Dynamical Systems on Foliations
 and
 Existence Problem of Transverse Foliations

Itiro Tamura

Contents

$\S 0$. Introduction and statements of results.
§ 1. Some elementary properties of non-singular vector fields on the torus.
§ 2. Reeb components.
§ 3. Non-singular vector fields on the Reeb foliation of the solid torus.
§4. Non-singular vector fields on turbulized foliations $\mathscr{F}_{\pi}^{\varepsilon}$ of punctured surface bundles over the circle.
§ 5. Transverse foliations.
§ 6. Compactification of vector fields on noncompact leaves of $\mathscr{F}_{\pi}^{\varepsilon}$.
§ 7. Vector fields on the torus with one singular point and asymptotic homology classes.
§ 8. Proof of Theorem C.
§ 9. Cutting down of ends of noncompact leaves of $\mathscr{F}_{\pi}^{\varepsilon}$ and bifurcation of leaves of foliations of punctured surfaces.
$\S 10$. Bifurcation of leaves of foliations of the two punctured 2-disk. Proof of Theorem B.
§ 11. Proof of Theorem D.
§ 12. Proof of Theorem A.
\S 13. Some examples of vector fields on foliations.

§ 0. Introduction and statements of results

Let M be an n-dimensional C^{∞} manifold and let \mathscr{F} be a codimension one C^{r+1} foliation of $M(r \geqq 1)$. It is well known that there exists always a*one dimensional foliation of M transverse to \mathscr{F}. Thus the following question on the integrability of 2-plane fields comes to the front:
'Does there exist a 2 -dimensional foliation of M transverse to \mathscr{F} if \mathscr{F} admits transverse 2-plane fields?'

Suppose that there exists a 2 -dimensional C^{r+1} foliation \mathscr{F}^{\prime} of M which is transverse to \mathscr{F}, that is, at each point $x \in M$, the leaf L_{x} of \mathscr{F} through x and the leaf L_{x}^{\prime} of \mathscr{F}^{\prime} through x intersect transversely at x. Then the set of intersections of leaves of \mathscr{F} and \mathscr{F}^{\prime} forms a one dimensional C^{r+1} foliation of M, denoted by $\mathscr{F} \cap \mathscr{F}^{\prime}$, each leaf of which lies on a leaf of \mathscr{F}. In case M is orientable and both of \mathscr{F} and \mathscr{F}^{\prime} are transversely orientable, the foliation $\mathscr{F} \cap \mathscr{F}^{\prime}$ consists of orbits of a nonsingular C^{r} vector field X on M such that each vector of X is tangent to a leaf of \mathscr{F}. In this context, dynamical systems on the foliation \mathscr{F} come in the study of 2 -dimensional foliations transverse to \mathscr{F}. The least dimension of M which we are interested in is 3 , and foliations \mathscr{F} and \mathscr{F}^{\prime} as above are both of codimension one in this case and can be treated on the same level.

In [6] we classified codimension one foliations transverse to the Reeb foliation \mathscr{F}_{R} of the solid torus by studying non-singular vector fields on \mathscr{F}_{R}, and proved Theorem A below, making use of the classification mentioned above.

Let k be a non-trivial fibred knot in the 3-sphere S^{3} and let $N(k)$ denote a tubular neighborhood of k. Let \mathscr{F} be a codimension one foliation of S^{3} which is the union of the Reeb foliation of $N(k)$ and the foliation of S^{3}-Int $N(k)$ obtained by turbulizing the interior of each fibre of S^{3} - Int $N(k) \rightarrow S^{1}$ in a collar of the boundary of $N(k)$. For the definition of the turbulization, see Section 4. Remark that \mathscr{F} admits a transverse 2-plane field, since 2-plane bundles over S^{3} are always trivial. The following is the first result on codimension one foliations of 3-dimensional manifolds admitting no transverse codimension one foliation (Tamura-Sato [6, Theorem 6]):

Theorem A. Let \mathscr{F} be the codimension one C^{∞} foliation of the 3sphere S^{3} as above. Then there does not exist any codimension one C^{r} foliation of $S^{3}(r \geqq 2)$ transverse to \mathscr{F}.

Our results were developed by Nishimori [2]. He studied foliations transverse to various codimension one foliations generalizing the Reeb foliation and classified them. Theorem B below is a typical result on foliations admitting no transverse foliation in [2]. Let $D^{2}-$ Int $D_{1}^{2}-$ Int D_{2}^{2} be a two punctured 2-disk and let

$$
S^{3}=\left(S^{1} \times D^{2}\right) \cup\left(\left(\left(D^{2}-\text { Int } D_{1}^{2}-\text { Int } D_{2}^{2}\right) \cup D_{1}^{2} \cup D_{2}^{2}\right) \times S^{1}\right)
$$

be the natural decomposition of the 3 -sphere. And let \mathscr{F}_{0} denote the
codimension one C^{∞} foliation of S^{3} consisting of Reeb foliations of $S^{1} \times$ $D^{2}, D_{1}^{2} \times S^{1}$ and $D_{2}^{2} \times S^{1}$, and the codimension one foliation of ($D^{2}-\operatorname{Int} D_{1}^{2}$ - Int $\left.D_{2}^{2}\right) \times S^{1}$ formed by turbulization to the same direction as these of $D_{1}^{2} \times S^{1}$ and $D_{2}^{2} \times S^{1}$. For the precise definition, see Section 4. Then the following theorem holds (Nishimori [2; Theorem 5]);

Theorem B. Let \mathscr{F}_{0} be the codimension one C^{∞} foliation of the 3sphere S^{3} as above. Then there does not exist any codimension one C^{r} foliation of $S^{3}(r \geqq 2)$ transverse to \mathscr{F}_{0}.

Furthermore Nishimori proved the following interesting and beautiful theorem in his second paper on this subject [3, Theorem 6]:

Theorem C. Let E be an orientable 3-dimensional C^{∞} manifold which is the total space of $a C^{\infty}$ bundle over S^{1} with one punctured torus T^{2} Int D^{2} as fibre, and let \mathscr{F}_{π} denote the codimension one C^{∞} foliation of E formed by turbulizing the interior of each fibre in a collar of ∂E. Let $\phi: T^{2}-\operatorname{Int} D^{2} \rightarrow T^{2}-\operatorname{Int} D^{2}$ be the monodromy map of this bundle and let

$$
\phi_{*}: H_{1}\left(T^{2}-\operatorname{Int} D^{2} ; Z\right) \rightarrow H_{1}\left(T^{2}-\operatorname{Int} D^{2} ; Z\right)
$$

be the homomorphism induced by ϕ which is expressed by a conjugacy class of $S L(2 ; Z)$.

Then there exists a transversely orientable codimension one C^{r} foliation of $E(r \geqq 2)$ transverse to \mathscr{F}_{π} if and only if

$$
\text { Trace } \phi_{*} \geqq 2
$$

We remark that codimension one foliations \mathscr{F}_{0} in Theorem B and \mathscr{F}_{π} in Theorem C admit both transverse 2-plane fields.

It was a common pattern of proofs of Theorems A, B and C that they needed firstly to classify codimension one foliations transverse to some specified codimension one foliations. However these classifications are hard tasks to describe and disturb the clear understanding of the meaning of these theorems.

The purpose of this paper is to carry on the study of non-singular vector fields on codimension one foliations of 3-manifolds and to give direct proofs for Theorems A, B and C so that they can reveal the obstruction to admit transverse foliations, in the frame of dynamical systems such as the compactification of vector fields (Section 6), asymptotic homology classes (Section 7) and the bifurcation of leaves (Section 9), without using any classifications.

The methods used in this paper enable us to prove the following theorem. Since the proof is contained in that of Theorem C given in

Sections 7 and 8, we state here the result without proof.
Theorem \mathbf{C}^{\prime}. Let E be an orientable 3-dimensional C^{∞} manifold which is the total space of a C^{∞} bundle over S^{1} with the torus T^{2} as fibre, and let \mathscr{F} denote the codimension one C^{∞} foliation of E whose leaves are fibres of this bundle. Let $\phi: T^{2} \rightarrow T^{2}$ be the monodromy map of this bundle and let $\phi_{*}: H_{1}\left(T^{2} ; Z\right) \rightarrow H_{1}\left(T^{2} ; Z\right)$ be the induced homomorphism.

Then there exists a transversely orientable codimension one C^{r} foliation of $E(r \geqq 2)$ transverse to \mathscr{F} if and only if

$$
\text { Trace } \phi_{*} \geqq 2
$$

As a direct consequence of the main lemma (Theorem 10.1) to prove Theorem B, the following theorem will be obtained:

Theorem D. Every 3-dimensional C^{∞} manifold has a codimension one C^{∞} foliation which does not admit any codimension one C^{r} foliation ($r \geqq 2$) transverse to it.

The phenomena of geometric dynamics appeared in this study may be considered as a new object of the study of dynamical systems.

The author thanks Koichi Yano, Toshiyuki Nishimori and Atsushi Sato for helpful comments.

§ 1. Some elementary properties of non-singular vector fields on the torus

In this section we recall some properties of non-singular vector fields on the torus by Reinhart [5] and give proofs for the convenience of the reader.

Let Q^{\prime} be a subset of the 2-dimensional euclidean space R^{2} and let Y^{\prime} be a non-singular continuous vector field on Q^{\prime}. Then, by identifying R^{2} and the tangent space $T_{y}\left(R^{2}\right)$ of R^{2} at $y \in R^{2}$ naturally, a continuous map

$$
\bar{f}\left(Y^{\prime}\right): Q^{\prime} \rightarrow S^{1}
$$

is defined by

$$
\left(\bar{f}\left(Y^{\prime}\right)\right)(y)=Y^{\prime}(y) /\left|Y^{\prime}(y)\right| .
$$

Let Q be a subset of the torus T^{2} and let Y be a non-singular continuous vector field on Q. Then a continuous map

$$
f(Y): Q \rightarrow S^{1}
$$

is defined as follows. Let $\tilde{\pi}: R^{2} \rightarrow T^{2}$ be a covering map such that $\tilde{\pi}(p, q)=\tilde{\pi}(p+n, q+m)$ for $(p, q) \in \boldsymbol{R}^{2}$ and arbitrary integers n, m. For a point $z \in Q$, let $\hat{z} \in R^{2}$ be a lift of z, that is $\tilde{\pi}(\hat{z})=z$, and let $v \in T_{\hat{z}}\left(R^{2}\right)$ be the tangent vector at \hat{z} such that $d \tilde{\pi}(v)=Y(z)$. We define

$$
(f(Y))(z)=v /|v| .
$$

Obviously $f(Y)$ is well defined and continuous. The homotopy class of $f(Y)$ is uniquely determined independent of the choice of covering maps $R^{2} \rightarrow T^{2}$.

Now let C be an oriented simple closed C^{r} curve ($r \geqq 1$) on the torus and let Y_{C} be the unit tangent vector field on C. Then the following lemma holds ([5, Theorem 1]):

Lemma 1.1. If C is not homologous to zero, then the degree of $f\left(Y_{C}\right): C \rightarrow S^{1}$ is zero.

Proof. We take an imbedding $g_{0}: S^{1} \rightarrow T^{2}$ such that $g_{0}\left(S^{1}\right)=C$. Let $g_{1}: S^{1} \rightarrow T^{2}$ be an imbedding homotopic to g_{0} such that $g_{1}\left(S^{1}\right)$ is the image of a line in R^{2} by $\tilde{\pi}$.

Consider the covering map

$$
\tilde{\pi}^{\prime}: S^{1} \times R \rightarrow T^{2}
$$

corresponding to the subgroup of $\pi_{1}\left(T^{2}\right)$ generated by $\left\{g_{0}\right\}$. Then there exist lifts $\tilde{g}_{0}, \tilde{g}_{1}: S^{1} \rightarrow S^{1} \times R$ of g_{0} and $g_{1}:$

$$
\tilde{\pi}^{\prime} \circ \tilde{g}_{0}=g_{0}, \quad \tilde{\pi}^{\prime} \circ \tilde{g}_{1}=g_{1}
$$

We can take \tilde{g}_{0} and \tilde{g}_{1} so that

$$
\tilde{g}_{0}\left(S^{1}\right) \cap \tilde{g}_{1}\left(S^{1}\right)=\phi
$$

Then $\tilde{g}_{0}\left(S^{1}\right) \cup \tilde{g}_{1}\left(S^{1}\right)$ bounds an annulus in $S^{1} \times R$. This implies that \tilde{g}_{0} and \tilde{g}_{1} are isotopic in $S^{1} \times \boldsymbol{R}$ and, thus, g_{0} and g_{1} are regularly homotopic in T^{2}.

Let $g_{t}: S^{1} \rightarrow T^{2}(0 \leqq t \leqq 1)$ be a regular homotopy between g_{0} and g_{1}, and let $f_{t}: S^{1} \rightarrow S^{1}(0 \leqq t \leqq 1)$ be a continuous map defined by

$$
f_{t}(\theta)=\frac{d g_{t}}{d \theta}(\theta) /\left|\frac{d g_{t}}{d \theta}(\theta)\right| \quad\left(\theta \in S^{1}\right)
$$

Since f_{1} is a constant map, the degree of f_{0} is zero. This shows that the degree of $f\left(Y_{C}\right)$ is zero. Thus this lemma is proved.

In the following homology groups $H_{*}(\quad)$ denote always the integral homology groups unless the coefficients are specified.

The following proposition due to Reinhart [5, Corollary 3] is used in Section 3:

Proposition 1.2. Let X be a non-singular C^{r} vector field on the torus ($r \geqq 1$). If X has no closed orbit, then the homomorphism

$$
(f(X))_{*}: H_{1}\left(T^{2}\right) \rightarrow H_{1}\left(S^{1}\right)
$$

induced by the continuous map $f(X): T^{2} \rightarrow S^{1}$ is a zero map.
Proof. As is well known there exists an oriented simple closed curve C_{0} transverse to X. Let x_{0} be a point of C_{0} and let $\varphi\left(t, x_{0}\right)$ denote the orbit of X through x_{0}. If $\left\{\varphi\left(t, x_{0}\right) ; t>0\right\} \cap C_{0}=\phi$, then the ω-limit set of $\varphi\left(t, x_{0}\right)$ is a closed orbit by the Poincaré-Bendixson theorem, since the compactification of $T^{2}-C_{0}$ by adding two points is homeomorphic to the 2-sphere S^{2}. This contradicts the assumption. Thus we have

$$
\left\{\varphi\left(t, x_{0}\right) ; t>0\right\} \cap C_{0} \neq \phi
$$

Therefore, as is easily verified, there exists a non-singular C^{r} vector field X^{\prime} on the torus obtained from X by modifying vectors near C_{0} such that X^{\prime} satisfies the following:
(a) $f\left(X^{\prime}\right): T^{2} \rightarrow S^{1}$ is homotopic to $f(X)$.
(b) The first intersection of the positive orbit $\{\varphi(t, x) ; t>0\}$ with C_{0} is x_{0}.

Let C_{1} denote the oriented simple closed curve formed by the orbit of X^{\prime} through x_{0} and let [C_{1}] denote the homology class represented by C_{1}. Then, by Lemma 1.1, we have

$$
\left(f\left(X^{\prime}\right)\right)_{*}\left(\left[C_{1}\right]\right)=0
$$

Furthermore, let X_{0} denote the unit tangent vector field on C_{0}. Then, as is easily verified, two maps $f\left(X_{0}\right), f\left(X^{\prime}\right) \mid C_{0}: C_{0} \rightarrow S^{1}$ are homotopic. This implies by Lemma 1.1 that

$$
\left(f\left(X^{\prime}\right)\right)_{*}\left(\left[C_{0}\right]\right)=0
$$

Since $\left[C_{0}\right.$] and $\left[C_{1}\right]$ generate $H_{1}\left(T^{2}\right)$, the homomorphism $\left(f\left(X^{\prime}\right)\right)_{*}$, thus $(f(X))_{*}$, is a zero map. This proves the proposition.

§ 2. Reeb components

Let M be an n-dimensional C^{∞} manifold with or without boundary. A codimension $q C^{r}$ foliation of M is denoted by a set \mathscr{F} of leaves. In case $\partial M \neq \phi$, we understand that, for each connected component N_{i} of ∂M, the restriction $\mathscr{F} \mid N_{i}=\left\{\right.$ connected components of $\left.L \cap N_{i} ; L \in \mathscr{F}\right\}$ of \mathscr{F} to N_{i} is a codimension q or $q-1 C^{r}$ foliation.

In the following sections, we fix an orientation on the circle S^{1}.
The Reeb foliation of the solid torus $S^{1} \times D^{2}$ is the codimension one C^{∞} foliation constructed by turbulizing $\{\theta\} \times$ Int $D^{2}\left(\theta \in S^{1}\right)$ in a collar of the boundary $S^{1} \times D^{2}$ (Fig. 1). In the following, a point $e^{2 \pi \theta i}$ of S^{1} is simply denoted by θ.

Fig. 1.
In case the turbulization is taken in the minus (resp. plus) direction of S^{1}, the Reeb foliation is called the plus Reeb foliation (resp. minus Reeb foliation) of $S^{1} \times D^{2}$ and is denoted by $\mathscr{F}_{R}^{(+)}$(resp. $\mathscr{F}_{R}^{(-)}$). (Fig. 2). The plus Reeb foliation $\mathscr{F}_{R}^{(+)}$(resp. minus Reeb foliation $\mathscr{F}_{R}^{(-)}$) has a contracting holonomy with respect to the compact leaf $T^{2}=S^{1} \times \partial D^{2}$ in the minus (resp. plus) direction of $S^{1} \times\{*\}$. The leaf of $\mathscr{F}_{R}^{(\pm)}$obtained from $\{\theta\} \times$ Int D^{2} is denoted by L_{θ}. Thus $\mathscr{F}_{R}^{(\pm)}=\left\{L_{\theta} ; \theta \in S^{1}\right\} \cup\left\{T^{2}\right\}$.

Since the Reeb foliations $\mathscr{F}_{R}^{(\pm)}$are given objects in this paper, we may assume that leaves of $\mathscr{F}_{R}^{(\pm)}$have a normalized form, that is, they are symmetric with respect to $S^{1} \times\{0\}$ and $\{\theta\} \times D^{2}$ is tangent exactly to one leaf L_{θ} of $\mathscr{F}_{R}^{(+)}\left(\right.$resp. $\left.\mathscr{F}_{R}^{(-)}\right)$at one point $(\theta, 0)$ for each $\theta \in S^{1}$.

The Reeb foliation of the annulus $S^{1} \times D^{1}$ is a codimension one C^{r} foliation ($r \geqq 1$) constructed by turbulizing $\{\theta\} \times \operatorname{Int} D^{1}\left(\theta \in S^{1}\right)$ in collars of $S^{1} \times\{-1\}$ and $S^{1} \times\{1\}$. In case the turbulization is taken in the minus

Fig. 2.
(resp. plus) direction of S^{1}, in other words, compact leaves $S^{1} \times\{-1\}$ and $S^{1} \times\{1\}$ have both contracting holonomy in the minus (resp. plus) direction of S^{1}, the Reeb foliation of $S^{1} \times D^{1}$ is called a plus Reeb foliation (resp. minus Reeb foliation) and is denoted by $\overline{\mathscr{F}}_{R}^{(+)}$(resp. $\overline{\mathscr{F}}_{R}^{(-)}$) (Fig. 3).

A codimension one C^{r} foliation ($r \geqq 1$) of the annulus $S^{1} \times D^{1}$ constructed by turbulizing $\{\theta\} \times$ Int $D^{2}\left(\theta \in S^{1}\right)$ in collars of $S^{1} \times\{-1\}$ and $S^{1} \times$ $\{1\}$ so that the directions are different for $S^{1} \times\{-1\}$ and $S^{1} \times\{1\}$ is called a slope foliation and is denoted by $\overline{\mathscr{F}}_{S}$ (Fig. 3). The leaf of $\overline{\mathscr{F}}_{R}^{(\pm)}$or $\overline{\mathscr{F}}_{S}$ obtained from $\{\theta\} \times$ Int D^{1} is denoted by \bar{L}_{θ}. Then $\overline{\mathscr{F}}_{R}^{(\pm)}$and $\overline{\mathscr{F}}_{S}$ are $\left\{\bar{L}_{\theta} ; \theta \in S^{1}\right\} \cup\left\{S^{1} \times\{-1\}, S^{1} \times\{1\}\right\}$.

In this paper, plus and minus Reeb foliations $\overline{\mathscr{F}}_{R}^{(\pm)}$and slope foliations $\overline{\mathscr{F}}_{S}$ of the annulus appear as foliations formed by orbits of nonsingular vector fields which are restrictions of vector fields tangent to

Fig. 3.
codimension one foliations of 3-dimensional manifolds. The only condition we assume for them is the following:
(2.1) Each noncompact leaf \bar{L}_{θ} of plus and minus Reeb foliations $\overline{\mathscr{F}}_{R}^{(\pm)}$of $S^{1} \times D^{1}$ is tangent to $\{\theta\} \times D^{1}$ at exactly one point, say z_{θ}, and is transverse to $\left\{\theta^{\prime}\right\} \times D^{1}\left(\theta^{\prime} \in S^{1}\right)$ if $\theta \neq \theta^{\prime}$ (Fig. 3). Each noncompact leaf \bar{L}_{θ} of slope component $\overline{\mathscr{F}}_{S}$ is always transverse to $\left\{\theta^{\prime}\right\} \times D^{1}\left(\theta^{\prime} \in S^{1}\right)$.

A foliated $C^{r} I$-bundle of $S^{1} \times D^{1}$, that is, a codimension one C^{r} foliation of the annulus $S^{1} \times D^{1}(r \geqq 1)$ whose leaves are transverse to $\{\theta\} \times D^{1}$ for any $\theta \in S^{1}$, consists of compact leaves and a countable number of codimension one foliations isomorphic to slope components (Fig. 4).

Fig. 4.

The following lemma will be used in Section 3.
Lemma 2.2. Let $\overline{\mathscr{F}}$ be one of $\overline{\mathscr{F}}_{R}^{(+)}, \overline{\mathscr{F}}_{R}^{(-)}$and $\overline{\mathscr{F}}_{S}$, and let a proper C^{r} imbedding

$$
\bar{g}: D^{1} \rightarrow S^{1} \times D^{1}
$$

with $\bar{g}(-1) \in S^{1} \times\{-1\}, \bar{g}(1) \in S^{1} \times\{1\}$ be given. Then there exists a proper C^{r} imbedding

$$
\bar{g}_{0}: D^{1} \rightarrow S^{1} \times D^{1}
$$

satisfying the following conditions:
(i) $\bar{g}_{0}(-1)=\bar{g}(-1), \bar{g}_{0}(1)=\bar{g}(1)$.
(ii) \bar{g}_{0} is isotopic to \bar{g} fixing the end points $\bar{g}_{0}(-1), \bar{g}_{0}(1)$.
(iii) (a) In case $\overline{\mathscr{F}}=\overline{\mathscr{F}}_{R}^{(+)}$or $\overline{\mathscr{F}}_{R}^{(-)}$, the curve $\bar{g}_{0}\left(D^{1}\right)$ is transverse to leaves of $\overline{\mathscr{F}}$ except one leaf, say $\bar{L}_{\theta_{0}}$, and is tangent to $\bar{L}_{\theta_{0}}$ at exactly one point $z_{\theta_{0}}$. $\quad \bar{L}_{\theta_{0}}$ is tangent to $\bar{g}_{0}\left(D^{1}\right)$ from the minus side (resp. plus side) in case $\overline{\mathscr{F}}=\overline{\mathscr{F}}_{R}^{(+)}\left(\right.$resp. $\left.\overline{\mathscr{F}}_{R}^{(-)}\right)$(Fig. 5).

Fig. 5.
(b) In case $\overline{\mathscr{F}}=\overline{\mathscr{F}}_{s}$, the curve $\bar{g}_{0}\left(D^{1}\right)$ is transverse to leaves of $\overline{\mathscr{F}}$.

Proof. First suppose that $\overline{\mathscr{F}}=\overline{\mathscr{F}}_{R}^{(+)}$or $\overline{\mathscr{F}}_{R}^{(-)}$. It is obvious that a proper imbedding

$$
\bar{g}^{\prime}: D^{1} \rightarrow S^{1} \times D^{1}
$$

such that $\bar{g}^{\prime}\left(D^{1}\right)=\{\theta\} \times D^{1}$, satisfies the condition corresponding to the condition (iii) for \bar{g}_{0} (Fig. 6).

By modifying this imbedding \bar{g}^{\prime} in collars of $S^{1} \times\{-1\}$ and $S^{1} \times\{1\}$ as written by broken curves in Fig. 6 if necessary, we obtain an imbedding \bar{g}_{0} with desired property.

The proof for the case $\overline{\mathscr{F}}=\overline{\mathscr{F}}_{S}$ is similar. Thus this lemma is proved.
Lemma 2.3. Let $\overline{\mathscr{F}}$ be one of $\overline{\mathcal{F}}_{R}^{(+)}, \overline{\mathscr{F}}_{R}^{(-)}$and $\overline{\mathscr{F}}_{S}$, and let $\hat{g}: S^{1} \times D^{1}$ $\rightarrow S^{1} \times D^{1}$ be a C^{r} diffeomorphism. Then there exists a C^{r} diffeomorphism

$$
S^{1} \times D^{1}
$$

Fig. 6.

$$
\hat{g}_{0}: S^{1} \times D^{1} \rightarrow S^{1} \times D^{1}
$$

satisfying the following conditions:
(i) For each point $\theta \in S^{1}$, it holds that

$$
\hat{g}_{0}(\theta,-1)=\hat{g}(\theta,-1), \quad \hat{g}_{0}(\theta, 1)=\hat{g}(\theta, 1),
$$

and that $\hat{g} \mid\{\theta\} \times D^{1}$ and $\hat{g}_{0} \mid\{\theta\} \times D^{1}$ are isotopic fixing their end points.
(ii) (a) In case $\overline{\mathscr{F}}=\overline{\mathscr{F}}_{R}^{(+)}$or $\overline{\mathscr{F}}_{R}^{(-)}$, each curve $\hat{\mathrm{g}}_{0}\left(\{\theta\} \times D^{1}\right)\left(\theta \in S^{1}\right)$ is transverse to leaves of $\overline{\mathscr{F}}$ except one leaf, say $\bar{L}_{\theta^{\prime}}$, and is tangent to $\bar{L}_{\theta^{\prime}}$ at exactly one point $z_{\theta^{\prime}}$.
(b) In case $\overline{\mathscr{F}}=\overline{\mathscr{F}}_{S}$, each curve $\hat{g}_{0}\left(\{\theta\} \times D^{1}\right)\left(\theta \in S^{1}\right)$ is transverse to leaves of $\overline{\mathscr{F}}$.

Proof. We can prove this lemma by the argument used in the proof of Lemma 2.1. The details are left to the reader.

Let $T^{2}=S^{1} \times \partial D^{2}$ be the torus which is the boundary of the solid torus $S^{1} \times D^{2}$. Recall that S^{1} and $S^{1}=\partial D^{2}$ are oriented. We denote by α and β the homology classes of $H_{1}\left(T^{2}\right)$ represented by the longitude $S^{1} \times\{*\}$ and the meridian $\{* *\} \times \partial D^{2}$ respectively, where $* * \in S^{1}, * \in \partial D^{2}$.

