
Advanced Studies in Pure Mathematics 5, 1985 
Foliations 
pp. 325-339 

Foliations of Seifert Fihered Spaces over S2 
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Introduction 

In his thesis [15], Thurston has shown that given an oriented S'
bundle p: V -+}; over an oriented closed surface }; =f= T2, any transversely 
oriented, codimension one c r foliation (r > 2) of V without compact 
leaves can be moved by a C r -isotopy so as to be transverse to fibers of p. 
Recently this result has been extended by Eisenbud-Hirsch-Neumann [1] 
to Seifert fibrations over surfaces of nonzero genus. 

In this paper we deal with the remaining case of Seifert fibered spaces 
over S\ where we have a generalization to foliations without dead end 
components. For the definition of dead end components, see Section 1. 
This phenomenon reflects the vanishing of the first Betti number of S2 and 
is characteristic to the present case. (One can construct counter-examples 
for S'-bundles over surfaces of nonzero genus.) Our main result is the 
following. 

Theorem 1. Let p: V -+S2 be an oriented Seifert fibration with at 
least four exceptional fibers and.iF a transversely oriented, codimension one 
cr foliation (r > 2) of V. Then there is an isotopy {~t} of V such that ~o= 
id and ~t.iF is transverse to all the fibers of p, if and only if .iF has no 
dead end components. 

Corollary 2. Let V and .iF be as in Theorem 1. If.iF does not have a 
compact leaf, then .iF is isotopic to the one which is transverse to all the 
fibers ofp. 

Gazolas [3] has determined which Seifert fibrations admit transverse 
foliations. Together with Theorem 1, this determines which Seifert fibra
tions over S2 admit foliations without dead end components. 

The proof of the only if part of Theorem 1 is clear. The proof of 
the if part proceeds along the same line as in Levitt [4]. We consider a 
vertical incompressible torus; make it transverse to the foliation; and 
study the induced foliation on it. When it does not give us enough 
information, we consider two such tori intersecting along two closed 
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curves. 
Thus our argument, as it is, is not applicable to the case of three 

exceptional fibers, where there are no such tori. However when there are 
at most two exceptional fibers or when there are three and L::~, l/Cl t > 1, 
where ((Clt, /3t), b) is the Seifert index (b is the Euler number), the total 
manifold V has a finite fundamental group (except V = S' X S2) and thus 
any foliation of V has a Reeb component. This shows that Theorem 1 
holds (vacantly). 

Also in the case of three exceptional fibers with the above sum 
equal to one, any transverse foliation has a compact leaf. This is shown 
as follows. The quotient group of 1tiV) by the subgroup generated by the 
class of an ordinary fiber acts on R2 totally discontinuously as Euclidean 
motions. This implies that 1t",(V) has a polynomial growth (c.f. Milnor 
[6]). On the other hand, the Betti number of V is at most one. Thus the 
assertion is meant by Corollary 7.4 of Plante [10]. Further if L:~~, /3t/Clt 
+b*O, then V does not admit an incompressible surface. This implies the 
existence of a Reeb component. Thus Theorem 1 also holds in this case. 
However the author does not know whether it holds or not in the remain
ing case. 

In Section 1, we give preparatory results necessary for the proof of 
Theorem 1. In Section 2, we show that a foliation without a dead end 
component is isotopic to the one which is transverse to a certain fiber. 
In Section 3, we show following Levitt [4] that it is further moved so as to 
be transverse to all the fibers. This is involved by the suggestion of the 
referee for the convenience of the reader. So far, however, our argument is 
not applicable to the special case where there are four exceptional fibers, 
all with Seifert index (2,1). This case is dealt with separately in Section 4. 
. All manifolds and maps in this paper are to be of class C~ unless 
made explicit to the contrary. Foliations we study are always transversely 
oriented, codimension one and at least of class C 2• A path or a curve is 
understood to be a continuous map from the unit interval. But we often 
confuse a path with its image. Both are denoted by the same letter. 

The author would like to express his gratitude to T. Inaba, S. Kojima 
for helpful conversations and especially to K. Yano, who suggested a 
generalization to the case of no dead end components. He also thanks 
the referee for valuable advices. 

