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Introduction

Let Diff;(R™) be the group of C"-diffeomorphisms (1 <r<L o) of R”
with compact support. Diff;(R") is a topological group with respect to
the C”-topology. Let Diff7(R")’ denote the same group Diff7(R") with
the discrete topology. The identity map Diff7(R*)’*—Diff7(R™) induces a
continuous map between their classifying spaces; B Diff5(R")’— BDiff;(R").
Let BDiff7(R*) denote the homotopy theoretic fiber of this map.
BDiff7(R*) is the classifying space for C’-foliated R”-products with
compact support.

The topology of the space BDiff7(R") is closely related to that of
Haefliger’s classifying space BI'%, for I',-structures of class C* with
trivialized normal bundles. In fact, Mather [19] and Thurston [33] (see
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38 T. Tsuboi

also Mather [22]) proved that
H,(Q"BI';; Z)=H(BDifl (R"); Z),

where £ denotes the n-fold loop space. Hence, if BDiff7(R") is m-acyclic,
then BI'; is (n-m)-connected.

It is known by using the characteristic classes of foliations (e.g. the
Godbillon-Vey class [8, 33]) that H,,(BDiff7(R"); Z) is highly nontrivial
for r=2. It is natural to ask whether H, (BDiff7(R"); Z)=0 for r=2,
1<m<n or for r<1, m whatever (Thurston [33], Mather [22], etc.).
In the case where r=0, Mather [18] proved that BHomeo.(R")
(~BHomeo (R")’) is acyclic. For m=1, Mather [21] and Thurston [33]
proved that H(BDiff7(R*); Z)=0if 1<r< co, r#n41.

Now our main theorem of this paper-is the following.

Theorem. HABDT;(R”);Z):(; if 1§r<‘[n/l2]. . ‘
H,(BDIff(R"); Z)=0 if 1<r<[(n+1)/m}—1 (m=1).

Hence B, is (n+2)-connected if r<[n/2] and B[ is (n+m)-
connected if r<[(n+1)/m]—1. For example, for r=2, we see that B[,
(n=6) is (n+2)-connected and that Bl (n=>4m—1) is (n+m)-connected.
Note that, since H,,,(BDiff3(R"); Z)+0, BI'2 is not (2n+ 1)-connected.

This paper is organized as follows. In Section 1, we give the defini-
tion and the generalities of foliated products. - We discuss their classifying
spaces in Section 2. There, we briefly review the theorem of Mather [19]
and Thurston [33] which says that H,(2"BI";; Z)= H,(BDiff;(R"); Z).

We explain the idea of the proof of our main theorem in Section 3.

The proof of our theorem is in some sense similar to Mather’s proof ([18])
of the acyclicity of the group of homeomorphisms of R™ with compact
support. For a homeomorphism f, Mather constructed an infinite com-
position of conjugates géfg=* (i=0). This construction does not work in
the differentiable case. To gain the differentiability, we replace the
semigroup {g%; 1=>0} by a semigroup with bigger growth (e.g., a free semi-
group * Z, with 2* generators). For a foliated product over a cube, we
define its subdivision. By conjugating the resulted foliated products by
elements of the semigroup, we construct a foliated product which plays a
role similar to the infinite composition [] gifg—*.
. . For a precise construction of this foliated product, we study the
topology of the group of diffeomorphisms in Section 4 and we give a
required semigroup in Section 5.

For our construction, it is more convenient to work with the cubic
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homology theory (Serre [31]), because it behaves nicer with respect to the
subdivisions of foliated products and the conjugations by the elements of
our semigroup. We review the cubic homology theory in Sections 6 and 7.
It is worth noticing that for the homological study of foliated products,
the cycles represented by tori are of special importance. The cubic
homology theory is better adapted, because the tori are written simpler.

- In Section 8 we give our construction. There, we reprove a theorem
of Mather [21] which says that H,(BDiff7(R*); Z)=0if 1<r<n+1.

In Section 9 we prove that Hy(BDIiff7(R"); Z)=0 for r<[n/2].

There, we give diagrams which represent the face relations of chains. In
Section 10 we prove the other part of our main theorem;

H,(BDiff/(R"); Z)=0  for ‘1§r<[(n-|—1)/m]-—l.

In -Appendix, we describe several operations on foliated products
and give a proof of the other part of Mather’s perfectness theorem ([21]),
i.e., H(BDIff7(R"); Z)=0 if n+1<r<oo. The. proof is obtained by
reversing the construction for the case 1 <r<n+1 and using a fixed point
theorem. .

By a method similar to that of this paper, the author proved that
H,(BDiffY(R*); Z) =0 (n=1).. The proof uses the Denjoy-Pixton C'-
action [26]. The proof of this will appear elsewhere.

The author obtained some of the results in this paper during his
stay at Institut des Hautes Etudes Scientifiques and at Université de
Genéve in 1982. The author wishes to thank them for their hospitality.
He also wishes to thank A. Haefliger, K. Masuda and T. Mizutani for
their comments on the earlier version of this paper.

§1. Foliated products

In this section, we discuss the generalities on foliated products. See
[5,9,12,33]. Let G be a group of C"-diffeomorphisms (1<r< o) of a
manifold M with the C"-topology. Let G° denote the group G with the
discrete topology.

G-foliated M-product. A G-foliated M-product over a topological
" space Y is an equivalence class of the triples ({ Ul}ze wJo &) (E{Uies
{f}1e0 {82u}2,e0), Where

(i) {Uliea is an open covering of Y,

(ii) fi: U;—G is a continuous map, and

(iii) g U;NU,—G is a locally constant map such that:

) =g (e UNT,):
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Here, two such triples ({U}sc 4., f% 8%) (i=1,2) are equivalent if there
exists a triple ({U}ies fir &) Which contains ({Uilze s [ 85) (i=1,2).
Note that for g € G, ({U}zes £28> 87'82,8) is equivalent to ({U}ics /i 810)-

An M-bundle with the structural group G over Y is given by a
cocycle ({Ulies 82.), Where {U},c, is an open covering of Y and
&, U;NU,—G is a continuous map satisfying g,.2,.,=g; on U;,NU,NU..
The total space of this bundle is obtained from the disjoint union of
U, XM (2e A), by identifying (¥, x)) € Uy XM and (y,, x,) ¢ U, XM if
=y, and x,=g,(y)x,). If g, is a locally constant map, that is, if
8. UuNU,—G, a cocycle ({Us}zes 82) defines a G-foliated M-bundle.
We have a foliation of the total space of this M-bundle transverse to the
fibers. The leaves of this foliation are locally given as the level sets
Ux{x}(xe M)in U, X M.

G-foliated M-products are exactly those G-foliated M-bundles which
are trivial (ized) M-bundles. For, for a triple ({U}}, 3, 8.), by the condi-
tions (ii) and (iii), ({U}, g2.) is a G’-valued cocycle which defines a G-
foliated M-bundle; and by (ii), this cocycle is a coboundary as a G-valued
cocycle. A trivialization is induced from the map which sends (y,, x;) €
U XM to (Vo fi(p)(x) e YXM. Hence the foliation of the product
Y X M is described as follows: the leaf passing through the point (y, x) €
YX M is locally of the form {(y, fi(y)f(») '(x)); y: € U}, where y is
contained in an open set U, belonging to the covering {U;} of ¥ (We may
assume that U, is connected).

Holonomy. Let Y be a path connected space with the base point y,.
Put
PY={a: [0, 1]>Y; a is continuous, a(0)=y,}.

We also consider PG, where the base point of G is the identity;
PG={a: [0, 11-G; a is continudus, a(0)=id}.

PG is a topological group.

Let & be a G-foliated M-product over Y. For an element g e PY
and a point x € M, there uniquely exists a lift @(x): [0, 1]—Y X M such that
a(x)(0)=(y,, x) and @(x)([0, 1]) is contained in a leaf of #. Put

a(x)(t)=(a(?), a(t)(x)), [0, 1];

then 4 is an element of PG. Hence we obtain a map PY—PG. . If two
paths a,, a, e PY are homotopic relative to {0, 1}, then we have 4,(1)=
d(1) e G. Suppose that Y has the universal cover =: Y—Y. Then the
map PY—>PG induces a map h: Y—G. This map 4 up to the right action
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of G does not depend on the choice of the base point y, of Y. We call £
the holonomy of &, which is defined up to the right action of G.

Let 7, be the base point of ¥ which is a lift of y,; 7(,)=y,. For an
element / € z,(Y, y,), define h(l} by k(l)=h(j,]) ¢ G. (We are assuming
here that A(7,)=1d; otherwise we define (/) by k() =h(,)~'A(7,]).) Then
his a homomorphism #(Y, y,)—G and & is a z,(Y, y,)-equivariant map
with respect to &, i.e.,

WD =h()k()  for je ¥ and /e (Y, y,).

Conversely, suppose that we have a =,(Y, y,)-equivariant map r: Y—>G
with respect to k: z(Y, y,)—G. (Since h(I)=h(,)"'h(F,l), h is deter-
mined by A) Then we obtain a G-foliated M-product F over Y with
holonomy #. For, take a covering {U,} of ¥ which is evenly covered by
n: Y—Y. Let V,c¥ be an open set such that =| V,; V;—U, is a homeo-
morphism. The triple representing % is obtained as follows: The map
fi: U;—G is given as the composition of i| ¥, and (z|V))~': U,—V,; the
map g,, is obtained from &: x,(Y, y)—G. In other words, & defines a
G-foliated M-product over ¥ whose leaf passing through (J, x) € ¥ X M is
{@z K(2h(F)"{(x)); ze ¥}. This foliation is invariant under the action of
7Y, y,) in the direction of ¥. Hence we obtain a G-foliated M-product
over Y.

It is easy to see that two x,(Y, y,)-equivariant maps ,: Y—-G (i=1, 2)
with respect to h;: (Y, y,)—G define the same G-foliated M-product
over Y if there exists an element g ¢ G such that A,=h,g and h,=g 'h.g.

If we have a map f: Y—G, by composing with z: ¥—Y, we obtain
a G-foliated M-product % ; whose holonomy is fr. In this case, the open
covering of Y of the defining triple of the foliated product consists of only
one open set Y. For f;: Y—G (i=1, 2), if # ; =%, then there exists
an element g of G such that f,=fg.

If Y is simply connected, then Y=Y and the holonomy is a map
Y—G. Thatis, any G-foliated M-product & over Y is obtained as &,
with f: Y—G.