Let X be a non-singular C^{r} vector field $(r \geqq 1)$ on T^{2}. Denote by $\overline{\mathscr{F}}$ the codimension one C^{r} foliation of T^{2} consisting of orbits of X. We assume that $\overline{\mathscr{F}}$ has a compact leaf, say $L_{\text {comp }}$, and that the homology class [$L_{\text {comp }}$] represented by $L_{\text {comp }}$ with the orientation induced from $X \mid L_{\text {comp }}$ is $a \alpha+b \beta$ with $a \neq 0$.

Let $L_{\lambda}(\lambda \in \Lambda)$ denote the compact leaves of $\overline{\mathscr{F}}$ and let $U_{\sigma}(\sigma \in \Sigma)$ be the connected components of $T^{2}-\bigcup_{\lambda \in \Lambda} L_{\lambda}$. Then the boundary of a connected component U_{σ} consists of compact leaves, say L_{σ} and L_{σ}^{\prime}, where it may happen that $L_{\sigma}=L_{\sigma}^{\prime}$. We give L_{σ} and L_{σ}^{\prime} the orientations induced from X.

For a point $z \in U_{\sigma}$, the α-limit set and the ω-limit set of z are contained in $L_{\sigma} \cup L_{\sigma}^{\prime}$ by the Poincaré-Bendixson theorem. Furthermore, as is easily verified, the α-limit set of z is one of L_{σ} and L_{σ}^{\prime}, and the ω-limit set of z is the other. The α-limit and the ω-limit sets of z do not depend on the choice of the point z. We assume here that L_{σ} is the α-limit set and L_{σ}^{\prime} is the ω-limit set.

In the following we denote by $\bar{P}_{1}: S^{1} \times \partial D^{2} \rightarrow S^{1}$ the projection onto the first factor.

If the degree of $\bar{P}_{1} \mid L_{\sigma}: L_{\sigma} \rightarrow S^{1}$ (resp. $\bar{P}_{1} \mid L_{\sigma}^{\prime}: L_{\sigma}^{\prime} \rightarrow S^{1}$) is $|a|$ and the degree of $\bar{P}_{1} \mid L_{\sigma}^{\prime}: L_{a}^{\prime} \rightarrow S^{1}$ (resp. $\bar{P}_{1} \mid L_{\sigma}: L \rightarrow S^{1}$) is $-|a|$ with respect to orientations of $L_{\sigma}^{\prime}, L_{\sigma}^{\prime}$ and S^{1}, then the restriction $\overline{\mathscr{F}} \mid \bar{U}_{\sigma}$ of $\overline{\mathscr{F}}$ to \bar{U}_{σ} is said to be a plus Reeb component (resp. minus Reeb component) of $\overline{\mathscr{F}}$, and furthermore, if the degrees of $\bar{P}_{1} \mid L_{\sigma}: L_{\sigma} \rightarrow S^{1}$ and $\bar{P}_{1} \mid L_{\sigma}^{\prime}: L_{\sigma}^{\prime} \rightarrow S^{1}$ are

Fig. 7.
the same, then the restriction $\overline{\mathscr{F}} \mid \bar{U}_{\sigma}$ of $\overline{\mathscr{F}}$ to \bar{U}_{σ} is said to be a slope component of $\overline{\mathscr{F}}$ (Fig. 7).

As is easily verified, there exists a C^{r} diffeomorphism

$$
g_{\sigma}: S^{1} \times D^{1} \rightarrow \bar{U}_{\sigma}
$$

with the following properties (i), (ii):
(i) The degree of the map $\bar{P}_{1} \circ g_{\sigma}: S^{1} \times\{0\} \rightarrow S^{1}$ is positive.
(ii) g_{σ} is a leaf preserving map from a plus Reeb foliation, a minus Reeb foliation or a slope foliation of $S^{1} \times D^{1}$ to $\overline{\mathscr{F}} \mid U_{\sigma}$ according as $\overline{\mathscr{F}} \mid U_{\sigma}$ is a plus Reeb component, a minus Reeb component or a slope component.

A union of slope components and compact leaves of $\mathscr{\mathscr { F }}$ is said to be an I-bundle component if the union of the underlying space is connected.

It is obvious that the number of $\sigma \in \Sigma$ such that $\overline{\mathscr{F}} \mid U_{\sigma}$ is a plus or a minus Reeb component is finite.

We denote the plus Reeb components and the minus Reeb components in $\overline{\mathscr{F}}$ by $\overline{\mathscr{F}} \mid K_{i}^{(+)}(i=1,2, \cdots, p)$ and $\overline{\mathscr{F}} \mid K_{i}^{(-)}(i=1,2, \cdots, q)$ respectively, where $K_{i}^{(+)}$and $K_{i}^{(-)}$are closed subsets of T^{2}. And thus, the restriction of $\overline{\mathscr{F}}$ to the closure of $T^{2}-\bigcup_{i=1}^{p} K_{i}^{(+)}-\bigcup_{i=1}^{q} K^{(-)}$consists of a finite number of I-bundle components of $\overline{\mathscr{F}}$.

§ 3. Non-singular vector fields on the Reeb foliation of the solid torus

Let X be a non-singular C^{r} vector field ($r \geqq 1$) on the plus Reeb foliation $\mathscr{F}_{R}^{++)}$of the solid torus $S^{1} \times D^{2}$, that is, X is a non-singular C^{r} vector field on $S^{1} \times D^{2}$ such that the vector $X(z)$ of X at $z \in S^{1} \times D^{2}$ is
tangent to the leaf L_{z} of $\mathscr{F}_{R}^{(+)}$containing z.
Let $\tau\left(S^{1} \times D^{2}\right)$ be the tangent bundle of $S^{1} \times D^{2}$ and let $\tau\left(\mathscr{F}_{R}^{(+)}\right)$be the tangent bundle of $\mathscr{F}_{R}^{(+)}$, that is to say, $\tau\left(\mathscr{F}_{R}^{(+)}\right)$is an orientable 2-plane bundle over $S^{1} \times D^{2}$ consisting of vectors of $\tau\left(S^{1} \times D^{2}\right)$ tangent to leaves of $\mathscr{F}_{R}^{(+)}$. Since the classifying space for orientable 2-plane bundles is $P^{\infty}(C), \tau\left(\mathscr{F}_{R}^{(+)}\right)$is a trivial bundle. Thus the existence of a non-singular vector field X as above and 2-plane fields transverse to $\mathscr{F}_{R}^{(+)}$is obvious.

In the following we denote by $P: S^{1} \times D^{2}-\left(S^{1} \times\{0\}\right) \rightarrow T^{2}$ the projection defined by

$$
P(x, y)=(x, y /|y|) .
$$

Thus the map $P \mid\left(L_{\theta}-\{(\theta, 0)\}\right): L_{\theta}-\{(\theta, 0)\} \rightarrow T^{2}$ is locally diffeomorphic.
Lemma 3.1. Let $f\left(X \mid T^{2}\right): T^{2} \rightarrow S^{1}$ be the continuous map defined in Section 1. Then, for a simple closed curve $\left\{\theta_{0}\right\} \times \partial D^{2}$ in T^{2}, we have

$$
\left(f\left(X \mid T^{2}\right)\right)_{*}\left(\left[\left\{\theta_{0}\right\} \times \partial D^{2}\right]\right) \neq 0
$$

Proof. Consider the non-singular C^{r} vector field $X \mid\left(\left\{\theta_{0}\right\} \times \partial D^{2}\right)$ on $\left\{\theta_{0}\right\} \times \partial D^{2}$. Now suppose that

$$
\left(f\left(X \mid T^{2}\right)\right)_{*}\left(\left[\left\{\theta_{0}\right\} \times \partial D^{2}\right]\right)=0
$$

Then the map $f\left(X \mid\left\{\theta_{0}\right\} \times \partial D^{2}\right):\left\{\theta_{0}\right\} \times \partial D^{2} \rightarrow S^{1}$ is null homotopic. On the other hand, for the unit tangent vector field Y_{0} on the simple closed curve $\left\{\theta_{0}\right\} \times \partial D^{2}$ with a specified orientation in T^{2}, the continuous map

$$
f\left(Y_{0}\right):\left\{\theta_{0}\right\} \times \partial D^{2} \rightarrow S^{1}
$$

is null homotopic by Lemma 1.1. Thus two continuous maps $f\left(X \mid\left\{\theta_{0}\right\} \times\right.$ ∂D^{2}) and $f\left(Y_{0}\right)$ are homotopic.

Denote $D^{2}(r)=\left\{(x, y) \in R^{2} ; x^{2}+y^{2} \leqq r^{2}\right\}$. Then we may assume that $\left\{\theta_{0}\right\} \times \partial D^{2}(1-\varepsilon)$ is a simple closed curve of a noncompact leaf L of $\mathscr{F}_{R}^{(+)}$ for sufficiently small $\varepsilon>0$. Since $f\left(X \mid\left\{\theta_{0}\right\} \times \partial D^{2}\right)$ and $f\left(Y_{0}\right)$ are homotopic, as is easily verified, we can define a continuous family $Y_{t}^{\prime}(0 \leqq t \leqq 1)$ of non-singular continuous vector fields on $\left\{\theta_{0}\right\} \times \partial D^{2}(1-\varepsilon)$ such that $Y_{0}^{\prime}=$ $X \mid\left(\left\{\theta_{0}\right\} \times \partial D^{2}(1-\varepsilon)\right)$ and that Y_{1}^{\prime} is a unit tangent vector field of $\left\{\theta_{0}\right\} \times$ $\partial D^{2}(1-\varepsilon)$, by making use of the homeomorphism $P \mid\left(\left\{\theta_{0}\right\} \times \partial D^{2}(1-\varepsilon)\right)$: $\left\{\theta_{0}\right\} \times \partial D^{2}(1-\varepsilon) \rightarrow\left\{\theta_{0}\right\} \times \partial D^{2}$, where P is the projection defined above.

By considering $L=\boldsymbol{R}^{2}$, two continuous maps

$$
\bar{f}\left(Y_{0}^{\prime}\right), \bar{f}\left(Y_{1}^{\prime}\right):\left\{\theta_{0}\right\} \times \partial D^{2}(1-\varepsilon) \rightarrow S^{1}
$$

are defined as in Section 1. These two continuous maps are homotopic.

On the other hand, it is obvious that the degree of $\bar{f}\left(Y_{0}^{\prime}\right)$ is zero and the degree of $\bar{f}\left(Y_{1}^{\prime}\right)$ is 1 . This is a contradiction. Thus this lemma is proved.

The following proposition is due to Davis-Wilson [1, Corollary 4.2]:
Proposition 3.2. Let X be as above. Then the non-singular C^{r} vector field $X \mid T^{2}$ on the compact leaf T^{2} of $\mathscr{F}_{R}^{(+)}$has at least one closed orbit.

Proof. It follows from Lemma 3.1 that $\left(f\left(X \mid T^{2}\right)\right)_{*}$ is not a zero map. By Proposition 1.2, this implies that the C^{r} vector field $X \mid T^{2}$ on T^{2} has a closed orbit. Thus this proposition is proved.

In fact $X \mid T^{2}$ has at least two closed orbits (see Lemma 3.4).
Let $\overline{\mathscr{F}}_{X}$ denote the one dimensional C^{r} foliation of the solid torus $S^{1} \times D^{2}$ whose leaves are orbits of X. Then the restriction of $\overline{\mathscr{F}}_{x}$ to each leaf L of the plus Reeb foliation $\mathscr{F}_{R}^{(+)}$is a codimension one C^{r} foliation of L. By Proposition 3.2, the codimension one C^{r} foliation $\overline{\mathscr{F}}_{x} \mid T^{2}$ of T^{2} has at least one compact leaf, say $L_{\text {comp }}$.

Lemma 3.3. Let $\left[L_{\text {comp }}\right]$ be the homology class represented by $L_{\text {comp }}$. Then it holds that

$$
\left[L_{c o m p}\right]=a \alpha+b \beta, \quad a \neq 0
$$

where α, β are generators of $H_{1}\left(T^{2}\right)$ defined in Section 2.
Proof. Suppose that $a=0$, thus $\left[L_{c o m p}\right]= \pm \beta$. Then, by Lemma 1.1, $\left(f\left(X \mid T^{2}\right)\right)_{*}(\beta)=0$. This contradicts Lemma 3.1. Thus this lemma is proved.

Since $\overline{\mathscr{F}}_{x} \mid T^{2}$ has a compact leaf $L_{\text {comp }}$ with $\left[L_{\text {comp }}\right]=a \alpha+b \beta, a \neq 0$, as was observed in Section 2, there exist closed subsets $K_{1}^{(+)}, K_{2}^{(+)}, \cdots$, $K_{p}^{(+)}, K_{1}^{(-)}, K_{2}^{(-)}, \cdots, K_{q}^{(-)}$of T^{2} such that $\overline{\mathscr{F}}_{x} \mid K_{i}^{(+)}(i=1,2, \cdots, p)$ are plus Reeb components and $\overline{\mathscr{F}}_{x} \mid K_{i}^{(-)}(i=1,2, \cdots, q)$ are minus Reeb components, and that the restriction $\overline{\mathscr{F}}_{x} \mid T^{2}$ to the closure of T^{2} $\bigcup_{i=1}^{p} K_{i}^{(+)}-\bigcup_{i=1}^{q} K_{i}^{(-)}$is a disjoint union of finite number of I-bundle components.

Lemma 3.4. \quad The number $p+q$ is an even integer.
Proof. Two compact leaves bounding $K_{i}^{(+)}$or $K_{i}^{(-)}$have different directions and two compact leaves bounding a slope component have the same direction with respect to the directions induced from $X \mid T^{2}$. This implies that $p+q$ is even.

Lemma 3.5. Let $\left[L_{\text {comp }}\right]=a \alpha+b \beta, a \neq 0$, as in Lemma 3.3. Then there exists $a C^{r}$ imbedding

$$
g: S^{1} \rightarrow T^{2}
$$

satisfying the following conditions (Fig. 8):
(i) The homology class $\left[g\left(S^{1}\right)\right]$ represented by $g\left(S^{1}\right)$ is $\pm \beta$.
(ii) $g\left(S^{1}\right)$ is transverse to leaves of $\overline{\mathscr{F}}_{X} \mid T^{2}$ except $|a|(p+q)$ points, say $z_{1, j}, z_{2, j}, \cdots, z_{p, j}, z_{1, j}^{\prime}, z_{2, j}^{\prime}, \cdots, z_{q, j}^{\prime}(j=1,2, \cdots,|a|)$, such that

$$
\begin{array}{ll}
z_{i, j} \in \operatorname{Int} K_{i}^{(+)} & (i=1,2, \cdots, p ; j=1,2, \cdots,|a|), \\
z_{i, j}^{\prime} \in \operatorname{Int} K_{i}^{(-)} & (i=1,2, \cdots, q ; j=1,2, \cdots,|a|),
\end{array}
$$

and a leaf of $\overline{\mathscr{F}}_{x} \mid K_{i}^{(+)}\left(\right.$resp. $\left.\overline{\mathscr{F}}_{x} \mid K_{i}^{(-)}\right)$is tangent to $g\left(S^{1}\right)$ at $z_{i, j}$ (resp. $z_{i, j}^{\prime}$) from the minus side (resp. plus side) of $g\left(S^{1}\right)$.

Fig. 8.

Proof. Let $L_{\text {comp }}$ be a compact leaf of $\overline{\mathscr{F}}_{X} \mid T^{2}$ and let $g_{1}: S^{1} \rightarrow T^{2}$ be an imbedding such that $g_{1}\left(S^{1}\right)=\{\theta\} \times \partial D^{2}$. Then the algebraic intersection number of $L_{\text {comp }}$ and $g_{1}\left(S^{1}\right)$ is $\pm|a|$. The manifold obtained from T^{2} by cutting along $L_{\text {comp }}$ is an annulus. Thus, by an argument using Schoenflies theorem, it follows that there exists an imbedding $g_{2}: S^{1} \rightarrow T^{2}$ isotopic to g_{1} such that $g_{2}\left(S^{1}\right)$ intersects with $L_{\text {comp }}$ at $|a|$ points. By a similar argument we have an imbedding $g_{3}: S^{1} \rightarrow T^{2}$ isotopic to g_{2} such that $g_{3}\left(S^{1}\right)$ intersects with each compact leaf of $\overline{\mathscr{F}}_{x} \mid T^{2}$ at $|a|$ points.

Let $\overline{\mathscr{F}}_{x} \mid K$ denote one of plus Reeb components and minus Reeb components of $\overline{\mathscr{F}}_{X} \mid T^{2}$, where K is a closed subset of T^{2}. Then $g_{3}\left(S^{1}\right) \cap K$
consists of disjoint $|a|$ simple curves, say $\bar{g}^{(i)}:\left(D^{1}, \partial D^{1}\right) \rightarrow(K, \partial K) i=1,2$, $\cdots,|a|$. Now we apply Lemma 2.2 to each $\bar{g}^{(i)}$. Then as a union of these simple curves, we obtain an imbedding $g: S^{1} \rightarrow T^{2}$ we are looking for. Thus this lemma is proved.

For the imbedding g as in Lemma 3.5, the leaves of $\overline{\mathscr{F}}_{x} \mid T^{2}$ at the plus side of the curve $g\left(S^{1}\right)$ form a family of concentric half circles with center $z_{i, j}$ near $z_{i, j}$ and an upper part of a family of conforcal parabolas near $z_{i, j}^{\prime}$ (Fig. 9, (a)).

According to the condition (i) of Lemma 3.5, for a noncompact leaf L_{θ} of $\mathscr{F}_{R}^{(+)}$, there exists a simple closed C^{r} curve C of L_{θ} situated very close to $g\left(S^{1}\right)$ in $S^{1} \times D^{2}$. Let \bar{D} denote the compact subset of L_{θ} bounded by C which is C^{r} diffeomorphic to the 2-disk.

Consider the C^{r} vector field $X \mid \bar{D}$ on \bar{D}. Since C is very close to $g\left(S^{1}\right)$, the vectors of $X \mid \bar{D}$ are tangent to the boundary $\partial \bar{D}$ of \bar{D} at exactly $|a|(p+q)$ points $\bar{z}_{i, j}(i=1,2, \cdots, p ; j=1,2, \cdots,|a|), \bar{z}_{i, j}^{\prime}(i=1,2, \cdots, q$; $j=1,2, \cdots,|a|)$ such that $\bar{z}_{i, j}$ (resp. $\bar{z}_{i, j}^{\prime}$) is very close to $z_{i, j}$ (resp. $z_{i, j}^{\prime}$) and, furthermore, the orbits of $X \mid \bar{D}$ form a family of concentric half circles with center $\bar{z}_{i, j}$ near $\bar{z}_{i, j}$ and an upper part of conforcal parabolas near $\bar{z}_{i, j}^{\prime}$ (Fig. 9, (b)).

We define a codimension one C^{0} foliation $\hat{\mathscr{F}}$ of the double $\bar{D} \cup \bar{D}$ of \bar{D} with $|a|(p+q)$ singular points $\bar{z}_{i, j}(i=1,2, \cdots, p ; j=1,2, \cdots,|a|)$, $\bar{z}_{i, j}^{\prime}(i=1,2, \cdots, q ; j=1,2, \cdots,|a|)$ by the double of the orbits of the vector field $X \mid \bar{D}$. The index of the singularity of $\hat{\mathscr{F}}$ at $\bar{z}_{i, j}$ (resp. at $\bar{z}_{i, j}^{\prime}$) is 1 (resp. -1) (Fig. 9, (c)). Thus, since $\bar{D} \cup \bar{D}$ is homeomorphic to the 2-sphere, we have

$$
|a|(p-q)=2
$$

(a)

(b)

(c)

Fig. 9.

The integer $p-q$ is even by Lemma 3.4. Thus the following proposition holds. (Compare with Davis-Wilson [1]).

Proposition 3.6. Let $\mathscr{F}_{R}^{(+)}, X, \overline{\mathscr{F}}_{x}, L_{\text {comp }}, a \alpha+b \beta, p$ and q be as above. Then we have

$$
|a|=1, \quad p-q=2
$$

A codimension one C^{r} foliation $\overline{\mathscr{F}}$ of the torus ($r \geqq 1$) having compact leaves $L_{\lambda}(\lambda \in \Lambda)$ with the homology class $\left[L_{\lambda}\right]=a \alpha+b \beta, a \neq 0$, is said to be normalized if the following conditions are satisfied (Fig. 10):
(i) Every L_{λ} is the image of a line in R^{2} by the projection $\tilde{\pi}: R^{2} \rightarrow T^{2}$.
(ii) For every noncompact leaf L of a plus or a minus Reeb component of $\overline{\mathscr{F}}$, the leaf L is transverse to $\{\theta\} \times S^{1}\left(\theta \in S^{1}\right)$ except one, say $\left\{\theta_{L}\right\} \times S^{1}$, and is tangent to $\left\{\theta_{L}\right\} \times S^{1}$ at exactly one point.

Fig. 10.

Now we have the following proposition:
Proposition 3.7. Let \bar{X} be a non-singular C^{r} vector field $(r \geqq 1)$ on T^{2} with a closed orbit C such that the homology class $[C]=a \alpha+b \beta, a \neq 0$, and let $\overline{\mathscr{F}}$ denote the codimension one C^{r} foliation of T^{2} formed by orbits of \bar{X}. Then there exist a normalized codimension one C^{r} foliation $\overline{\mathscr{F}}_{0}$ of T^{2} and a C^{r} diffeomorphism

$$
g: T^{2} \rightarrow T^{2}
$$

satisfying the following conditions:
(i) g is an isomorphism between $\overline{\mathscr{F}}$ and $\overline{\mathscr{F}}_{0}$.
(ii) g is isotopic to the identity.

This proposition can be proved by using Lemmas 2.2, 2.3 and 3.5. We omit the details.

\S 4. Non-singular vector fields on turbulized foliations $\mathscr{F}_{\pi}^{\varepsilon}$ of punctured surface bundles over the circle

Let $\Sigma_{g}(m)$ denote a compact 2-dimensional C^{∞} manifold obtained from the closed orientable surface Σ_{g} of genus g by deleting m disjointly imbedded 2-disks $D_{1}^{2}, D_{2}^{2}, \cdots, D_{m}^{2}$:

$$
\Sigma_{g}(m)=\Sigma_{g}-\bigcup_{i=1}^{m} \operatorname{Int} D_{i}^{2}
$$

Let E be a compact connected orientable 3-dimensional C^{∞} manifold with boundary and let $\pi: E \rightarrow S^{1}$ be a C^{∞} fibering over the circle S^{1} with fibre $\Sigma_{g}(m)$, where $m \geqq 1$. Thus E is constructed as follows. Suppose that

$$
\phi: \Sigma_{g}(m) \rightarrow \Sigma_{g}(m)
$$

is an orientation preserving C^{∞} diffeomorphism. Then E is a quotient space obtained from the product space $I \times \Sigma_{g}(m)$ by identifying $(0, y)$ and $(1, \phi(y))$ for $y \in \Sigma_{g}(m)$ and the projection π is the map $\pi(t, y)=t(\bmod 1)$ for $t \in I, y \in \Sigma_{g}(m)$.

The boundary ∂E of E consists of disjoint union of tori, say T_{1}^{2}, T_{2}^{2}, $\cdots, T_{s}^{2} . \quad$ In case $\phi\left(\partial D_{i}^{2}\right)=\partial D_{i}^{2}(i=1,2, \cdots, m)$, we have $s=m$.

Recall that an orientation is specified on the circle S^{1}. In the following a point $e^{2 \pi i \theta}$ of S^{1} is simply denoted by $\theta \in R$ and the orientation of S^{1} is compatible with the natural orientation of R.

We choose a set of generators α_{k}, β_{k} of $H_{1}\left(T_{k}^{2}\right)(k=1,2, \cdots, s)$ so that

$$
\begin{aligned}
& \left(\pi \mid T_{k}^{2}\right)_{*} \alpha_{k}=c_{k}\left[S^{1}\right], \quad c_{k}>0 \\
& \left(\pi \mid T_{k}^{2}\right)_{*} \beta_{k}=0
\end{aligned}
$$

where $\left[S^{1}\right]$ denotes the homology class represented by S^{1}. Then we have $\sum_{k=1}^{s} c_{k}=m$.

A turbulization of the base space S^{1} in the minus or the plus direction induces a turbulization of the boundary of $T_{k}^{2}(k=1,2, \cdots, s)$.

Let ε be a function defined on the set $\{1,2, \cdots, s\}$ whose values are 1 or -1 . We let $\mathscr{F}_{\pi}^{\varepsilon}$ denote a codimension one C^{∞} foliation of E obtained by turbulizing the interior of each fibre of $\pi: E \rightarrow S^{1}$ in the sign $(-\varepsilon(k))$ direction in a collar of ∂T_{k}^{2} for $k=1,2, \cdots, s$, similarly as to construct $\mathscr{F}_{R}^{(\pm)}$in Section 2 (Fig. 11).

Fig. 11.
Let $L_{\theta}(0 \leqq \theta \leqq 1)$ denote a noncompact leaf of $\mathscr{F}_{\pi}^{\varepsilon}$ obtained from the interior of $\pi^{-1}(\theta)$ by the turbulization. Then we have

$$
\mathscr{F}_{\pi}^{\varepsilon}=\left\{L_{\theta} ; \theta \in S^{1}\right\} \cup\left\{T_{k}^{2} ; k=1,2, \cdots, s\right\} .
$$

Let X be a non-singular C^{r} vector field ($r \geqq 1$) on the codimension one foliation \mathscr{F}_{π}^{s} of E, that is to say, the vector $X(z)$ of X at $z \in E$ is tangent to the leaf of $\mathscr{F}_{\pi}^{\varepsilon}$ containing z. Let $\overline{\mathscr{F}}_{X}$ denote the one dimensional C^{r} foliation of E whose leaves are orbits of X.

Suppose that the restriction $\overline{\mathscr{F}}_{x} \mid T_{k}^{2}$ of $\overline{\mathscr{F}}_{X}$ to T_{k}^{2} has a compact leaf, say \bar{L}_{k}. We denote by $\left[\bar{L}_{k}\right]$ the homology class of $H_{1}\left(T_{k}^{2}\right)$ represented by \bar{L}_{k} with the orientation induced from X. Then, if $\left(\pi \mid T_{k}^{2}\right)_{*}\left(\left[\bar{L}_{k}\right]\right) \neq 0$, plus Reeb components, minus Reeb components and slope components of $\overline{\mathscr{F}}_{X} \mid T_{k}^{2}$ can be defined by using the projection $\pi \mid T_{k}^{2}: T_{k}^{2} \rightarrow S^{1}$ as in the case of the plus Reeb foliation $\mathscr{F}_{R}^{(+)}$of the solid torus (Section 3).