§ 1. Preparations 

Here we prove an analogue of Theoreme 2 of [4]. Our argument is a 
variant of that of [4] and the reader is recommended to consult [4] 
whenever necessary. 
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Novikov introduced in [8] the following equivalence relation among 
leaves of a transversely oriented foliation ~; two leaves Land L' are 
equivalent if and only if there exists a closed curve transverse to the folia
tion and passing through Land L'. The equivalence classes are either 
compact leaves or open saturated subsets whose boundaries are finite 
unions (maybe empty) of the former types. One calls the closures of 
latter types Novikov components of~. They are either the total manifold 
or compact submanifolds. Among them there is defined a natural partial 
order. Minimal or maximal elements (other than the total manifold) are 
called dead end components. Notice thai ~ admits a dead end component 
if and only if the total manifold is not a Novikov component, or equi
valently if and only if there is an open saturated subset whose boundary 
leaves are transversely oriented simultaneously inwards or outwards. 

Next following [4] we define well placed curves w.r.t. a foliation (1 of 
the 2-torus T2. 

Definition 1. A simple closed curve C of T2 is called well placed 
w.r.t. (1, if one of the following three conditions is satisfied. 

(a) C is transverse to (1. 

(b) (1 is a trivial foliation by circles and C is a leaf of (1. 

(c) (1 contains at least one Reeb component and C has the smallest 
possible number (nonzero) of points of tangency with (1 among its isotopy 
class. 

The above three conditions are mutually exclusive and we call C 
according to the case well placed of type (a), (b) or (c).· 

Theorem 3. Let V be a closed oriented 3-manifold, equipped with a 
foliation ~ without dead end components and let Tl and T2 be embedded 
tori in V. We suppose; 

(1.1) Tl and T2 are incompressible, i.e. their inclusion maps into V 
induce injections on 1t'1' 

(1.2) Neither Tl nor Tz is isotopic to a leaf of ~. 
(1.3) Tl and T2 intersect transversely along two disjoint simple closed 

curves r1 and r2, which are homotopically nontrivial in V. 
(1.4) Let a and 1: be paths in T, and Tz, respectively, connecting a 

point of r1 to a point of r2. Then the closed path 1:a-1 is homotopically 
nontrivial in V. 
Then one can find two embedded tori Tf and T~ isotopic to Tl and T2, re
spectively, such that 

(1.5) T~ and T~ are transverse to ~, 
(1.6) Tf and T~ intersect along two simple closed curves which ar~ 

well placed w.r.t. both ~ITl and ~IT" 
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The proof of Theorem 3 reduces to the following lemma. 

Lemma 4. Assume besides the hypothesis of Theorem 3 that T, is 
transverse to :F and that r, and rz are well placed w.r.t. :FITI. Then Tz is 
isotopic to a torus T~, transverse to :F, such that T, and T~ meet trans
versely along two disjoint simple closed curves, well placed w.r.t. :FITI (not 
necessarily w.r.t. :FITJ 

First we show why Lemma 4 implies Theorem 3. By a preliminary 
isotopy, we can make T, and Tz of Theorem 3 to satisfy the assumption 
of Lemma 4. Apply Lemma 4. When T, n T~ is well placed of type 
(a) w.r.t. :FITl' so is it w.r.t. :FIT. and nothing is left to prove. Suppose 
T, n T~ is well placed of type (b) w.r.t. :FITI. If :FIT. is a trivial folia
tion, then T, n T~ is also well placed w.r.t. :FIT.. Otherwise after a pre
liminary isotopy apply Lemma 4 again, this time so as to move T,. Then 
T, n T~ becomes well placed of type (a) w.r.t. :FIT.. Finally when T, n T~ 
is of type (c), we can use Lemma 4 successively (moving T, and T~ 
alternately), until we get that T, n T~ is well placed w.r.t. both :FITI and 
:FIT.. This is done by an induction on the number of points of tangency 
of the curve. 

Proof of Lemma 4. When T, n Tz is well placed of type (a) or (b) 
w.r.t. :FITl' Lemma 4 can be obtained without much difficulty by just the 
same argument as in [4]. So we shall be concerned solely with the case 
where T, n Tz is well placed of type (c) w.r.t. :FITI. As is proved in [4], it 
suffices to show only the following. 