For a G-foliated M-bundle over Y, we have its holonomy k: 7,(Y, y,)
->G. Conversely, if we have a homomorphism h: =,(Y, y,)—G, we
obtain a G-foliated M-bundle over Y with holonomy & from the product
foliation ¥'x {x} (x € M) of ¥ X M by the identification under the action
of (Y, y,). Here the action of z,(Y, y,) is given by (¥, x) = (51, h(l)~(x))
for I e n (Y, »,)-

For a G-foliated M-product over Y, we obtain the holonomy 4 and
the homomorphism 4. The homomorphism & defines a G-foliated M-
bundle in the way described above and # gives a trivialization of this M-
bundle. '
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Homotopy.. Two G-foliated M-products over a.topological space Y
are said to be homotopic if they are the restrictions to Y X {0} and to
Y x {1} of a G-foliated M-product over Y X[0, 1]. In terms of holonomy,
a homotopy is given by a continuous family {(4;, k,); t € [0, 1]} of con-
tinuous maps 4,: ¥—G and homomorphisms &,: z,(Y, y,)—G such that
h, (3D =h,(Pk. () and k,()=a(t)h)a(t)"', for e ¥,1ex(Y,y,) and
t € [0, 1], where « is an element of PG. L :

Conjugation. For an element g'e G and a G-foliated M-product F
over Y, we define a G-foliated M-product g& over Y. Let & be given
by ({UA}AGA,f;h g&;x) Then gg_ iS given by ({Ux}xe/b g.ﬁb gl/z)' Note that
this triple is equlvalent to ({U l}le » &gt gg,u,g“‘) In terms of the
holonomy, if & is given by the holonomy 4: Y-—>G and the homomorphism
h: (Y, y)—G, gZ is given by gh and k (or ghg‘l and ghg™").

Let o be an element of PG. Then a(1).# is homotopic to &#. F or
we have a G-foliated M-product ({U,X[0, 11}, @fe &) over YX[0,1]
whose restnctlons to Y x {0} and to Y X {1} coincide w1th F and a()F,
respectively.

Foliated products with smooth leaves. Now suppose that G has a
C=-manifold structure such that G X G——>G given by (g, g,)—g.g, is
smooth with respect to g,. We can consider a G-foliated M-product
({Uties fo» 82) Over a smooth manifold Y such that f;: U,—G is a smooth
map. In other words, such a - G-foliated M-product-is given by a
holonomy 4: ¥—G which is smooth. - When G is the group Diff"(M)
[resp. Diff7(M)] of the C-diffcomorphisms of M [resp. with compact
support], any G-foliated M-product over a manifold Y is homotopic to
such a G-foliated M-product.

Let & be a G-foliated M-product over a. smooth manifold Y such
that fi: U 1—>G is smooth. Since the leaves of F . are locally of the form

AL ‘(x)) Vi€ Ux} cUX M,

they are of class C~. We have a fibre-wise linear map X from the tangent
bundle of Y to the space (M) of C7-vectorfields on M. For ye U,
(CY) and x € M, this linear map X,(x) is given as the Jacobian at'y of
the map y,—£,(¥)fi(»)" '(x). Note that, if 1Sr<oo this map may not
be smooth with respect to y.

If we fix Riemannian metrics on Y and on M we can define the
norm (seminorm) of % by

lg"l—suplXH

where lX | is the C’-norm of the Vectorﬁeld X,.
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§ 2. Classifying spaces for foliated products -

Let G be a group of C’-diﬂ'eomorphlsmsm(1<rs o0) of a manifold
M with the C"-topology. Let G° denote the group G with the dlscrete
topology as before.

Classifying spaces. We have a classifying space BG for G-foliated
M-products. For a reasonable space Y, the homotopy classes of G-foliated
‘M-products correspond bijectively to the homotopy classes of continuous
maps Y—BG. This classifying space is denoted by BG ([33]). For, this
space can be identified with the classifying space for the topological group
G which is the fiber product of the identity G°—~G and PG—G, where

P”G‘z{a:v[O, 1]—G; «.is continuous, «(0)=id}

and the latter map is given by a—>a(1). - BG is the homotopy theoretic
fiber of the map BG’—BG induced from the identity map G°—G, where
the space BG classifies M-bundles with the structural group G and the
space BG® classifies M-bundles with the structural group G, i.e., G-follated
M- bundles Keep in mind the followmg fibration sequence

: G——)G”——-)G >BG >»BG’——>BG.

We have ‘the following construction of BG (see Mather [22]).  Let
S,(G) be the singular simplicial complex of G. The group G acts on
S.(G) freely on the right. Let

’={(t1’ ey tm) € R™; 'l.Ztlg tte 2tmgo}

be the standard m-simplex. . For a singular.simplex ¢: 4"—G and an
element g of G, ag: 4™—G is defined by

(8XD)=alg, e 4.

This action commutes with the face operators, so S4(G)/G is a semi-
simplicial complex. BG is given as the geometric realization IS*(G)/G[
of S4.(G)/G. We always consider BG given in this way.

A singular m-simplex ¢: 4™—G determines a G-foliated M-product
&, over 4™. Conversely, any G-foliated M-product & over 4™ is written
as &, with a map o: 4"—G. This map ¢ is unique up to the right G-
action. Thus, we have a bijective correspondence between the m-simplices
of BG and the G-foliated M-products over 4™ Roughly speaking, BG
classifies foliated products because it contains all foliated products over
simplices. Note that BG has only one 0-simplex. Hence every 1-chain
of S,(G)/G is a 1-cycle. :
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Now suppose that G has a C~-manifold structure such that G X G—G
given by (g,, g,)—g.g, is smooth with respect to g,. Then we can replace
S,(G) above by S3(G), the smooth singular simplicial complex of G. If
o: 4™—G@ is smooth, then gg: 4™—G is also smooth. Hence we obtain a
subcomplex S3(G)/G of Sy (G)/G. In many cases, for example when
G=DIiff;(M) (r=1), the inclusion |S3(G)/G|—|Sx(G)/G] is a homotopy
equivalence,

Now we consider the case when the group G is the group Diff"(M)
[resp. Diff7(M)] of C7-diffeomorphisms (1 <r =< o0) of M [resp. with com-
pact support]. We call a G-foliated M-product a (C"-) foliated M-product
[resp. with compact support]. The classifying space BDiff/(M) for C’-
foliated M-products with compact support is closely related to the clas-
sifying space B[}, for Haefliger’s I';-structures ([10, 11]).

BDiff(M ™) and BI',. (See Mather [22].) Let I'7, denote the group-
oid of germs of C7-diffeomorphisms of R" (1<r<oo) with the sheaf
topology. A I'i-structure on a topological space X is given by a ;-
valued 1-cocycle ({U;}, 7,,) (Haefliger [9]). We have the classifying space
BI'7 for I'7-structures (Haefliger [10, 11]). Letv: B['7—BO,, be the clas-
sifying map of the normal bundle of BI';. Let Bl denote the homotopy
theoretic fiber of this map. For a smooth manifold M of dimension n,
since its manifold structure is a /';-structure, we have a classifying map
M—BI'". The classifying map z,,: M—BO, of the tangent bundle of M
is the composition of the classifying map M—B[™, and v: B[':—BO.,,.
Then we obtain a fiber space tv over M with fiber BI; (the pull-back
of v). This fiber space t§v admits a section given by M—BIZ.

ti(Bly—>BI™;,

rﬁvl / lv
M——BO0,.
3’3
Let I'.(t#v) denote the space of sections which differ from the section
given by M— B[, only on a compact set. We have the following theorem
due to Mather [19] and Thurston [33].

Theorem (Mather-Thurston). Suppose that IM=¢. Then there ex-
ists a mapping BDiffy(M)—TI (t%v) which induces an isomorphism in
integer homology. In particular, there exists a mapping BDiff7(R™)—
Q" BI’;, which induces an isomorphism in integer homology, where 2" denotes
the n-fold loop space.

This theorem gives a motivation to studying the homology of
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BDIff"(R™). The followings have been known.

H,(BHomeo (R"); Z)=0 (i>0)  (Mather [I8]).
H(BDifl{(R"); Z)=0 (1=r=<oco, r#n+1)
(Mather [21], Thurston [33)).
H,.(BDiff{(R"); Z)+0 (r=2)
(Godbillon-Vey [8], Thurston [33], etc.).

There are many other results which says that H,,(BDiff7(R"); Z)+#0
for many m greater than n and r=2. These results are obtained by
using the characteristic classes of foliations and these homology groups
often have the dimension equal to the continuum (see [6,14, 32, 33]).

By the theorem above Bl is (n+1)-connected if r#£n-41 (at least
n-connected if r=n-+1). Also, if r=2, then BI'; is not (2n-+1)-con-
nected, and BI'} is contractible. (A similar theorem is true in the case
when r=0 ([33]).)

The main theorem of this paper says that H(BDIiff7(R"); Z)=0 if
r<[n/2] and H,(BDiff;(R"); Z)=0 if r<[(n+1)/m]—1. Hence B[ is
(n+2)-connected if r<[n/2] and (n+m)-connected if r<[(n+1)/m]—1.

§ 3. The idea of the proof of the main theorem

The proof of our theorem is in some sense similar to that of the
following theorem.
Theorem (3.1) (Mather [18]).
Z (i=0)
H,(BHomeo (R")’; Z)= .
0 (@>0).

Note that Homeo (R") is contractible. For, define #: Homeo (R") X [0, 1]
—Homeo (R") by
h(f, )X)=1f(x/t) (>0) and A(f,0)=id;

then £ is continuous. Hence BHomeo (R")~ BHomeo (R")’. First we
explain the proof of Theorem (3.1). '

Proof of the acyclicity of Homeo (R"). The homology of
BHomeo (R")’ is the homology of the following complex.

0 0 0 a a
0«—Z<«—Z[Gl«—Z[G X Gl«—Z[GX GX Gl«—: - -,
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where G=Homeo (R") and Z[G™]=Z[GX ---XG] is the free abelian
group generated by m-tuples (f}, ---,fn) ( ﬁ e G;i=1,--.,m). The
boundary @ on the generators is given by

a(ﬁa t 5fm)=(f2= v 5fm)
+:Zl(—l)i(fla M .’f‘i—l’f‘if‘i+19f’lj?'2’ . 9f7n)
+('"l)m(f;a ot '7fm—1) (m>l) and
A()=0 (m=1).

For an element /¢ Homeo,(R™) consider the followmg construction.
First choose an open ball U such that

Supp (f)=Cl {x; f(x) % x} C U.

For U, choose an element g, such that g*(U) (i=20) are disjoint and
diam g*(U)—0 as i—>oc0. We may assume that there is an open ball ¥ such
that C1 (U, g%(U)CV and UNV=¢. Since Supp (gifg-)cg’(U) and
|gifg~¢—id|,<diam g*(U), the infinite composition Tliz.gifg™* is a well-
defined homeomorphism of R" with supportin UU V. Put

1)=]1 8%
Note that ]2, g%fg~* can be written as I(gfg~"). Then we have
I(f)=fI(gfg™") and gI(f)g~'=1I(gfg™").

We prove Theorem (3.1) by an induction on i. Theorem (3.1) is
obvious for i =0. Suppose that Theorem (3.1) is true in the dimensions
smaller than 7. Let

e=3a(fi?, -, fP) (a;eZ)

v g g(U) giU)

Figure (3.1)
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o°

g °

s o °
g1 . o
O O °
() o °
L v ¥}
I(gfz™
n J
5
I(f)

Figure (3.2)

be an i-cycle. We may assume that Supp (f?)CU for any j and k
appearing in the i-cycle c. Put ’
I(c)=2 a,I(f{"), - - -, I(f{")) and
7
Igeg™) =33 a(I(efPg™, - -, Hefi"g ).