We define integers a_{k}, b_{k}, p_{k} and $q_{k}(k=1,2, \cdots, s)$ as follows:
(1) In case $\overline{\mathscr{F}}_{x} \mid T_{k}^{2}$ has a compact leaf, say \bar{L}_{k}, let

$$
\begin{equation*}
\left[\bar{L}_{k}\right]=a_{k} \alpha_{k}+b_{k} \beta_{k} . \tag{4.1}
\end{equation*}
$$

Furthermore, in case $a_{k} \neq 0$, let p_{k} and q_{k} denote the number of plus Reeb components $\overline{\mathscr{F}}_{X} \mid K_{k, i}^{(+)}\left(i=1,2, \cdots, p_{k}\right)$ and the number of minus Reeb components $\overline{\mathscr{F}}_{x} \mid K_{k, i}^{(-)}\left(i=1,2, \cdots, q_{k}\right)$ contained in $\overline{\mathscr{F}}_{X} \mid T_{k}^{2}$ respectively, and, in case $a_{k}=0$ thus $\left[\bar{L}_{k}\right]= \pm \beta_{k}$, let $p_{k}=q_{k}=0$.
(2) In case $\overline{\mathscr{F}}_{x} \mid T_{k}^{2}$ has no compact leaf, let

$$
a_{k}=b_{k}=p_{k}=q_{k}=0
$$

Then the following proposition generalizing Proposition 3.6 holds (Tamura-Sato [6; Proposition 2], Nishimori [2; Proposition 4.3]):

Proposition 4.2. Let $E, \mathscr{F}_{\pi}^{\varepsilon}, X, \overline{\mathscr{F}}_{X}, a_{k}, b_{k}, c_{k}, p_{k}$ and q_{k} be as above. Then we have

$$
\sum_{k=1}^{s} \varepsilon(k) c_{k}\left|a_{k}\right|\left(p_{k}-q_{k}\right)=2(2-2 g-m) .
$$

Proof. First suppose that $\overline{\mathscr{F}}_{x} \mid T_{k}^{2}$ is as (4.1) (1). We take a C^{r} imbedding

$$
g_{k}: S^{1} \rightarrow T_{k}^{2}
$$

as follows:
(i) If $a_{k} \neq 0, g_{k}$ is an imbedding g as in Lemma 3.5 for $\alpha_{k}=\alpha$, $\beta_{k}=\beta, a_{k}=a, b_{k}=b, p_{k}=p$ and $q_{k}=q$.
(ii) If $a_{k}=0, g_{k}$ is an imbedding such that $g_{k}\left(S^{1}\right)=\bar{L}_{k}$.

Then, in the case of (i), the leaves of $\overline{\mathscr{F}}_{x} \mid T_{k}^{2}$ are transverse to $g_{k}\left(S^{1}\right)$ except $\left|a_{k}\right|\left(p_{k}+q_{k}\right)$ points $z_{k, 1, j}, z_{k, 2, j}, \cdots, z_{k, p_{k}, j}, z_{k, 1, j}^{\prime}, z_{k, 2, j}^{\prime}, \cdots, z_{k, q_{k}, j}^{\prime}$ ($\left.j=1,2, \cdots,\left|a_{k}\right|\right)$, and a noncompact leaf of $\mathscr{F}_{X} \mid T_{k}^{2}$ contained in the plus Reeb component $\overline{\mathscr{F}}_{X} \mid K_{k, i}^{(+)}$(resp. minus Reeb component $\overline{\mathscr{F}}_{X} \mid K_{k, i}^{(-)}$) is tangent to $g\left(S^{1}\right)$ at $z_{k, i, j}$ (resp. at $\left.z_{k, i, j}^{\prime}\right)$ for $i=1,2, \cdots,\left|a_{k}\right|$ from the minus side (resp. plus side) of $g\left(S^{1}\right)$ (Fig. 12).

Fig. 12.
In the case of (ii), as is easily verified, there exists a non-singular C^{r} vector field $Y^{(k)}$ on T_{k}^{2} such that the map $f\left(Y^{(k)}\right): T^{2} \rightarrow S^{1}$ is homotopic to the map $f\left(X \mid T_{k}^{2}\right): T^{2} \rightarrow S^{1}$ and the vectors of $Y^{(k)} \mid g_{k}\left(S^{1}\right)$ are transverse to $g_{k}\left(S^{1}\right)$, where $f\left(Y^{(k)}\right)$ and $f\left(X \mid T_{k}^{2}\right)$ are maps defined in Section 1.

Next suppose that $\overline{\mathscr{F}}_{x} \mid T_{k}^{2}$ has no compact leaves ((4.1) (2)). Then we let

$$
g_{k}: S^{1} \rightarrow T_{k}^{2}
$$

be a C^{r} imbedding such that $g_{k}\left(S^{1}\right)$ is a connected component of the intersection of T_{k}^{2} with a fibre of π. By Proposition 1.2, the homomorphism

$$
\left(f\left(X \mid T_{k}^{2}\right)\right)_{*}: H_{1}\left(T_{k}^{2}\right) \rightarrow H_{1}\left(S^{1}\right)
$$

is a zero map. Thus, as is easily verified, there exists a non-singular continuous vector field $Y^{(k)}$ on T_{k}^{2} such that the map $f\left(Y^{(k)}\right): T^{2} \rightarrow S^{1}$ is homotopic to $f\left(X \mid T_{k}^{2}\right)$ and that the vectors of $Y^{(k)} \mid g_{k}\left(S^{1}\right)$ are transverse to $g_{k}\left(S^{1}\right)$.

Now let L be a noncompact leaf of $\mathscr{F}_{\pi}^{\varepsilon}$. Then, as is easily verified, we can take simple closed C^{r} curves $C_{l}^{(k)}\left(k=1,2, \cdots, s ; l=1,2, \cdots, c_{k}\right)$ in L such that $C_{l}^{(k)}\left(l=1,2, \cdots, c_{k}\right)$ are very close to $g_{k}\left(S^{1}\right)$ and that the union of $C_{l}^{(k)}\left(k=1,2, \cdots, s ; l=1,2, \cdots, c_{k}\right)$ bounds a compact subset of L, say Σ. Let us consider the vector field $X \mid \Sigma$ on Σ. In case $\mathscr{F}_{X} \mid T_{k}^{2}$ is as (4.1) (1) and $a_{k} \neq 0$, the vectors of $X \mid \Sigma$ are transverse to $C_{l}^{(k)}(l=1$, $\left.2, \cdots, c_{k}\right)$ except $\left|a_{k}\right|\left(p_{k}+q_{k}\right)$ points $\bar{z}_{k, i, j, l}\left(i=1,2, \cdots, p_{k} ; j=1,2\right.$, $\left.\cdots,\left|a_{k}\right|\right)$ and $\bar{z}_{k, i, j, l}^{\prime}\left(i=1,2, \cdots, q_{k} ; j=1,2, \cdots,\left|a_{k}\right|\right)$ such that $\bar{z}_{k, i, j, l}$ and $\bar{z}_{k, i, j, l}^{\prime}$ are very close to $z_{k, i, j, l}$ and $z_{k, i, j, l}^{\prime}$ respectively, and that the orbits of $X \mid \Sigma$ form a family of concentric half circles with center $\bar{z}_{k, i, j, l}$ (resp. an upper part of conforcal parabolas) near $\bar{z}_{k, i, j, l}$ and an upper part of conforcal parabolas (resp. a family of concentric half circles with center $\bar{z}_{k, i, j, l}^{\prime}$) near $\bar{z}_{k, i, j, l}^{\prime}$ if $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$). (Fig. 12).

We let Π be a subset of $\{1,2, \cdots, s\}$ such that $k \in \Pi$ if and only if $\overline{\mathscr{F}}_{x} \mid T_{k}^{2}$ is as (4.1) (1), $a_{k}=0$, or as (4.1) (2). Then by modifying the vector field $X \mid \Sigma$ in collars $c\left(C_{l}^{(k)}\right)$ of $C_{l}^{(k)}$ for $k \in \Pi$ making use of the vector field $Y^{(k)}$, we obtain a non-singular C^{r} vector field X_{0} on Σ with the following properties:
(i) $\quad X_{0}\left|\left(\Sigma-\bigcup_{k \in I} c\left(C_{i}^{(k)}\right)\right)=X\right|\left(\Sigma-\bigcup_{k \in I} c\left(C_{l}^{(k)}\right)\right)$.
(ii) Vectors of X_{0} are transverse to $C_{l}^{(k)}$ for $k \in \Pi$.

We define a codimension one C^{0} foliation $\hat{\mathscr{F}}$ of the double $\Sigma \cup \Sigma$ of Σ with $\sum_{k=1}^{s} c_{k}\left|a_{k}\right|\left(p_{k}+q_{k}\right)$ singular points $\bar{z}_{k, i, j, l}(k \notin \Pi, i=1,2, \cdots$, $\left.p_{k} ; j=1,2, \cdots,\left|a_{k}\right| ; l=1,2, \cdots, c_{k}\right), \bar{z}_{k, i, j, l}^{\prime}\left(k \notin \Pi, i=1,2, \cdots, q_{k} ; j=\right.$ $\left.1,2, \cdots,\left|a_{k}\right| ; l=1,2, \cdots, c_{k}\right)$ by the double of the orbits of the vector field X_{0}. Since the indices of the singularities at $\bar{z}_{k, i, j, l}$ and these at $\bar{z}_{k, i, j, l}^{\prime}$ are 1 and -1 (resp. -1 and 1) if $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$), this proposition is proved by considering the Euler number of $\Sigma \cup \Sigma$.

Now let $\pi: E_{1} \rightarrow S^{1}$ be a C^{∞} fibering over S^{1} with $\Sigma_{g}(1)=\Sigma_{g}$ - Int D^{2} as fibre and an orientable 3-dimensional manifold E_{1} as total space. Then $\partial E_{1}=T^{2}$. Let α and β be generators of $H_{1}\left(\partial E_{1}\right)$ such that

$$
\pi_{*}(\alpha)=\left[S^{1}\right], \quad \pi_{*}(\beta)=0
$$

Let \mathscr{F}_{π} denote a codimension one C^{r} foliation $\mathscr{F}_{\pi}^{\varepsilon}$ of E_{1} for which $\varepsilon(1)=1$. Then the following proposition is a direct consequence of Proposition 4.2 ([6, Proposition 2]):

Proposition 4.3. Let $E_{1}, \mathscr{F}_{\pi}, \alpha$ and β be as above, and let X be a nonsingular C^{r} vector field $(r \geqq 1)$ on \mathscr{F}_{π}. Then the following hold:
(i) The C^{r} vector field $X \mid \partial E_{1}$ has at least one closed orbit.
(ii) The homology class represented by a closed orbit is $a \alpha+b \beta, a \neq 0$.
(iii) Let p and q be the numbers of plus Reeb components and minus Reeb components in the codimension one foliation formed by the orbits of $X \mid \partial E_{1}$. Then it holds that

$$
|a|(p-q)=2(1-2 g)
$$

§ 5. Transverse foliations

Let M be an n-dimensional C^{∞} manifold and let \mathscr{F} be a codimension $q C^{r}$ foliation of $M(r \geqq 1)$. A codimension $q^{\prime} C^{r}$ foliation \mathscr{F}^{\prime} of M with $q+q^{\prime} \leqq n$ is said to be transverse to \mathscr{F}, denoted by $\mathscr{F} 历 \mathscr{F}^{\prime}$, if, at each point $x \in M$, the leaf L_{x} of \mathscr{F} through x and the leaf L_{x}^{\prime} of \mathscr{F}^{\prime} through x intersect transversely at x, that is, $T_{x}\left(L_{x}\right)+T_{x}\left(L_{x}^{\prime}\right)=T_{x}(M)$.

Let
$\mathscr{F} \cap \mathscr{F}^{\prime}=\left\{\right.$ connected components of $\left.L \cap L^{\prime} ; L \in \mathscr{F}, L^{\prime} \in \mathscr{F} \prime\right\}$.
Then $\mathscr{F} \cap \mathscr{F}^{\prime}$ is obviously a codimension $q+q^{\prime} C^{r}$ foliation of M.
Let D_{+}^{2} denote the half 2-disk $\left\{(x, y) \in D^{2} ; y \geqq 0\right\}$ and let $\mathscr{F}_{R / 2}^{(+)}$denote the restriction of the plus Reeb foliation $\mathscr{F}_{R}^{(+)}$of $S^{1} \times D^{2}$ to $S^{1} \times D_{+}^{2}$. Let \mathscr{F}_{+}^{\prime} denote the codimension one C^{∞} foliation of $S^{1} \times D^{2}$ obtained from two copies of $\mathscr{F}_{R / 2}^{(+)}$by identifying two copies of compact subsets $\left(S^{1} \times D_{+}^{2}\right) \cap \partial D^{2}$ (Fig. 13, (b)). Then \mathscr{F}_{+}^{\prime} is transverse to $\mathscr{F}_{R}^{(+)} . \quad \mathscr{F}_{R / 2}^{(+)}$is called the plus half Reeb foliation of $S^{1} \times D_{+}^{2}$ (Fig. 13, (a)).
$\mathscr{F}_{R / 2}^{(+)}$and $T S_{1}$ below are codimension one C^{r} 'foliations' of 3-dimensional C^{∞} manifolds with corner. Let H denote a hexagon with vertices $v_{1}, v_{2}, \cdots, v_{6}$. Let $T S_{1}$ denote a codimension one C^{∞} 'foliation' of $S^{1} \times H$ consisting of 3 compact leaves $S^{1} \times \overline{v_{1} v_{2}}, S^{1} \times \overline{v_{3} v_{4}}, S^{1} \times \overline{v_{5} v_{6}}$ and noncompact leaves such that they are of the same form and one of them is as Fig. 14, (a). $T S_{1}$ is called the $T S$ component of type 1 . Let \mathscr{F}^{\prime} be a codimension one C^{∞} foliation of $S^{1} \times D^{2}$ consisting of $T S_{1}$ and three copies of $\mathscr{F}_{R / 2}^{(+)}$by identifying $S^{1} \times \overline{v_{i} v_{i+1}}$ with the compact leaf of $\mathscr{F}_{R / 2}^{(+)}$for $i=1$, 3,5. Then \mathscr{F}^{\prime} is transverse to $\mathscr{F}_{R}^{(+)}$(Fig. 14, (b)). For details, see Tamura-Sato [6].

In a previous paper [6], the classification of codimension one C^{∞}

Fig. 13.

Fig. 14.
foliations transverse to the Reeb foliation of the solid torus is completed. And the classifications of codimension one C^{∞} foliations transverse to codimension one C^{∞} foliations of 3-manifolds of more general types are obtained by Nishimori [2].

Let $E, \mathscr{F}_{\pi}^{\varepsilon}$ and T_{k}^{2} be as in Section 4. We remark that $\mathscr{F}_{\pi}^{\varepsilon}$ is transversely orientable. Suppose that \mathscr{F}^{\prime} is a transversely orientable codimension one C^{r} foliation of E transverse to $\mathscr{F}_{\pi}^{\varepsilon}(r \geqq 2)$. Then $\overline{\mathscr{F}}=\mathscr{F}_{\pi}^{\varepsilon} \cap \mathscr{F}^{\prime}$ is the one dimensional C^{r} foliation of E consisting of C^{r} simple curves of leaves of $\mathscr{F}_{\pi}^{\varepsilon}$. For a leaf L of $\mathscr{F}_{\pi}^{\varepsilon}$, the restriction $\overline{\mathscr{F}} \mid L$ of $\overline{\mathscr{F}}$ to L is a codimension one C^{r} foliation of L.

Since $\mathscr{F}_{\pi}^{\varepsilon}$ and \mathscr{F}^{\prime} are transversely orientable, we can give consistent
orientations on elements of $\overline{\mathscr{F}}$. Let X denote the vector field on E consisting of unit tangent vectors of curves belonging to $\overline{\mathscr{F}}$. Then X is a non-singular C^{r-1} vector field on E tangent to (leaves of) $\mathscr{F}_{\pi}^{\varepsilon}$. $\overline{\mathscr{F}}$ consists of orbits of X.

A C^{r-1} vector field X on $\mathscr{F}_{\pi}^{\varepsilon}$ obtained from transverse foliation \mathscr{F}^{\prime} as above is said to be transversely integrable.

By Propositions 3.6, 4.2 and 4.3, we have the following proposition.
Proposition 5:1. Let $\overline{\mathscr{F}}=\mathscr{F}_{\pi}^{\varepsilon} \cap \mathscr{F}^{\prime}$ be as above.
(I) Let $\alpha_{k}, \beta_{k}, a_{k}, b_{k}, c_{k}, p_{k}$ and q_{k} be as in Section 4 for $\overline{\mathscr{F}} \mid \partial E$. Then the equation of Proposition 4.2 holds.
(II) Let E_{1} be as in Section 4 and let α, β, a, p and q be as in Section 4 for $\overline{\mathscr{F}} \mid \partial E_{1}$. Then the following hold:
(i) $\overline{\mathscr{F}} \mid \partial E_{1}$ has at least one compact leaf.
(ii) $|a|(p-q)=2(1-2 g)$.

In particular, $|a|=1, p-q=2$ in case $E_{1}=S^{1} \times D^{2}$.
Let $V=\{V(z) ; z \in E\}$ be a non-singular C^{r-1} vector field $(r \geqq 2)$ on E satisfying the following conditions (Fig. 15):
(5.2) (i) $|V(z)|=1 \quad(z \in E)$ (with respect to a Riemannian metric on E).
(ii) Each $V(z)$ is tangent to the leaf of \mathscr{F}^{\prime} containing z.
(iii) Each $V(z)$ is transverse to the leaf of $\mathscr{F}_{\pi}^{\varepsilon}$ containing z and, in case z is contained in a noncompact leaf $L_{\theta}\left(\theta \in S^{1}\right), V(z)$ is towards the minus direction of S^{1}. (The latter condition implies that $V(z)$ is inward (resp. outward) if $z \in T_{k}^{2}$ and $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$).)
(iv) $d \pi(V(z))=0$ if $z \in T_{k}^{2}(k=1,2, \cdots, s)$.

The existence of such a C^{r-1} vector field V is obvious.

Fig. 15.

Let $\varphi(t, z)$ denote the integral curve of V through $z: \varphi(0, z)=z$. For two noncompact leaves L_{θ}, L_{θ}, of $\mathscr{F}_{\pi}^{\varepsilon}\left(\theta, \theta^{\prime} \in S^{1}\right)$, we define a C^{r} map

$$
\Phi_{\theta^{\prime}, \theta}: L_{\theta} \rightarrow L_{\theta^{\prime}} \quad\left(0 \leqq \theta^{\prime}<\theta \leqq 1\right)
$$

by that $\Phi_{\theta^{\prime}, \theta}(z)$ is the first intersection of the positive orbit $\{\varphi(t, z) ; t>0\}$ through z with $L_{\theta^{\prime}}$ for $z \in L_{\theta}$. Then it is clear that $\Phi_{\theta^{\prime}, \theta}$ is a C^{r} diffeomorphism and maps each leaf of $\overline{\mathscr{F}} \mid L_{\theta}$ onto a leaf of $\overline{\mathscr{F}} \mid L_{\theta^{\prime}}$. Therefore $\overline{\mathscr{F}} \mid L_{\theta}$ and $\overline{\mathscr{F}} \mid L_{\theta^{\prime}}$ are always isomorphic.

Now let $\alpha_{k}, \beta_{k}, a_{k}$ and $b_{k}(k=1,2, \cdots, s)$ be as in Section 4 for $\overline{\mathscr{F}} \mid \partial E$. Suppose that $a_{k} \neq 0$ for $k=1,2, \cdots, s$. Then, by Proposition 3.7, there exist a normalized codimension one C^{r} foliation $\mathscr{\mathscr { F }}_{0}^{(k)}$ of T_{k}^{2} and a C^{r} diffeomorphism $g^{(k)}: T^{2} \rightarrow T^{2}$ isotopic to the identity such that $g^{(k)}$ is an isomorphism between $\overline{\mathscr{F}} \mid T_{k}^{2}$ and $\overline{\mathscr{F}}_{0}^{(k)}$ for $k=1,2, \cdots, s$.

Let

$$
\begin{array}{ll}
g_{t}^{(\bar{k})}: T_{k}^{2} \rightarrow T_{k}^{2}, & 0 \leqq t \leqq 1 \\
g_{0}^{(k)}=\text { identity }, & g_{1}^{(k)}=g^{(k)}
\end{array}
$$

be the isotopy for $k=1,2, \cdots, s$. Let $c_{k}: T^{2} \times I \rightarrow E$ be a sufficiently thin collar of T_{k}^{2} in E such that $\pi\left(c_{k}(\{y\} \times I)\right)=\pi\left(c_{k}(y, 0)\right)\left(y \in T^{2}\right)$ for $k=1,2, \cdots, s$. Then, by realizing the isotopy $g_{t}^{(k)}(0 \leqq t \leqq 1)$ in the collar $c_{k}\left(T^{2} \times I\right)(k=1,2, \cdots, s)$, we obtain a C^{r} isotopy

$$
\hat{g}_{t}: E \rightarrow E, \quad 0 \leqq t \leqq 1
$$

having the following properties:
(i) \hat{g}_{0} is the identity map.
(ii) $\hat{g}_{1} \mid T_{k}^{2}=g^{(k)}, k=1,2, \cdots, s$.
(iii) Let $\left(\hat{g}_{t}\right)_{*} \mathscr{F}^{\prime}=\left\{\hat{g}_{t}\left(L^{\prime}\right) ; L^{\prime} \in \mathscr{F}^{\prime}\right\}$ be a codimension one C^{r} foliation of $E(0 \leqq t \leqq 1)$. Then $\left(\hat{g}_{t}\right)_{*} \mathscr{F}^{\prime}$ is transverse to $\mathscr{F}_{\pi}^{\varepsilon}$ for all t.

Thus we have the following proposition:
Proposition 5.3. Let $E, \mathscr{F}_{\pi}^{\varepsilon}, T_{k}^{2}$ and \mathscr{F}^{\prime} be as above. Then there exists a C^{r} diffeomorphism $\hat{g}: E \rightarrow E$ isotopic to the identity map such that, for the codimension one C^{r} foliation $\hat{g}_{*} \mathscr{F}^{\prime}=\left\{\hat{g}\left(L^{\prime}\right) ; L^{\prime} \in \mathscr{F}^{\prime}\right\}$, one dimensional C^{r} foliation $\left(\mathscr{F}_{\pi}^{\varepsilon} \cap \hat{g}_{*} \mathscr{F}^{\prime}\right) \mid T_{k}^{2}$ of T_{k}^{2} is normalized for $k=1,2, \cdots, s$.

§ 6. Compactification of vector fields on noncompact leaves of $\mathscr{F}_{\pi}^{\varepsilon}$

Let $\pi: E_{1} \rightarrow S^{1}$ be a C^{∞} fibering with one punctured surface of genus $g, \Sigma_{g}(1)=\Sigma_{g}$-Int D^{2} as fibre and an orientable 3-dimensional manifold E_{1} as total space, and let \mathscr{F}_{π} be a codimension one C^{∞} foliation of E_{1} with $\varepsilon(1)=1$ as in Section 4.

Suppose that \mathscr{F}^{\prime} is a transversely orientable codimension one C^{r} foliation of $E_{1}(r \geqq 2)$ transverse to \mathscr{F}_{π}. Let X be a non-singular C^{r-1} vector field on \mathscr{F}_{π} such that the orbits of X form the one dimensional C^{r} foliation $\overline{\mathscr{F}}=\mathscr{F}_{\pi} \cap \mathscr{F}^{\prime}$ as in Section 5.

Furthermore let V be a non-singular C^{r-1} vector field on E_{1} as (5.2) and let $\varphi(t, z)$ denote the integral curve of V through $z \in E_{1}$.

Now let $f: E_{1} \rightarrow \boldsymbol{R}$ be a C^{∞} function such that

$$
\begin{array}{ll}
f(z)>0 & \text { if } z \in \operatorname{Int} E_{1}, \\
f(z)=0 & \text { if } z \in \partial E_{1} .
\end{array}
$$

The existence of such a function f is obvious. Define a non-singular C^{r-1} vector field X_{f} on Int E_{1} by

$$
X_{f}(z)=f(z) X(z) \quad\left(z \in \operatorname{Int} E_{1}\right)
$$

Then two vector fields $X \mid \operatorname{Int} E_{1}$ and X_{f} have obviously the same orbits.
Let

$$
\eta: \text { Int } E_{1} \rightarrow \operatorname{Int} E_{1}
$$

be a natural C^{r} diffeomorphism which maps each noncompact leaf L_{θ} of \mathscr{F}_{π} onto Int $\pi^{-1}(\theta)$ for $\theta \in S^{1}$, where L_{θ} is the leaf obtained from Int $\pi^{-1}(\theta)$ by the turbulization.

We compactify Int E_{1} by adding a circle $S_{\infty}^{1}=\left\{p_{\infty}(\theta) ; \theta \in S^{1}\right\}$ so that Int $\pi^{-1}(\theta) \cup p_{\infty}(\theta)$ is the one point compactification of Int $\pi^{-1}(\theta)$ for each $\theta \in S^{1}$, and denote by \hat{E}_{1} the closed 3 -dimensional C^{∞} manifold thus obtained:

$$
\hat{E}_{1}=\operatorname{Int} E_{1} \cup S_{\infty}^{1} .
$$

Denote the orientable surface Int $\pi^{-1}(\theta) \cup p_{\infty}(\theta)$ of genus g by $\left(\Sigma_{g}\right)_{\theta}$. Then by defining the map $\hat{\pi}: \hat{E}_{1} \rightarrow S^{1}$ by

$$
\hat{\pi}\left(\left(\Sigma_{g}\right)_{\theta}\right)=\theta
$$

\hat{E} is the total space of a C^{∞} fibering over S^{1} with Σ_{g} as fibre and $\hat{\pi}$ as projection.

Let us define a homeomorphism

$$
\hat{\phi}: \Sigma_{g} \rightarrow \Sigma_{g}
$$

by

$$
\hat{\phi}(z)= \begin{cases}\eta \circ \Phi_{0,1} \circ \eta^{-1}(z) & z \in \operatorname{Int} \pi^{-1}(1) \\ p_{\infty}(0)=p_{\infty}(1) & z=p_{\infty}(1)\end{cases}
$$

where $\Phi_{0,1}$ is the homeomorphism defined in Section 5 and we consider as $\Sigma_{g}=\operatorname{Int} \pi^{-1}(1) \cup p_{\infty}(1)=\operatorname{Int} \pi^{-1}(0) \cup p_{\infty}(0), \eta^{-1}(z) \in L_{1}, \Phi_{0,1} \circ \eta^{-1}(z) \in L_{0}=$ L_{1}. Then \hat{E} is the quotient space obtained from the product space $I \times \Sigma_{g}$ by identifying $(0, y)$ and $(1, \hat{\phi}(y))$ for $y \in \Sigma_{g}$.