(1.7) Let E be a disk (resp. annulus) in Tz and D a disk (resp. 
annulus) in a leaf of :F such that D n E=aE=aD. Suppose aE is trans
verse to T, and DUE bounds an angular ball (resp. solid torus) B in V 
such that Bn Tz=E. Suppose also that D is isotopic to E keeping the 
boundary fixed in B. Then B n T, is a union of angular disks which 
intersect aE transversely at two points. 

Proof of (1.7). Consider T, naB. It is a union of simple closed 
curves. Note that none of them is contained in the interior of D. For 
otherwise there would exist a leaf curve of :FITI disjoint from T, n Tz, 
contradicting the hypothesis that T, n Tz is well placed of type (c) w.r.t. 
:FITI. Consider if there exists any, a component A intersecting aE at some 
point x. Assume to fix the idea that x E r,. Let a be a subarc of A 
contained in E which connects x to some point y of aE and let j3 be a 
subarc of A in D which connects x to some point z of aE. One has that 
z E r,. If not, by choosing a curve (5 in E connecting y to z such that 
a(5j3-':::::: 1 in B, one would get a contradiction to the condition (1.4). 
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Note that ~ cannot intersect r2 because Bn T2=E. Thus ~ must be 
a leaf curve in a Reeb component of ~ITI which is homotopic to a subarc 
of rl leaving the end points fixed. Notice also that a is a subarc of TI 
having at least one point of tangency with ~ in its interior. This is due 
to)he assumption that ~ be transversely oriented. 

We call A a curve of type (1) if y=z and A is null homotopic in T I • 

Otherwise it is called a curve of type (2). A curve which is wholly con
tained in Int E is called a curve of type (3). Our aim is to show that all 
the·components of TI n vB are of type (1). For then all the components of 
TI n B prove to be disks and the proof is completed. 

Assume there were a curve of type (2) or (3), say AI. Suppose to fix 
the idea that Alnrl=Fs5. We show; 

(1.8) AI is a composition of subarcs of rl and leaf curves of ~ITI 
isotopic to rb keeping AI n rl fixed. All the other components of T, n vB 
meeting rl are of type (1). 

Proof of (1.8). When Al is of type (3), (1.8) holds trivially. 
Suppose Al is of type (2). Then as we have already shown, a leaf 

curve of Al is homotopic to a subarc of rl leaving the end points fixed and 
each component of Al n rl contains a point of tangency with ~ITI. This 
completes the proof of (1.8). 

Now (1.8) implies that there are at most two curves of type (2) or (3), 
one:meeting rl and the other r2• They are homotopically nontrivial by 
the)ncompressibility of TI. Consider the component C of Bn TI contain
ing AI. Because AI *" 1, one of the other boundary components of C, say 
A2, must also be homotopically nontrivial. That is, A2 is of type (2) or (3). 
Thus A2 n rz=s5. But then by choosing a path a in C connecting a point 
of rl to a point of r2 and a path'C in E such that va=v'r and a'r- I ~ 1 in 
B, one would obtain a contradiction to the condition (1.4). This com
pletes the proof of (1.7). q.e.d. 

In the rest of this section, we study homo topical properties of a 
Seifert fibration V over S2. Let «ai' ~i)' b) (i = 1,2, ... , n) be the Seifert 
index of V (see [9]). Then irl(V) is given by 

where h stands for the class of an ordinary fiber and Pi a closed path 
around the i-th exceptional fiber. Let G be the quotient group of irl(V) 
by the subgroup generated by h. By certain abuse the class in G will be 
denoted by the same letter as an element of irl(V). The following lemma 
is concerned with G. 
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Lemma 5. If the number n of the exceptional fibers is.not less than 4, 
then 

(1.9) (PIP2tp2 1(pZPS)m=l= i for any integer nand m, 
(1.10) (PIPzt(p2PS)m=l= 1 except when n=m=O. 

Further ifn~5 or ifn=4 and at least one of at is greater than 2, then 
(1.11) for sufficiently large nand m, (PIP2)n and (pzps)m freely gen

erate a subgroup of G. 