Since f—I(f) is a honiomorphjsm, these two i-chains are i-cycles.
Moreover, since gl(c)g~'=1(gcg™") and the inner automorphisms act as
the’identity on the homology of groups, I(c) is homologous to I(gcg™)
in BHomeo (R™)’.

On the other hand we have the following commutative diagram.
Hence we have the following commutative diagram

Homeoyuy(R")\
lg P Homeo (R™) ,

Homeo,(R") X Homeo,(R")
where
BHomeoy ,,(R")’—>BHomeo,(R")’ X BHomeo,(R")

is a homotopy equivalence. Since U and V are open balls, we have

BHomeoy,(R")? \
~ / BHomeo (R")’

BHomeoy(R")* X BHomeo,(R")’
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H, (BHomeoy(R"); Z)=H,(BHomeo,(R"); Z)
= H,(BHomeo (R"); Z).

By the induction hypothe51s and the Kiinneth formula we have .

H,(BHomeo,(R")’ X BHomeo,(R")’; Z) ..
= H,(BHomeoy (R"Y'; Z)H (B Homeo,(R"Y; Z).

The homology class of the i-chain I(c) of BHomeoy (R") is mapped
to that of c4I(gcg™") in H,(BHomeoy(R")’; Z)DH,(BHomeo, (R"Y; Z)
Hence c+I(gcg) and I(c) are homologous in BHomeo (R™)’. Since
I(gcg~")=glI(c)g~* is homologous to I(c), the i-cycle ¢ is homologous to
zero.

The idea of the proof of the main theorem. In the proof of the
acyclicity of Homeo (R™), the construction of I(f) is essential. This
construction cannot be applied to the group of diffeomorphisms. For,
the C'-norm of gifg~/—id does not converge to zero as j tends to the
infinity; hence I(f) is not an element of Diff’(R"). In order to gain the

differentiability, we use a free semigroup A= : Z.=Z,% - -xZ, gen-
erated by N elements instead of the semigroup {id, g,g% ---}=Z,.
Precisely, suppose now that there is a homomorphism @: A—Diff7(R")
with an open ball U such that @(A)(U) (2 € 4) are disjoint. To explain
our idea, we take a one-parameter subgroup {f*; ¢t € R} of Diff7(R"™) with
support in U. Then @®Q)fY ““®()~! has support in O(A)(U), where
[(2) denotes the word length of 2e A (I(id)=0). If the C’-norm
of @A) f¥~**P(A)~'—id converges to zero as /(1) tends to the infinity,

F=T] 00f"" "0

is a diffeomorphism of class C”. (We see later that we can make F to be
of class C” provided that r<n-+1.) For this F, we have

FI/N H @(Z)fN - 1@(2)_
Leti (i=1, - --, N) denote the generator of 4. Then we have
OGP = ] DS 0y
igid
Thus we have ,
F=7* ] 0G)F o).
i=1

These formulae imply that the 1-cycle (f?) is 'hoﬁioiogous to zero.
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Figure (3.3)

We can apply this construction to the m-cycles represented by tort
whose holonomy are contained in a one-parameter subgroup. In fact,

suppose that we have a homomorphism @: A:N* Z,—Diff7(R™) with an
open ball U such that @(A)(U) (A e A) are disjoint. Suppose also that U
and Cl(U,ea @)UY (i=1, --+., N™) are contained in disjoint open
balls. Let {f’;te R} be a one-parameter subgroup of Diff;(R") with
support in U. Take a homomorphism Z™—>Diff7(R") such that the
image of the standard basis of Z™ is f*®, ... fi_ This defines a
foliated R™-bundle over 7™ with compact support and determines an m-
dimensional homology class of BDiff7(R")y’, which is denoted by
{ft®, ... fim1  Suppose that

Fro = H @(z)ft(i)zv—lw@(z)-l i=1, - ---,m)
ie4

are C'-diffecomorphisms. (We see later that we can make F*® to be of
class C7 if r <[n/m]+1.) Then we have



50 T. Tsuboi

{Fm)’ e, Ft(m)}:Nm{Ft(l)/N’ e, Ft(m)/N}.

We also observe that @@G){F:M/Y, ..., FH™/M@(i)-" is the restriction of
{FtO, ... Ft™} to Cl(Uiei s @A) (=1, ---,N™. If we proved
inductively that the homology classes of the form {f*®, ..., f*O} (j<<m)
are zero, by the Kiinneth formula, we would have

{Fm), - Ft(m)}:{ft(l)’ .. .’ft(m)}
+%ﬂ QY FION, oo, FHmNQ(i)-1,
i

On the other hand, the inner automorphisms induce the identity in
H (BDIft7(R")’; Z). Hence we have

(p(i){Ful)/N, ey Ft(m)/N}(p(i)-lz{Ft(l)/N’ e Fz(m)/zv}.

Thus we can show that {f*®, ..., f*™}=0.

There are several problems to be solved for applying this idea to our
problem. First, a diffeomorphism f may not belong to a one-parameter
subgroup {f*; t € R}. Secondly, we cannot expect the cycles to be repre-
sented by the tori. As to the first problem, it is necessary that we work
with BDiff7(R") but not with BDiff7(R*). We define the subdivision of
foliated products with which we can perform a construction similar to that
of F. Because of the second problem, our proof contains a long computa-
tion of chains of BDiff7(R*). We have to treat the chains of BDIiff;(R")
systematically using the property of the semigroup 4.

§4. Group of diffeomorphisms

We review several properties of the group of diffeomorphisms of R”
with compact support.

Group of diffeomorphisms of R™ with compact support. Let K be a
relatively compact subset of R". Let Diff3(R™) denote the group of
C"-diffeomorphisms of R* which have support in K (1<r L o0);

Diff.(R")={f e Diff"(R"); Cl {x; f(x) £ x} CK}.

For K compact, Diff%(R") has the natural C"-topology. Let Diff7(R")
denote the group of difffomorphisms of R* with compact support, that is,
put

Diff(R")=lim Diff%(R"),
K
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where the limit is taken over all compact subsets of R*. Thus Diff7(R™)
has the direct limit topology. For a bounded open set K, Diff z2(R™) has
a similar topology.

Moreover, for a compact set K of R” and r with 1<r <co, Diff32(R"™)
is a C~-Banach manifold modelled on & %(R"), the space of C"-vectorfields
on R* with support in K. Z'%(R"™) is isomorphic to C%(R"*, R"™), the space
of C7-functions R"—R™ with support in K. A local coordinate neighbor-
hood around f e Diffx2(R*) is of the form f+ U,, where U, is a neighbor-
hood of 0 in Z%(R™) and the addition is that in C(R", R"). If

K+U N+ Up)#9,

the coordinate transformation

Un N+ Up)— )—> (/i + U )= )N U,

is the translation by f,— f;.

Since Diff7(R") has the direct limit topology, it also has-a smooth
structure (modelled on Z'7(R")).

It is easy to see that for Diff(R™) or Diff7(R") (1<r<{o0), the
composition (g, g,)—g.&, is smooth with respect to g,. (It is in fact affine
with respect to g,. It is not smooth with respect to g,. This is the reason
why Diff2(R™) or Diff7(R™) is not a Banach group. However, Diff 2(R™)
or Diff ?(R™) has the structure of a Fréchet group.)

For the group of diffeomorphisms of a manifold M with compact
support, we have a similar topology. If we fix a Riemannian metric on
M, for a compact subset K of M, we obtain a manifold structure of
Diff (M) modelled on £%(M), the space of C -vectorfields on M- with
support in K.

Let G denote Diff;(R"). The fact that |S3(G)|—|S4(G)| is a homo-
topy equivalence is a consequence of the following straightening.

Straightening. Let o: A™—Diff7(R") be a singular m-simplex, where
am={{t, -+, t,)e R";1=t,=--- =t,=0}. 4™ is the closed convex hull
of {0, e,, e,+e,, - -, > ™, e;}; where {e, - - -, e,} is the standard basis of
R™. Suppose that ¢(4™) is contained in a coordinate neighborhood of
a(0) in the Banach manifold Diffx(R™) for some compact subset K. This
neighborhood is of the form ¢(0)4 U, ,, where U, , is a neighborhood of
zero in £%(R™), the space of C"-vectorfields on R with support in K. We
may assume that U,, is convex. Then, we define the straightening
Lg: A™—Diff7(R™) of o by

(Lo)(t,, - - - £,)(x)=0(0)(x) -+ :Z ‘) (0@ ei>(x)—a<j§_: ei)(x)>.
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For an element g of Diff7(R"), we have

L(og)=(Lo)g.

Lo is canonically homotopic to ¢. For, we have a homotopy L: 4™ %[0, 1]
—Diff7(R") given by

L(t, )(x) = (1 —5)(o()(x)) s (La)()(x))

for (¢, 5) € 4™ X [0, 1] and x € R". Note that this homotopy commutes with
the face operators. The foliated product &, corresponding to Lo is
described as follows. The leaf of %, passing through (0, x) € 4 X R"
is the convex hull of

{0, X} U {(;’_,: e, U(Zji ei>a(0)"(x)) =1, .., m}

Then we see that Lo is a smooth singular simplex.
For a positive integer r, there are positive real numbers ¢, and C,
such that

X, € sup {

0'(121 ei>0(0)‘1— id

provided |o(35i; e,)0(0)'—id|,Ze¢, (j=1, ---,m). Here, X, denotes
the map 4™ X R*—L(R™, R") associated to & ;, and| |, is the C"-norm
(1 X|,=supygxs- sup [ D*X]).

For the group Diff"(M) of the diffeomorphisms of M, the notion of
the support of elements is important. We also define the support of C’-
foliated M-products as follows. Let G denote the group Diff"(M).

;.]:13 "'3m}

Support of foliated products. Let & be a Cr-foliated M-product
over Y. A point x of M does not belong to the support of F if there is
a neighborhood ¥ of x in M such that the foliation & restricted to Y X V'
is the product foliation (Y X {v}, ve V). If & is given as &, with a map
f: Y—G, then

Supp (# )=Cl{x e M; f(2)f(»)"'(x)#x for some zand y € Y}.

For a relatively compact set K of M, let G, denote the subgroup of G
consisting of the elements which have support in K. The support of F,
is contained in K if and only if f(2)f(»)' € G, for any z and y ¢ Y.

For an element ge G and a C’-foliated M-product % over Y,
Supp (8% )=g Supp (¥), where g% is the C'-foliated product # con-
jugated by g (see § 1).

Let U be a bounded open ball of R*. For the classifying spaces
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BDiff;(R™) and BDiff7(R"), we have the following proposition (see
Mather [18]). For a chain ¢ of BDiff7(R"), the support of ¢ is defined to
be the union of the supports of the simplices appearing in c.

Proposition (4.1). Let U be a bounded open ball in R*. Then the
inclusion i: Diff ;(R")—Diff7(R") induces an isomorphism

(Bi),: Hy(BDiffj(R"); Z)—> H (BDIiffZ(R"); Z).