Let $\phi: \Sigma_{g}(1) \rightarrow \Sigma_{g}(1)$ be the C^{∞} diffeomorphism used to construct E_{1} in Section 4. Then the following proposition is obvious:

Proposition 6.1. Let ϕ and $\hat{\phi}$ be as above. Then the following diagram commutes:

$$
\begin{gathered}
H_{1}\left(\Sigma_{g}(1)\right) \xrightarrow{\phi_{*}} H_{1}\left(\Sigma_{g}(1)\right) \\
\cong \\
\cong \\
H_{1}\left(\Sigma_{g}\right) \xrightarrow{\hat{\phi}_{*}} H_{1}\left(\Sigma_{g}\right) .
\end{gathered}
$$

Let us define a continuous vector field \hat{X} on \hat{E}_{1} by

$$
\hat{X}(z)= \begin{cases}d \eta\left(X_{f}\left(\eta^{-1}(z)\right)\right) & z \in \hat{E}_{1}-S_{\infty}^{1} \\ 0 & z \in S_{\infty}^{1}\end{cases}
$$

Then the restriction $\hat{X} \mid\left(\hat{E}_{1}-S_{\infty}^{1}\right)$ is a non-singular C^{r-1} vector field and the restriction $\hat{X} \mid\left(\Sigma_{g}\right)_{\theta}$ is a continuous tangent vector field on $\left(\Sigma_{g}\right)_{\theta}$ for $\theta \in S^{1}$. We denote by $\overline{\mathscr{F}}_{\theta}$ the codimension one foliation of $\left(\Sigma_{g}\right)_{\theta}$ with a singularity $p_{\infty}(\theta)$ formed by the orbits of $\hat{X} \mid\left(\Sigma_{g}\right)_{\theta}$. Thus $\overline{\mathscr{F}}_{\theta} \mid\left(\left(\Sigma_{g}\right)_{\theta}-p_{\infty}(\theta)\right)$ is a codimension one C^{r-1} foliation. Making use of the C^{r} diffeomorphism $\Phi_{\theta^{\prime}, \theta}: L_{\theta} \rightarrow L_{\theta^{\prime}}$ defined in Section 5, we define a homeomorphism

$$
\hat{\Phi}_{\theta^{\prime}, \theta}:\left(\Sigma_{g}\right)_{\theta^{\prime}} \rightarrow\left(\Sigma_{g}\right)_{\theta^{\prime}} \quad\left(0 \leqq \theta^{\prime}<\theta \leqq 1\right)
$$

by

$$
\hat{\Phi}_{\theta^{\prime}, \theta}(z)=\left\{\begin{array}{cl}
\eta \circ \Phi_{\theta^{\prime}, \theta} \circ \eta^{-1}(z) & z \in\left(\Sigma_{g}\right)_{\theta}-p_{\infty}(\theta) \\
p_{\infty}\left(\theta^{\prime}\right) & z=p_{\infty}(\theta) .
\end{array}\right.
$$

It is obvious that $\hat{\Phi}_{\theta^{\prime}, \theta}$ maps each leaf of $\overline{\mathscr{F}}_{\theta}$ onto a leaf of $\overline{\mathscr{F}}_{\theta^{\prime}}$
In the following we study the property of the vector field $\hat{X}_{\theta}=\hat{X} \mid\left(\Sigma_{g}\right)_{\theta}$ on $\left(\Sigma_{g}\right)_{\theta}$ around the singular point $p_{\infty}(\theta)$. We take a simple closed curve C on ∂E_{1} so that $\pi(C)=0 \in S^{1}$.

Let \boldsymbol{R}_{-}denote the interval ($-\infty, 0$] and let

$$
\tilde{\pi}_{0}: R_{-} \times S^{1} \rightarrow \partial E_{1}
$$

be a submersion such that

$$
\begin{aligned}
& \pi\left(\tilde{\pi}_{0}\left(\{u\} \times S^{1}\right)\right)=u \bmod 1 \quad\left(u \in R_{-}\right), \\
& \tilde{\pi}_{0}\left(\{0\} \times S^{1}\right)=C .
\end{aligned}
$$

Let \tilde{X} be the non-singular C^{r-1} tangent vector field on $\boldsymbol{R}_{-} \times S^{1}$ such that

$$
d \tilde{\pi}_{0}(\tilde{X}(u, y))=X\left(\tilde{\pi}_{0}(u, y)\right) \quad u \in \boldsymbol{R}_{-}, y \in S^{1} .
$$

We can take a simple closed curve C_{1} on $L_{1}\left(1 \in S^{1}\right)$ so that C_{1} is very close to ∂E_{1} and the integral curves $\varphi(t, z)$ intersect C_{1} for any $z \in C$. Let D_{1} denote the compact subset of L_{1} bounded by C_{1} and let $W_{1}=L_{1}-$ Int D_{1}. Then W_{1} is contained in a thin collar of ∂E_{1} in E_{1}.

It is easy to see that there exists a C^{r} diffeomorphism

$$
\Phi_{1}: R_{-} \times S^{1} \rightarrow W_{1}
$$

such that $\Phi_{1}\left(\{0\} \times S^{1}\right)=C_{1}$ and $\Phi_{1}(u, y) \in\left(\cup_{t>0} \varphi\left(t, \tilde{\pi}_{0}(u, y)\right)\right) \cap L_{1}$.
Let $D_{-}=\left(\boldsymbol{R}_{-} \times S^{1}\right) \cup\left\{p_{\infty}\right\}$ denote the one point compactification of $R_{-} \times S^{1}$. D_{-}is homeomorphic to the 2-disk. Let \tilde{X}_{∞} be a continuous vector field on D_{-}defined by

$$
\tilde{X}_{\infty}(z)= \begin{cases}\frac{1}{1+u^{2}} \tilde{X}(u, y) & z=(u, y) \in R_{-} \times S^{1} \\ 0 & z=p_{\infty}\end{cases}
$$

The non-singular C^{r-1} vector field $X \mid \partial E_{1}$ has at least one closed orbit such that the homology class represented by it is $a \alpha+b \beta, a \neq 0$ by Proposition 4.3. Thus the codimension one C^{r} foliation $\overline{\mathscr{F}} \mid \partial E_{1}$ is decomposed into plus Reeb components $\overline{\mathscr{F}}\left|K_{1}^{(+)}, \overline{\mathscr{F}}\right| K_{2}^{(+)}, \cdots, \overline{\mathscr{F}} \mid K_{p}^{(+)}$, minus Reeb components $\overline{\mathscr{F}}\left|K_{1}^{(-)}, \overline{\mathscr{F}}\right| K_{2}^{(-)}, \cdots, \overline{\mathscr{F}} \mid K_{q}^{(-)}$and the union of foliated I-bundles which is the restriction of $\overline{\mathscr{F}}$ onto the closure of $\partial E_{1}-\bigcup_{i=1}^{p} K_{i}^{(+)}-\bigcup_{i=1}^{q} K_{i}^{(-)}$as in Section 3.

Let $\widetilde{K}_{i}^{(+)}(i=1,2, \cdots, p)$ and $\tilde{K}_{i}^{(-)}(i=1,2, \cdots, q)$ be subsets of D_{-} defined by

$$
\begin{array}{cl}
\tilde{K}_{i}^{(+)}=\tilde{\pi}_{0}^{-1}\left(K_{i}^{(+)}\right) & (i=1,2, \cdots, p) \\
\tilde{K}_{i}^{(-)}=\tilde{\pi}_{0}^{-1}\left(K_{i}^{(-)}\right) & (i=1,2, \cdots, q)
\end{array}
$$

Then the following proposition is a direct consequence of properties of plus and minus Reeb components (Fig. 16):

Proposition 6.2. The orbits of \tilde{X}_{∞} on D_{-}are as follows:
(i) If z is a point of Int $\tilde{K}_{i}^{(+)}(i=1,2, \cdots, p)$ near p_{∞}, then the α limit set and the ω-limit set of z are both p_{∞}, or one of the α-limit set and the ω-limit set of z is $\left\{p_{\infty}\right\}$ and the orbit $\psi(t, z)$ of \tilde{X}_{∞} through z goes out D_{-}for $t \rightarrow-\infty$ or $t \rightarrow \infty$.
(ii) If z is a point of $\operatorname{Int} \tilde{K}_{i}^{(-)}(\dot{i}=1,2, \cdots, q)$, then the orbit $\psi(t, z)$ of \tilde{X}_{∞} through z goes out D_{-}.
(iii) If z is a point of $D_{-}-\bigcup_{i=1}^{p}$ Int $\tilde{K}_{i}^{(+)}-\bigcup_{i=1}^{q}$ Int $\widetilde{K}_{i}^{(-)}-\left\{p_{\infty}\right\}$ near p_{∞}, then one of the α-limit set and the ω-limit set of z is $\left\{p_{\infty}\right\}$ and the orbit $\psi(t, z)$ of \tilde{X}_{∞} through z goes out D_{-}for $t \rightarrow \infty$ (resp. $t \rightarrow-\infty$) if p_{∞} is the α-limit set (resp. ω-limit set) of z.

Fig. 16.

Define a map

$$
\hat{\Phi}_{\theta}: D_{-} \rightarrow\left(\Sigma_{g}\right)_{\theta} \quad(0 \leqq \theta \leqq 1)
$$

by

$$
\hat{\Phi}_{\theta}(z)=\left\{\begin{array}{cl}
\hat{\Phi}_{\theta, 1} \circ \eta \circ \Phi_{1}(z) & z \in R_{-} \times S^{1} \\
p_{\infty}(\theta) & z=p_{\infty}
\end{array}\right.
$$

Then it is obvious that $\hat{\Phi}_{\theta}: D_{-} \rightarrow \hat{\Phi}_{\theta}\left(D_{-}\right)$is a homeomorphism and

$$
\hat{\Phi}_{\theta} \mid\left(R_{-} \times S^{1}\right): R_{-} \times S^{1} \rightarrow\left(\Sigma_{g}\right)_{\theta}
$$

maps each orbit of \tilde{X} into an orbit of $\hat{X} \mid\left(\Sigma_{g}\right)_{\theta}$. Thus we have the following proposition.

Proposition 6.3. $\quad \hat{\Phi}_{\theta}$ maps orbits of \tilde{X}_{∞} around p_{∞} to orbits of $\hat{X} \mid\left(\Sigma_{g}\right)_{\theta}$ around $p_{\infty}(\theta)$ isomorphically for $0 \leqq \theta \leqq 1$.

We remark that the consideration on E_{1} in this section can be naturally generalized to E as in Section 4.

Let z_{0} be a point of D_{-}which is contained in $\partial \widetilde{K}_{i}^{(\pm)}$and is near p_{∞}. Thus one of the α-limit set and the ω-limit set of z_{0} with respect to \tilde{X}_{∞} is $\left\{p_{\infty}\right\}$. Let l_{0} be the simple curve of D_{-}with end points z_{0} and p_{∞} consisting of a part of an orbit of \tilde{X}_{∞} through z_{0} and p_{∞}. Then the following proposition important to prove Theorem C in Section 8 holds:

Proposition 6.4. If $|a|=1$, then for subsets $\hat{\Phi}_{1}\left(l_{0}\right)$ and $\hat{\Phi}_{0}\left(l_{0}\right)$ of $\left(\Sigma_{g}\right)_{1}=$ $\left(\Sigma_{g}\right)_{0}$, we have

$$
\hat{\Phi}_{0}\left(l_{0}\right) \supset \hat{\Phi}_{1}\left(l_{0}\right) .
$$

Proof. Since $z_{0} \in \partial \tilde{K}_{i}^{(\pm)}$, we have $\tilde{\pi}_{0}\left(z_{0}\right) \in \partial K_{i}^{(\pm)}$. Thus $\tilde{\pi}_{0}\left(z_{0}\right)$ is a point of a compact leaf of $\overline{\mathscr{F}}$, say $\tilde{\pi}_{0}\left(z_{0}\right) \in \bar{L}_{c}$.

Since $\hat{\Phi}_{\theta}: D_{-} \rightarrow\left(\Sigma_{g}\right)_{\theta}$ maps orbits of \tilde{X}_{∞} to orbits of $\hat{X} \mid\left(\Sigma_{g}\right)_{\theta}$, the subsets $\hat{\Phi}_{1}\left(l_{0}\right)-\left\{p_{\infty}(1)\right\}$ and $\hat{\Phi}_{0}\left(l_{0}\right)-\left\{p_{\infty}(1)\right\}$ are contained in orbits of $\hat{X} \mid\left(\Sigma_{g}\right)_{1}$, say $\hat{\Phi}_{1}\left(l_{0}\right)-\left\{p_{\infty}(1)\right\} \subset \hat{L}_{1}, \hat{\Phi}_{0}\left(l_{0}\right)-\left\{p_{\infty}(1)\right\} \subset \hat{L}_{2}$. Denote $z_{0}=(u, y)$ $\in \boldsymbol{R}_{-} \times S^{1}$. Then, since \bar{L}_{c} is a simple closed curve and $|a|=1$, we have $(u-1, y) \in l_{0}$. Let \bar{l} denote the simple curve contained in l_{0} whose end points are $z_{0}=(u, y)$ and $(u-1, y)$. Then, as is easily verified, $\hat{\Phi}_{0}(\bar{l})$ is contained in $\hat{\Phi}_{0}\left(l_{0}\right)-\left\{p_{\infty}(1)\right\}$ and that $\hat{\Phi}_{0}(u-1, y)=\hat{\Phi}_{1}\left(z_{0}\right)$. Thus this proposition is proved.
§ 7. Vector fields on the torus with one singular point and asymptotic homology classes

In this section let X be a continuous vector field on the torus T^{2} with possibly one singular point such that X is C^{r} for regular points ($r \geqq 1$) and let $\varphi(t, z)$ denote the orbit of X through $z \in T^{2}$.

For a point z_{0} of T^{2}, we can classify the ω-limit set of z_{0} as follows:
(7.1) (i) The ω-limit set of z_{0} consists of one singular point.
(ii) The orbit through z_{0} is periodic and, thus, the ω-limit set of z_{0} is a closed orbit.
(iii) The orbit through z_{0} is not periodic and the ω-limit set of z_{0} contains a regular point.

Now suppose that the ω-limit set of z_{0} is as (iii) above. Then, since a regular point has a local section through itself, there exists a simple closed C^{r} curve C_{0} transverse to X which intersects the positive semi-orbit $\left\{\varphi\left(t ; z_{0}\right), t \geqq 0\right\}$ through z_{0}. By the assumption that the singular point of X is at most one, the homology class [C_{0}] represented by C_{0} is non-zero.

In case the positive semi-orbit through z_{0} intersects C_{0} at only finite points, the ω-limit set of z_{0} is contained in $T^{2}-C_{0}$, and thus, by applying
the standard arguments of dynamical systems on the 2 -sphere, it follows that the ω-limit set of z_{0} is a closed orbit or a union of countable orbits whose α-limit sets and ω-limit sets are the singular point.

Let $\tilde{\pi}: R^{2} \rightarrow T^{2}$ be a universal covering as in Section 1 and let \tilde{X} be a continuous vector field on \boldsymbol{R}^{2} such that

$$
\tilde{\pi}_{*}(\tilde{X})=X .
$$

Furthermore let $\bar{\alpha}$ and $\bar{\beta}$ denote the homology classes represented by the images of the x-axis and the y-axis by $\tilde{\pi}$ respectively.

Let z_{0} be a point of T^{2} such that the ω-limit set of z_{0} is not a singular point, and let $\hat{z}_{0} \in R^{2}$ be a lift of z_{0}, i.e. $\tilde{\pi}\left(\hat{z}_{0}\right)=z_{0}$. Let $\tilde{\varphi}\left(t, \hat{z}_{0}\right)$ denote the orbit of \tilde{X} through \hat{z}_{0} and let $\tilde{\varphi}\left(t, \hat{z}_{0}\right)=(\bar{x}(t), \bar{y}(t))$ be the coordinates with respect to the x-axis and the y-axis of \boldsymbol{R}^{2}. Then the following lemma holds:

Lemma 7.2. $\quad \lim _{t \rightarrow \infty}(\bar{x}(t): \bar{y}(t))=\hat{a}: \hat{b}$,
where \hat{a} and \hat{b} are real numbers and the pair (\hat{a}, \hat{b}) is uniquely determined up to positive multiples, that is to say, an equivalence class of the pairs of real numbers such that at least one of them is non-zero by the relation $(\hat{a}, \hat{b}) \sim(\lambda \hat{a}, \lambda \hat{b})$ for $\lambda>0$ is uniquely determined.

Proof. (I) First suppose that the orbit through z_{0} is not closed and the ω-limit set of z_{0} is a closed orbit, say $C^{(\omega)}$. Let p_{0} be a point of $C^{(\omega)}$ and let l_{0} denote a local section through p_{0}. We denote the set of intersection points of the positive semi-orbit $\left\{\varphi\left(t, z_{0}\right) ; t \geqq 0\right\}$ with l_{0} by v_{i} ($i=0,1,2, \cdots$), where

$$
\begin{aligned}
& v_{i}=\varphi\left(t_{i}, z_{0}\right), \quad i=0,1,2, \cdots, \\
& 0 \leqq t_{0}<t_{1}<t_{2}<\cdots
\end{aligned}
$$

Let $C^{(i)}$ be a simple closed C^{0} curve consisting of $\left\{\varphi\left(t, z_{0}\right) ; t_{i} \leqq t \leqq t_{i+1}\right\}$ and the subset of l_{0} bounded by v_{i} and v_{i+1}. Then, since the singular point of X is at most one, the homology class $\left[C^{(i)}\right]$ represented by $C^{(i)}$ is non-zero and, for sufficiently large $i,\left[C^{(i)}\right]=\left[C^{(\omega)}\right]$, where $\left[C^{(\omega)}\right]$ is the homology class represented by the ω-limit set $C^{(\omega)}$ of z_{0}. This implies that at least one of $\lim _{t \rightarrow \infty} \bar{x}(t)$ and $\lim _{t \rightarrow \infty} \bar{y}(t)$ is $\pm \infty$. We let $\left[C^{(\omega)}\right]=$ $a^{\prime} \bar{\alpha}+b^{\prime} \bar{\beta}$. Then, for a constant r, the inequalities

$$
\begin{aligned}
& a^{\prime} j-r \leqq \bar{x}\left(t_{i+j}\right)-\bar{x}\left(t_{i}\right) \leqq a^{\prime} j+r \\
& b^{\prime} j-r \leqq \bar{y}\left(t_{i+j}\right)-\bar{y}\left(t_{i}\right) \leqq b^{\prime} j+r
\end{aligned}
$$

hold for $j=0,1,2, \cdots$ and sufficiently large i. Thus we have

$$
\lim _{t \rightarrow \infty}(\bar{x}(t): \bar{y}(t))=a^{\prime}: b^{\prime}
$$

(II) In case the orbit through z_{0} is closed, the lemma is obvious.
(III) In case the ω-limit set of z_{0} is a union of countable orbits whose α-limit sets and ω-limit sets are the singular point, this lemma is proved by a similar argument as in (I), since only a finite number of the closures of orbits contained in the ω-limit set of z_{0} are not homologous to zero.
(IV) Let C_{0} be as above and suppose that $\left\{\varphi\left(t, z_{0}\right) ; t \geqq 0\right\}$ intersects C_{0} at infinite points $u_{0}, u_{1}, u_{2}, \cdots$, where

$$
\begin{aligned}
& u_{i}=\varphi\left(t_{i}^{\prime}, z_{0}\right) \quad i=0,1,2, \cdots, \\
& 0 \leqq t_{0}^{\prime}<t_{1}^{\prime}<t_{2}^{\prime}<\cdots
\end{aligned}
$$

Let $\left[C_{0}\right]=c^{\prime} \bar{\alpha}+d^{\prime} \bar{\beta}$ and let $c^{\prime} \bar{\alpha}+d^{\prime} \bar{\beta}$ and $e^{\prime} \bar{\alpha}+f^{\prime} \bar{\beta}$ be generators of $H_{1}\left(T^{2}\right)$. We take a C^{r} curve \widetilde{C}_{0} in R^{2} which is a lift of C_{0}, i.e. $\tilde{\pi}\left(\widetilde{C}_{0}\right)=C_{0}$, and $\tilde{\varphi}\left(t_{0}^{\prime}, \hat{z}_{0}\right) \in \tilde{C}_{0}$. Let

$$
\widetilde{C}_{i}=\left\{\left(x+e^{\prime} i, y+f^{\prime} i\right) ;(x, y) \in \widetilde{C}_{0}\right\} \quad(i= \pm 1, \pm 2, \cdots)
$$

then \widetilde{C}_{i} is a lift of C_{0}. We may suppose

$$
\tilde{\varphi}\left(t_{i}^{\prime}, \hat{z}_{0}\right) \in \tilde{C}_{i}
$$

First we assume that $\tilde{C}_{i}(i=0, \pm 1, \pm 2, \cdots)$ are parallel lines in \boldsymbol{R}^{2}. Let $\tilde{u}_{i}=\tilde{\varphi}\left(t_{i}^{\prime}, \hat{z}_{0}\right)(i=0,1,2, \cdots)$ and let \tilde{u}_{i}^{\prime} and $\tilde{u}_{i}^{\prime \prime}$ be two points of \tilde{C}_{i} such that $\tilde{\pi}\left(\tilde{u}_{i}^{\prime}\right)=\tilde{\pi}\left(\tilde{u}_{i}^{\prime \prime}\right)=\tilde{\pi}\left(\tilde{u}_{0}\right),\left|\tilde{u}_{i}^{\prime}-\tilde{u}_{i}^{\prime \prime}\right|=\sqrt{\left(c^{\prime}\right)^{2}+\left(d^{\prime}\right)^{2}}$ and that \tilde{u}_{i} lies between \tilde{u}_{i}^{\prime} and $\tilde{u}_{i}^{\prime \prime}$ for $i=1,2,3,4, \cdots \quad$ (Fig. 17).

Let l_{i}^{\prime} and $l_{i}^{\prime \prime}$ denote half lines starting from \tilde{u}_{0} and through \tilde{u}_{i}^{\prime} and $\tilde{u}_{i}^{\prime \prime}$ respectively. Let us consider curves

$$
\begin{aligned}
F_{i} & =\left\{\tilde{\varphi}\left(t, \hat{z}_{0}\right) ; t_{0}^{\prime} \leqq t \leqq t_{i}^{\prime}\right\}=\left\{\tilde{\varphi}\left(t, \tilde{u}_{0}\right) ; 0 \leqq t \leqq t_{i}^{\prime}-t_{0}^{\prime}\right\} \\
F_{i}^{\prime} & =\left\{\tilde{\varphi}\left(t, \tilde{u}_{i}^{\prime}\right) ; 0 \leqq t \leqq t_{i}^{\prime}-t_{0}^{\prime}\right\} \\
F_{i}^{\prime \prime} & =\left\{\tilde{\varphi}\left(t, \tilde{u}_{i}^{\prime \prime}\right) ; 0 \leqq t \leqq t_{i}^{\prime}-t_{0}^{\prime}\right\} .
\end{aligned}
$$

F_{i}^{\prime} and $F_{i}^{\prime \prime}$ are parallel displacements of F_{i}, and it follows from the definition of \tilde{u}_{i}^{\prime} and $\tilde{u}_{i}^{\prime \prime}$ that $\left\{\tilde{\varphi}\left(t, \hat{z}_{0}\right) ; t_{i}^{\prime} \leqq t \leqq t_{2 i}^{\prime}\right\}$ lies between F_{i}^{\prime} and $F_{i}^{\prime \prime}$. It is obvious that $\tilde{\varphi}\left(t_{i}^{\prime}-t_{0}^{\prime}, \tilde{u}_{i}^{\prime}\right)$ and $\tilde{\varphi}\left(t_{i}^{\prime}-t_{0}^{\prime}, \tilde{u}_{i}^{\prime \prime}\right)$ lie in the domain between l_{i}^{\prime} and $l_{i}^{\prime \prime}$. Thus $\tilde{u}_{2 i}=\tilde{\varphi}\left(t_{2 i}^{\prime}, \hat{z}_{0}\right)$ lies in this domain. Therefore, $\tilde{\varphi}\left(t_{m i}^{\prime}, \hat{z}_{0}\right)$ $(m=1,2,3, \cdots)$ lie in the domain between l_{i}^{\prime} and $l_{i}^{\prime \prime}$ for $i=1,2,3, \cdots$. This implies that $\lim _{t \rightarrow \infty}(\bar{x}(t): \bar{y}(t))$ exists.

Next we consider the general case. As is well known, there exists a C^{r} diffeomorphism

Fig. 17.

$$
g: T^{2} \rightarrow T^{2}
$$

isotopic to the identity such that $g\left(C_{0}\right)$ is the image of a line of \boldsymbol{R}^{2} by $\tilde{\pi}$. Let $\tilde{g}: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ be a lift of g. Then, by the result above, $\lim _{t \rightarrow \infty}(\bar{x}(t) ; \bar{y}(t))$ $=\lim _{t \rightarrow \infty}(\tilde{g}(\bar{x}(t)): \tilde{g}(\bar{y}(t)))$ exists. Thus this lemma is proved.

For a positive semi-orbit $\left\{\varphi\left(t, z_{0}\right) ; t \geqq 0\right\}$ through z_{0} whose ω-limit set is not the singular point, the homology class $\hat{a} \bar{\alpha}+\hat{b} \bar{\beta}$ of $H_{1}\left(T^{2} ; R\right)$ is called the asymptotic homology class of it and is denoted by $A^{+}\left(z_{0}\right)$, where \hat{a}, \hat{b} are real numbers in Lemma 7.2. Asymptotic homology classes are determined up to positive multiples. As is easily verified, $A^{+}\left(z_{0}\right)$ is independent of the choice of z_{0}. For a closed orbit, the asymptotic homology class is one represented by the closed orbit. The asymptotic homology classes can be similarly defined for negative semi-orbits $\left\{\varphi\left(t, z_{0}\right) ; t \leqq 0\right\}$ of z_{0} whose α-limit set is not the singular point, which is denoted by $A^{-}\left(z_{0}\right)$.

The above definition is closely related to the rotation number in Nishimori [3, Section 10]. For definition and properties of asymptotic homology classes (cycles) in more general setting and references of them, see Yano [7].

§ 8. Proof of Theorem C

In this section we let E_{1} be an orientable 3-dimensional C^{∞} mainfold, $\pi: E_{1} \rightarrow S^{1}$ a C^{∞} fibering over S^{1} with the one punctured torus $\Sigma_{1}(1)=$ T^{2} - Int D^{2} as fibre and \mathscr{F}_{π} a codimension one C^{∞} foliation of E_{1} as in Sections 4 and 6. The fibering π is constructed by an orientation preserving C^{∞} diffeomorphism $\phi: T^{2}-\operatorname{Int} D^{2} \rightarrow T^{2}-\operatorname{Int} D^{2}$ and π is determined
uniquely by the diffeomorphism up to isotopy. Furthermore, as is well known, the isotopy class of an orientation preserving diffeomorphism ϕ is determined by the homomorphism

$$
\phi_{*}: H_{1}\left(T^{2}-\text { Int } D^{2}\right) \rightarrow H_{1}\left(T^{2}-\text { Int } D^{2}\right)
$$

induced by ϕ in this case. Let $\{\xi, \mu\}$ be a set of generators of $H_{1}\left(T^{2}-\right.$ Int D^{2}). Then ϕ_{*} is expressed by a 2×2 matrix $\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right) \in S L(2 ; Z)$.

Lemma 8.1. Let $\tau\left(\mathscr{F}_{\pi}\right)$ be the tangent 2 -plane bundle of \mathscr{F}_{π}. Then $\tau\left(\mathscr{F}_{\pi}\right)$ is trivial and, thus, \mathscr{F}_{π} admits transverse 2-plane fields.

Proof. Let us consider a C^{∞} bundle $\pi_{0}: E_{0} \rightarrow S^{1}$ over S^{1} with an orientable closed 3-dimensional C^{∞} manifold E_{0} as total space and the torus as fibre. We may assume that the monodromy map $\phi: T^{2} \rightarrow T^{2}$ associated to this bundle is linear with respect to the universal covering space of T^{2}. This implies that a non-singular linear tangent vector field given on a fibre can be extended to a non-singular vector field tangent to fibres of the bundle. Therefore the 2-plane bundle τ^{2} over E_{0} tangent to fibres is trivial.

Suppose that $E_{0} \supset E_{1}$ and $\pi_{0} \mid E_{1}=\pi$. Then, for a collar $c\left(T^{2} \times I\right)$ of ∂E_{1} in E_{1}, two 2-plane bundles $\tau^{2} \mid\left(E_{1}-\operatorname{Int} c\left(T^{2} \times I\right)\right)$ and $\tau\left(\mathscr{F}_{\pi}\right) \mid\left(E_{1}-\right.$ Int $\left.c\left(T^{2} \times I\right)\right)$ are isomorphic. Since $E_{1}-\operatorname{Int} c\left(T^{2} \times I\right)$ is a deformation retract of E_{1} and $\tau^{2} \mid\left(E_{1}-\operatorname{Int} c\left(T^{2} \times I\right)\right)$ is trivial, $\tau\left(\mathscr{F}_{\pi}\right)$ is trivial. Thus this lemma is proved.