Proof First suppose that n>5 or n=4 and at least one of at is 
greater than 2. Let 

G=<ul , "', unlU;=I, (ujUj+IYJ=I('fj», 

where we use the convention Un+1 =UI. As is well known (see for example 
[5]) the homomorphism '0/': G---+G defined by 'o/'(Pj)=ujuj+ 1 (I<j<n) is 
an injection onto a subgroup of index two. Take an n-gon r of the 
Poincare disk such that the angle of Uj n Uj+1 is 7r/a j (1 <j<n), where Uj 
is the face of r (taken successively). Then G acts on the Poincare disk 
properly discontinuously so that its fundamental domain is r and that uj 

acts as the symmetry about Uj • Let WI be the geodesic perpendicular to 
both UI and Ua. Then 'o/'(PIP2)=UIUa is a hyperbolic motion with axis 
WI' sending r to r' in Figure 1. Likewise 'o/'(P2Pa)=U2U4 is a hyperbolic 
motion whose axis is the geodesic W2 perpendicular to Uz and U4• UZU4 

sends r to r". 

w. 

Fig. 1. 
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Fig. 2. 

Now (1.10) is clear by Figure 1. (1.11) is a direct consequence of 
Klein's criterion ([2]). For the proof of (1.9), notice that p;:1 =UgU2 is a 
rotation by 2rrja2 around the vertex U2 n Ug sending Al to A2 in Figure 2. 
Hence (PIP2tp;:l(p2pJm sends D to E in Figure 2. Thus it cannot be the 
identity. 

Let us consider the remaining case, where n=4 and each (ai' !3i)= 
(2, 1). Then G acts on the Euclidean plane instead of the Poincare disk. 
But (1.9) and (1.10) are shown by the same argument as above. q.e.d. 

§ 2. Proof of Theorem 1 

In this section and the next we prove Theorem I (if part) except in a 
special case. First we summarize conditions of a foliation which lead to 
the existence of a Reeb component. 

Theorem 6 (l8], [12]). If a transversely oriented foliation g; of a 3-
manifold V satisfies one of the following conditions, then g; has a Reeb 
component. 

(2.1) Some leaf F of g; is compressible, i.e., there exists a closed 
curve in F, null homotopic in V, but not in F. 

(2.2) There exists a null transversal (a null homotopic closed curve 
transverse to the foliation). 

(2.3) V is not prime. 

In this section we consider V and g; of Theorem 1 and assume that 
g; has no dead end components. We also assume that V has more than 
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4 exceptional fibers or has just 4 and at least one of ex j is greater than 2. 
Our purpose is to show the following. 

(2.4) §' is moved by an isotopy so as to be transverse to a certain 
fiber ofp. 

Let F be a compact leaf of §'. By (2.1), it is incompressible. Thus 
there is an (ambient) isotopy which makes F either vertical or horizontal 
(Waldhausen [16]), (A surface in V is called vertical if it is a union of 
fibers and called horizontal if it is transverse to the fibers.) In fact F is 
made horizontal. If not, F would be separating and thus §' would have 
a dead end component. 

Consider a vertical torus T in V and let VI and V2 be the closures of 
the components of V\T. Assume that both VI and V2 contain at least 
two exceptional fibers, that is, T is incompressible. By Roussarie [13] the 
foliation we consider is isotoped so that it is transverse to T. Several 
cases are to be considered concerning the induced foliation §'IT' But 
except the following two cases, one can easily obtain (2.4). 

(2.5) §'IT is a trivial foliation by circles which are isotopic to 
ordinary fibers of V. 

(2.6) §'IT has Reeb components whose boundary leaves are not 
isotopic to ordinary fibers of p. 

Our goal is to show that both cases are in fact impossible. First let 
us consider the case (2.5). Consider a solid torus Vs equipped with the 
trivial foliation §'O by meridean disks. Paste VI and Vs so that §'IVI and 
§'O match together to give a foliation :F of the resultant manifold V. 
Clearly V is not a prime manifold. Thus by (2.3), :F must have a Reeb 
component. Note that the boundary torus is contained in VI and is 
isotopic to T. This leads to a contradiction because T is vertical. 

