that 

(1) ~I Wf=h!({Dn-IX{t} I t E SI}), 
(2) Ikl(Ck)= {O} X Sl. 

For Ck with I k(Z)*~, we consider !C' k' For each L~ E !C' k' take an arc 
K~ in M such that 

(1) K~- U {U(z) Iz E I(Z)J=L~- U {U(z)lz E I(Z)}, 
(2) for z E I k(Z) with LT n u(z) =I=~, 

KT n U(Z)=h;I({(O, .. " O)} X [-1/3,0]) U rT, 

where r~ is a curve in h;l(r-1 X [0, 1]) transverse to ~ connecting the 
points L~ n aU(z) and z. 

Furthermore take a small e>O and a small tubular neighborhood 
WT of KT such that for z E I k(Z) with KT n U(z) *~, 

W~nh;l(r-IX[-I, 0])=h;I(D:-IX[-I/2, 0]) 

where D:- I = {x ERn-II II xII ~e}, and an orientation preserving imbedding 
Iki: W~--+Dn-I XR such that 

(1) ~I W~=RH{Dn-IX{t} I t E RD, 
(2) lki(K~) c {OJ X R, 
(3) Iki(aW~- U {U(z) I z E I(Z)})caDn-1 X R, 
(4) for each z E I k(Z) with K~ n U(z)=I=~, 

for (Xl> .. " x n- I) E Dn-I and t E [-1/2,0]. 
We may suppose that if W~ n Bl*~' then for each plaque P of Bl 

the intersection W: n P is contained in Int q for some (n-I)-simplex q of 
T(P). See Figure 4.4. 

By (1) of Lemma 4.1, we can attach an integer It to each L: E 

!C'I U ... U!C' k in such a way that It=I(x, Z!F.,,} for all x E Int LT. For 
each L~, define an (n-I)-form "fjki of M by 

if !k(~)*l, 
otherwIse, 

Note that if I k(Z)*~, then "fjki is not continuous at h;I(Dn-1 X {-1/2}) 
for all z E I k(Z) with U(z) n W~*~. At last, let e= 2:k,i I~"fjki' By (2) 
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W' , 

I 

""J---- .... -

Fig. 4.4. 
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of Lemma 4.1, the discontinuities of r;k/S are canceled and e is a smooth 
(n-I)-form of M. We have 

where j= I or 2. 

Lemma 4.5. The closed form e represents the Euler class of T:;;;. 

Proof Let C E Hn-t(M; Z). Using a singular chain c representing 
C, we can construct a simplicial complex K and a p.d. map </>: K-+M 
such that </>*([KD = C, where [K] is the homology class of K represented by 
the sum of all the (n-I)-simplices of K. We may suppose that for each 
B). the intersection </>(K) n lnt B). is written as Ui lnt P; for a finite number 
of plaques Pt, "', P:().) of B). and </>1 </>-\lnt Pj): </>-t(lntPD-+lntP; is a 
diffeomorphism for j=l, "', !.I(A). Furthermore we may suppose that 
</>(K) n ( u {U(z) I Z E .E(Z)}) = 0. Consider the induced vector bundle 
</>* T:;;; c K X T:;;; and the induced section </>* Z: K -+</>* T:;;; defined by 
</>*Z(x) = (x, Z(</>(x))) for all x E K. Clearly Zero (</>*Z) =</>-1 (Zero (Z» is 
a finite set. Denote by lex, </>* Z) the index of </>* Z at x E Zero (</>* Z). 
For each plaque P of B). intersecting Zero (Z) - U {U(z) I Z E .E(Z)}, we 
have 
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for adequate k, i,j and x E PcLT. Therefore it follows that 

<[K], p*[e]) =f e= 2: lex, p*Z). 
(>(k) xEZero«>*Z) 

This means that p*[e] is the Euler class of p*T§". Therefore [e] is the 
Euler class of T §", which completes the proof of Lemma 4.5. 

By the condition (1) of Main Theorem, it follows that H n - 1(M; R)=O. 
Therefore the asymptotic homology class AF is zero. Since AF(e)=O, it 
follows that 

O=lim f eivol F;=lim 2: lex, ZI F)/vol F;, 
j_rxJ Fj j_oo xeFj 

where we use the convention that lex, ZI F)=O for x E F with Z(x)*O. 
We can estimate the difference between X(Fi) and 2:xEF; lex, ZI F) as 
follows. 

Lemma 4.6. There exists a positive constant Q such that 

IX(Fi)- 2: l(x,ZIF)I<QvolaFi. 
"'EF; 

Suppose that Lemma 4.6 is proved. Then we have 

° <lim sup I X(F;) I/vol F; 
j_oo 

<lim sup (I 2: l(x,ZIF)I+QvolaF~)/voIF; 
j-~ XEFj 

=lim sup I 2: lex, ZI F) I/vol F~+ Q lim sup vol aF~/vol F; 
j_oo xeFj )_00 

=0. 

Therefore limj_~ X(F~)/vol F;=O. Since {F;}jEN satisfies the conditions 
corresponding to (1) and (2) of Definition 2.3 also, (F, g I F) has average 
Euler characteristic zero. The rest of this section is devoted to the proof 
of Lemma 4.6. 