Suppose that \mathscr{F}^{\prime} is a transversely orientable codimension one C^{r} foliation of E_{1} transverse to \mathscr{F}_{π}, where $r \geqq 2$. We let $\overline{\mathscr{F}}, X, a, p, q, \Phi_{\theta^{\prime}, \theta}$, $\hat{X}, \hat{E}, \hat{\Phi}_{\theta^{\prime}, \theta}, \hat{\Phi}_{\theta}, D_{-}$and \tilde{X}_{∞} etc. be as in Section 6.

Lemma 8.2. $\quad|a|=1, \quad p-q=-2$.
Proof. By Propositions 4.3 and 5.1, we have

$$
|a|(p-q)=-2
$$

Since \mathscr{F}^{\prime} is transversely orientable, it follows by the same argument used in the proof of Proposition 3.6 that $p-q$ is an even integer. Thus this lemma is proved.

Let $\hat{L}_{1}, \hat{L}_{2}, \cdots, \hat{L}_{n}$ be closed orbits of the C^{r-1} vector field $X \mid \partial E_{1}$ on ∂E_{1} such that
(i) \hat{L}_{j} is a connected component of $\partial K_{i}^{(\pm)}$for some i,
(ii) $\quad \hat{L}_{j}\left(j=1,2, \cdots, n^{\prime}\right)\left(\right.$ resp. $\left.\left(j=n^{\prime}+1, n^{\prime}+2, \cdots, n\right)\right)$ are towards the minus (resp. plus) direction of S^{1}.

Let $z^{(j)}$ be a point of $\tilde{\pi}_{0}^{-1}\left(\hat{L}_{j}\right) \subset D_{-}$situated near $p_{\infty}(j=1,2, \cdots, n)$. Let us consider the continuous vector field $\hat{X} \mid\left(\Sigma_{1}\right)_{1}$ with one singular point $p_{\infty}(1)$ as in Section 6 and orbits $\hat{\varphi}\left(t, \hat{\Phi}_{1}\left(z^{(j)}\right)\right)$ of $\hat{X} \mid\left(\Sigma_{1}\right)_{1}$ through $\hat{\Phi}_{1}\left(z^{(j)}\right)$ $\in\left(\Sigma_{1}\right)_{1}$ for $j=1,2, \cdots, n$. It is obvious that the ω-limit set (resp. α-limit set) of $\hat{\varphi}\left(t, \hat{\Phi}_{0}\left(z^{(j)}\right)\right)$ is $\left\{p_{\infty}(1)\right\}$ for $j=1,2, \cdots, n^{\prime}\left(\right.$ resp. $j=n^{\prime}+1, n^{\prime}+2$, \cdots, n).

Lemma 8.3. One of the following (a), (b) holds for $j=1,2, \cdots, n$:
(a) There exists at least one orbit $\hat{\varphi}\left(t, \hat{\Phi}_{1}\left(z^{(j)}\right)\right)$ such that the α-limit set and the ω-limit set of it are both $\left\{p_{\infty}(1)\right\}$ and that the homology class $\left[\hat{C}_{j}\right]$ represented by a simple closed curve \hat{C}_{j} formed by the orbit $\bigcup_{-\infty<t<\infty} \hat{\varphi}\left(t, \hat{\Phi}_{1}\left(z^{(j)}\right)\right)$ and $p_{\infty}(1)$ is not zero.
(b) There exists at least one orbit $\hat{\varphi}\left(t, \hat{\Phi}_{1}\left(z^{(j)}\right)\right)$ such that one of the α-limit set and the ω-limit set is not $\left\{p_{\infty}(1)\right\}$.

Proof. Assume that the case (a) does not occur. Then, for any orbit $\hat{\varphi}\left(t, \hat{\Phi}_{1}\left(z^{(j)}\right)\right)$ whose α-limit set and ω-limit set are $\left\{p_{\infty}(1)\right\}$, the simple closed curve \hat{C}_{j} consisting of the orbit and $p_{\infty}(1)$ is homologous to zero. Thus \hat{C}_{j} bounds a 2 -disk in $\left(\Sigma_{1}\right)_{1}$, say \hat{D}_{j}. Let $\hat{K}_{i}^{(\pm)}=\hat{\Phi}_{1}\left(\widetilde{K}_{i}^{(\pm)}\right)$. Let $N_{j}^{(+)}$ (resp. $N_{j}^{(-)}$) be the subset of $\{1,2, \cdots, p\}$ (resp. $\{1,2, \cdots, q\}$) such that $\hat{K}_{i}^{(+)} \subset \hat{D}_{j}\left(\right.$ resp. $\hat{K}_{i}^{(-)} \subset \hat{D}_{j}$) if and only if $i \in N_{j}^{(+)}\left(\right.$resp. $\left.i \in N_{j}^{(-)}\right)$. Let $p^{(j)}$ (resp. $q^{(j)}$) denote the number of the elements of $N_{j}^{(+)}$(resp. $N_{j}^{(-)}$). Then, by considering the vector field $\hat{X} \mid \hat{D}_{j}$, we have

$$
p^{(j)}-q^{(j)}=1
$$

Now let $\hat{C}_{j_{1}}, \hat{C}_{j_{2}}, \cdots, \hat{C}_{j_{m}}$ be the set of the simple closed curves with the property as above and let $\hat{D}_{j_{1}}, \hat{D}_{j_{2}}, \cdots, \hat{D}_{j_{m}}$ be 2 -disks in $\left(\Sigma_{1}\right)_{1}$ such that $\partial \hat{D}_{j_{i}}=\hat{C}_{j_{i}}(i=1,2, \cdots, m)$ as above. Here we take $\hat{C}_{j_{1}}, \hat{C}_{j_{2}}, \cdots$, $\hat{C}_{j_{m}}$ so that $\hat{D}_{j_{i}} \cap \hat{D}_{j_{i}}=\left\{p_{\infty}(1)\right\}$ if $i \neq i^{\prime}$. Since $p-q=-2$ by Lemma 8.2 and $p^{\left(j_{i}\right)}-q^{\left(j_{i}\right)}=1$ for $i=1,2, \cdots, m$, there exist at least $m+2$ of $\hat{K}_{i}^{(-)}$ $(i=1,2, \cdots, q)$ such that $\hat{K}_{i}^{(-)}$is not contained in $\bigcup_{i=1}^{m} \hat{D}_{j_{i}}$. As is easily verified, it follows from this consideration that one of $\hat{\Phi}_{1}\left(z^{(j)}\right)(j=1,2$, \cdots, n), say $\hat{\Phi}_{1}\left(z^{(h)}\right)$, is not contained in $\bigcup_{i=1}^{m} \hat{D}_{j_{i}}$. Thus, by the assumption, one of the α-limit set and the ω-limit set of $\hat{\Phi}_{1}\left(z^{(h)}\right)$ is not $\left\{p_{\infty}(1)\right\}$. Thus this lemma is proved.

Now we prove the following theorem which is the "only if" part of Theorem C in Section 0, making use of asymptotic homology classes of orbits defined in Section 7.

Theorem 8.4. Let E_{1}, \mathscr{F}_{π} and ϕ_{*} be as above. If there exists a codimension one C^{r} foliation \mathscr{F}^{\prime} of $E_{1}(r \geqq 2)$ transverse to \mathscr{F}_{π}, then the trace of ϕ_{*} is $\geqq 2$.

Proof. First suppose that the case (a) of Lemma 8.3 occurs. Then, by Proposition 6.4 and Lemma 8.2, the orbit $\hat{\varphi}\left(t, \hat{\Phi}_{0}\left(z^{(j)}\right)\right)$ of $\hat{X} \mid\left(\Sigma_{1}\right)_{0}$ is mapped onto the orbit $\hat{\varphi}\left(t, \hat{\Phi}_{1}\left(z^{(j)}\right)\right)$ of $\hat{X} \mid\left(\Sigma_{1}\right)_{1}$ by $\hat{\phi}$. Therefore the homology class $\left[\hat{C}^{(j)}\right]=a \xi+b \mu(a, b \in Z)$ is invariant under ϕ_{*} :

$$
\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)\binom{a}{b}=\binom{a}{b} .
$$

This shows that $\operatorname{det}\left(\begin{array}{ll}c_{11}-1 & c_{12} \\ c_{21} & c_{22}-1\end{array}\right)=0$. Thus we have

$$
\text { Trace } \phi_{*}=c_{11}+c_{22}=2
$$

Next suppose that the case (b) of Lemma 8.3 occurs. Then, by Proposition 6.4 and Lemma 8.2, the orbit $\hat{\varphi}\left(t, \hat{\Phi}_{0}\left(z^{(j)}\right)\right)$ of $\hat{X} \mid\left(\Sigma_{1}\right)_{0}$ is mapped onto the orbit $\hat{\varphi}\left(t, \hat{\Phi}_{1}\left(z^{(j)}\right)\right)$ of $\hat{X} \mid\left(\Sigma_{1}\right)_{1}$ by $\hat{\phi}$. This implies that the ω-limit set and the α-limit set of $\hat{\varphi}\left(t, \hat{\Phi}_{0}\left(z^{(j)}\right)\right)$ are mapped onto the ω-limit set and the α-limit set of $\hat{\varphi}\left(t, \hat{\Phi}_{1}\left(z^{(j)}\right)\right)$ by $\hat{\phi}$ respectively. We may assume that the ω-limit set of $z^{(j)}$ is not $\left\{p_{\infty}(1)\right\}$.

In case the ω-limit set of $\hat{\varphi}\left(t, \hat{\Phi}_{0}\left(z^{(j)}\right)\right)$ is a closed orbit, say C_{ω}, the homology class represented by C_{ω} is not homologous to zero by the reason that C_{ω} cannot bound a 2 -disk in $\left(\Sigma_{1}\right)_{1}$. Since the homology class [C_{ω}] is invariant under ϕ_{*}, we have Trace $\phi_{*}=2$ as above.

Even in case the ω limit set of $\hat{\varphi}\left(t, \hat{\Phi}_{0}\left(\boldsymbol{z}^{(j)}\right)\right)$ is not a closed orbit, the asymptotic homology class $A^{+}\left(z^{(j)}\right)$ of $\hat{\Phi}_{0}\left(z^{(j)}\right)$ can be defined as in Section 7.

Since $A^{+}\left(z^{(j)}\right)=\hat{a} \xi+\hat{b} \mu(\hat{a}, \hat{b} \in \boldsymbol{R})$ is invariant under ϕ_{*} up to a positive multiple $\lambda>0$, we have

$$
\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)\binom{\hat{a}}{\hat{b}}=\lambda\binom{\hat{a}}{\hat{b}} .
$$

It follows from $\operatorname{det}\left(\begin{array}{ll}c_{11}-\lambda & c_{12} \\ c_{21} & c_{22}-\lambda\end{array}\right)=0$ that

$$
\text { Trace } \phi_{*}=c_{11}+c_{22} \geqq 2
$$

Thus this theorem is proved.
The "if" part of Theorem C can be proved as follows. For details, see Nishimori [3, Section 11]. Let \hat{E}_{1} be a torus bundle over S^{1} such that the trace of $\phi_{*}: H_{1}\left(T^{2}\right) \rightarrow H_{1}\left(T^{2}\right)$ is $\geqq 2$. Let λ_{1} and λ_{2} be the real proper values of ϕ_{*}. Then we can define a C^{∞} vector field \hat{X} on \hat{E}_{1} having the following properties:
(i) The vectors of \hat{X} are tangent to each fibre of $\hat{\pi}: \hat{E} \rightarrow S^{1}$.
(ii) The orbits of the restriction of \hat{X} to each fibre $\left(\Sigma_{1}\right)_{\theta}=\hat{\pi}^{-1}(\theta)$ consist of the images of lines of \boldsymbol{R}^{2} with the direction of the eigenvector of λ_{1} by the projection $R^{2} \rightarrow T^{2}$ and one singular point.

As we constructed the vector field \hat{X} on \hat{E}_{1} from the vector field X on E_{1}, we can conversely construct a C^{∞} vector field X on E_{1} from \hat{X} above. Then the vector field X on E_{1} thus obtained is transversely integrable.

Remark 8.5. If the foliation \mathscr{F}^{\prime} of Theorem 8.4 does not contain any non-proper leaf, then, since the orbit $\hat{\varphi}\left(t, \hat{\Phi}_{0}\left(z^{(j)}\right)\right)$ in the proof of Theorem 8.4 is proper, we have Trace $\phi_{*}=2$.
§ 9. Cutting down of ends of noncompact leaves of $\mathscr{F}_{\pi}^{\varepsilon}$ and bifurcation of leaves of foliations of punctured surfaces

Let E and $\pi: E \rightarrow S^{1}$ be an orientable 3-dimensional C^{∞} manifold and a C^{∞} fibering over the circle with fibre $\Sigma_{g}(m)$ and let $\mathscr{F}_{\pi}^{\varepsilon}$ be a C^{∞} foliation of E as in Section 4. For simplicity we assume that the C^{∞} diffeomorphism $\phi: \Sigma_{g}(m) \rightarrow \Sigma_{g}(m)$ associated to π as in Section 4, maps each connected component of $\partial \Sigma_{g}(m)$ onto itself. Thus ∂E consists of m copies of the torus $T_{1}^{2}, T_{2}^{2}, \cdots, T_{m}^{2}$.

Let \mathscr{F}^{\prime} be a transversely orientable codimension one C^{r} foliation of E transverse to $\mathscr{F}_{\pi}^{e}(r \geqq 2)$ and let $\overline{\mathscr{F}}=\mathscr{F}_{\pi}^{e} \cap \mathscr{F}$ as in Section 5. We assume that each codimension one C^{r} foliation $\overline{\mathscr{F}} \mid T_{k}^{2}$ of T_{k}^{2} is normalized for $k=1,2, \cdots, m$, by taking $(\hat{g})_{*} \mathscr{F}^{\prime}$ instead of \mathscr{F}^{\prime} making use of \hat{g} of Proposition 5.3, if necessary.

Let $c^{(k)}: T^{2} \times I \rightarrow E, c^{(k)}\left(T^{2} \times\{0\}\right) \subset \partial E$ be a sufficiently thin collar of T_{k}^{2} in E such that $\pi\left(c^{(k)}(\{y\} \times I)\right)=\pi\left(c^{(k)}(y, 0)\right)\left(y \in T^{2}\right)$ for $k=1,2, \cdots, m$ and let

$$
\begin{aligned}
& A=E-\bigcup_{k=1}^{m} c^{(k)}\left(T^{2} \times[0,1)\right), \\
& T_{k}^{\prime}=c^{(k)}\left(T^{2} \times\{1\}\right) \quad k=1,2, \cdots, m, \\
& \partial A=\bigcup_{k=1}^{m} T_{k}^{\prime} .
\end{aligned}
$$

For a noncompact leaf L_{θ} of $\mathscr{F}_{\pi}^{\varepsilon}\left(\theta \in S^{1}\right)$, we denote

$$
A_{\theta}=A \cap L_{\theta} \quad\left(\theta \in S^{1}\right) .
$$

Then we have $A=\bigcup_{\theta \in S^{1}} A_{\theta}$ and A_{θ} is obviously diffeomorphic to $\Sigma_{g}(m)$, and furthermore, we have a C^{∞} fibering $\bar{\pi}: A \rightarrow S^{1}$ with $\Sigma_{g}(m)$ as fibre by
defining $\bar{\pi}\left(A_{\theta}\right)=\theta$. Denote $S_{k, \theta}=A_{\theta} \cap T_{k}^{\prime}$. Then we have

$$
T_{k}^{\prime}=\bigcup_{\theta \in S^{1}} S_{k, \theta} \quad k=1,2, \cdots, m .
$$

Let $\overline{\mathscr{F}}_{k}=\left\{T_{k}^{\prime} \cap L^{\prime} ; L^{\prime} \in \mathscr{F}^{\prime}\right\}$. Since leaves of \mathscr{F} are transverse to $T_{k}^{2}, \overline{\mathscr{F}}_{k}$ is a codimension one C^{r} foliation of $T_{k}^{\prime}(k=1,2, \cdots, m)$.

Let V be the non-singular C^{r-1} vector field on E as in (5.2). Then the orbits of V give a C^{r} diffeomorphism $T_{k}^{2} \rightarrow T_{k}^{\prime}$ which is denoted by μ_{k} for $k=1,2, \cdots, m$. The C^{r} diffeomorphism μ_{k} is obviously an isomorphism between $\overline{\mathscr{F}} \mid T_{k}^{2}$ and $\overline{\mathscr{F}}_{k}$.

Now we assume that each $\overline{\mathscr{F}} \mid T_{k}^{2}$ has at least one compact leaf, say $L_{\text {comp }}^{(k)}$, such that

$$
\left[L_{\text {comp }}^{(k)}\right]=a_{k} \alpha_{k}+b_{k} \beta_{k}, \quad a_{k} \neq 0
$$

for $k=1,2, \cdots, m$, where $\left[L_{\text {comp }}^{(k)}\right.$] is the homology class of $H_{1}\left(T_{k}^{2}\right)$ represented by $L_{\text {comp }}^{(k)}$ and α_{k} and β_{k} are generators of $H_{1}\left(T_{k}^{2}\right)$ such that $\pi_{*}\left(\beta_{k}\right)$ $=0$. Then $\mathscr{F} \mid T_{k}^{2}$ has plus Reeb components $\overline{\mathscr{F}} \mid K_{k, i}^{(+)}\left(i=1,2, \cdots, p_{k}\right)$ and minus Reeb components $\overline{\mathscr{F}} \mid K_{k, i}^{(-)}\left(i=1,2, \cdots, q_{k}\right)$.

Since $\overline{\mathscr{F}} \mid T_{k}^{2}$ is normalized, $\overline{\mathscr{F}}_{k}$ has the following properties (Fig. 18):
(i) $\overline{\mathscr{F}}_{k}$ has plus Reeb components $\overline{\mathscr{F}}_{k} \mid \bar{K}_{k, i}^{(+)}\left(i=1,2, \cdots, p_{k}\right)$ and minus Reeb components $\overline{\mathscr{F}}_{k} \mid \bar{K}_{k, i}^{(-)}\left(i=1,2, \cdots, q_{k}\right)$, where $\bar{K}_{k, i}^{(+)}=\mu_{k}\left(K_{k, i}^{(+)}\right)$ and $\bar{K}_{k, i}^{(-)}=\mu_{k}\left(K_{k, i}^{(-)}\right)$.
(ii) For each θ, the simple closed curve $S_{k, \theta}$ is transverse to leaves of $\overline{\mathscr{F}}_{k}$ except $\left|a_{k}\right|\left(p_{k}+q_{k}\right)$ points

$$
\begin{aligned}
& \bar{z}_{k, i, j, \theta}\left(i=1,2, \cdots, p_{k} ; j=1,2, \cdots,\left|a_{k}\right|\right), \\
& \bar{z}_{k, i, j, \theta}^{\prime}\left(i=1,2, \cdots, q_{k} ; j=1,2, \cdots,\left|a_{k}\right|\right),
\end{aligned}
$$

such that

$$
\begin{array}{ll}
\bar{z}_{k, i, j, \theta} \in \operatorname{Int} \bar{K}_{k, i}^{(+)} & \left(j=1,2, \cdots,\left|a_{k}\right|\right), \\
\bar{z}_{k, i, j, \theta}^{\prime} \in \operatorname{Int} \bar{K}_{k, i}^{(-)} & \left(j=1,2, \cdots,\left|a_{k}\right|\right) .
\end{array}
$$

(iii) A leaf of $\overline{\mathscr{F}}_{k}$ is tangent to $S_{k, \theta}$ at $\bar{z}_{k, i, j, \theta}\left(\right.$ resp. $\left.\bar{z}_{k, i, j, \theta}^{\prime}\right)$ from the minus side (resp. plus side) of $S_{k, \theta}$ with respect to the orientation of S^{1}.

Let

$$
Q_{k, i}=\bigcup_{\substack{\theta=, 1^{1} \\ j=1,2, \cdots,\left|a_{k}\right|}} \bar{z}_{k, i, j, \theta}, \quad Q_{k, i}^{\prime}=\bigcup_{\substack{\theta \in S^{1}, j=1,2, \cdots,\left|a_{k}\right|}} \bar{z}_{k, i, j, \theta}^{\prime}
$$

Then $Q_{k, i}$ and $Q_{k, i}^{\prime}$ are simple closed C^{r} curves in Int $\bar{K}_{k, i}^{(+)}$and Int $\bar{K}_{k, i}^{(-)}$ respectively.

Fig. 18.

Let us consider the restriction $\overline{\mathscr{F}} \mid A_{\theta}$ of $\overline{\mathscr{F}}$ to A_{θ}. It is obvious that $\overline{\mathscr{F}} \mid A_{\theta}$ consists of C^{r} simple curves of A_{θ} and $\sum_{k=1}^{m}\left|a_{k}\right| p_{k}$ points $\bar{z}_{k, i, j, \theta}$ for k with $\varepsilon(k)=1$ and $\sum_{k=1}^{m}\left|a_{k}\right| q_{k}$ points $\bar{z}_{k, i, j, \theta}^{\prime}$ for k with $\varepsilon(k)=-1$ such that there exist two simple curves in $\overline{\mathscr{F}} \mid A_{\theta}$ having a common point $\bar{z}_{k, i, j, \theta}^{\prime}$ for each $\bar{z}_{k, i, j, \theta}^{\prime}$ with $\varepsilon(k)=1$ and $\bar{z}_{k, i, j, \theta}$ for each $\bar{z}_{k, i, j, \theta}$ with $\varepsilon(k)=-1$, where we understand that $\bar{L} \in \overline{\mathscr{F}} \mid A_{\theta}$ is simple if $\bar{L} \cap \operatorname{Int} A_{\theta}$ is connected (Fig. 19). Thus $\overline{\mathscr{F}} \mid\left(A_{\theta}-\bigcup_{k, i, j} \bar{z}_{k, i, j, \theta}-\bigcup_{k, i, j} \bar{z}_{k, i, j, \theta}^{\prime}\right)$ is a codimension one C^{r} foliation.

Fig. 19.

The simple curves of $\overline{\mathscr{F}} \mid A_{\theta}$ form a family of concentric half circles around $\bar{z}_{k, i, j, \theta}$ (resp. $\bar{z}_{k, i, j, \theta}^{\prime}$) if $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$), and the simple curves of $\mathscr{F} \mid A_{\theta}$ form an upper part of conforcal parabolas around $\bar{z}_{k, i, j, \theta}^{\prime}$ (resp. $\bar{z}_{k, i, j, \theta}$) if $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$) (Fig. 19).

In this sense, the point $\bar{z}_{k, i, j, \theta}$ (resp. $\bar{z}_{k, i, j, \theta}^{\prime}$) is said to be a plus singular point of $\overline{\mathscr{F}} \mid A_{\theta}$ if $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$) and the point $\bar{z}_{k, i, j, \theta}^{\prime}$ (resp. $\bar{z}_{k, i, j, \theta}$) is said to be a minus singular point of $\overline{\mathscr{F}} \mid A_{\theta}$ if $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$).

Now let W be a C^{r} vector field on A satisfying the following conditions (see [6, Section 3]). The existence of such W is obvious.
(9.1) (i) W is tangent to leaves of \mathscr{F}^{\prime}.
(ii) Let \bar{Q} (resp. $\left.\bar{Q}^{\prime}\right)$ denote the union of $Q_{k, i}(k=1,2, \cdots, m$, $\left.i=1,2, \cdots, p_{k}\right)$ (resp. $Q_{k, i}^{\prime}\left(k=1,2, \cdots, m ; i=1,2, \cdots, q_{k}\right)$). Then

$$
\begin{array}{ll}
W(z)=0 & \text { if } z \in \bar{Q} \cup \bar{Q}^{\prime} \\
W(z) \neq 0 & \text { if } z \in A-\bar{Q}-\bar{Q}^{\prime} .
\end{array}
$$

That is, the singular set of W is $\bar{Q} \cup \bar{Q}^{\prime}$.
(iii) $W \mid \partial A$ is tangent to ∂A.
(iv) For $z \in A_{\theta}-\left(A_{\theta} \cap\left(\bar{Q} \cup \bar{Q}^{\prime}\right)\right), W(z)$ is transverse to A_{θ} and directs to the positive direction of S^{1}.
(v) The vector field W near a singular point $z \in \bar{Q} \cup \bar{Q}^{\prime}$ is as follows (Fig. 20):
(a) In case $z \in Q_{k, i}$ with $\varepsilon(k)=1$, the closure of the union of orbits of W whose ω-limit sets are $\{z\}$ forms a half elliptic paraboloid with z as the maximal point in a neighborhood of z.
(b) In case $z \in Q_{k, i}^{\prime}$ with $\varepsilon(k)=1$, there exist exactly two orbits of W with $\{z\}$ as the α-limit set, and exactly one orbit of W with $\{z\}$ as the ω-limit set. They are contained in T_{k}^{\prime} and Int A near z respectively.
(c) In case $z \in Q_{k, i}$ with $\varepsilon(k)=-1$, there exist exactly two orbits of W with $\{z\}$ as the ω-limit set, and exactly one orbit of W with $\{z\}$ as the α-limit set. They are contained in T_{k}^{\prime} and $\operatorname{Int} A$ near z respectively.
(d) In case $z \in Q_{k, i}^{\prime}$ with $\varepsilon(k)=-1$, the closure of the union of orbits of W whose α-limit sets are $\{z\}$ forms a half elliptic paraboloid with z as the minimal point in a neighborhood of z.

A point z of $Q_{k, i}$ is said to be an attracting point (resp. a joining point) of W in case $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$), and a point z of $Q_{k, i}^{\prime}$ is said to be a branching point (resp. repelling point) of W in case $\varepsilon(k)=1$ (resp. $\varepsilon(k)=-1$).

Let $\bar{\varphi}(t, z)$ denote the orbit of W through $z \in A$. In the following we denote $A_{\theta, \mathrm{c}}=\bigcup_{\theta \leq \theta^{\prime}<\theta+\mathrm{s}} A_{\theta}$.

Fig. 20.
It follows from the conditions (iv), (v) of W that there exists a sufficiently small real number $\varepsilon>0$ such that there is no orbit of $W \mid A_{\theta, \varepsilon}$ whose α-limit set and ω-limit set belong both to $A_{\theta, \varepsilon}$ except singular points for any $\theta \in S^{1}$.