In the remainder of this section we prove that the case (2.6) is also 
impossible. For this it does not suffice to consider one torus T. Instead 
we consider two tori TI and T2 such that; 

(2.7) TI and T2 are vertical, 
(2.8) they intersect along two ordinary fibers, 
(2.9) three of the four components of V\(TI U T2) contain exactly 

one exceptional fiber. 
Further we may asume that niTI) (resp. n"t(T2)) is generated by hand PIP2 
(resp. P2PS)' Then by using Lemma 5, we get the following. 

Lemma 7. Let a and t' be paths of TI and T2 respectively such that 
aa=/h and a-It'::: 1 in V. Then a is homotopic in TI to a path in TI n T2 
keeping the end points fixed. Especially when the two boundary points of a 
lie in the different components of TI and T2, we have a-It'*- 1 in V. 
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Proof If two boundary points of a lie in the different components 
of Tl n r.., then a-It' represents in the group G of Lemma 5 the class 
(plPZ)np2\pzPa)m and by (1.9) cannot be null homotopic in V. On the 
other hand if they lie in the same component, a-It' represent (plPZ)n(pzps)m. 
Thus a-1t'::= 1 implies n=O. Recall that a component of Tl n Tz represents 
h. Also h is contained in the center of Il"I(V). This shows that a followed 
by an appropriate path in Tl n Tz is null homotopic in V, hence in Tl 
because Tl is incompressible. q.e.d. 

From the above lemma we get that the tori Tl and Tz satisfy the 
hypothesis of Theorem 3. Thus after an appropriate isotopy we can 
assume; 

(2.10) Tl and Tz are transverse to ff, 
(2.11) they meet along two disjoint simple closed curves r1 and r2, 

each isotopic to an ordinary fiber, 
(2.12) r1 and r2 are well placed of type (c) w.r.t. Tl and Tz• 

Note that we are working in case (2.6) and thus we may assume 
(2.12). Also note that in the course of all the isotopies we have used the 
way of intersection of Tl and T2 does not change. So their homotopical 
properties remain valid. 

Definition 2. Two points x and x' of the same component of Tl n T2 
are called symmetric w.r.t. ffl Tj U= 1,2) if they are joined by a leaf curve 
of ffl Tj which is homotopic in T j to a path in Tl n T2 keeping the end 
points fixed. 

Symmetric points belong to the same leaf of a Reeb component of 
fflTj" 

Lemma 8. Let a be a simple arc in a leaf L of fflTl and /30 and /31 
closed leaves of fflT2 such that a(O) E /30' a(l) E /31 and a(O) and a(l) are 
symmetric w.r.t. ffl Tl. Then we have L n /3o=a(O) and L n /31 =a(l} 

Proof Step 1. Consider the special case where Int a n (/30 U /31) = cp. 
Notice first that /30 and /31 are distinct. If they were identical, take a 
subarc a of /30= /31 joining a(O) to a(l). Then a-1a would be a leaf 
curve of ff whose holonomy is orientation reversing. 

Because all the leaves of ff are incompressible and /30 is not null 
homotopic in V, one can find an annulus A in a leaf F of ff such that A 
is bounded by /30 and /31 and A contains a. L meets aA transversely in F. 
Because Tl n A is compact, L n A consists of finite arcs. Suppose in way 
of contradiction that the conclusion of Lemma 8 is false. Then there 
exists a component 0 of L n A different from a. Obviously 0 is homotopic 
to a curve of T., keeping the end points fixed, hence to a curve in Tl n Tz 
by Lemma 7. But inL, a also has this property. This contradicts the 
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assumption that TI n Tz are well placed. 
Step 2. We shall reduce the general case to Step l. That is, we 

shall prove under the hypothesis of Lemma 8 that Int lX n (fio U fil) = rp. 
The proof is an induction on the number of transverse intersection points 
of Int lX and T2• If it is zero, then the claim is trivially true. Suppose it 
is positive and assume in way of contradiction that there is a point x E 

Int lX n fio. Let x' be the symmetric points of x W.r.t. ff1 T1 • Clearly 
x' E Int lX, and the leaf fi' of fflT2 through x' is closed. If not, one would 
obtain a null transversal of ff. But this is prohibited by Theorem 6. 
Let lX' be the subarc of lX joining x and x'. Now by the induction hypoth
esis, we have lX' n fio=x and lX' n fi' =x'. Thus by Step 1, lX n fio=x. A 
contradiction. q.e.d. 