Proof. Surjectivity. Let ¢ be an m-cycle of BDiff7(R*). We can
find a bounded open ball U’ such that all simplices appearing in ¢ have
support in U’. Let a: [0, 1]—>Diff;(R™) be an element of P Diff7(R") such
that ¢(1)(U")c U. Then «a(1)c (the cycle ¢ conjugated by «a(1)) is homol-
ogous (homotopic) in BDIiff;(R") to ¢ and «(1)c lies in the image of Bi.

Injectivity. Let ¢ be an m-cycle of BDiff;(R") such that (Bi),c is
homologous to zero in BDiff7(R™); (Bi),c=dd for some(m -+ 1)-chain d of
BDiff7(R™). Let U, be an open ball such that Supp(c)c U, U, and U,
a bounded open ball such that Supp(d)CU,. Then we can find an ele-
ment « of PDiff7(R™) such that a(z)| U,=idy, (¢ € [0, 1]) and «(1)(U)C U.
Since Supp(a(D)d)C U, «(l)d (the chain d conjugated by «(1)) can be
considered as an (m+ 1)-chain of BDiff;(R"). It is easy to see that
c=0d(a(1)d).

Since we have the notion of the support of foliated products, we can
restrict or take the union of foliated products.

Union and restriction. Let & be a Cr-foliated M-product with
comract support over Y. Suppose that there is a compact subset K of
M such that Y X K(CY X M) is a union of leaves of #. In terms of
holonomy, K is invariant under the holonomy; A(7)(K)=K for je Y.
Here we are assuming that A(,)=id. Suppose also that for any j ¢ ¥,
h(P) is r-flat along the frontier of K; j7(A(y))=ji(idy) (x € Fr(K)).

Let 2| K: Y—Diff7(M) be the map defined by

h(P) (), x e K

for je¥
X, xe M—K

] KY(H)= {

and (k| K): =,(Y, y,)—Diff7(M) the homomorphism defined by

h(D)(x), K
("'K)(’>(")={x( )6 ’;z g for [,

Then /4| K and k| K are well-defined and #| K is =,(Y, y,)-equivariant with
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respect to 2| K. These define a C"-foliated M-product # | K over M with
compact support which we call the restriction of % to K.

Let #, (i=1, .- -, k) be C"-foliated M-products with compact sup-
port over Y such that

Int Supp (# ) N Int Supp (F,)=¢ (i #)).

Let &, be the holonomy of &, (i=1, - - -, k) which is equivariant Vzith
respect to h,: n (Y, y)—Diff (M) and satisfies A,(7)=id. Leth: Y —
Diff7(M) be the map given by A(7)= T[], h.(9), i.e.,

HP) )= h(P)(x), xeSupp(F,) (=1,---,k)
) x)_{x, x € M—|J Supp(F,)

and h: r,(Y, y,)—Diff7(#) the homomorphism defined by
RD=]] k(1) (I em(Y, ).

Then 4 is #,(Y, y,)-equivariant with respect to & and defines a C"-foliated
M-product \ Jf_, &, with compact support, which we call the union of
F,(=1,-.-,k).

For infinitely many foliated products &, (i € V) with
Int Supp(#,) N Int Supp(F )=¢ (%)),

it h: Y— Diff?(M) (constructed in a similar way) is well-defined, we can
define the union ¢y # ;.

Smoothness of foliated products. Let Diffx(M) be the group of C"-
diffeomorphisms (1 <r < o) of a manifold M with support in a compact
subset K of M. As we noted before, Diff x(M) is a C~-Banach manifold.
For a smooth (C*) map f: Y—Diffx(M), we obtain a map X: TY—
X (M) which is the Jacobian at y of z—f(2)f (). This %(M) valued
1-form X is continuous but may not be smooth. (If r = oo, it is smooth.)
However, the associated map 7Y X M—TM is of class C". It is worth
considering the foliated products with this property. For a C’-map
TY X M—TM satisfying the integrability condition, we have a C"-foliated
M-product & over Y. The holonomy A: Y—Diff(M) of F is of class C*
in general. As we see below, it is hard to expect higher differentiability.

We are going to study the differentiability of f: Y—Diff (M) and
that of the associated map TYX M—TM (1<r<{oo). It is enough to
consider the group Diff3(R") and foliated R"-products over the cubes
[0, 1. Note again that the C™-norm | |, on Z%(R") is given by
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| X],= sup sup |D*X(x)|.
- 0Sk<r z€R"

Since the map T'[0, 1]™ X R*—TR" is fiber-wise linear, we obtain a matrix
(L(R™, R™) valued function on [0, 1]™ X R™ and the differentiability of the
map TT[0, 1]"X R"—TR" is equal to that of the map [0, 1]*X R"—
L(R™, R™).

Let K be a compact subset of R". Let Q:[0, 1]— Diff3(R")
(1=r<co) be a C'-map. That is, for ¢, € [0, 1], there exists an element

@Q/ot)|,, € L(T,,0, 1], Z(R™) =X %(R"™)

such that |Q(?) — Q(t,) — (8Q/at)|,,(t—1,)|./\t —t,| -0 as t—t, and
(0Q/dt)., depends continuously on #, € [0, 1]. Then, #,—(30/at)|,,(Q(t,)~")
is a continuous map from [0, 1] to Z%(R™).

Conversely, for a continuous map X: [0, 1] >Z%(R™) (1<r < ), we
have a differential equation

(dso/dt)(t’ X) = X(t’ 90(t9 x)), 90(09 X)=X.

By the fundamental theorem of ordinary differential equations, there
uniquely exists a solution of class C* which is of class C™ with respect to
x. Then we obtain a map ¢: [0, 1]>Diffx(R") which sends ¢ to ¢,,
where ¢,(x)=0¢(t, x). First, this map is continuous. For,

[0 =1l éﬂo | X (s, ¢(s, x))|.ds
<[t—1t;|sup | X(s)]-

Secondly, t—X,0, ¢ Z%(R") is continuous, where X,¢,(x)=X(t, ¢(t, x)).
For,

|Xt905 - toSDtoIré |Xz§0t _"Xto$0t lr +IXcoS0t _XtoS0z9|r~

Here, since X: [0, 1] -2 %(R™) is continuous, the first term tends to zero
as t—f1,. Since X(t, x) is of class C™ with respect to x and ¢, is con-
tinuous with respect to the C™ norm, the second term tends to zero as
t—t,. From these, it follows that 7+>¢, € Diffx(R") is a C'-map. For,

¢
|§05 _§050—(Xt0§0¢0)(t— to)lr.g_ft le%‘—XzoSDzode,
0

where the integrand tends to zero as t—7#,. Thus, X ., is the derivative
at t of ¢. Since X,¢, is continuous with respect to ¢, t—¢, is of class C'.
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Suppose that Q: [0, 1]—>Diffx(R") is a C*-map. This implies that
the map [0, 1] X R*—R" given by (¢, x)— Q(¢)(x) is of class C=!*"# Then,
although 1—((3Q/31)]|)(Q(t)™") € ZK(R™) is only continuous, (¢, X)—
00/01)],(Q(1)~'(x)) e T(R™) is of class C™»!"% -1 For, (6Q/at): [0, 11X
R"—L(R', R*) is C” with respect to x € R* and C*-' with respect to
t €[0,1]. On the other hand, (¢, xX)—~Q0() " (x)=0(, x) is of class C”
with respect to x € R® and of class C™»"* with respect to ¢¢e[0, 1]
because we have

@0/01)(1, x)= —[(8Q/0x)(z, O(t, )]~ (@Q/a1)(t, O, x)).

We consider the converse. Suppose that we have a C™-map X: [0, 1]
X R*—R" such that X(¢, x)=0 for x e R*—K. Then the solution ¢ of
the differential equation
(dofdr) (t, x)=X(t, ¢(t, x))

is of class C” and of class C"*! with respect to ¢. By the previous argu-
ment, the map [0, 1]—->Diffx(R") given by ¢, is of class C’, and the de-
rivative 3¢, /0t is equal to the vectorfield X, ¢,, where X, ¢,(x)=X(¢, ¢{t, X)).
It is not differentiable with respect to ¢ as a function to £ %(R").

To summarize the above, we have the following inclusions.

{C*-maps ([0, 1], 0)—>(Diffx(R"), id) (k=r+1)}
c{C -maps [0, 1] X R"—R" with support in [0, 1] X K}
c{C*-maps ([0, 1], 0)—(Diff x(R™), id)}
={C"maps [0, 1]>Z (R™)}.

For a C"*'-map [0, 1]"—Diff%(R"), we also have a map [0, 1] X R"
—L(R™, R*) which is of class C”. Suppose that we have a C"-map
X:[0, 11" X R*—L(R™, R") (r=1) satisfying the integrability condition

Z}c" XX /ox,)— Zk] X%0X!/ox,) 40X [ot,—0X![ot,=0
and the condition on the support
X(t, x)=0 for xe R*—K.
Then we obtain a C'-map [0, 1]"—Diff%(R").

§5. Semigroup actions

In this section we construct a homomorphism
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0:(Z, « Z,)"—>PDiff2(R™)

with an open ball U such that @(A)V(U), 1e(Z, = Z,)" are disjoint,
where

PDIff=(R")={f: [0, 1]>Diff=(R"); f© =id}.

We use this homomorphism to prove our main theorem.

First we consider the case when n=1. Let the symbols — and +
denote the two generators of the free semigroup Z, x Z,. Let (£.)(3/0x)
be a C~-vectorfield on R such that

E—(x)= —('x—}_l)a X € [—17 1]’
5—(?5):0, X € (—Ooa '—‘2] U[Za OO)

Let /¢ be the time ¢ map of (6_)(6/0x). Then,

fix)=x+1exp(—1)—1 for t=0,xe[—1,1].
Let (£,)(0/0x) be a C-vectorfield on R given by

£ =—£(—2)

and 1% the time ¢ map of (£,)(@/0x). Then we have

fix)=x—Dexp(—1)+1 for t=0,xe[—1,1].

Take a positive real number ¢ and put
@(05("(X)=f JEO(x) (ee{—, +D.

This defines a homomorphism @: Z, x Z,—PDiff7(R™) and we see that,
forxe[—1,1],
(=) =(x+1)/2+e)—1,
O(+)O(x)=(x—1)/2+¢)+1.

Put U=(—¢/(2+¢), e/(2+¢)); then @)(U), 1€ Z, x Z, are disjoint
open intervals on [—1,1]. ([—1, 11—, @(H)®(U) is a Cantor set.)

Now we construct the homomorphism @ for n=2. Let —,, +;
(1<i<n) denote the generators of (Z,*Z,)", where 0,7, =10,
(o,7e{—, +}, 14, j<n, i#j). Let p be a function on R such that

0=p()=1 (xeR),
p(x)=1 (x|<3) and p(x)=0 (x|=4).
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Put $Fi: 1—[$=1 p(xk)Ea(xi)(a/axi) (0 € {_9 +}9 i= 17 Tty n) Then’ Since
©@p(x)/ox)E,(x)=0(ce{—, +},i=1,---,n), we have, for o,7¢
{_s +}; l:/—&jy

[So‘ia E‘tj]
(I 66} &.0rp)- - -l - - o )0p0x0)0x )8 L @/0,)
— (11 p0r))&.0xol) - ) - e, MOple,)/0x )6, e YOI0:)
=0.