For a point z of A_{θ}, we define a subset $\bar{\varphi}[z]$ of $A_{\theta, \varepsilon}$ as follows (Fig. 21):
(i) In case z is not a singular point of W and $\bar{\varphi}(t, z)$ goes through $A_{\theta+\varepsilon}$ for $t \geqq 0$, we define

$$
\bar{\varphi}[z]=\left\{\bar{\varphi}(t, z) ; 0 \leqq t<t_{\varepsilon}\right\},
$$

where we denote by t_{ε} the least positive real number such that $\bar{\varphi}\left(t_{\varepsilon}, z\right) \in$ $A_{\theta+\varepsilon}$.
(ii) In case z is not a singular point of W and $\bar{\varphi}(t, z)$ approaches to an attracting point z_{ω} of W for $t>0$ satisfying $\{\overline{\bar{\varphi}(t, z) ; 0 \leqq t}\} \subset A_{\theta, \varepsilon}$, we define

$$
\bar{\varphi}[z]=\{\bar{\varphi}(t, z) ; 0 \leqq t<\infty\} \cup\left\{z_{\omega}\right\} .
$$

(iii) In case z is not a singular point of W and $\bar{\varphi}(t, z)$ approaches to a branching point or a joining point of W, say z_{ω}, for $t>0$ satisfying $\{\overline{\bar{\varphi}(t, z) ; 0 \leqq t}\} \subset A_{\theta, \varepsilon}$, we define

$$
\begin{aligned}
\bar{\varphi}[z]=\{ & \{\bar{\varphi}(t, z) ; 0 \leqq t<\infty\} \cup\left\{z_{\omega}\right\} \\
& \cup\left\{z^{\prime} ; \lim _{t \rightarrow-\infty} \bar{\varphi}\left(t, z^{\prime}\right)=z_{\omega}, \bigcup_{-\infty<t \leqq 0} \bar{\varphi}\left(t, z^{\prime}\right) \subset A_{\theta, \varepsilon}\right\} .
\end{aligned}
$$

(iv) In case z is an attracting point of W, we define

$$
\bar{\varphi}[z]=\{z\} .
$$

(v) In case z is a branching point or a joining point or a repelling point, we define

$$
\bar{\varphi}[z]=\{z\} \cup\left\{z^{\prime} ; \lim _{t \rightarrow-\infty} \bar{\varphi}\left(t, z^{\prime}\right)=z, \bigcup_{-\infty<t \leqq 0} \bar{\varphi}\left(t, z^{\prime}\right) \subset A_{\theta, \varepsilon}\right\} .
$$

Fig. 21.
Now, for a point z of A_{θ} and $0 \leqq s<\varepsilon$, we define a subset $\Psi_{\theta+s, \theta}(z)$ of $A_{\theta+s}$ (possibly $\Psi_{\theta+s, \theta}(z)=\phi$) by

$$
\Psi_{\theta+s, \theta}(z)=\bar{\varphi}[z] \cap A_{\theta+s} .
$$

Furthermore, for a subset G of A_{θ}, we define

$$
\Psi_{\theta+s, \theta}(G)=\bigcup_{z \in G} \Psi_{\theta+s, \theta}(z)
$$

Then $\Psi_{\theta+s, \theta}: \mathscr{P}\left(A_{\theta}\right) \rightarrow \mathscr{P}\left(A_{\theta+s}\right)$ is a correspondence, where $\mathscr{P}\left(A_{\theta}\right), \mathscr{P}\left(A_{\theta+s}\right)$ denote the families of subsets of A_{θ} and $A_{\theta+s}$ respectively.

Let θ, θ^{\prime} be real numbers such that $\theta \leqq \theta^{\prime}$. We take a sequence of real numbers $\theta_{0}, \theta_{1}, \theta_{2}, \cdots, \theta_{n}$ so that

$$
\begin{aligned}
& \theta=\theta_{0}<\theta_{1}<\theta_{2}<\cdots<\theta_{n}=\theta^{\prime}, \\
& \left|\theta_{i}-\theta_{i-1}\right|<\varepsilon \quad i=1,2, \cdots, n .
\end{aligned}
$$

Recall that θ, θ^{\prime} and θ_{i} represent points of S^{1} (see Section 1). We define a correspondence

$$
\Psi_{\theta^{\prime}, \theta}: \mathscr{P}\left(A_{\theta}\right) \rightarrow \mathscr{P}\left(A_{\theta^{\prime}}\right)
$$

by

$$
\Psi_{\theta^{\prime}, \theta}(G)=\Psi_{\theta^{\prime}, \theta_{n-1}} \circ \Psi_{\theta_{n-1}, \theta_{n-2}} \circ \cdots \circ \Psi_{\theta_{1}, \theta}(G) \quad\left(G \subset A_{\theta}\right)
$$

Then $\Psi_{\theta^{\prime}, \theta}$ is independent of the choice of a sequence as above.

Let us consider the image $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ of a simple curve \bar{L} in $\overline{\mathscr{F}} \mid A_{\theta}$ by $\Psi_{\theta^{\prime}, \theta}$ for $\theta<\theta^{\prime}$. The bifurcation phenomena occur for $\left\{\Psi_{\theta^{\prime}, \theta}(\bar{L}) ; \theta \leqq \theta^{\prime}\right\}$ when θ^{\prime} varies from θ to ∞. Although plural bifurcations of types (III), (IV) below may occur complexly at the same $A_{\theta_{1}}$, we restrict here our attention to the case where a bifurcation occurs at one point of $A_{\theta_{1}}$ for simplicity. (Fig. 22).
(9.2) (I) If $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ does not contain any singular point of W for $\theta \leqq \theta^{\prime} \leqq \theta_{2}$, then $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ is a simple curve of $\overline{\mathscr{F}} \mid A_{\theta^{\prime}}$ and $\Psi_{\theta^{\prime}, \theta}: \bar{L} \rightarrow \Psi_{\theta^{\prime}, \theta}(\bar{L})$ is a C^{r} diffeomorphism for $\theta \leqq \theta^{\prime} \leqq \theta_{2}$.
(II) If $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ does not contain any singular point of W for $\theta \leqq \theta^{\prime} \leqq \theta_{2}$ except exactly one attracting point $z_{1} \in \Psi_{\theta_{1}, \theta}(\bar{L})$ of W, then we have

$$
\Psi_{\theta_{1}, \theta}(\bar{L})=\left\{z_{1}\right\}, \quad \Psi_{\theta^{\prime}, \theta}(\bar{L})=\phi \text { for } \theta_{1}<\theta^{\prime}
$$

(III) If $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ does not contain any singular point of W for $\theta \leqq$ $\theta^{\prime} \leqq \theta_{2}$ except exactly one branching point $z_{1} \in \Psi_{\theta_{1}, \theta}(\bar{L})$ of W, then $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ consists of two simple curves $\bar{L}_{\theta^{\prime}}^{\prime}, \bar{L}_{\theta^{\prime}}^{\prime \prime}$ of $\overline{\mathscr{F}} \mid A_{\theta^{\prime}}$ for $\theta_{1}<\theta^{\prime} \leqq \theta_{2}$ such that $\bar{L}_{\theta^{\prime}}^{\prime}$ and $\bar{L}_{\theta^{\prime}}^{\prime \prime}$ have one of two points $\Psi_{\theta^{\prime}, \theta_{1}}\left(z_{1}\right)$ as one of end points respectively.
(IV) If $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ does not contain any singular point of W for $\theta \leqq$ $\theta^{\prime} \leqq \theta_{2}$ except exactly one joining point $z_{1} \in \Psi_{\theta_{1}, \theta}(\bar{L})$ of W, then there exist two simple curves $\bar{L}^{\prime}, \bar{L}^{\prime \prime}$ of $\overline{\mathscr{F}} \mid A_{\theta_{1}}$ such that $\bar{L}^{\prime} \cap \bar{L}^{\prime \prime}=\left\{z_{1}\right\}, \Psi_{\theta_{1}, \theta}(\bar{L})=\bar{L}^{\prime}$ and that the union of $\Psi_{\theta^{\prime}, \theta_{1}}\left(\bar{L}^{\prime}\right)$ and $\Psi_{\theta^{\prime}, \theta_{1}}\left(\bar{L}^{\prime \prime}\right)$ forms a simple curve of $\overline{\mathscr{F}} \mid A_{\theta^{\prime}}$ for $\theta_{1}<\theta^{\prime} \leqq \theta_{2}$.
(V) If $z_{1} \in A_{\theta}$ is a repelling point of W and $\Psi_{\theta^{\prime}, \theta}\left(z_{1}\right)$ does not contain any singular point of W for $\theta \leqq \theta^{\prime} \leqq \theta_{2}$ except z_{1}, then $\Psi_{\theta^{\prime}, \theta}\left(z_{1}\right)$ is a simple curve of $\overline{\mathscr{F}} \mid A_{\theta^{\prime}}$, for $\theta<\theta^{\prime} \leqq \theta_{2}$.

Remark 9.3. The bifurcation occurs when $\Phi_{\theta^{\prime}, \theta}(\bar{L})$ meets one of $Q_{k, i}$ and $Q_{k, i}^{\prime} . \quad$ And if $\Psi_{\theta_{0}^{\prime}, \theta}(\bar{L}) \cap Q_{k, i} \neq \phi\left(\operatorname{resp} . \Psi_{\theta_{0}^{\prime}, \theta}(\bar{L}) \cap Q_{k, i}^{\prime} \neq \phi\right)$, then $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ does not meet with $Q_{k, i}$ (resp. $Q_{k, i}^{\prime}$) for $0<\left|\theta^{\prime}-\theta_{0}^{\prime}\right|<\varepsilon^{\prime}$, where $\varepsilon^{\prime}>0$ is a sufficiently small real number. Thus the number of bifurcation occurs when θ^{\prime} varies from θ to $\theta^{\prime \prime}$ is finite, where $\theta^{\prime \prime}<\infty$.

The following proposition shows the bifurcation of simple curves in $\overline{\mathscr{F}} \mid A_{\theta}$ in case $\varepsilon(k)=1(k=1,2, \cdots, m)$.

Proposition 9.4. Let $\overline{\mathscr{F}} \mid A_{\theta}, \bar{K}_{k, i}^{(+)}, \bar{K}_{k, i}^{(-)}$and $\Psi_{\theta^{\prime}, \theta}$ etc. be as above. We assume that $\varepsilon(k)=1$ for $k=1,2, \cdots, m$.
(i) Let \bar{L} be a simple curve in $\overline{\mathscr{F}} \mid A_{\theta}$. Then there exists $\theta^{\prime}\left(\theta<\theta^{\prime}\right)$ such that $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ is an attracting point of W if and only if the two end points of \bar{L} belong both to the same Int $\bar{K}_{k, i}^{(+)}$.

Fig. 22.
(ii) Let \bar{L} be a simple curve in $\overline{\mathscr{F}} \mid A_{\theta}$. Then $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ consists of a finite number of simple curves in $\overline{\mathscr{F}} \mid A_{\theta^{\prime}}$, say $\bar{L}^{(1)}, \bar{L}^{(2)}, \cdots, \bar{L}^{(r)}$, such that one of the end points of $\bar{L}^{(u)}$ and one of the end points of $\bar{L}^{(u+1)}$ belong to the same $\bar{K}_{k, i}^{(-)}$for $u=1,2, \cdots, r-1$.

Proof. If $\Psi_{\theta^{\prime \prime}, \theta}(\bar{L})$ contains a branching point for $\theta \leqq \theta^{\prime \prime}<\theta^{\prime}$, then $\Psi_{\theta^{\prime \prime}, \theta}(\bar{L})$ consists of simple curves of $\overline{\mathscr{F}} \mid A_{\theta^{\prime \prime}}$ such that one of the end points of each simple curve belongs to some $\bar{K}_{k, i}^{(-)}$. This implies that $\Psi_{\theta^{\prime}, \theta}(\bar{L})$ cannot contain an attracting point of W. Therefore the conclusion of (i) is a direct consequence of the definition of the attracting point.

The conclusion of (ii) is a direct consequence of the definition of the branching point.

§ 10. Bifurcation of leaves of foliations of two punctured 2-disk. Proof of Theorem B

Let $\Sigma_{0}(3)$ denote the 3 punctured 2 -sphere, that is, the 2 punctured 2-disk, and let

$$
\partial \Sigma_{0}(3)=S_{0}^{1} \cup S_{1}^{1} \cup S_{2}^{1}
$$

We specify an orientation on $\Sigma_{0}(3)$ and give the boundary orientation on $S_{k}^{1}(k=0,1,2)$. Recall that S^{1} is always oriented. Let α_{k} be the homology classes of $H_{1}\left(S^{1} \times S_{k}^{1}\right)$ represented by $S^{1} \times\{*\}$ for $k=0,1,2$, and let β_{0} (resp. $\beta_{k}(k=1,2)$) be the homology class of $H_{1}\left(S^{1} \times S_{0}^{1}\right)\left(\right.$ resp. $\left.H_{1}\left(S^{1} \times S_{k}^{1}\right)\right)$ represented by $-\left(\{* *\} \times S_{0}^{1}\right)\left(\right.$ resp. $\left.\{* *\} \times S_{k}^{1}\right)$.

Let $\pi: S^{1} \times \Sigma_{0}(3) \rightarrow S^{1}$ be the projection onto the first factor. Let $T_{k}^{2}=S^{1} \times S_{k}^{1}$ and $\varepsilon(k)=1$ for $k=0,1,2$, and let $\mathscr{F}_{\pi}^{\varepsilon}$ be the codimension one C^{∞} foliation of $S^{1} \times \Sigma_{0}(3)$ as in Section 4.

Let us consider the tangent bundle $\tau\left(\mathscr{F}_{\pi}^{\varepsilon}\right)$. Since each noncompact
leaf L_{θ} is diffeomorphic to Int $\Sigma_{0}(3)$, there exists a natural framing of the tangent bundle $\tau\left(L_{\theta}\right)$ of L_{θ} considering $L_{\theta}=\operatorname{Int} \Sigma_{0}(3)$ is a subset of \boldsymbol{R}^{2}. Thus $\tau\left(\mathscr{F}_{\pi}^{e}\right) \mid\left(S^{1} \times \operatorname{Int} \Sigma_{0}(3)\right)$ is trivial. Furthermore the framing of $\tau\left(L_{\theta}\right)$ induces framings of $\tau\left(S^{1} \times S_{k}^{1}\right)(k=0,1,2)$. Thus $\tau\left(\mathscr{P}_{\pi}^{\varepsilon}\right)$ is trivial, which implies that $\mathscr{F}_{\pi}^{\varepsilon}$ admits transverse 2-plane fields.

The foliation $\mathscr{F}_{\pi}^{\varepsilon}$ admits a transverse codimension one C^{∞} foliation \mathscr{F}^{\prime} as follows (Fig. 23). We divide $\Sigma_{0}(3)$ into 10 pieces $B_{i}(i=1,2, \cdots$, 10) as in Fig. 23, and we give the plus half Reeb foliation of $S^{1} \times D_{+}^{2}$ (Section 5) for $S^{1} \times B_{i}(i=1,2,3,4)$ and the $T S$ component of $S^{1} \times H$ (Section 5) for $S^{1} \times B_{i}(i=5,6,7,8,9,10)$. The codimension one C^{∞} foliation of $S^{1} \times \Sigma_{0}(3)$ obtained as the union of them is transverse to $\mathscr{P}_{\pi}^{\varepsilon}$. Fig. 31, (a) shows $\overline{\mathscr{F}} \mid A_{\theta}$ for $\overline{\mathscr{F}}=\mathscr{F}_{\pi}^{\varepsilon} \cap \mathscr{F}^{\prime}$ and A_{θ} as in Section 9.

Fig. 23.

Now we have the following theorem:
Theorem 10.1. Let $\pi: S^{1} \times \Sigma_{0}(3) \rightarrow S^{1}$ and $\mathscr{F}_{\pi}^{\varepsilon}$ be as above, and let \mathscr{F}^{\prime} be a transversely orientable codimension one C^{r} foliation ($r \geqq 2$) of $S^{1} \times \Sigma_{0}(3)$ transverse to $\mathscr{F}_{\pi}^{\varepsilon}$. Suppose that the one dimensional C^{r} foliation $\overline{\mathscr{F}}=\mathscr{F}_{\pi}^{\varepsilon} \cap \mathscr{F}^{\prime}$ formed by the intersection of leaves of $\mathscr{F}_{\pi}^{\varepsilon}$ and \mathscr{F}^{\prime} satisfies the following assumptions:
(i) $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{k}^{1}\right)$ has at least one compact leaf for $k=1,2$.
(ii) The homology class of $H_{1}\left(S^{1} \times S_{k}^{1}\right)$ represented by a compact leaf of $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{k}^{1}\right)$ is $a_{k} \alpha_{k}+b_{k} \beta_{k}, a_{k} \neq 0$, for $k=1,2$.
(iii) It holds that

$$
\left|a_{1}\right|\left(p_{1}-q_{1}\right)=\left|a_{2}\right|\left(p_{2}-q_{2}\right)=2
$$

where p_{k} and q_{k} denote the numbers of plus Reeb components and minus Reeb components of $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{k}^{1}\right)$ respectively for $k=1,2$.

Then $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{0}^{1}\right)$ has at least one compact leaf and the homology class of $H_{1}\left(S^{1} \times S_{0}^{1}\right)$ represented by a compact leaf of $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{0}^{1}\right)$ is $\pm \alpha_{0}$.

Proof. (Step 1) Let a_{0}, b_{0}, p_{0} and q_{0} be integers defined for $\overline{\mathscr{F}} \mid\left(S^{1} \times\right.$ $\left.S_{0}^{1}\right)$ as in Section 4. That is, if $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{0}^{1}\right)$ does not have any compact leaf, then $a_{0}=b_{0}=p_{0}=q_{0}=0$, and if $\mathscr{F} \mid\left(S^{1} \times S_{0}^{1}\right)$ has a compact leaf, then the homology class of $H_{1}\left(S^{1} \times S_{0}^{1}\right)$ represented by the compact leaf is $\pm\left(a_{0} \alpha_{0}+b_{0} \beta_{0}\right)$ and the numbers of plus Reeb components and minus Reeb components of $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{0}^{1}\right)$ are p_{0} and q_{0} respectively. By Propositions 4.2, 5.1 and the assumption (iii), it holds that

$$
\left|a_{0}\right|\left(p_{0}-q_{0}\right)=-6 .
$$

Therefore, since $p_{0}-q_{0}$ is even as was shown in Proposition 3.4, it follows that $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{0}^{1}\right)$ has at least one compact leaf and that

$$
\left|a_{0}\right|=1, \quad p_{0}-q_{0}=-6 \quad \text { or } \quad\left|a_{0}\right|=3, \quad p_{0}-q_{0}=-2 .
$$

Making use of Proposition 5.3, we may assume that $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{i}^{1}\right)$ ($i=0,1,2$) are normalized. Let A be the closed subset of $S^{1} \times \Sigma_{0}(3)$ obtained by cutting down the ends of noncompact leaves of $\mathscr{F}_{\pi}^{\varepsilon}$ as in Section 9, and let $A=\bigcup_{\theta \in S^{1}} A_{\theta}, A_{\theta}=A \cap L_{\theta}$ be as in Section 9, where L_{θ} $\left(\theta \in S^{1}\right)$ are noncompact leaves of $\mathscr{F}_{\pi}^{\varepsilon}$.
(Step 2) The restriction $\overline{\mathscr{F}} \mid A_{0}$ of $\overline{\mathscr{F}}$ to $A_{0}\left(0 \in S^{1}\right)$ is a codimension one C^{r} foliation with $\left|a_{0}\right|\left(p_{0}+q_{0}\right)+\left|a_{1}\right|\left(p_{1}+q_{1}\right)+\left|a_{2}\right|\left(p_{2}+q_{2}\right)$ singular points in ∂A_{0} as was shown in Section 8. (Fig. 31, (a) shows an example of $\overline{\mathscr{F}} \mid A_{0}$.)

Let $\partial A=T_{0}^{\prime} \cup T_{1}^{\prime} \cup T_{2}^{\prime}$ as in Section 9, where T_{k}^{\prime} is a torus imbedded in $S^{1} \times \Sigma_{0}(3)$ which bounds a collar of $S^{1} \times S_{k}^{1}(k=0,1,2)$. Let $\overline{\mathscr{F}}_{k}=$ \{connected components of $\left.T_{k}^{\prime} \cap L^{\prime} ; L^{\prime} \in \mathscr{F}^{\prime}\right\}$ as in Section 9. Then $\overline{\mathscr{F}}_{k}$ is a codimension one C^{r} foliation of T_{k}^{\prime} having plus Reeb components $\overline{\mathscr{F}}_{k} \mid \bar{K}_{k, i}^{(+)}\left(i=1,2, \cdots, p_{k}\right)$ and minus Reeb components $\overline{\mathscr{F}}_{k} \mid \bar{K}_{k, i}^{(-)}(i=1,2$, \cdots, q_{k}) for $k=0,1,2$, as was observed in Section 9. Let

$$
S_{k, 0}^{1}=A_{0} \cap T_{k}^{\prime} \quad(k=0,1,2) .
$$

Then we have

$$
\partial A_{0}=S_{0,0}^{1} \cup S_{1,0}^{1} \cup S_{2,0}^{1} .
$$

The intersection $\partial A_{0} \cap \bar{K}_{k, i}^{(+)}$(resp. $\left.\partial A_{0} \cap \bar{K}_{k, i}^{(-)}\right)$consists of $\left|a_{k}\right|$ connected components, say $\bar{K}_{k, i, j, 0}^{(+)}\left(j=1,2, \cdots,\left|a_{k}\right|\right)$ (resp. $\bar{K}_{k, i, j, 0}^{(-)}(j=1,2, \cdots$, $\left.\left|a_{k}\right|\right)$).

The numbers of the plus singular points and the minus singular points of $\overline{\mathscr{F}} \mid A_{0}$ in $S_{0,0}^{1}$ are $\left|a_{0}\right| p_{0}$ and $\left|a_{0}\right| q_{0}$ respectively. Since $\left|a_{0}\right| q_{0}-$ $\left|a_{0}\right| p_{0}=6$ as was observed in Step 1, there exists a connected arc \bar{l}_{1} in $S_{0,0}^{1}$ having minus singular points z_{-}, z_{-}^{\prime} as its end points such that any other singular point does not belong to \bar{l}_{1} (Fig. 24).
(Step 3) Let $z_{1} \in \bar{l}_{1} \cap \partial \bar{K}_{0, i, j, 0}^{(-)}$, where z_{-}or z_{-}^{\prime} is belonging to $\bar{K}_{0, i, j, 0}^{(-)}$. Let \bar{L}_{1} be the simple curve of $\mathscr{F} \mid A_{0}$ containing z_{1}.

If $\bar{L}_{1} \cap \partial A_{0}=\left\{z_{1}\right\}$, then there exists a simple closed curve in $\overline{\mathscr{F}} \mid A_{0}$ by the Poincaré-Bendixson theorem, which is a contradiction as is easily shown by an argument on the Euler number and singular points using the assumption (iii). Thus we have

$$
\bar{L}_{1} \cap \partial A_{0}=\left\{z_{1}, z_{1}^{\prime}\right\} .
$$

Now if $z_{1}^{\prime} \in S_{0,0}^{1}$, then $A_{0}-\bar{L}_{1}$ consists of two connected components, say G_{1} and G_{1}^{\prime}, and one of the following two cases occurs (Fig. 24):
(a) Both $S_{1,0}^{1}$ and $S_{2,0}^{1}$ are contained in one of \bar{G}_{1} and \bar{G}_{1}^{\prime} (Fig. 24, (a)).
(b) $\quad S_{1,0}^{1}$ and $S_{2,0}^{1}$ are separated by \bar{L}_{1} (Fig. 24, (b)).

(a)

(b)

Fig. 24.
Suppose that the case (a) (resp. (b)) above occurs. We let $S_{1,0}^{1} \cup S_{2,0}^{1}$ $\subset \bar{G}_{1}$ (resp. $S_{1,0}^{1} \subset \bar{G}_{1}$). Thus \bar{G}_{1} is homeomorphic to the 2 punctured 2disk (resp. one punctured 2-disk), and \bar{G}_{1}^{\prime} is homeomorphic to the 2-disk (resp. one punctured 2-disk).

Let us consider the number of singular points in $\bar{G}_{1} \cap S_{0,0}^{1}$ and $\bar{G}_{1}^{\prime} \cap S_{0,0}^{1}$. In case z_{1}^{\prime} is a minus singular point, we understand that z_{1}^{\prime} is a singular point of $\bar{G}_{1} \cap S_{0,0}^{1}$ (resp. $\bar{G}_{1}^{\prime} \cap S_{0,0}^{1}$) and not a singular point of $\bar{G}_{1}^{\prime} \cap S_{0,0}^{1}\left(\operatorname{resp} . \bar{G}_{1} \cap S_{0,0}^{1}\right)$ if z_{1}^{\prime} is a cusp of $\partial \bar{G}_{1}^{\prime}\left(\right.$ resp. $\left.\partial \bar{G}_{1}\right)$. Let \bar{p}_{1} and \bar{q}_{1} (resp. \bar{p}_{1}^{\prime} and \bar{q}_{1}^{\prime}) denote the numbers of the plus singular points and the minus singular points in $\bar{G}_{1} \cap S_{0,0}^{1}$ (resp. $\bar{G}_{1}^{\prime} \cap S_{0,0}^{1}$).

Let $\bar{G}_{1} \cup \bar{G}_{1}$ (resp. $\bar{G}_{1}^{\prime} \cup \bar{G}_{1}^{\prime}$) be the double of \bar{G}_{1} (resp. \bar{G}_{1}^{\prime}) obtained from two copies of \bar{G}_{1} (resp. \bar{G}_{1}^{\prime}) by identifying two copies of $\bar{G}_{1} \cap \partial A_{0}$ (resp. $\bar{G}_{1}^{\prime} \cap \partial A_{0}$). The double of $\overline{\mathscr{F}} \mid \bar{G}_{1}$ (resp. $\overline{\mathscr{F}} \mid \bar{G}_{1}^{\prime}$) defines a codimension one C^{0} foliation of $\bar{G}_{1} \cup \bar{G}_{1}$ (resp. $\bar{G}_{1}^{\prime} \cup \bar{G}_{1}^{\prime}$) with $\bar{p}_{1}+p_{1}+p_{2}$ or $\bar{p}_{1}+p_{1}$ (resp. \bar{p}_{1}^{\prime} or $\bar{p}_{1}^{\prime}+p_{2}$) plus singular points and $\bar{q}_{1}+q_{1}+q_{2}$ or $\bar{q}_{1}+q_{1}$ (resp. \bar{q}_{1}^{\prime}
or $\bar{q}_{1}^{\prime}+q_{2}$) minus singular points according to the case (a) or (b). Here, in case z_{1}^{\prime} is a minus singular point, we understand that z_{1}^{\prime} is a minus singular point of $\bar{G}_{1} \cup \bar{G}_{1}$ (resp. $\bar{G}_{1}^{\prime} \cup \bar{G}_{1}^{\prime}$) and not a minus singular point of $\bar{G}_{1}^{\prime} \cup \bar{G}_{1}^{\prime}\left(\right.$ resp. $\left.\bar{G}_{1} \cup \bar{G}_{1}\right)$ if z_{1}^{\prime} is a cusp of $\partial \bar{G}_{1}^{\prime}$ (resp. $\partial \bar{G}_{1}$).
$\bar{G}_{1} \cup \bar{G}_{1}$ is homeomorphic to $\Sigma_{2}(1)$ (resp. $\left.\Sigma_{1}(1)\right)$ and $\bar{G}_{1}^{\prime} \cup \bar{G}_{1}^{\prime}$ is homeomorphic to D^{2} (resp. $\Sigma_{1}(1)$) in the case (a) (resp. (b)). Thus, by the assumption (iii), we have

$$
\begin{gathered}
\bar{p}_{1}-\bar{q}_{1}=-7, \quad \bar{p}_{1}^{\prime}-\bar{q}_{1}^{\prime}=1 \\
\text { (resp. } \bar{p}_{1}-\bar{q}_{1}=-3, \bar{p}_{1}^{\prime}-\bar{q}_{1}^{\prime}=-3 \text {). }
\end{gathered}
$$

It follows from $\bar{p}_{1}^{\prime}-\bar{q}_{1}^{\prime}=1$ (resp. $\bar{p}_{1}^{\prime}-\bar{q}_{1}^{\prime}=-3$) that $G_{1}^{\prime} \cap S_{0,0}^{1}$ must contain at least one plus singular point (resp. three minus singular points). This implies that \bar{L} separates z_{-}and z_{-}^{\prime}. Thus we have

$$
\bar{q}_{1}<\left|a_{0}\right| q_{0}
$$

By the equation $\bar{p}_{1}-\bar{q}_{1}=-7$ (resp. $\bar{p}_{1}-\bar{q}_{1}=-3$), there exists a connected arc \bar{l}_{2} in $G_{1} \cap S_{0,0}^{1}$ having minus singular points as its end points such that any other singular point does not belong to \bar{l}_{2}. Let $z_{2} \in$ $\bar{l}_{2} \cap \partial \bar{K}_{0, i, j, 0}^{(-)}$for some $\bar{K}_{0, i, j, 0}^{(-)}$, and let \bar{L}_{2} be the simple curve of $\overline{\mathscr{F}} \mid A_{0}$ containing z_{2}. Then, by the same reason as above, we have

$$
\bar{L}_{2} \cap\left(S_{0,0}^{1} \cap \bar{G}_{1}\right)=\left\{z_{2}, z_{2}^{\prime}\right\}
$$

If $z_{2}^{\prime} \in S_{0,0}^{1}$, then \bar{L}_{2} divides G_{1} into two connected components, say G_{2} and G_{2}^{\prime}. We let $S_{1,0}^{1} \subset \bar{G}_{2}$.