Since each Z E Zero (ZI F) is contained in Int (l for some (n-I)-sim
plex (l of T, there exists a positive constant 0* such that 

We are going to construct a smooth submanifold Gi in Na.(aFi)-Int Fi. 
Denote by (!) (or .f) the set of (n-2)-simplices (lCaFi such that Z is . 

outward (or inward, respectively) at Int (l from F i • We call a simplex 
1:CaFi positive (or negative) if all the (n-I)-simplices (lcaFi containing 1: 

belong to (!) (or J), and call 1: neutral if 1: is neither positive nor negative. 
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Let" be a vertex in aFi . Then there exists an imbedding u< of a 
small compact neighborhood U (,,) of" in F into Rn -I with coordinates 
YI' ... , Yn-I such that 

(1) u,(,,)=(O,·.·, 0), u«U(,,»=D~-t, 
(2) u<*(Z(x»=a/aYn_1 for all x E U(,,), 
(3) for some bicollar V(,,) of K(,,)=u.caFi n U(,,» n aD~-1 in aD~-I, 

the image u.caFi n U(,,» is contained in the cone 

See Figure 4.5. 

The star of 't" in (} Fi 

u, -

Fig. 4.5. 

Since each simplex of aFi is transverse to Z, the Yn-l axis does not 
intersect CV(,,)-{(O, ... , O)}. Let 

E(al , ••• , an-I; W)= {(Xlo • : ., x n_l ) E Rn-l! (~: (x j -a j )2) / w2 

+ (xn _ l -an _ ln(3/2)2= I}. 
Then there exists w > ° such that E(O, .. ·,0, 1; w) n CV(")CD~-l and 
E(O, ... , 0, -1; w) n CV(")CD~-l. Let D(,,) = u-I(E(O, ... , 0, a; w» 
where a= 1 if" is negative, and otherwise a= -1. Then Z is inward (or 
outward) at a(Fi U D(,,» n D(,,) if" is negative (or otherwise). The change 
from aFi to a(Fi U D(,,» near" is illustrated by Figure 4.6, where + (or -) 
means outward (or inward). 

Let" be a I-simplex in aFi • Then there exists an imbedding u< of a 
small tubular neighborhood U(,,) of" into Rn-l such that 

(1) u«t) = {(t, 0, .. ·,0) It E J}, ulU(,,»=JXD~-Z, 
(2) u<*(Z(x»=a/aYn_1 for all x E U(,,), 
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t" is negative, t" is neutral. t" is positive. 

Fig. 4.6. 

(3) for some bicollar VeT) of K(T)=U.(aFin U(T»nJXaD~-2 in 
JXaD~-2, the subset u.(aFi nU(T»n{t}XRn-2 is contained in the cone 
{(t,sx2, "',sxn_1)IO:::;s<I,(t,x2, "',xn- 1)e V(T)n{t}XRn-2}. As in 
the case of vertex, we can take a thin tubular neighborhood D(T) of T in F 
such that Z is inward (or outward) at a(Fi U D(T» n D(T) except near the 
vertices e T if T is negative (or otherwise). 

By the similar way, we take a thin tubular neighborhood D(T) for 
each sImplex T of dimension <n-l and let Ft=FiU(U.D(T». (We 
omit the details.) By a downward induction on the dimension of T, we 
can round the comer of aFt in an arbitrarily small neighborhood of the 
comer and obtain a smooth submanifold Gi • Let Hi be the compact 
submanifold of F such that aHi = G; and H; ~ Fi • Clearly Fi is a defor
mation retract of Ft and of H;. 

Denote byI(aFt) (or leG;»~ the closure of the set of x e aFt (or Gi ) 

such that Z(x) is inward. Each connected component It of l(aF:) is 
homeomorphic to Ij = U {q e .F I 11 n Int q*~}, and corresponds to a con
nected component lj of I(G i ), which may be supposed to be a smooth 
submanifold-with-boundary of G i' Glue G i X J to Hi by identifying G i X 
{-I} and G;=aH; canonically. Take a function /3: J--*[O, 1] such that 

(1) /3=0 on [-1, -1/3], /3= 1 on [1/3, 1], 
(2) 0</3< 1 on ]-1/3, 1/3[, 

and a function r: J--*[O, 1] such that 
(1) r=o on [-1, -2/3] U [2/3, 1], 
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(2) r = 1 on [-1/3, 1/3], 
(3) O<r<1 on ]-2/3, -1/3[U]I/3, 2/3[. 

Take a vector field Y on G t such that 
(1) Y =0 outside of a neighborhood of I(Gi ), 

(2) Y is outward at al(Gt) from I(Gt), 
(3) Yhas IX(I(Gt» 1 singular points of index ± 1 in IntI(Gt ). 

Now let Zi be the vector field of Hi U G t XJ defined by 
(1) ZtIHt=ZIHi , 

(2) for each (x, t) E Gt XJ, 

Zt(x, t)= f3(t) a/at + f3( - t)Z(x)+ r(t)Y(x). 
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Then Zt 1 Gt XJ has just IX(I(Gt» 1 singular points of index ± 1 and Zi is 
outward at Gt X {I}. It follows that IX(Ft)-L:xEF' lex, ZI F)I =1 X(I(Gt» I. 
Since I(Gt) is homeomorphic to l(aF!), we have 

IX(I(Gt» 1 =IX(I(aFt» 1 

<L: #{ala is a simplex elj} 
j 

<N#{ala is a simplex eaFi } 

~N(2n/v) vol aFt, 

where N and v are the positive constants corresponding to the uniform 
triangulation T. This completes the proof of Lemma 4.6 and of Main 
Theorem. 

Remark 4.7. By the above proof, we can replace the condition (1) of 
Main Theorem by the following weak condition. 

(1)' X(T~)=O if dim Fis even. 
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