Let @(c,)® be the time ¢log (2+¢) map of &,,. Then we have
D(o)VP(z) =D(z ) D(o,)”
fora,ce{—, +1}, 1<i, j<n, i=#j. Thus we have a homomorphism
O:(Z, « Z,)"—>PDiff7(R").
It is easy to see that
D= DO, - > X) =, 0 Xy G DIQA) =L, X, -, X,),
D(+ )P -+ X)) =Xy, -+, Xy, (= D2+ +1, Xiy, -+, X0),
for (x;, ---,x,) with|x,|<1 (=1, ---,n). Put

U= (—¢/(2+2), ¢/2+¢&))"; then @Q)O(U), Ae(Z, « Z,)" are disjoint.
Moreover, we have the following lemmas.

Lemma (5.1). D)W | U is the restriction to U of an affine map x—
Ax b where A is a diagonal matrix

diag (Q+e)~1®, ..., (2+e)~ =),

Here, 1,()=1(pr;(2)), and pr;: (Z, x Z)Y"—2Z, = Z, is the projection to the
i-th factor (i=1, - - -, n) and I denotes the word length |: Z, « Z . —~Z..

Lemma (5.2). Let 5 be a C-vectorfield (r =0) on R" with support in
U. Then

I(@(z)g))*vlré(z_*_s)_min{u(l)wr max{l;(2)} [77|77
where | |, denotes the C"-norm.

Remark (5.3). We have actually constructed a homomorphism
. (R, *R,)"—Diff(R") and 0:(Z, = Z,)"—PDiff°(R") is written as
O =T (t2).

The semigroup (Z, = Z,)" has several nice subsemigroups. We will
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use the following subsemigroups later.
First we have the diagonal subsemigroup

{Ae (Z. % Z); L=+ - =12}

an
which is isomorphic to * Z,. :

Secondly, for m<n, we have the following subsemigroup.

{'2 € (Z+ * Z+)n; lk[n/m]+1(2)= cot :l(k+1)[n/m]('2) (k:0’ Tty m—2)’
l(m—l)[n/m]+1(2): ct =ln(2)}
oln/m3 gn—(m=1)n/m]

which is isomorphic to ( = Z,)™ Y x( * Z,). By choosing
2n—(m-—l)[‘n/m]
2tvm1 generators of ® Z., we obtain a subsemigroup which is
oln/m]
isomorphic to ( * Z,)™
In general, for integers &, &’ such that km-+k’=n, we have a sub-

2k 9k
semigroup isomorphic to (x Z )" X(Z, * Z,)* or (x Z )" X Z".
Here are the figures of @N)W(U), 2e(Z, x Z,)* and D) (U),

4
A e x Z,, the diagonal subsemigroup of (Z, * Z,).
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Figure (5.1)
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Figure (5.2)

§ 6. Cubic homology

Let G denote DiffZ(R*). The homology of BG is of course the
homology of the complex S,(G)/G. Since the subcomplex DS, (G) of
degenerate chains is invariant under the action of G, we may use the
normalized complex S4(G)/G. We will use, however, the normalized
cubic complex QL(G)/G. First we review the singular cubic complex (see
Serre [31]).

Cubic complex. Let [0, 1]™ be the standard m-dimensional cube. A
continuous map Q: [0, 1]*—G is called a singular m-cube. Let Q,(G) be
the free abelian group generated by singular m-cubes. For a singular m-
cube Q, let FiQ: [0, 1] '—>G (¢=0, 1;i=1, - - ., m) be the map given by

(FfQ)(tl, M) tm-1)=Q(t19 SR RN S tm—1)°

Put 3,0=F)Q—F;Q (i=1, ---, m). The boundary homomorphism
9: 0,.(G)—0,...(G) is defined by

20=3 (—12.Q.
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Thus we obtain a chain complex (Q,(G), 3), the cubic complex of G. To
represent the homology of G, we have to consider the normalized complex.
Let D,Q: [0, 1]"*'—G (i=1, - - -, m-+1) be the map given by

(DiQ)(tla Tt tm+l)=Q(t13 HERP SR ti+19 Tt t'm.+1)'

Let DQ,(G) denote the subcomplex of Q.(G) generated by the chains of
the form D,Q. Then the normalized cubic complex Q4(G) is given by
+(0)=04(G)/DQ4(G).
It is easy to see that DQ,(G) is G-invariant. Hence we can dsfine
%(G)/G which is denoted by Q% (BG).
We have a chain equivalence S7(G)—Q%(G) which is induced from
the map [0, 1]™—4™ given by

(ty gy ooy b)) —>(t, ity -+ -, Lilye + - 1),

Since this chain equivalence is G-equivariant, this induces a chain equiva-
lence S%(G)/G—Q%L(G)/G.

We may consider the smooth singular cubic complex Qz(G). We
obtain 03(G)=0Q03(G)/DOZ(G) and Q3'(G)/G. Then we have a chain
equivalence 03(G)/G—Q%(G)/G.

Let {e, ---,e,} be the standard basis for R™ Let {vy, «--, U,
(v; € R™, i=0, - - ., m) denote the affine map 4™—R"™ which sends 0 to v,
and >}’ e;tov; (i=1, ---,m). We have another chain map ¢: Q,(G)
—S%(G) which sends a singular cube Q: [0, 1]"—G to

4 m
Zdet(en AP 7 PR Y 5m)Q<O: €ttty lej, MR Zlej>:
i= i=

where the sum is taken over {¢,, - - -, e} ={e;, - - -, en}.
Let bsd: S4(G)—S%(G) denote the barycentric subdivision. We
have a map £ : S%(G)—Q%(G) which makes the following diagram commute:

bsd

#G)— (@)

N

(G

where ¢: QL (G)—>SL(G) is the map defined above. We are going to
describe £ explicitly. Let [b,, - - -, b,,] (b,=0, > ™, b,=1) be the barycen-
tric coordinate on A™={(u,, ---,u,); 1 =u=--- Zu,=0}. Here
[y, - - -, b,] corresponds to (b4 ---+by,, by+---+b,, ---, b,) in 4™
Let «;: [0, 1]"—>4™ (j =0, - - -, m) be the map given by
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O(j([b MY tm)=[b0, Ty bm]:
where bi=tm/<1+i fz) (<)),
=

@:1/(1—}—25) and
bo=t, /(14550) (>

It might be helpful to look at the m-simplex in R™*! spanned by e, - - -,
e, and the union X of the faces of the (m1-+1)-cube [0, 1]™*' which do
not contain the origin. & can be identified with the radial projection from
X to this simplex. Then &¢ is given by

ko=3" (—1Yoa,.
j=0

It is easy to check that £do=0ko.
Since the maps bsd, £ and ¢ are G-equivariant, we obtain the follow-
ing commutative diagram:

SUGG—2 516G

~

WG .

Since bsd is a chain equivalence, this commutative diagram implies the
following proposition.

Proposition (6.1). The chain map ¢: QL (G)/G—S\(G)|G induces a
surjective map in homology.

For the normalized singular cubic complex QL(BG)=Q'\(G)/G, we
formulate several operations which are used later. As we explained
before, a singular m-cube Q of G=Diff7(R") corresponds to a C"-foliated
R"-product over [0, 1]™. The support of Q is defined to be the support
of this foliated product.

In the singular cubic homology theory, homotopies are written easily.
We will use the following homotopies.

Conjugations. Let r: [0, 1]—>G=Difl7(R") be a map such that +0)
=id. For a singular m-cube Q: [0, 1]"—G, define

C,0:[0,1]" x[0, 1]—>G
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by C,0(t, $)=v(s)Q(). C,Q gives a homotopy between Q and (1)Q.
It is easy to see that Supp (v(1)Q) = (1)(Supp (Q)). If Q is smooth and
(1) is a C=-diffeomorphism with compact support, 4-(1)Q is also smooth.
The action of (1) on the left induces a chain map (1): Q4(BG)—

%(BG) and C, gives a chain homotopy C, between the identity and +(1);

9C, Q0+ C,0Q0=Q0—y(1)Q.

For, we have 9,C,0=C,3,0 (i=1, ---,m) and 3,,,C,0=0—(DQ.
Hence we have

3C,0=C,a0+(— 1™ {(Q—¥(1)Q).
We put C,Q=(—1)"+'C,Q.

Subdivisions. A natural subdivision for the singular simplicial homol-
ogy theory is the barycentric subdivision. For the singular cubic homol-
ogy theory, a natural subdivision is obtained by cutting along hyperplanes
parallel to the coordinate hyperplanes.

Let N be a positive integer. Let ¢, .
(ila ] lm) eZ™;

denote the translation by

<=y lm)

T(il,---,im)(tla i 'a-tm)=(11+i1= Ty tm+im)'

Let a®: [0, N]*—[0, 1™ be the homothety by 1/N. For Q: [0, 1]"—G.
define the N-subdivision sQ of Q by

S(N)QZOs 2 Qa™ syt

oy #OS Y
Let 54 [0, N]™—[0, 1]™ be the map given by
b, .-, tm)z(min {t, 1}, - -+, min{z,, 1}).
Note that
OBt (s eimy=C in Q7(G).

0581, 00, imEN -1

The [maps a® and 5™ are homotopic. For, there is a homotopy
AW 10, N]™ X [0, 1]—[0, 1]™ given by

AN(E, 5)=(1—5)b™(1)+5aN(2).
Now define S Q7(G)—0n.1(G) by
SMQ= > QAT 45y

0=41,00,imEN ~1
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where 7, ....0, (5 8) = (T (11w (?), ). Then

3,SWQ=5™3,0 (i=1,---,m) and
0, SMO=0—5sMQ in QL(G).

Thus we have
SMQO=S"0+(— D™ (Q—s"Q) in Q,(G).

By putting S™MQ=(—1)"*'S™Q, we have a chain homotopy S
between s and the identity;

ISMQ 4 SWHQ =0 —s™Q.

This chain homotopy is G-equivariant. Hence s’ and S® are well-
defined in Q%(G)/G.

Partitions. The following homotopy is similar to those in Banyaga
[2] and Mather [22] (see also § 11). Let K; (j=1, ---, N) be compact
subsets of R™ such that Int K, NInt K;=¢(i+~j). Let Q be a singular
m-cube written as (JJ., O, where Q: [0, 1]"—>G=DIiff7(R"), 0(0)
=id and Supp (#,,)CK; (j=1, ---, N), where &, denotes the C"-
foliated R"-product corresponding to Q. Let b;:[0, N]—[0, 1] be the
map given by

0 [11<j—1
bt)=qt—1[t], [t]=j—1
1, [11>j—1.