Let \bar{p}_{2} and \bar{q}_{2} (resp. \bar{p}_{2}^{\prime} and \bar{q}_{2}^{\prime}) denote the numbers of plus singular points and minus singular points in $\bar{G}_{2} \cap S_{0,0}^{1}$ (resp. $\bar{G}_{2}^{\prime} \cap S_{0,0}^{1}$). Then, by the same argument as above, we have

$$
\bar{p}_{2}-\bar{q}_{2} \leqq-4, \quad \bar{q}_{2}<\bar{q}_{1} .
$$

Furthermore, the number of connected components of $G_{2} \cap S_{0,0}^{1}$ is at most two. Thus there exists a connected arc \bar{l}_{3} in $G_{2} \cap S_{0,0}^{1}$ having minus singular points as its end points such that any other singular point does not belong to \bar{l}_{3}. We can take $z_{3} \in \bar{l}_{3} \cap \partial \bar{K}_{0, i, j, 0}^{(-)}$for some $\bar{K}_{0, i, j, 0}^{(-)}$and repeat the process as above. Therefore, we can finally find a point z_{0} of $S_{0,0}^{1}$ with the following property:
(10.2) Let \bar{L}_{0} be the simple curve of $\overline{\mathscr{F}} \mid A_{0}$ containing z_{0}. Then another end point of \bar{L}_{0} belongs to $S_{1,0}^{1}$ or $S_{2,0}^{1}$.
(Step 4) In the following we assume that the homology class of $H_{1}\left(S^{1} \times S_{0}^{1}\right)$ represented by a compact leaf of $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{0}^{1}\right)$ is $a_{0} \alpha_{0}+b_{0} \beta_{0}$, $b_{0} \neq 0$, and will show that the assumption $b_{0} \neq 0$ yields a contradiction.

Now suppose that $\left|a_{0}\right|=1, p_{0}-q_{0}=-6$. Let z_{0} be a point of $S_{0,0}^{1}$
satisfying the condition (10.2), and let \bar{L}_{0} denote the simple curve of $\overline{\mathscr{F}} \mid A_{0}$ containing z_{0}.

Suppose that another end point z_{0}^{\prime} of \bar{L}_{0} belongs to $S_{1,0}^{1}$. Let us consider the image of \bar{L}_{0} by Ψ_{s} when parameter s varies from 0 to 1 as in Section 9. Since $\left|a_{0}\right|=1$, we have

$$
\Psi_{1}\left(z_{0}\right)=z_{0} .
$$

The assumption $b_{0} \neq 0$ implies that bifurcation occurs for $\Psi_{s}(0 \leqq s \leqq 1)$. By the uniqueness of the simple curve in $\overline{\mathscr{F}}\left|A_{0}=\overline{\mathscr{F}}\right| A_{1}$ containing z_{0}, it follows that $\Psi_{1}\left(\bar{L}_{0}\right)$ contains \bar{L}_{0}, and thus, by Proposition 9.4, the point z_{0}^{\prime} belongs to one of $\bar{K}_{1, \bar{i}, j, 0}^{(-)}$, say $z_{0}^{\prime} \in K_{1, i, 0}^{(-), j, j, 0}$, and $\Psi_{1}\left(\bar{L}_{0}\right)$ consists of l simple curves in $\overline{\mathscr{F}}\left|A_{0}=\overline{\mathscr{F}}\right| A_{1}$, say

$$
\bar{L}_{0}, \bar{L}_{1}, \bar{L}_{2}, \cdots, \bar{L}_{l-1}
$$

such that, letting z_{s} and z_{s}^{\prime} be end points of $\bar{L}_{s}(s=0,1,2, \cdots, l-1)$, two points z_{s-1}^{\prime} and z_{s} belong to the interior of one of $\bar{K}_{k, i, j, 0}^{(-)}$for $s=1,2, \cdots$, $l-1$. (Fig. 25).

Let C_{s} be the simple arc connecting z_{s-1}^{\prime} and z_{s} in such a $\bar{K}_{k, i, j, j, 0}^{(-)}$ Then the union of $\bar{L}_{0}, C_{1}, \bar{L}_{1}, \cdots, C_{l-1}, \bar{L}_{l-1}$ forms a C^{0} curve C in $A_{0}=$ A_{1} connecting z_{0} and $\Psi_{1}\left(z_{0}^{\prime}\right)$ (Fig. 25).

Fig. 25.

Let $\left\{C_{s_{1}}, C_{s_{2}}, \cdots, C_{s_{u}}\right\}$ be the subset of $\left\{C_{s} ; s=1,2, \cdots, l-1\right\}$ such that

$$
\begin{aligned}
& C_{s_{i}} \subset \bar{K}_{1, i_{0}, j, 0,0}^{(-)} \quad i=1,2, \cdots, u, \\
& 1=s_{1}<s_{2}<\cdots<s_{u},
\end{aligned}
$$

and let $C^{(i)}$ (resp. $C^{(u)}$) denote a closed C^{0} curve in A_{0} obtained as the union of $\bar{L}_{s_{i}}, C_{s_{i}+1}, \bar{L}_{s_{i}+1}, \cdots, \bar{L}_{s_{i+1}-1}$ and an arc in $\bar{K}_{1, i_{i}, j_{0}, 0}^{(-)}$with end
points $z_{s_{i}}, z_{s_{i+1}-1}^{\prime}$ for $i=1,2, \cdots, u-1$ (resp. as the union of $\bar{L}_{s_{u}}, \bar{C}_{s_{u}+1}$, \cdots, \bar{L}_{l-1} and an arc in $\bar{K}_{1, i_{0}, j_{0,0}}^{(-)}$with end points $z_{s_{u}}$ and $\left.z_{0}^{\prime}=z_{l-1}^{\prime}\right)$. (Fig. 26, (a)).

By pushing each C_{s} and arc contained in $\bar{K}_{1, i_{0}, j_{0}, 0}^{(-)}$slightly into the interior of A_{0}, we can make $C^{(i)}$ a simple closed C^{0} curve in Int A_{0} for $i=1,2, \cdots, u$ (Fig. 26, (b)). By straightening the corner, we may suppose that each $C^{(i)}$ is a simple closed C^{r} curve.

Let us suppose that A_{0} is a subset of \boldsymbol{R}^{2} in the natural manner, and let $D^{(i)}$ denote the closed set of \boldsymbol{R}^{2} bounded by $C^{(i)}$. $D^{(i)}$ is diffeomorphic to the 2-disk (Fig. 26, (b)). Then, since $b_{0} \neq 0$, at least one of $D^{(i)}(i=1$, $2, \cdots, u$) contains $S_{2,0}^{1}$, say $D^{\left(i^{\prime}\right)} \supset S_{2,0}^{1}$.

Let Y_{0} be a non-singular C^{r} vector field on A_{0} whose orbits are $\overline{\mathscr{F}} \mid A_{0}$. Then, by changing Y_{0} in a small neighborhood of $C^{\left(i^{i}\right)}$ near C_{s}, we obtain a non-singular C^{r} vector field Y_{0}^{\prime} such that $C^{\left(i^{\prime}\right)}$ is a closed orbit of Y_{0}^{\prime} (Fig. 27).

Fig. 26.

Let $\Sigma=D^{\left(i^{\prime}\right)} \cap A_{0}$ and let $\Sigma \cup \Sigma$ be the double of Σ obtained from two copies of Σ by identifying their boundaries. Then $\Sigma \cup \Sigma$ is diffeomorphic to the torus or the orientable closed surface Σ_{2} of genus 2 according to $D^{\left(i^{\prime}\right)} \not \supset S_{1,0}^{1}$ or $D^{\left(i^{\prime}\right)} \supset S_{1,0}^{1}$. On the other hand the double of $Y_{0}^{\prime} \mid \Sigma$ defines a C^{0} vector field with $p_{1}\left(\right.$ resp. $p_{1}+p_{2}$) plus singular points and q_{1} (resp. $q_{1}+q_{2}$) minus singular points if $D^{\left(i^{\prime}\right)} \not \supset S_{1,0}^{1}\left(\right.$ resp. $\left.D^{\left(i^{\prime}\right)} \supset S_{1,0}^{1}\right)$. This is a contradiction.

In case $\left|a_{0}\right|=3, p_{0}-q_{0}=-2$, it can be proved by considering Ψ_{s} $(0 \leqq s \leqq 3)$ that a contradiction also occurs.

The above results imply that the assumption $b_{0} \neq 0$ yields a contradiction. Thus this theorem is proved.

Now we prove Theorem B in Section 0. Let \mathscr{F}_{0} be as in Theorem B, that is, \mathscr{F}_{0} is the union of the codimension one C^{∞} foliations $\mathscr{F}_{\pi}^{\varepsilon}$ of $S^{1} \times$ $\Sigma_{0}(3), \mathscr{F}_{R}^{(+)}$of $S^{1} \times D_{1}^{2}, \mathscr{F}_{R}^{(+)}$of $S^{1} \times D_{2}^{2}$ and $\mathscr{F}_{R}^{(+)}$of $D^{2} \times S^{1}$, and let \mathscr{F}^{\prime} be a codimension one C^{r} foliation $(r \geqq 2)$ of S^{3} transverse to \mathscr{F}_{0}, where $\Sigma_{0}(3)=D^{2}-\operatorname{Int} D_{1}^{2}-\operatorname{Int} D_{2}^{2}$.

Let $\overline{\mathscr{F}}=\mathscr{F}_{0} \cap \mathscr{F}^{\prime}$. Consider $\mathscr{F}^{\prime} \mid \Sigma_{0}(3)$ and $\overline{\mathscr{F}} \mid \Sigma_{0}(3)$. Then, by Proposition 3.6, $\overline{\mathscr{F}} \mid\left(S^{1} \times \partial D_{1}^{2}\right)$ and $\overline{\mathscr{F}} \mid\left(S^{1} \times \partial D_{2}^{2}\right)$ have compact leaves such that homology classes represented by the compact leaves are $a_{1} \alpha_{1}+b_{1} \beta_{1}$ $\left(a_{1} \neq 0\right)$ and $a_{2} \alpha_{2}+b_{2} \beta_{2}\left(a_{2} \neq 0\right)$ respectively, and $\left|a_{1}\right|\left(p_{1}-q_{1}\right)=2,\left|a_{2}\right|\left(p_{2}-q_{2}\right)$ $=2$. Thus the assumptions of Theorem 10.1 are satisfied for $\mathscr{F}_{\pi}^{\varepsilon}$. Therefore, by Theorem 10.1, $\overline{\mathscr{F}} \mid\left(S^{1} \times \partial D^{2}\right)$ has a compact leaf such that the homology class represented by it is $\pm \alpha_{0}$.

On the other hand, by the consideration on $\overline{\mathscr{F}} \mid\left(D^{2} \times S^{1}\right)$, the homology class represented by a compact leaf of $\overline{\mathscr{F}} \mid\left(\partial D^{2} \times S^{1}\right)$ is $\pm \beta_{0}+a_{0}^{\prime} \alpha_{0}$. This is a contradiction. Thus Theorem B is proved.

The most results on existence problem in Nishimori [2] can be proved by the arguments as in Sections 9 and 10.

§ 11. Proof of Theorem D

Let $h_{n}: S^{1} \times D^{2} \rightarrow S^{1} \times D^{2}$ denote the C^{∞} diffeomorphism defined by

$$
h_{n}\left(e^{2 \pi i x}, r e^{2 \pi i y}\right)=\left(e^{2 \pi i x}, r e^{2 \pi i(y+n x)}\right), \quad(0 \leqq x \leqq 1,0 \leqq y \leqq 1) .
$$

Then, for the 2 punctured 2-sphere $\Sigma_{0}(3)=D^{2}-\operatorname{Int} D_{1}^{2}-\operatorname{Int} D_{2}^{2}$, we have a decomposition of the solid torus $S^{1} \times D^{2}$ as follows:

$$
S^{1} \times D^{2}=h_{n}\left(S^{1} \times \Sigma_{0}(3)\right) \cup h_{n}\left(S^{1} \times D_{1}^{2}\right) \cup h_{n}\left(S^{1} \times D_{2}^{2}\right)
$$

For the codimension one C^{∞} foliation $\mathscr{F}_{\pi}^{\varepsilon}$ of $S^{1} \times \Sigma_{0}(3)$ as in Section 10, we denote $\mathscr{F}_{0}^{(n)}=\left\{h_{n}(L) ; L \in \mathscr{F}_{\pi}^{\varepsilon}\right\}$. Then the union of $\mathscr{F}_{0}^{(n)}$ and two plus Reeb foliations $\mathscr{F}_{R}^{(+)}$of $h_{n}\left(S^{1} \times D_{2}^{2}\right)$ and $h_{n}\left(S^{1} \times D_{2}^{2}\right)$ determines a
codimension one C^{∞} foliation of $S^{1} \times D^{2}$, which is denoted by $\mathscr{F}_{1}^{(n)}$. Furthermore, let $\mathscr{F}^{(n)}$ denote the codimension one C^{∞} foliation of $S^{1} \times D^{2}$ $=\left(S^{1} \times \Sigma_{0}(3)\right)^{\prime} \cup\left(S^{1} \times D_{1}^{2}\right)^{\prime} \cup\left(S^{1} \times D_{2}^{2}\right)^{\prime}$ consisting of codimension one C^{∞} foliations $\mathscr{F}_{\pi}^{\varepsilon}$ of $\left(S^{1} \times \Sigma_{0}(3)\right)^{\prime}$ as in Section $10, \mathscr{F}_{1}^{(n)}$ of $\left(S^{1} \times D_{1}^{2}\right)^{\prime}$ as above and the plus Reeb foliation $\mathscr{F}_{R}^{(+)}$of $\left(S^{1} \times D_{2}^{2}\right)^{\prime}$ (Fig. 28).

Fig. 28.

We have the following proposition:
Proposition 11.1. Let $\mathscr{F}^{(n)}$ be the codimension one C^{∞} foliation of the solid torus $S^{1} \times D^{2}$ as above. Then, if $n \neq 0$, there does not exist any codimension one C^{r} foliation ($r \geqq 2$) of $S^{1} \times D^{2}$ transverse to $\mathscr{F}^{(n)}$.

Proof. Suppose that $n \neq 0$ and there exists a transversely orientable codimension one C^{r} foliation \mathscr{F}^{\prime} of $S^{1} \times D^{2}$ transverse to $\mathscr{F}^{(n)}$. Denote $\overline{\mathscr{F}}=\mathscr{F}^{(n)} \cap \mathscr{F}^{\prime}$. Then $\mathscr{F}^{\prime} \mid\left(S^{1} \times D_{1}^{2}\right)^{\prime}$ is a codimension one C^{r} foliation transverse to $\mathscr{F}_{1}^{(n)}$, and thus, $\mathscr{F}^{\prime \prime}=\left\{h_{n}^{-1}\left(L^{\prime}\right) ; L^{\prime} \in \mathscr{F}^{\prime} \mid\left(S^{1} \times D_{1}^{2}\right)^{\prime}\right\}$ is a codimension one C^{r} foliation of $S^{1} \times D^{2}$ transverse to the codimension one C^{r} foliation of $S^{1} \times D^{2}$ consisting of codimension one foliations \mathscr{F}_{π}^{e} of $\Sigma_{0}(3)$ and two plus Reeb foliations of $S^{1} \times D_{1}^{2}$ and $S^{1} \times D_{2}^{2}$. Thus it follows from Theorem 10.1 (cf. Proof of Theorem B) that $\mathscr{F}_{\pi}^{\varepsilon} \cap \mathscr{F}^{\prime \prime} \mid\left(S^{1} \times D^{2}\right)$ has at least one compact leaf and that the homology class of $H_{1}\left(S^{1} \times \partial D^{2}\right)$ represented by a compact leaf is $\pm \alpha$, the homology class represented by a longitude. This implies that $\overline{\mathscr{F}} \mid \partial\left(S^{1} \times D_{1}^{2}\right)^{\prime}$ has at least one compact leaf and the homology class represented by a compact leaf is $\pm \alpha_{1} \pm n \beta_{1}$, where α_{1} and β_{1} are homology classes as in Section 10.

Next let us consider $\mathscr{F} \mid\left(S^{1} \times \Sigma_{0}(3)\right)^{\prime}$. Let $\alpha_{k}, \beta_{k}, a_{k}, b_{k}(k=0,1,2)$ be as in Section 10, and let p_{k} and q_{k} be the numbers of plus Reeb components and minus Reeb components of $\overline{\mathscr{F}} \mid\left(S^{1} \times S_{k}^{1}\right)^{\prime}$ for $k=0,1,2$.

Then, as was used in Theorem 10.1, we have

$$
\left|a_{1}\right|\left(p_{1}-q_{1}\right)=-6, \quad\left|a_{2}\right|\left(p_{2}-q_{2}\right)=2 .
$$

Therefore, by Proposition 4.2, we have

$$
\left|a_{0}\right|\left(p_{0}-q_{0}\right)=2
$$

Thus the assumptions (i), (ii), (iii) of Theorem 10.1 are satisfied for $\left(S^{1} \times S_{0}^{1}\right)^{\prime}$ and $\left(S^{1} \times S_{2}^{1}\right)^{\prime}$, and it follows from Theorem 10.1 that the homology class represented by a compact leaf of $\overline{\mathscr{F}} \mid \partial\left(S^{1} \times D_{1}^{2}\right)^{\prime}$ should be $\pm \alpha_{1}$. This is a contradiction. In case \mathscr{F}^{\prime} is not transversely orientable, by considering the double covering of $S^{1} \times D^{2}$, the same arguments work. Thus this proposition is proved.

Now we prove Theorem D in Section 0. Let M be a 3-dimensional C^{∞} manifold. Then, for an imbedding $g: S^{1} \times D^{2} \rightarrow M$, there exists a codimension one C^{∞} foliation $\hat{\mathscr{F}}$ of $M-\operatorname{Int} g\left(S^{1} \times D^{2}\right)$ with $g\left(S^{1} \times \partial D^{2}\right)$ as a compact leaf. Let $\mathscr{F}^{(n)}$ be the codimension one C^{∞} foliation of $S^{1} \times D^{2}$ as in Proposition 11.1, and let \mathscr{F} be a codimension one C^{∞} foliation of M consisting of $\hat{\mathscr{F}}$ and $g_{*} \mathscr{F}^{(n)}=\left\{g(L) ; L \in \mathscr{F}^{(n)}\right\}(n \neq 0)$. Then \mathscr{F} does not admit any transverse codimension one C^{r} foliation ($r \geqq 2$) by Proposition 11.1. Thus Theorem D is proved.

§ 12. Proof of Theorem A

Let k be a non-trivial fibred knot in the 3-sphere and let $N(k)$ be a tubular neighborhood of k. Let $\pi: E_{1} \rightarrow S^{1}$ be a C^{∞} fibering over the circle with $\Sigma_{g}(1)$ as fibre, where $E_{1}=S^{3}-\operatorname{Int} N(k)$ and $\Sigma_{g}(1)$ is the one punctured surface of genus $g(g \geqq 1)$. Thus we have

$$
S^{3}=N(k) \cup E_{1}, \quad N(k)=S^{1} \times D^{2} .
$$

We specify orientations on $S^{1} \times\{*\}$ and $\{* *\} \times \partial D^{2}$ for $* \in \partial D^{2}, * * \in S^{1}$. By the natural identification of $\{* *\} \times \partial D^{2}$ with the base space S^{1} of π, an orientation on the base space S^{1} is specified. Let α and β be generators of $H_{1}(\partial N(k))$ represented by the longitude and the meridian with orientations as above.

Let \mathscr{F} denote the codimension one C^{∞} foliation of S^{3} which is the union of the plus Reeb foliation $\mathscr{F}_{R}^{(+)}$of $N(k)=S^{1} \times D^{2}$ and the codimension one C^{∞} foliation \mathscr{F}_{π} of E_{1} as in Section 4:

$$
\mathscr{F}=\mathscr{F}_{R}^{(+)} \cup \mathscr{F}_{\pi} .
$$

Thus \mathscr{F} has a unique compact leaf $\partial N(k)=T^{2}$

Suppose that there exists a codimension one C^{r} foliation \mathscr{F}^{\prime} of S^{3} transverse to $\mathscr{F}(r \geqq 2)$. Obviously \mathscr{F}^{\prime} is transversely orientable. As is well-known, \mathscr{F}^{\prime} has a Reeb component by Novikov's result [4], that is, there exists a subset N^{\prime} of S^{3} diffeomorphic to $S^{1} \times D^{2}$ such that $\mathscr{F}^{\prime} \mid N^{\prime}$ is a Reeb foliation of N^{\prime}. We specify an orientation of $S^{1} \times\left\{*^{\prime}\right\}\left(*^{\prime} \in \partial D^{2}\right)$ so that $\mathscr{F}^{\prime} \mid N^{\prime}$ is a plus C^{r} Reeb foliation of N^{\prime}. Let α^{\prime} and β^{\prime} be generators of $H_{1}\left(\partial N^{\prime}\right)$ represented by $S^{1} \times\left\{*^{\prime}\right\}$ and $\left\{* *^{\prime}\right\} \times \partial D^{2}$.

We let

$$
\overline{\mathscr{F}}=\mathscr{F} \cap \mathscr{F}{ }^{\prime} .
$$

Then, by Proposition 5.1, the following lemma holds:
Lemma 12.1. (I) (i) $\overline{\mathscr{F}} \mid \partial N(k)$ has a compact leaf.
(ii) The homology class of $H_{1}(\partial N(k))$ represented by a compact leaf of $\overline{\mathscr{F}} \mid \partial N(k)$ is $\pm(\alpha+b \beta)$, where $|b|=2 g-1$.
(iii) There exist closed subsets $K_{1}, K_{2}, \cdots, K_{q+2}, K_{1}^{\prime}, K_{2}^{\prime}, \cdots, K_{q}^{\prime}$ of $\partial N(k)=\partial E_{1}$ such that $\overline{\mathscr{F}} \mid K_{i}$ is a plus Reeb component with respect to $\mathscr{F}_{R}^{(+)}$ and a minus Reeb component with respect to \mathscr{F}_{π} for $i=1,2, \cdots, q+2$, and that $\overline{\mathscr{F}} \mid K_{i}^{\prime}$ is a minus Reeb component with respect to $\mathscr{F}_{R}^{(+)}$and a plus Reeb component with respect to \mathscr{F}_{π} for $i=1,2, \cdots, q$.
(II) (i) $\overline{\mathscr{F}} \mid \partial N^{\prime}$ has a compact leaf.
(ii) The homology class of $H_{1}\left(\partial N^{\prime}\right)$ represented by a compact leaf of $\overline{\mathscr{F}} \mid \partial N^{\prime}$ is $\pm\left(\alpha^{\prime}+b^{\prime} \beta\right)$.
(iii) $\overline{\mathscr{F}} \mid \partial N^{\prime}$ has plus Reeb components $\overline{\mathscr{F}}\left|K_{1}^{(+)}, \overline{\mathscr{F}}\right| K_{2}^{(+)}, \cdots, \overline{\mathscr{F}} \mid K_{q^{\prime}+2}^{(+)}$ and minus Reeb components $\overline{\mathscr{F}}\left|K_{1}^{(-)}, \overline{\mathscr{F}}\right| K_{2}^{(-)}, \cdots, \overline{\mathscr{F}} \mid K_{q^{\prime}}^{(-)}$with respect to $\mathscr{F}^{\prime} \mid N^{\prime}$.

Proof. (I) (i), (II) (i), (ii) and (iii) are direct consequences of Proposition 5.1. The homology class of $H_{1}(\partial N(k))$ represented by a compact leaf of $\overline{\mathscr{F}} \mid \partial N(k)$ is $\pm \alpha+b \beta$ by Proposition 5.1. Let p and q (resp. \bar{p} and \bar{q}) be the numbers of plus Reeb components and minus Reeb components of $\overline{\mathscr{F}}|\partial N(k)=\overline{\mathscr{F}}| \partial E_{1}$ with respect to $\mathscr{F}_{R}^{(+)}$(resp. $\left.\mathscr{F}_{\pi}\right)$. Then, by Proposition 5.1, we have

$$
p-q=2, \quad|b|(\bar{p}-\bar{q})=2(1-2 g)
$$

The conclusions of (I) (ii) and (iii) follow from these equations. Thus this lemma is proved.

Lemma 12.2. $\quad N(k) \cap N^{\prime} \neq \phi, E_{1} \cap N^{\prime} \neq \phi$.
Proof. If $E_{1} \cap N^{\prime}=\phi$, then N^{\prime} is contained in Int $N(k)$. This implies that each leaf of $\overline{\mathscr{F}} \mid \partial N^{\prime}$ is compact; which contradicts Lemma
12.1, (II), (iii). If $N(k) \cap N^{\prime}=\phi$, then N^{\prime} is contained in Int E_{1}. This implies that each leaf of $\overline{\mathscr{F}} \mid \partial N^{\prime}$ is compact, which contradicts also Lemma 12.1, (II), (iii). Thus this lemma is proved.

Lemma 12.3. Let K be a connected component of $\partial N(k) \cap N^{\prime}$. Then $\overline{\mathscr{F}} \mid K$ is a plus or a minus Reeb component with respect to $\mathscr{F}_{R}^{(+)}$.

Proof. Obviously ∂K consists of two compact leaves of $\overline{\mathscr{F}} \mid \partial N(k)$, say \bar{L} and \bar{L}^{\prime}. Each leaf of $\overline{\mathscr{F}} \mid$ Int K is an intersection of $\partial N(k)$ and a noncompact leaf of $\mathscr{F}^{\prime} \mid$ Int N^{\prime}. If there exists a compact leaf in $\mathscr{F}^{\prime} \mid$ Int N^{\prime}, then there exists a compact leaf in $\overline{\mathscr{F}} \mid L^{\prime}$ for a noncompact leaf L^{\prime} of $\mathscr{F}^{\prime} \mid$ Int N^{\prime}. Since L^{\prime} is diffeomorphic to \boldsymbol{R}^{2}, this is a contradiction. Therefore there does not exist any compact leaf in $\overline{\mathscr{F}} \mid$ Int K. Furthermore, by considering the holonomy of \mathscr{F}^{\prime} with respect to ∂N^{\prime}, it follows that the holonomy of $\overline{\mathscr{F}} \mid K$ with respect to \bar{L} and \bar{L}^{\prime} having orientations induced from $S^{1} \times\{*\}$ are both contracting or expanding. Thus this lemma is proved.