Now let us complete the proof that case (2.6) is impossible. Take a 
point of tangency p of TI n T2 with ff. Suppose p is contained in an 
open Reeb component Ci of fflT.(i = 1,2). Let Ii be the component of 
C i n TI n T2 containing p. For a point of II n 12, its symmetric points 
w.r.t. fflTI and fflT2 are identical. If not, one would get a null transversal. 
Thus there are two possibilities. 

(2.13) I 2r;;JI or M;;J2' 
(2.14) II =12 , 

We show in the below that in both of the above cases, we can find 
annuli Ai such that vol (Ai)--oo, while vol (aA i) is bounded. 

Consider first case (2.13). Suppose I2r;;.II' Then aroundp, one can 
find simple arcs lX, fio and fil which satisfy the assumption of Lemma 8. (fio 
and fil are boundary leaves of C2.) Let L be the leaf of fflTI containing 
lX, and let x and y be the points of (L\lX) n T2 which are symmetric w.r.t. 

ff1 T1 • 

Claim. A leaf of ff I T2 passing through x or y is closed. 

Proof First notice that the leaf through x and the leaf through yare 
simultaneously closed or no. Otherwise one would get a null transversal. 
Let lX' be the subarc of L joining x and y and let a be the sub arc of TI n 
T2 such that aa=alX' and a=:::.lX' in TI keeping the end points fixed. 

Suppose to start with that x and yare symmetric w.r.t. fflT2 and the 
leaf curve 0 of ffi T• joining x and yare homotopic to a in T2• Then the 
closed curve composed of lX' and 0 is null homotopic in V, hence in a leaf 
of ff. But by Lemma 8, we have that fio intersects it transversely only at 
one point. A contradiction. 

Next suppose that the leaf F and G through x and y respectively, of 
ffi T• are noncompact but they do not satisfy the above assumption. In 
this case both F and G intersect a infinitely many times. Let Xk (resp. Yk) 
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be the k-th intersection point of F (resp. G) with q. Clearly Xk and Yk 
are symmetric w.r.t. ~b. Let Ok be the leaf arc of ~ITI joining X k and 
Yk. There are infinitely many disjoint Ok'S. Thus some Ok is disjoint 
from 130. Now a', Ok and leaf paths of ~IT.,one joining x and Xk and 
the other Y and Yk constitute a null homotopic curve in a leaf of ~, 
which intersects 130 at one point. A contradiction. q.e.d. 

Now by what was shown, we can choose ai' f3i and f3i as in Lemma 
8 so that the length of a i is arbitrarily large. f3i and f3i bound an annulus 
Ai which contains ai' in a leaf of~. vol (Ai) can be arbitrarily large, 
while vol (aA i ) is bounded. 

Next let us consider case (2.14). Let z and z' be the end points of 
II =12 and let qi be the closed leaf of ~IT' through z (i = 1,2). Let H be 
the subgroup of 71:1(ql U q2) generated freely by q~ and q;' for sufficiently 
large nand m. Then by Lemma 5, the inclusion map induces an injection 
of H into 71:1(V). Let f/J: H~LocDifP (II> z) be the one sided holonomy 
homomorphism. By Moussu [7], there exists a nontrivial element g of H 
such that f/J(g) has infinitely many fixed points Zl> Z2' ••• , which tend 
monotonously to z. Let!'i be the lift to a leaf of ~ITIUT. through Zi of 
a closed path in ql U q2 which represents g. Of course!' i is a closed curve 
and is homotopically nontrivial in V. Let us take f3i' a homotopically 
nontrivial simple closed curve in !' i. One can define in an obvious fashion 
the curve f3i which is "symmetric" to f3i. It is also a simple closed curve. 