Let w;: [0, N]"—[0, 1]™ be the map defined by
wilty, -+, 1) =(b,(t), - - -, by(tn)),
(i=1, --.,m). Note that
bty - t)=(by(2), - - -, by(ty)).
The map w; is homotopic to b*™. For, there is a homotopy W,: [0, N]™
%[0, 11—[0, 1]™ given by
W(t, s) =(1—8)b™(t) +sw,(2).

Now consider |}_, Q,w;. If Q=JJ., O is smooth, then | J}_, Q;)w;
is smooth except along the m(N—1) hypersurfaces where t,=j (i=1, - - -,
m;j=1, ..., N—1). This is homotopic to | J}_, Q(,,6*". Note that



Classifying Spaces for Foliated Products 65

N

N
) Q(J)b(m>f(m---,im> = Jul O

0S41,e+ 5y imSN -1 <f=

in 0(G)/G. Put

N
o= 2. (]gl Q(j)Wj)f(il,---,im) and

0<iq, 50, imSN~1

— N

PO= Z (U Q<j>Wj>fm,-~~,im>’
0=ig,en 0y imSN =1 \j=1

where 7.6 )=(t¢y,.cin(t), §). We call pQ the partition of Q.

PO is a sum of N™ cubes. If Q is smooth, pQ as well as PQ is a sum of

smooth cubes. Put pQ=>, O, ; then pQ is contained in pQ as

N N
2 (U Q(j)wf)f(i-l,---,i—n-
=1 \j=1

Put pQ=pQ+rQ. The support of the holonomy of the foliated product
corresponding to

N
(-U1 Q(])wj>f(’51a'"7'5m)
32

in the direction of e, lies in K,,,;,. Thus rQ is a sum of m-cubes which
are “decomposable”.

Let Q,(BDiff, ... x,(R™) be the normalized complex generated by
the foliated R"-products &, such that Q=\J}_, @ ,;, where Q,: [0, 1]™
—Diff7(R™), Q;,(0)=id and Supp (¥, ,)CK;. The partition 5 is a chain
map from Q(BDiffy, ... x,(R") to Q4(BDIff7(R™). Since the homotopy
P commutes with the face operators, we have a chain homotopy P between
the natural map

%(BDIff%,,..., x,(R™)—> Q% (BDIff;(R"))

and the partition 7;

_ OPQ +PoQ=Q—pQ.
Note that, by the definition of P, the chain PQ ‘depends only on @ and
Q.

For cubes of dimensions one and two, pQ is written as follows.
N ) N
For Q=Z'L=)1 0y [0, 1]1-G, ﬁQ=pQ=§ Q-

N
For Q= Q.: [0, I}—G,
i=1 .
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N
PQ=Z; O+ ; F30 ) X FiQ ¢+ %F;.Q(i) X F1Q -
i= i>j %

Here for oy, 0,: [0, 1]—G satisfying Int Supp (£#,)NInt Supp (F,,)=9,
g, X0, [0, 1P—G is defined by (o, X a,)(t,, t,)=0,(t,)0,(0) ' ,(t,)0,(0) .

§7. A cubic complex 0

Let G be a topological group. In this section we define a cubic com-
plex Q%4(G)/G which we use later.

Q*(G). Let ¢, e,, - - - be the standard basis of R~. For positive
integers.. j,, - - -, jn, With j,<.--<j,, let Q(j, - - -,j.) denote the cube
spanned by e, - --,e;.. Let O, ....;,,(G) denote the free abelian group
whose basis is the set of maps from Q(j,, - - -, /) to G. We have the face
maps

RN ST (€) S J O TR RN (€
given by 9, 0="F},Q—F} Q provided that j, € {j,, - - -, jn}. Here,

PN
F;kQ(tjl’ SRR PN IR tjm)=Q(tj1’ R t/lc—l’ & Ljgrrs * s tjm)'
Put

0uG)= @ Cupoinl@.
We define the boundary 6: 0,.(G)—0,,_,(G) by

=35 (~1),,.

Then we have §°=0 and 0,(G)=@®0,.(G) becomes a chain complex.
Forj ¢ {ji, - - -, Jn} 82y j,<J<j, .1, We define the degenerate cube D,;Q by

DIQ(tjl’ SRR PR PPN PP R tjm)__—Q(th’ T tjm)'

We obtain the subcomplex DQ*(G) of degenerate chains and we can
define the normalization Q;(G) by Q;(G):Q‘*(G)/DQA*(G). We have a
chain map ¢: Q;(G)——»Q:k(G) induced from the map [0, 11— Q(j,, - * -, Jn)
which sends (¢, ---,1,) to > 7, t.e;,. Since the face operators are G-
equivariant, we obtain Q;(BG):Q;(G)/G. We also have the smooth
version 03/(BG)= 03(G)/G.

Partial subdivisions. In Q;(G)/G, we have the following partial
subdivision. Let e, ---, e, be the standard basis of R™"(CR>). For
k=1, ..., m, define a{™: [0, 1]*-* X [0, N]1X [0, 1]*-*—[0, 1]™ by
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a @, t’, t")=(@, t'/N,t").
For Q: [0, 1]*—G, put .
N-1
S0Q=3 QaPz,
where z,,, is the translation by ie,. Let b{™: [0, 1]*-' %[0, N]X [0, 1]™-*
—[0, 1]™ be the map defined by
b (¢, t/, t')=(t, min {¢/, 1}, ).

Let A% : ([0, 1]*-' X [0, N]X [0, 1]™*) X [0, 1]—[0, 1]™ be the homotopy
between af” and b{™ defined by

AL(2, 8)=(1—9)b (1) +s5a(2).
Put
_ N-1
SMo= 3, 04 7.,
i=0

Then we have
aifiN)Q=S"(CN)aiQ (=1, .-, m;i+k)
2,SQ=0 and 0,,,S{"0=0—s"Q in 0,(G),

where we consider Q as an element of Q,,.....,(G) (C 0,(G)) and s
and S are maps from Q,(G) to Q,(G) and to Q,...(G), respectively.
We obtain S¢ such that
SO +S50=0—sMQ
SM9,0=0.
In order to deduce the implication of our construction given in the
next section, it is easier to work with Q%4(G)/G=Q%(BG) than with
(G)/G= Q. (BG). We have the following proposition which tellf. us the
triviality of the homology of BG. We look at the chain maps ¢: Q%(G)/G
—04(G)/G and ¢: Q4(G)/G—S%(G)/G.

Proposition (7.1). Suppose that
(¢@):: H(Q4(G)/G)—>H (S(G)/G)
is the zero map fori=1, ---,m. Then,

H,(S,(G)/G)=H/(BG; Z)=0  for i=1,.--,m.
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Proposition (7.1) follows from Proposition (6.1) and the following
lemma.

Lemma (7.2). Suppose that
(9):: H{(04(G)/G)—> H,(S(G)/G)
is the zero map for i=1, ---,m. Then,
¢;2 Hy(Q4(G)/G)—>H,(S7(G)/G)
is the zero map for i=1, - . -, m.

To prove this lemma, we look at those singular cubes which are
invariant under the reflection with respect to the hyperplane {t,=¢,,,}C
[0, 1]™** (i=1, ---,m). Let Q be a singular m-cube of G. For i=1,

.., m, define ,Q: [0, 1]™*'—G by
V,;Q(tl, Tt tm+1)=Q(tu ) ti-ls max{ti, ti+1}, ti+2, ) tm+1)'
Note that &7,Q=0 in S,(G). We have the following formula in Q(G):
78,0 (1=)<i)
ajViQZ Q (j=i7i+1)
Vo0 (+1<j<m).
Then we have the following formulae for d,(1—V,d,):

For j<i, 0,(1-V;0,)=0,—V;_,0,0,=(1—VF;_,9,-,)0,.

For j=i, 0,(1—-V,3,)=0,—0,=0.

For j=i+1, ai+1(1—‘718i)=ai +1_ai=(1_‘7iai)(ai+l—ai)'

For j>i+1, 0,(1—V0,)=0,—V,8,.,0,=(1—V,3,)9,.

Put B,=(1—V,_3,.)---(1—F3) (=1, - - -, m). (B, is understood
tobe 1.) Then we have

9.B,=0 (i=1,---,j—1) and
J
(=10,8,=B,(5(=1'2)  (B=.

The latter is obtained by an induction on j. It holds for j=1. First we
note that
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(= 1)9;B;=((—1)0;,+(~1)"'9,-)B,,
=(1—V;-10;-)(—1)’0,+(—1)'"'3,_)B, _,.
=(1-F;.,0;-)(—1)'9;B,.

We have ‘ ‘

(—1)%9,B;=((—1)'9,+(—1)'"'3,_)B; _,
=B, (—1)0,+(—1)'""9,.,B,,
=B; (—1)0;+(1—V;_9;_)(—1)"'3,_,B,_,

=B,--1(—l)fa,+(1—V,_zaj_2>B,--Z(f;“:<—1)!61)
J
=Bj-1(; (—Dla,).

Proof of Lemma (7.2). By the assumption of Lemma (7.2), we have
a chain homotopy 4 between ¢¢: Q% (G)/G—S%(G)/G and 0 in dimensions
between 1 and m.

Z<2 36§ —GUG)G- - - Olpr(G)[G— 01 (G)G<— 'y (G)/G

Ll g e l«tm-l 4 o g |dnn

2 SUG)G—SYG)(G - - -8y ADG ()G <8, (G)/G.

We write 4| Q,.....;n bY Aj,...;,» We construct a chain homotopy D
between ¢: Q4(G)/G—S%(G)/G and 0 by using A.

2<2 0/(6)[G QUGG - Qo (G)G< 0G0, ()G
D D D

21 4] ‘m~1

22 S(G)G—SUC)[G - - - Sy {(G)|G<—5 ()]G <—5", (G)[G.

‘m ‘m+l

The chain homotopy is given by D;=A,,..;B; (j=1, ---,m). In fact,
for O e Q4(G)/G, by using the above formulae on B;, we have

=¢B;0=10.

Here, in order to apply 4,...;, we identify Q(G)/G with 0f,...., ;,(G)/G.
Therefore, ¢ induces the zero map in homology in dimensions between 1
and m.
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Proposition (7.3). Let U be a bounded open ball in R*. Let $ denote
the composition

), (BDiff;(R"))—> Q4 (BDIff 5(R"))—> Q4 (BDiff ;(R")).

Suppose that ¢§,;: H (0, (BDiff;(R")—H (S’ (BDiff{(R™)) is the zero
map fori=1, ---,m. Then

H/(BDiff;}(R"); Z)=0  for i=1, ---,m.

Proof. Since (¢§); is the zero map for i=1, - - -, m, the proof of
Lemma (7.2) implies that

2, H(Q4(BDIiff;(R"))—> H.(S%(BDIiff{(R")))

is the zero map (i=1, ---,m). On the other hand, ¢, factors through
H,(S%(BDiff;(R™)));

H,(Q'\(BDIft;(R"))—-> H,(S,(BDiff 5(R™)))

A
H(S'«(BDiff;(R")).

Since ¢, is surjective by Proposition (6.1) and H,(S%(BDiff;;(R")))—

H (S’ (BDiff7(R™)) is an isomorphism by Proposition (4.1), z, is surjective.