Lemma 12.4. Let B be a connected component of $N(k) \cap N^{\prime}$. Then $B \cap \partial N(k)$ is connected and $\overline{\mathscr{F}} \mid(B \cap \partial N(k))$ is a plus Reeb component with respect to $\mathscr{F}_{R}^{(+)}$.

Proof. Suppose that $B \cap \partial N(k)$ consists of connected components $\bar{K}_{1}, \bar{K}_{2}, \cdots, \bar{K}_{m}$. By considering the holonomy of \mathscr{F}^{\prime} with respect to $\partial N^{\prime} \cap N(k)$, it follows that all of $\overline{\mathscr{F}}\left|\bar{K}_{1}, \overline{\mathscr{F}}\right| \bar{K}_{2}, \cdots, \overline{\mathscr{F}} \mid \bar{K}_{m}$ are plus Reeb components or minus Reeb components with respect to $\mathscr{F}_{R}^{(+)}$.

Let L be a noncompact leaf of $\mathscr{F}_{R}^{(+)}$. Then $L \cap B$ has m ends corresponding to $\bar{K}_{i}(i=1,2, \cdots, m)$ and $\overline{\mathscr{F}} \mid(L \cap B)$ is a codimension one C^{r} foliation of $L \cap B$. Let Σ be a polygon obtained from $L \cap B$ by cutting down the ends of $L \cap B$ as in the proofs of Propositions 3.6 and 4.2. Then $\overline{\mathscr{F}} \mid \Sigma$ is a codimension one C^{r} foliation of Σ with m singular points in $\partial \Sigma$. Let $\Sigma \cup \Sigma$ be the double of Σ obtained from two copies of Σ by identifying the two copies of the closure of $\partial \Sigma-(\partial \Sigma \cap \partial B)$. The double of $\overline{\mathscr{F}} \mid \Sigma$ determines a codimension one C^{r} foliation of the double $\Sigma \cup \Sigma$ with m singular points. The indices of these singular points are all 1 or all -1 according to $\overline{\mathscr{F}} \mid \bar{K}_{i}(i=1,2, \cdots, m)$ are plus Reeb components or minus Reeb components. $\Sigma \cup \Sigma$ is the m punctured 2-sphere. Therefore, by considering the Euler number of $\Sigma \cup \Sigma$, we have

$$
2-m= \pm m
$$

This implies that $m=1$ and $\overline{\mathscr{F}} \mid \bar{K}_{1}$ is a plus Reeb component. Thus this lemma is proved.

Let us consider $N^{\prime} \cap E_{1}$. By Lemma 12.4, $N^{\prime} \cap E_{1}$ is connected. Let $\hat{K}_{1}, \hat{K}_{2}, \cdots, \hat{K}_{n}$ be connected components of $N^{\prime} \cap \partial E_{1}$. Then, by Lemma 12.1, (I), (iii) and Lemma 12.4, $\overline{\mathscr{F}} \mid \hat{K}_{i}(i=1,2, \cdots, n)$ are minus Reeb components with respect to \mathscr{F}_{π}.

Let L^{\prime} be a noncompact leaf of \mathscr{F}_{π}. Then $L^{\prime} \cap N^{\prime}$ has n ends corresponding to $\hat{K}_{i}(i=1,2, \cdots, n)$ and $\mathscr{\mathscr { F }} \mid\left(L^{\prime} \cap N^{\prime}\right)$ is a codimension one C^{r} foliation of $L^{\prime} \cap N^{\prime}$. Let Σ^{\prime} be a polygon obtained from $L^{\prime} \cap N^{\prime}$ by cutting down the ends of $L^{\prime} \cap N^{\prime}$ as in the proofs of Propositions 3.5 and 4.2. Then $\overline{\mathscr{F}} \mid \Sigma^{\prime}$ is a codimension one C^{r} foliation of Σ^{\prime} with n singular points in $\partial \Sigma^{\prime}$. Let $\Sigma^{\prime} \cup \Sigma^{\prime}$ be the double of Σ^{\prime} obtained from two copies of Σ^{\prime} by identifying the two copies of the closure of $\partial \Sigma^{\prime}-\left(\partial \Sigma^{\prime} \cap \partial N^{\prime}\right)$. The double of $\overline{\mathscr{F}} \mid \Sigma^{\prime}$ determines a codimension one C^{r} foliation of the double $\Sigma^{\prime} \cup \Sigma^{\prime}$ with n singular points. The indices of these singular points are all -1 , since $\overline{\mathscr{F}} \mid \hat{K}_{i}(i=1,2, \cdots, n)$ are minus Reeb components. $\Sigma^{\prime} \cup \Sigma^{\prime}$ is an n punctured surface of genus $2 g^{\prime}$ for some $g^{\prime} \leqq g$. Thus, by considering the Euler number of $\Sigma^{\prime} \cup \Sigma^{\prime}$, we have

$$
2-4 g^{\prime}-n=-n
$$

This is a contradiction. Therefore there does not exist a codimension one C^{r} foliation transverse to \mathscr{F}. Thus Theorem A in Section 0 is proved.

Remark 12.5. In case k is a trefoil knot, the homomorphism ϕ_{*} induced from the monodromy map of the fibering $\pi: E_{1} \rightarrow S^{1}$ is given by the matrix $\left(\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right)$. Thus Theorem C implies Theorem A in case k is a trefoil knot. On the contrary, in case k is a figure eight knot, the homomorphism ϕ_{*} is given by $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Thus, by Theorem C, there exists a transversely orientable codimension one C^{r} foliation of E_{1} transverse to \mathscr{F}_{π} in this case. However, Theorem A shows that this codimension one foliation cannot be extended to a codimension one C^{r} foliation of S^{3} transverse to \mathscr{F} in Theorem A.

§ 13. Some examples of vector fields on foliations

In this section we study vector fields on codimension one C^{r} foliations of 3-dimensional C^{∞} manifolds which are not transversely integrable ($r \geqq 1$).

Let E be a compact connected orientable 3-dimensional C^{∞} manifold with boundary and let $\pi: E \rightarrow S^{1}$ be a C^{∞} fibering over S^{1} with fibre $\Sigma_{g}(m)(m \geqq 1)$. We fix a Riemannian metric on E. Let $\mathscr{F}_{\pi}^{\varepsilon}$ be a codi-
mension one C^{∞} foliation of E as in Section 4 and let L be a noncompact leaf of $\mathscr{F}_{\pi}^{\varepsilon}$.

Let $\partial E=\bigcup_{k=1}^{s} T_{k}^{2}$ as in Section 4 and let $c^{(k)}: T^{2} \times I \rightarrow E, c^{(k)}\left(T^{2} \times\{0\}\right)$ $\subset \partial E$ be a sufficiently thin collar of T_{k}^{2} in E such that $\pi\left(c^{(k)}(\{y\} \times I)\right)=$ $\pi\left(c^{(k)}(y, 0)\right)$ for $k=1,2, \cdots, s$. Let $p^{(k)}: c^{(k)}\left(T^{2} \times[0,1)\right) \rightarrow T^{2}$ be the projection defined by $p^{(k)}(y, t)=y$. Let x be a point of T_{k}^{2} and let x_{1}, x_{2}, \cdots, x_{n}, \cdots be points of $c^{(k)}(\{x\} \times[0,1)) \cap L$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

Obviously this implies that

$$
\lim _{n \rightarrow \infty} p^{(k)}\left(x_{n}\right)=x
$$

and that there exist sufficiently small neighborhoods U_{x} of x in T_{k}^{2} and $U_{x_{n}}$ of x_{n} in $L(n=1,2, \cdots)$ such that $p^{(k)} \mid U_{x_{n}}: U_{x_{n} \rightarrow} \rightarrow U_{x}$ is a C^{∞} diffeomorphism. A C^{r} tangent vector field Y on L is said to be convergent if, for any point $x \in T_{k}^{2}(k=1,2, \cdots, s)$ and any choice of x_{n} and $U_{x_{n}}$ $(n=1,2, \cdots)$, the sequence of vector fields $d p^{(k)}\left(Y \mid U_{x_{n}}\right)(n=1,2, \cdots)$ converges to a C^{r} vector fields of U_{x} in the C^{r} topology. A convergent C^{r} tangent vector field Y on L is said to be non-singular if there exists a positive real number $\varepsilon>0$ such that $|Y(x)|>\varepsilon(x \in L)$.

Let Y be a convergent C^{r} tangent vector field on L. Then we can define a vector field \bar{Y} on ∂E by

$$
\bar{Y}(z)=\lim _{n \rightarrow \infty} d p^{(k)}\left(Y\left(x_{n}\right)\right) \quad\left(z \in T_{k}^{2}\right)
$$

where $\left\{x_{n}\right\}$ is a sequence of points of L such that $\lim _{n \rightarrow \infty} x_{n}=z$. As is easily verified, \bar{Y} is a C^{r} tangent vector field on ∂E. The vector field \bar{Y} on ∂E defined as above is called the limit vector field of Y and is denoted by $\lim Y$. In case Y is non-singular convergent, then $\lim Y$ is nonsingular.

We have the following propositions:
Proposition 13.1. Let $\mathscr{F}_{R}^{(+)}$be the plus Reeb foliation of the solid torus $S^{1} \times D^{2}$ and let L be a noncompact leaf of $\mathscr{F}_{R}^{(+)}$. Suppose that Y is a non-singular convergent C^{r} tangent vector field on $L(r \geqq 1)$. Then the limit vector field $\lim Y$ on $S^{1} \times \partial D^{2}$ has the following properties:
(i) $\lim Y$ has at least one closed orbit.
(ii) Let $L_{\text {comp }}$ be a closed orbit of $\lim Y$ and $\left[L_{\text {comp }}\right]$ be the homology class of $H_{1}\left(S^{1} \times \partial D^{2}\right)$ represented by $L_{\text {comp }}$. Then it holds that

$$
\left[L_{c o m p}\right]=a \alpha+b \beta, \quad a= \pm 1
$$

where α and β are generators of $H_{1}\left(S^{1} \times \partial D^{2}\right)$ as in Section 2.
(iii) Let p and q be the numbers of the plus and the minus Reeb components in the codimension one C^{r} foliation of $S^{1} \times \partial D^{2}$ formed by the orbits of $\lim Y$. Then it holds that

$$
p-q=2
$$

The proof of Proposition 13.1 is the same as that of Proposition 3.6.
Proposition 13.2. Let E and $\mathscr{F}_{\pi}^{\varepsilon}$ be as above, and let L be a noncompact leaf of $\mathscr{F} \mathscr{F}_{\pi}^{\varepsilon}$. Suppose that Y is a non-singular convergent C^{r} tangent vector field on $L(r \geqq 1)$. Let $\overline{\mathscr{F}}$ denote the codimension one C^{r} foliation of ∂E formed by the orbits of the limit vector field $\lim Y$ of Y, and let $a_{k}, b_{k}, c_{k}, p_{k}$ and q_{k} be as in Section 4. Then the equation of Proposition 4.2 holds.

The proof of Proposition 13.2 is the same as that of Proposition 4.2.
Proposition 13.3. Let $\mathscr{F}_{R}^{(+)}, L$ and Y be as in Proposition 13.1. Suppose that there exists a C^{r} vector field Y_{1} on a neighborhood U of $S^{1} \times \partial D^{2}$ in $S^{1} \times D^{2}$ tangent to $\mathscr{F}_{R}^{(+)}$such that $Y_{1}|(L \cap U)=Y|(L \cap U)$. Then there exists a non-singular C^{r} vector field \hat{Y} on $\mathscr{F}_{R}^{(+)}$such that $\hat{Y} \mid L=Y$.

Proof. Let $\tau\left(S^{1} \times D^{2}\right)$ denote the tangent bundle of $S^{1} \times D^{2}$ and let τ_{1} denote the 2-plane bundle over $S^{1} \times D^{2}$ which is a subbundle of $\tau\left(S^{1} \times D^{2}\right)$ consisting of vectors tangent to leaves of $\mathscr{F}_{R}^{(+)}$. Let G be a subset of $\{*\} \times D^{2}$ such that G is diffeomorphic to $\partial D^{2} \times I$ and is contained in U and that one of the connected components of ∂G is a submanifold of L and the other is a submanifold of $S^{1} \times \partial D^{2}$. (Fig. 29). Let Σ denote the compact subset of L bounded by $G \cap L$. We denote by W the compact 3-dimensional manifold obtained by cutting $S^{1} \times D^{2}$ at $\Sigma \cup G$ (Fig. 29). Since W is homeomorphic to the 3-disk, the 2-plane bundle τ_{1}^{\prime} over W obtained from τ_{1} is trivial. Thus, by making use of a trivialization of τ_{1}^{\prime}, the union of the vector fields $Y \mid \Sigma$ and $Y_{1} \mid\left(G \cup S^{1} \times \partial D^{2}\right)$ defines a continuous map

$$
\partial W \rightarrow \boldsymbol{R}^{2}-\{0\} .
$$

Since $\pi_{2}\left(\boldsymbol{R}^{2}-\{0\}\right)=0$, this map can be extended over W. This implies the existence of \hat{Y} as in this proposition.

We remark that, for given two non-singular convergent C^{r} tangent vector fields Y on L and Y^{\prime} on L^{\prime} such that $\lim Y=\lim Y^{\prime}$, a result similar to Proposition 13.3 holds, where L and L^{\prime} are noncompact leaves of $\mathscr{F}_{R}^{(+)}$.

Fig. 29.

Proposition 13.4. Let $\Sigma_{0}(3), S^{1} \times S_{k}^{1}, \alpha_{k}, \beta_{k}(k=0,1,2), \pi: S^{1} \times \Sigma_{0}(3)$ $\rightarrow S^{1}$ and $\mathscr{F}_{\pi}^{\varepsilon}$ be as in Section 10, and let L be a noncompact leaf of $\mathscr{F}_{\pi}^{\varepsilon}$. Suppose that Y is a non-singular convergent C^{r} tangent vector field $(r \geqq 1)$ on L satisfying the following conditions (i), (ii), (iii):
(i) There exists a C^{r} vector field Y_{1} on a neighborhood U of ∂E in E tangent to $\mathscr{F}_{\pi}^{\varepsilon}$ such that $Y_{1}|(L \cap U)=Y|(L \cap U)$.
(ii) $\lim Y \mid\left(S^{1} \times S_{k}^{1}\right)$ has at least one closed orbit for $k=0,1,2$.
(iii) Let the homology class of $H_{1}\left(S^{1} \times S_{k}^{1}\right)$ represented by a compact leaf of $\lim Y \mid\left(S^{1} \times S_{k}^{1}\right)$ be $a_{k} \alpha_{k}+b_{k} \beta_{k}$ and let p_{k} and q_{k} be the numbers of plus and minus Reeb components of the codimension one C^{r} foliation of $S^{1} \times S_{k}^{1}$ formed by the orbits of $\lim Y \mid\left(S^{1} \times S_{k}^{1}\right)$ for $k=0,1,2$; then it holds that $a_{k}=1$ and $p_{k}-q_{k}=2$ for $k=1,2$.

Then there exists a non-singular C^{r} vector field \hat{Y} tangent to $\mathscr{F}_{\pi}^{\varepsilon}$ such that $\hat{Y} \mid L=Y$ if and only if $b_{1}=3 b_{0}, b_{2}=3 b_{0}$.

Proof. By Proposition 13.2, we have $\left|a_{0}\right|\left(p_{0}-q_{0}\right)=-6$. Let $\overline{y_{0} y_{1}}$ and $\overline{y_{0}^{\prime} y_{2}}$ be two straight lines in $\Sigma_{0}(3)$ such that $y_{0}, y_{0}^{\prime} \in S_{0}^{1}, y_{1} \in S_{1}^{1}, y_{2} \in S_{2}^{1}$ and $\overline{y_{0} y_{1}} \cap \overline{y_{0}^{\prime} y_{2}}=\phi$ (Fig. 30).

First suppose that there exists a C^{r} vector field \hat{Y} as above. As was mentioned in Section 10, the natural framing of the tangent bundle $\tau(L)$ of a noncompact leaf L of $\mathscr{F}_{\pi}^{\varepsilon}$ gives a trivialization of $\tau\left(\mathscr{F}_{\pi}^{\varepsilon}\right)$. The framing as above induces the framings $\left\{\partial / \partial \theta, \partial / \partial \theta_{0}\right\}$ of $\tau\left(S^{1} \times S_{0}^{1}\right)$ on $S^{1} \times$ $\left\{y_{0}\right\}$ and $\left\{-(\partial / \partial \theta), \partial / \partial \theta_{1}\right\}$ of $\tau\left(S^{1} \times S_{1}^{1}\right)$ on $S^{1} \times\left\{y_{1}\right\}$, where $\partial / \partial \theta, \partial / \partial \theta_{0}$ and $\partial / \partial \theta_{1}$ are unit tangent vectors of S^{1}, S_{0}^{1} and S_{1}^{1} with orientations as in Section 10 respectively (Fig. 30).

The vector field $\hat{Y} \mid\left(S^{1} \times \overline{y_{0} y_{1}}\right)$ defines a continuous map

$$
f_{Y}: S^{1} \times \overline{y_{0} y_{1}} \rightarrow S^{1}
$$

by

$$
f_{\hat{\mathfrak{r}}}(x, s)=\left(u / \sqrt{u^{2}+v^{2}}, v / \sqrt{u^{2}+v^{2}}\right),
$$

where u and v are components of $\hat{Y}(x, s)$ with respect to the framing as above at $(x, s) \in S^{1} \times \overline{y_{0} y_{1}}$. Since $a_{1}=1$ and $p_{1}-q_{1}=2$, the degree of the map $f_{\hat{p}} \mid\left(S^{1} \times\left\{y_{1}\right\}\right): S^{1} \times\left\{y_{1}\right\} \rightarrow S^{1}$ is $-b_{1}$. On the other hand, since $\left|a_{0}\right|\left(p_{0}-q_{0}\right)=-6$, the degree of the map $f_{\hat{Y}} \mid\left(S^{1} \times\left\{y_{0}\right\}\right): S^{1} \times\left\{y_{0}\right\} \rightarrow S^{1}$ is $-3 b_{0}$. Obviously $f_{\hat{Y}} \mid\left(S^{1} \times\left\{y_{1}\right\}\right)$ and $f_{\hat{\gamma}} \mid\left(S^{1} \times\left\{y_{0}\right\}\right)$ are homotopic. Thus we have $b_{1}=3 b_{0}$. Similarly we have $b_{2}=3 b_{0}$.

Conversely if it holds that $b_{1}=3 b_{0}$ and $b_{2}=3 b_{0}$, then, by making use of the argument as above, the tangent vector field $\left(Y \cup Y_{1}\right) \mid\left(\left(S^{1} \times \overline{y_{0} y_{1}}\right) \cap U^{\prime}\right)$ can be extended to a non-singular C^{r} tangent vector field of $\tau\left(\mathscr{F}_{\pi}^{\varepsilon}\right)$ on $S^{1} \times \overline{y_{0} y_{1}}$, where U^{\prime} is a suitably chosen neighborhood of $\left(S^{1} \times\left\{y_{0}\right\}\right) \cup$ ($S^{1} \times\left\{y_{1}\right\}$) such that $U^{\prime} \subset U$. We can make a similar extension for $S^{1} \times$ $\overline{y_{0}^{\prime} y_{2}}$.

The 3-dimensional C^{∞} manifold with corner obtained from $S^{1} \times \Sigma_{0}(3)$ by cutting along $S^{1} \times \overline{y_{0} y_{1}}$ and $S^{1} \times \overline{y_{0}^{\prime} y_{2}}$ is homeomorphic to the solid torus. Therefore, by the same argument as in the proof of Proposition 13.3, we have a vector field \hat{Y} with desired properties. Thus this proposition is proved.

Now we show an example of vector fields as in Proposition 13.4. Let Y be a C^{∞} tangent vector field on a noncompact leaf L_{0} of \mathscr{F}_{π}^{e} shown by the vector field on $A_{0}=L_{0} \cap A$ as in Fig. 31, (a) with the limit vector field $\lim Y$ as in Fig. 31, (b), where A_{0} is as in Section 9. Remark that a_{k}, b_{k}, p_{k} and q_{k} in Proposition 13.4 are as follows:

Fig. 31
(a)

(b)

$$
\begin{array}{lll}
a_{0}=1, & b_{0}=1, & a_{1}=a_{2}=1,
\end{array} b_{1}=b_{2}=3, ~ 子, ~ q_{1}=q_{2}=0 . ~ \$ n, ~ p_{1}=p_{2}=2, \quad q_{1}=0,
$$

Then Y can be extended to a C^{∞} vector field \hat{Y} on $S^{1} \times \Sigma_{0}(3)$ tangent to $\mathscr{F}_{\pi}^{\varepsilon}$ as is shown in Fig. 32. This construction is due to Koichi Yano.

The following proposition is obvious (cf. [6, Theorem 7]).
Proposition 13.5. Let \mathscr{F} be a codimension one C^{r} foliation of a 3-dimensional C^{∞} manifold $M(r \geqq 2)$. Then a codimension one C^{r} foliation \mathscr{F}^{\prime} of M is transverse to \mathscr{F} if and only if there exists a non-singular C^{r-1} vector field X on M tangent to \mathscr{F} such that X is transverse to each leaf of \mathscr{F}^{\prime}.

Thus, by Theorem 10.1, there does not exist any codimension one C^{r} foliation of $S^{1} \times \Sigma_{0}(3)$ to which C^{∞} vector field \hat{Y} of Fig. 32 is transverse. Making use of the following proposition, this fact can be shown directly as below.

Let Y be a non-singular C^{r} vector field ($r \geqq 1$) on a 3-dimensional C^{∞} manifold M and let C be a simple closed C^{r} curve on M. If $\left|\sin \theta_{x}\right|$ $<\varepsilon$ holds for the angle θ_{x} formed by $Y(x)$ and the tangent vector of C at x for any point $x \in C$, the simple curve C is called an ε-closed orbit of Y.

Proposition 13.6. Let Y be a non-singular C^{r} vector field $(r \geqq 2)$ on a compact 3-dimensional C^{∞} manifold such that $Y \mid \partial M$ is tangent to ∂M if $\partial M \neq \phi$ and let $\left\{C_{\sigma}\right\}(\sigma \in \Sigma)$ be the set of all the closed orbits of Y. Suppose that, for given $\varepsilon>0$, there exists always an ε-closed orbit $C(\varepsilon)$ such that $C(\varepsilon)$ is null homotopic in $M-\bigcup_{\sigma \in \Sigma} C_{\sigma}$. Then there does not exist any codimension one C^{r} foliation of M transverse to the one dimensional foliation $\overline{\mathscr{F}}$ of M formed by the orbits of Y.

Proof. Assume that there exists a codimension one C^{r} foliation \mathscr{F} of M transverse to $\overline{\mathscr{F}}$. Then, for a sufficiently small $\varepsilon>0$, an ε closed orbit $C(\varepsilon)$ of Y as above is transverse to \mathscr{F}. $C(\varepsilon)$ bounds a 2-disk immersed in $M-\bigcup_{\sigma \in \Sigma} C_{\sigma}$. Therefore, by Novikov's result [4], there exists $S^{1} \times D^{2}$ imbedded in M such that $\{*\} \times D^{2}$ is contained in the immersed 2-disk and $\mathscr{F} \mid\left(S^{1} \times D^{2}\right)$ is the Reeb foliation. Since $Y \mid\left(S^{1} \times D^{2}\right)$ is transverse to $\mathscr{F} \mid\left(S^{1} \times D^{2}\right)$, there exists a closed orbit of $Y \mid\left(S^{1} \times D^{2}\right)$ which intersects the immersed 2-disk. This is a contradiction. Thus this proposition is proved.

The original type of this proposition is due to Yano [8].
For the C^{∞} vector field of Fig. 32, an ε-closed orbit $C(\varepsilon)$ of Y satisfying the conditions in Proposition 13.6 exists as is shown in Fig. 33. (Fig. 33 shows a part of a covering of A.) This proves the statement above.

Fig. 33.
In the following we show the existence of a non-singular C^{∞} vector field X on the plus Reeb foliation $\mathscr{F}_{R}^{(+)}$of the solid torus $S^{1} \times D^{2}$ such that there does not exist any codimension one C^{r} foliation ($r \geqq 2$) of $S^{1} \times D^{2}$ transverse to X. Let X be a C^{∞} vector field on $\mathscr{F}_{R}^{(+)}$such that $X \mid A_{0}$, $X \mid A_{1 / 2}$ and $X \mid\left(S^{1} \times S^{1}\right)$ are as in Fig. 34. This construction is also due to Koichi Yano. By the remark after Proposition 13.3, such a C^{∞} vector field X exists. Suppose that there exists a codimension one C^{r} foliation

Fig. 34.
$(r \geqq 2)$ transverse to X, say \mathscr{F}^{\prime}. Let $\overline{\mathscr{F}}=\mathscr{F}_{R}^{(+)} \cap \mathscr{F}^{\prime}$. Then $\overline{\mathscr{F}} \mid\left(S^{1} \times D^{2}\right)$ has a compact leaf \bar{L} as in Fig. 34, (c). Consider the leaf L^{\prime} of \mathscr{F}^{\prime} containing \bar{L} and the simple curves $\bar{L}_{0}=L^{\prime} \cap A_{0}$ in A_{0} and $\bar{L}_{1 / 2}=L^{\prime} \cap A_{1 / 2}$ in $A_{1 / 2}$ (Fig. 34, (a), (b)). \bar{L}_{0} shows that

$$
L^{\prime} \cap\left(S^{1} \times \partial D^{2}\right)-\bar{L} \subset S^{1} \times\left[a_{5}, a_{8}\right]
$$

and, on the other hand, $\bar{L}_{1 / 2}$ shows that

$$
L^{\prime} \cap\left(S^{1} \times \partial D^{2}\right)-\bar{L} \subset S^{1} \times\left[a_{9}, a_{12}\right]
$$

However the leaf $L^{\prime} \cap\left(S^{1} \times \partial D^{2}\right)-\bar{L}$ of $\overline{\mathscr{F}}$ transverse to $X \mid\left(S^{1} \times \partial D^{2}\right)$ cannot satisfy the above implications. Thus \mathscr{F}^{\prime} as above does not exist.

References

[1] A. Davis and F. W. Wilson, Jr., Vector fields tangent to foliations, I ; Reeb foliations, J. Differential Equations, 11 (1972), 491-498.
[2] T. Nishimori, Existence problem of transverse foliations for some foliated 3-manifolds, Tôhoku Math. J., 34 (1982), 179-238.
[3] , Foliations transverse to the turbulized foliations of punctured torus bundles over a circle, Hokkaido Math. J., 13 (1984), 1-25.
[4] S. P. Novikov, Topology of foliations, Trudy Moskov Mat. obšč., 14 (1965), 248-278; A.M.S. Transl., 1967, 268-304.
[5] B.L. Reinhart, Line elements on the torus, Amer. J. Math., 81 (1959), 617-631.
[6] I. Tamura and A. Sato, On transverse foliations, Publ. Math. I.H.E.S., 54 (1981), 5-35.
[7] K. Yano, Asymptotic cycles on two dimensional manifolds, this volume. -, Non-singular Morse-Smale flows on 3-manifolds which admit transverse foliations, this volume.

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo, 113 Japan