By choosing appropriately two symmetric points Wi E f3i n Tl n T2 
and wi E f3i n Tl n T2 and a simple leaf curve at of either Tl or T2 joining 
Wi and wf, one may assume that Int a i n (f3t u f3i) =~. One has only to 
choose the shortest of all such curves. Now as in the previous case 13, 
and f3i bound an annulus Ai in a leaf of ~ which contains a i• 

Thus we have obtained in both cases (2.13) and (2.14) annuli Ai which 
have the following properties. 

i) vol (Ai)~oo and aAi = f3i U f3i has a bounded volume. 
ii) Ai contains a i which is a leaf curve in a Reeb component of 

(2.15) either ~ITI or ~IT •. 
iii) a i is homotopic to an arc Oi of Tl n T2 leaving the end points 

fixed. 
iv) f3i and f3i bound an immersed annulus C i in Tl U T2. C, 

contains 0,. 

By i) the sequence {A,} defines a transverse invariant measure fl. 
This is shown by an argument analogous to [11]. (Compare also [10]). 
In [11] it is also shown that the transverse invariant measure fl defines a 
class x of H2(V; R). We shall show x=O. Let Xi be the homology class 
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represented by the immersed torus Ai U Ci. (The orientation is chosen so 
that it fits with the transverse orientation of Ai.) It is not difficult to 
show x=lim i _ oo Xi. Now a i and Oi bound an (immersed) disk Di in T, 
(or Tz). One can perform a surgery of Ai U Ci along D i . The resultant 
surface is an immersed copy of SZ, which represents the same homology 
class Xi. But the manifold V we are considering is aspherical. Thus 
xi=O. Hence we have x=O. 

By Theorem 6.6 of [11], the support of the invariant measure f1. con
sists of compact leaves. These compact leaves are horizontal as we have 
shown before. It is easy to show that they are mutually isotopic. Thus 
the vanishing of the homology class X implies the existence of two com
pact leaves transversely oriented in the opposite directions. This implies 
the existence of a dead end component. 

We have shown that (2.6) is impossible and thus (2.4) is nowestab
lished. 

§ 3. End of proof of Theorem 1 

Here we give a proof essentially due to Thurston [15] of the following 
proposition, which completes the proof of Theorem 1 in the case treated 
in the previous section. Let p: V -+S2 be an oriented Seifert fibration 
and let .?F be a foliation of V. 

Proposition 9. Suppose that .?F has no dead end components and it is 
transverse to a certain fiber a of p. Then there exists an isotopy {SOt} of 
diffeomorphisms of V such that SOo =id and sot.?F is transverse to all the 
fibers of p. 

Proof. Take a small tubular neighbourhood N of a such that .?F is 
transverse to aN and that .?FIN is a trivial foliation by meridean disks. 
Consider mutually disjoint, properly embedded vertical annuli C" .. " 
Cn _, in V\Int N such that 

(3.1) C i is transverse to aN, 
(3.2) aCi is transverse to .?FlaN' 
(3.3) each component V~, ... , V~ of V\(NU U i Ci ) contains exactly 

one exceptional fiber. 
By Theoreme 2 of Roussarie [13], one can further assume that each 

C i is transverse to.?F. Let Vi be the smooth solid torus obtained from 
Cl (V~) by cutting off corners. 

First of all suppose that for each Vi' .?Flay, has no Reeb component. 
Then .?FlaY, is a trivial foliation by meridean circles. If not, one would 
obtain a null transversal. This shows .?Fly, is a trivial foliation by meri
dean disks. It is easy to show that in this case .?F can be made to be 
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transverse to all the fibers of p. 
Suppose to the contrary that ~Iavt has Reeb components for some 

Vi' Then the leaf F of ~IVi containing a compact leaf L of aVi is com
pact. In fact F is a vertical annulus. To show this, suppose in way of 
contradiction that F is noncompact. Then there exists a closed transversal 
r of ~Iv, passing through L. Consider the classes [r], [L] E it"t(Vi)~Z. 