Thus H,(S/(BDift2(R"))) = H,(BDift1(R"); Z)=0 for i=1, - - -, m.

Let Q*,m(G) be the subcomplex of 0,(G) given by
Qz,m(G)z @ Q(h ----- Ji)(G)-

1£j1< < jigm

We also have its normalization 0% ,.(G) and Q% .(BG)= 0% .(G)/G. Tt
would be convenient to consider the restriction & ,, of & to O ,.(BDIff5(R™)).
Since the proof of Lemma (7.2) as well as that of Proposition (7.3) uses
the existence of a chain homotopy defined on this subcomplex @’ ..(G)/G,
we have the following proposition.

Proposition (7.4). Suppose that
tF1m’ H(Q%,n(BDIfl(R")))—>H (S%(BDIff;(R")))

is the zero map for i=1, --.,m. Then H,(BDiff7(R"); Z)=0 for i=1,
cee,m.



Classifying Spaces for Foliated Products 71

§8. A construction

In this section, first we consider the 1-dimensional chains and show
how our construction works. Using this construction, we prove a theo-
rem of Mather [21] (Theorem (8.1)).

We take the homomorphism @: (Z, x Z,)"—Diff?(R") with an open
ball U which we constructed in Section 5. Let B={p} denote the generat-

o
ing set of the subsemigroup x Z, which is given at the end of Section 5.
Suppose that we have a smooth path Q: [0, 1]—-G which has support in
U; Supp (Z,)CU. Lets denote the 2”-subdivision. The subdivision sQ
is a sum of 2" paths (I-simplices) which are naturally ordered; hence by
giving an arbitrary order to B, we can index the paths (1-simplices) of sQ
using B as the index set;

sQ= 73 5,0:

BeB
The simplex @(8)"s,Q has support in G(B)P(U). We subdivide it again;
S@(ﬁ(l))(l)sﬂ(nQ:ﬂ(z)Ze:B S OB P50y O-

Then we have @(B(2)Ps50P(B(1))Pse,y@ which has support in
D(B)BANM(U). Inductively, we obtain a path

Qﬁ(k)--aﬁ(l):‘;“Q(‘B(k))(l)sﬂ(k)' : 'Q)(‘B(l))(l)sﬁu)Q
which has support in @(B(k)- - - (1)) (U). Now put

, -
0= Q;, where A= x Z..
€4

If r—1<n, we can take a sufficiently small positive real number ¢ in
Section 5 so that IQ is a path in Diff7(R"). For, for 8 € B, we have

ls,Q1=27"(0),

where | Q| denotes the C"-norm | % 4| of the foliated product & over [0, 1]
corresponding to Q. By Lemmas (5.1) and (5.2),

|B(8)7s,Q|< @ +ey 270l
Hence, if r— 1< n, then for sufficiently small &, we have
|Q;]—>0 as [(A)—>c0.

We have the following formulae for 1Q.
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72

Figure (8.1)

Figure (8.2)
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sIQ= ,9;; 510,
WE®s10= ) 0: (B<B)
10=0U(\ (L) 0.

If we take the partition p with respect to the compact sets K,=Cl U,
K,=0(B)"([—1, 1]*) (8 € B), we have

ﬁIQ=Q+ﬂ;}? D(B)Ms,IQ.
Thus we have

Q=8(SIQ+A:L_|_]; Cops:1Q— PIQ).

Since every l-cycle of BDiff7(R*) is homologous to a sum of smooth
1-cycles with support in U (Proposition (4.1)), we have proved the follow-
ing theorem which has been obtained by Mather [21] in a little different
way.

Theorem (8.1). H,(BDiff!(R"); Z)=0if 1<r<n+1.

Now we consider a similar construction for m-dimensional chains.

Here, it seems better to work with the cubic homology. We take @ with
Ln/m]

U in Section 5 again. Let A, x-:.XA4,, Aigz * Z. (=1, ..., m)
denote the subsemigroup of (Z, * Z.)" given at the end of Section 5. Let
B,;={B,} denote the generating set of 4, (=1, -.., m). Let Q:[0, 1]™—
G be a smooth singular m-cube which has support in U. Here the sup-
port of Q is the support of the foliated R™-product #,. Let s denote the
2i%mlgubdivision. Since sQ is a sum of 2I™N)™ cubes which are lexicog-
raphically ordered, these cubes are indexed by B, X - - - X B,,;

sQ= 2 . Spieesn@-

(B1y00s Bm)€B1X+++XB,

As before, we make @(B,, - - -, 8,)" operate on sy,...,,Q and subdivide the
resulted cube. We repeat this procedure and obtain an m-cube

Qﬁx(k)---151(1)---ﬁm(k)"-19m(1)

=@(I91(k)’ T ﬁm(k))(l)sﬁ«k)---ﬁmw)' ) '@(ﬁl(l), ] ﬂm(l))(l)sﬂl(l)“-ﬂm(l)Q
which has support in @(3,(k)- - - (1), - - -, fu(k)- - - B(D)P(U). Put

IlZ---mQ= U , Qlllz-nlm’

L) =<+=1(m), 24€4¢ (i=1,++,m
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where / denotes the word length. We have
S5 Q1S 27T Q)
and by Lemmas (5.1) and (5.2),
1PB -« 5 Bu) S 5@ S Q2 +0)7 1270/ .
Hence for sufficiently small e,
|0t} —>0 a8 I(A)= -+ - =1(2,)—>00

provided r—1<[n/m]. Thus, if r —1<[n/m], I,...,,Q is a singular m-cube

of Diff7(R").
We have the following formulae for 7,;,...,,Q.
Sllz--.mQ: Z Sﬁr--ﬁ,,!lz---mQ:
(B1y+++38m) EB1X+++X B .
@(‘BI, Ty, ﬁm)(l)sﬂl-..ﬁmLz...mQZ ’ U th”_lm,

A€ B (T=1,000,m), L(A1) =22 =1(im)

L,...0=0U ((ﬂ U OBy - -5 B8y pndin..mO)-

150"y Bm)€B1X++-XB

Unfortunately we cannot conclude that H,(BDiff7(R"); Z)=0 directly
from these formulae. For, Q—1,,..,0 is not a chain map. We can,
however, prove the following theorem.

Theorem (8.2). Let Q=a,X - -- Xa,:[0, 11" —>Diff7(R") be the map
given by

(01 Koewe Xam)(tla Tt tm):al(tl)al(o)_l' : 'am(tm)o-m(o)_la
where o,: [0, 1]-Diff(R™) (i=1, - - -, m) satisfy
Int Supp (¥,,)NInt Supp (¥, )=¢ (+Jj).

Then Q is an m-cycle of BDiff7(R") and, if r —1<[nfm], Q is homologous
to zero.

Proof. We prove the theorem by an induction on m. The case
when m=1 is true by Theorem (8.1). Suppose that the cycles of the form
0, X - - - Xa; (1< j <m) are homologous to zero in BDiff;(R*). We may
assume that &, (i=1, - - -, m) has support in U. Since sQ is a sum of
cubes which are of the form ¢, X -+ X0, Is...,Q is an m-cycle. We
take the partition p with respect to the compact sets K;=Cl U, Kj....;, =
OBy -+, B (—L 11D By «++5 ) € ByX - -+ XB,). Note that these
compact sets are closed balls. Then we have
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ﬁllz--~mQ=Q+ - . Z @(1813 ) ﬁm)(l)sﬂl...ﬁmllz-..mQ+Z,-
(B1ye++1Bm)EB1X+++ X By

Here >’ is a sum of the cubes of the form w, X w,, where w, and w, are of

the form o, X - - - Xo; with 1=<j<m and Supp (¥,,) and Supp (¥#.,) are

contained in the unions of sets belonging to {U}U{Kj,...s., (B, - - -, Bn) €

B X - .- X B,} which are disjoint. By the formula above, we have

a(SLZmQ"PllzmQ+ Z C@(ﬂl,...,5m)S‘91...gm[12...mQ)
. (B1se+s Bm)EB1X<++XBnp
=0+27.

Since r—1<[n/m] and [n/m]<[n/j] for j with 1< j<m, by the induction
hypothesis, the cubes of the form w, X @, in 3" are homologous to zero.
Thus Q is homologous to zero.

We will show that ¢3,,: O%. .(BDiff;(R*)—S,(BDiffZ(R") given in
Section 7 induces the trivial map in homology of low dimensions. Then,
by Proposition (7.4), we conclude that the homology of BDIff;(R") is
trivial in the corresponding dimensions. In the next section we consider
the 2-dimensional case.

§9. The second homology of BDiff/(R™) (1<r<[n/2])

. In this section, we show the first part of our main theorem;
H,(BDiff}(R"); Z)=0 for 1<r<[n/2).
Let @: (Z, x Z,)"—>PDiff?(R") and U be those given in Section 5.

o[n/2]
Let A x4, (4,= % Z.;i=1,2) denote the subsemigroup which is also

given in Section 5. Let G and G, denote Diff7(R") and Diff(R"), re-
spectively. We will construct a map 4: Q;,2(B Diff; (R"))— Q% (BDiff7(R"))
such that §=04 -+ 43 (in dimensions 1 and 2);

Z<> 0, (BG,) <0, (BG)
X AN laz
z < Qi(BG) < ouBG) <X 0YBG).

Then, by applying Proposition (7.4) to ¢f, H,(BDift;(R"); Z)=0 for
i=1,2.

Let 4, (j=1,2) and 4,, denote A|Q/;(BGy) and 4|0 .(BGy),
respectively. We would like to use 7,,Q given in Section 8 in order to
construct 4,, A, and 4,, such that §=04,,+ 4,(—3,) +4,(+3,).
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Let Q: [0, IP—G=Diff7(R"™) be a smooth singular 2-cube which has
support in U.  We take 1,,0 given in Section 8. This 7,,Q has support in

K=Cl U O, 2)"(U).

L) =1(2)

Hence, 9,/,,0 and 3,10 also have support in K. We are going to
construct a 2-cycle from 7,,Q0. To make a 2-chain which bounds 9,7,,Q and
0,1,,0, we consider a construction similar to that in Theorem (8.1). Note
that Int @(2,, e)**(K) (4, € A,) are disjoint, so are Int @(e, 2,)"(K) (1, € 4,).
Hence, for a 1-simplex ¢ which has support in K, we can construct fo by
using the semigroup 4, or A,.

More precisely, let ¢: [0, 1]—G be a smooth path such that

. Supp (F,)CK.

We consider ¢ as an element of Q,,(BG)=0{,(G)/G. The 1-simplices of
the 2i*/%)-subdivision 5,6 of ¢ € Qf;,(BG) are indexed by 4,;

5,0= ), 50.
B1€B1

Put I10= U (m

hed

where, for 4,=pg,(k)- - - B,(1),
02, =D(B,(K), V54,1 - - D(Bi(1), ©) V55,0
For the C™-norm | |, we have
spol=270" ]|,
By Lemmas (5.1) and (5.2), we have the following estimate as before.
|D(B1; €)P 55,01 (2+€)"[ 55,01,

Hence, by the assumption that r<[n/2], for sufficiently small ¢, I,o is a
path in Diff7(R").