Passing to an iterate of r, if necessary, one may assume [r]=n[L] for 
some integer n. By adding a leaf curve -nL to r, we obtain a null 
transversal. Recall that we always assume throughout that the foliation 
we consider is transversely oriented. Thus F is a compact leaf. By 
Theorem 6 (2.1), a leaf of ~ is incompressible. This implies F is an 
annulus. Further by our construction, ~Iav, is transverse to a certain 
ordinary fiber. Thus L is isotopic to an ordinary fiber. This shows F is 
isotopic to a vertical torus. 

Consider W = V\Int N. W is a Seifert fibered space over D2 and 
contains a horizontal surface 2. Let K be the union of compact leaves 
of ~Iv,. K is a compact saturated set of ~, contained in Int W. By a 
suitable isotopy one can assume that it is a union of fibers of p. To show 
this, first by a preliminary isotopy make K n ( U i a Vi) to be a union of 
fibers. Define an equivalence relation among compact leaves of ~Iav, by 
the following; two are equivalent if they belong to the same component 
of the complement of all the open Reeb components. Next define an 
equivalence relation among compact leaves of ffl v,; two are equivalent in 
case their boundary curves,are one by one equivalent. There are finitely 
many equivalence classes. We can make by an isotopy all the compact 
leaves of a class to be vertical. After successive steps all of Kn Vi are 
made to be vertical. 

By a further isotopy we may also assume that 2 is in a general posi
tion w.r.t. ff. Then we can find a minimal set of fflx in 2 n K. By 
Schwarz [14], it is a closed curve (because fflx is C 2). Saturating the 
curve along Seifert fibration, we obtain a compact leaf of ~ in, Int W, 
which is vertical. This implies the existence of a dead end component. 
contrary to the hypothesis. q.e.d. 

§ 4. Special case 

In this section we prove Theorem 1 in the special case where there 
exist exactly 4 exceptional fibers, all with Seifert index (2.1). 

To start with let us notice the reason why the argument of the 
previous sections fails in the present case. It is due to the fact that 
Lemma 5 (1.11) does not hold and thus the argument of case (2.14) loses 
its base. But the other parts of the previous argument remain valid. 
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Thus we can take two tori TI and T2 so that they satisfy (2.10), (2.11) and 
(2.12). Let aI, az, •. " a 8 be the points of tangency of TI n Tz with ff. 
Let Ii (resp. In be the component containing ai' of the intersection of 
TI n Tz with the open Reeb component containing ai of fflT' (resp. ffI T2). 

Because the argument of case (2.13) works also in the present case, we 
have only to consider the case where (2.14) holds for any point ai' that is, 
Ii =n Let R be the union of all the boundary leaves of Reeb com
ponents of fflT' and ff1 T2 . It is a saturated set of ffI T,U T2' Let K be 
an arbitrary component of R. In what follows, we shall show the follow
ing. 

(4.1) The leaf F of ff containing K is a compact leaf. 
This suffices for our purpose. For if K is vertical, then as we 

have shown before there exist dead end components of ff. Suppose K is 
horizontal. Then we can easily find another component K' of R which is 
transversely oriented in the opposite direction to K. This also implies 
the existence of dead end components. 

Proof of(4.1). Notice first that in the present case ff has a compact 
leaf, say C, because rrl(V) has polynomial growth and the Betti number of 
V is at most 1 ([13]). As remarked before, C is horizontal. As it is 
incompressible, C is a torus. If not, rrlV) has an exponential growth. 

Cut V along C. The resultant manifold V is diffeomorphic to r X 1. 
Components of TI n V and Tz n V are respectively parallel annuli. A 
component of TI n V intersects (nontrivially) a component of Tz n V 
transversely. This shows V\(CU TI U T2) consists of open balls BI, B2, 

"', B r • 

If the leaf F we are considering coincides with C, there are nothing 
to prove. So assume they are distinct. Consider an (angular) tubular 
neighbourhood N of K in F. Each boundary component 8 jN of N is 
contained in some ball B i • So 8 j N is a null homotopic simple closed 
curve. By the incompressibility of F, 8 jN bounds a disk D j in F. But 
D j does not contain N, in which there is contained a homotopicaIIy 
nontrivial curve (a boundary leaf of a Reeb component). Thus F consists 
of N and a finite number of disks D j. This shows F is closed. q.e.d. 
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