We need several partitions p to give a 2-chain which bounds ¢, Let
PY denote the partition with respect to the compact sets K and [0, 1]*—
Int(K). Let p, denote the partition with respect to the compact sets

K,e;=C11 ,aH ) D(2, 2)P(U) (E9(B1, )V ([—1,1]) (B, € B).
Put

to= | o5 and to= |J 0,
B1€B1 L(21)=2
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Then, by using  pLlio=pilio=c+Itoc and

plite=plto= Z @(‘Bl’ e)(l)sﬁlllov

B1€By

we have

po=0(— P Lo+ S, Lo+ ﬂ;:_.; Cotr,0r8pLs0— PiI1t,0).

Let 4,0 denote the chain in this parenthesis;
go=04,0.

In the same way, by using 4,, we define 4,0 for o € Q/,(BG) with
support in K;

¢o=04,0.

A4, and A4, are defined for elements of Q[,,(BG) and Qf,(BG) with
support in K, respectively. Hence 4, (j=1, 2) are defined on Q(,,(BG,)
and they are, in fact, the desired maps

A;: 0(;(BGy)—>QyBG) (j=1,2).
We are going to construct 4,,: Q' ,,(BG,)—Q4BG) such that
aAn +Az(—‘ al) +A1(+ az) = 5

For Q: ][0, 1*-G with support in U, we have constructed two 2-

cycles ¢Q—Ay(—3,)Q—A4,(+0,)Q and ¢112Q—Az(—a_l)I;zQ_Al(+az)I12Q
(we are considering Q and I,,Q as elements of Qf, ,(BG)). Put

t,0= U @(;81, ﬂz)(l)splﬁzQ-

(B1,82)€B1XB2

Then, we can see that 1,,0=0 U ,7,,0. To construct 4,,, we will show
that ¢7,,0 — A,(—)1,0 — A,(+9,)I,Q is homologous to

¢t12]12Q - Az("“ al)t12112Q —A1(+az)t12L2Q~

On the other hand, we will see that ¢J,,Q — A,(— 3,0 — A,(+0,)1,Q is
homologous to the sum of $Q — A,(—3,)Q — 4,(+3,)Q and

¢t12[12Q - Az(— al)tIZIIZQ “A1( +az)t12[12Q-

These imply that ¢Q—A,(—3,)0—A4,(+3,)Q is homologous to zero.
Therefore, there exists A4,,.
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Before verifying these, we give here a list of partitions 7 with respect
to several finite families of compact sets {K;}.
% Ki=ClU, K,=C U &, )W) (S[-1,1]"-0U).

(41, 22) #(e,€)

pi: Ki=Cl U 9(e, 2,)(U),

2€ 2

K,=Cl U 9(4, )*(U) (& U 9B, (-1, 1]")).
#e B1€B1
p5: K,=Cl U 9(, ©(U),

€M

K,=Cl U @4, )"(U) (S ﬂUB (e, B)V([—1, 1])).
P K(=K)=Cl U 0, )W),

1(21)=1(22)

K,=Cl U &, )).

1(21)#1(22)

P K(=K)=Cl ) &4, 2)"(U),

(1) =1(22)+1

K=Cl ) O, 2)"(U).

() #1(2)+1
it Kg=Cl U 0@, 2)(U) (SPGB, 0P(—1, 1])
1€ P1d1,22€ 42
(B € B)).
Pt Kp=Cl U O, )P(U) (S D(e, £)"([—1, 1]7)
A1€ 41,22 € ol
(B € By).

Let Q: [0, 1*—G be a smooth singular 2-cube which has support in
U. We consider Q as an element of O/, ,,(BG,); then we have its partial
subdivisions (§ 7). Put

50= 3 5,0 and 1,0= U (B, )Vs,0.
B1€B B1E€By

We also have
S2Q= Z SﬂzQ and t2Q= U @(e, ﬁz)(l)sﬁng
B2€ B2 B2€ B2
Then we have
5,98, e)(l)san-_—ﬁZG:,; Sh@(ﬁl, e)(l)sﬁlQ

and put
0= U = Dl B,)Vs5,0(B,, €)Vs54,0.

(B1,B2) € B1X By

Note that
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SﬂlﬁzQ = SﬂzsﬁlQ = Sﬁ1Sﬁ2Q and
DBy, B:)V55,5,0 = Dle, Br)V355,D(Bs> €)Vs,0.

We consider a 2-cycle which is obtained from 7,,,Q. For a path
a: [0, 11—G with support in

K=Cl U @, 12)“’((]):5%{, D(B,, e)(K),

(A1) =1(22)+1

we define 4ig and Aje by using A, and A, in such a way as we defined 4,
and A4,, respectively;

¢o6=04jc and ¢o=04lc.

We are going to show that ¢1,,Q— A,(—3d),0—A(+0)],Q0 is
homologous to ¢1,,1,0 — Ay (—0,),t,0 — AN(+8,),t,Q0. We have to com-
pare A, with 4] and 4, with 4;. This comparison is done as follows.

Let o: [0, 1] ->G=Diff7(R") be a smooth path with support in K.
For ¢, we note the following ladder (we are assuming that r<[n/2]). In
this diagram (Diagram (9.1)), we consider ¢ as an element of Qf,(BG).
Lo, t,0 and I t,o are also considered as elements of QF,,(BG). Here, for

X, Y e 0,,(G)/G, X5 Y means HX—Y)=0Z; C,, stands for Cyp,..)-

First, note that A4, is obtained by using the first three arrows of the
first column and the first row. Similarly, using the second row and the
three subsequent arrows of the first column, we obtain A4{ such that

5,0=0A:s,0.
We also have A? such that
pit,o=0A4%p.t0.
We observe that A} satisfying
t,o6=0Alt¢

is also defined in this way. Here, in fact, A4} is defined for any element
of Q(,,(BG) with support in K'(=\g,e¢z, (8, ©)(K)).

Secondly, the boundary of each rectangle is the boundary of some
3-chain:
S,(1—pi)lo—Pi(1 —s)lo=0(P%,S, 1,04 Bri,S,1,0),
Z Cpl(l —‘Piiz)s,a,lﬁ—PiizS1110+Pf21P111t10=3(—Z Cﬁlpilzs,sllxa)a
—P,(1—-piDLte+PE( —pl)lltlaza(Plpllizllltlo"*‘Brlplelltla)-
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Pélo .
Io e pilio=a+1ta
S Lo S, phlo
PisIa
sldo s pEsidio=s0+sLto
Z Cﬂxsﬂnlla Z CﬁxpfzsﬂxIld
Pip lto
plto phpJite=pitio+plt,o
—P\lto —P,phlito
J Pélto o
Lto phlto=to+1it,o
Silito S, pilLte
Pis Ito
s te phs\Lto=ste+s5lt,0
Z Cﬁxsﬁxlltla .
'
plit,o
—Pto
Y
ILt,o

Diagram (9.1)
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Here, Br, P41 to is a 3-chain bounding r P& tc obtained by Theorem
(8.1) (or (8.2)); r&S, Lo is a sum of 2-cycles satisfying the condition of
Theorem (8.2) and Br&S,J,0 denotes the 3-chain bounding r%S, /o given
by Theorem (8.2).

The part lower than /¢, of the first column is a summand of the
whole second column. Hence the following 2-cycles are homologous to
zero by the three formulae above.

S0— A0+ Ajs,o= —3(P%,S Lo+ Br,S 1 o),
2. Cpsp0—Aisio+Ap tio=—0(— 3 Cy Phs, 1 0),
— P to—Afp tio+ Aito= —o(P,P41t 6+ Br PEIt 0).

By using 4, we also obtain a similar ladder for ¢ € Q,,(BG) with
support in K, and we have 4,, 45, A2, etc., satisfying similar formulae. If
o( € Q,,(BG)) has support in K* instead of K, we use P% instead of P,
and we define A4}, 4}*, 4;* (by using 4,). Note that we have

2. @(‘815 )V A,(— al)SpIImQ = Ay}(—0)p. 1,51, 0.

Now for the 2-cycle ¢1,0—A,(—0)1,Q—A(+0)1,Q, using the
above formulae, we have the following diagram (Diagram (9.2)).

Here, the chain in the parenthesis { } at the third arrow is obtained
by looking at the expression

(P,+ Br)AY(—0)1:t,0.

This expression does not make sense. For, Aj(—3d),t,Q has the term
Cp5p,L(—0)1,1,Q. The support of this term contains [—1, 1]* and is
not contained in (g, Kp, (nor in g, ez, P(Bi, P (—1, 1]). Hence
we cannot apply the homotopy P, to this term.

However, by changing the order of P, and C,, in this expression, we
obtain the above parenthesis which gives the desired boundary. (See also
Diagrams (9.4)-(9.7).)

By Diagram (9.2), ¢1,,0— A,(—0)1,0— A,(+0,)];,Q is homologous
to @Lt,0— Ai(—0),t,Q — AW(+9).1,0. In a similar way, ¢/,1,0—
A(—0)L,t,0— A(+9,)],1,0 is homologous to Blot1,0 — A(—0)]151,,0 —
A1(+az)[12t12Q-

On the other hand, we have the following diagram (Diagram (9.3)).
To obtain this diagram, we apply the partitions p%, ¢ and p5 to 1,0,
A(—0),0 and A,(+0,)[,Q, respectively. Note that, to obtain the
correct 3-chains, we have to change the order of P{ and C,,, or P§ and
C,, as in Diagram (9.2). Since p$;0,1,,0 =pi0,1,,0, we see that P{d,/,,Q0=
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¢112Q —Az( _al)IXZQ - A1(+az)Ile

S50
— (P44 Bri)S I (+0)1,,0

50,0 — A(—3)5.1,Q — A}(+0)5,1,,0

25 Cosp @
2, Co A(—8)85,1,,0
+ Z Cﬁlp‘lizsﬁlll( +0,)1,,0

ép. 1t Q —A(—8)pd:t,Q — AV(+3,)p. 11,0

—(P+ Br)L,t,Q
+{(Px+Br1)(("Pf21+Sz)12(_al)lmt1Q—lez(—al)lxztle)
+Z CﬂzPlsﬂzIZ(_al)IIZtlQ}
—{(P,+ Br)PLI{(+0)1,1,Q

¢Iizt1Q_A;("’ai)Imt1Q _Ai('i"az)llztlQ
Diagram (9.2)

P, 1,0. We also have P%,0,1,0=P%0,1,0. (See also Diagrams (9.4)-
©.7) |

By Diagrams (9.2) and (9.3), ¢Q — A,(—0,)0— A4,(+3,)Q is homolo-
gous to zero. By Proposition (7.4), this completes the proof of

H,(BDIff;(R*); Z)=0  for 1<r<[n/2].

In order to treat the homology groups of higher dimensions of
BDiff7(R") in the next section, we devote the rest of this section to
examining the construction of 3-chains in the above proof.

The 3-chain used in this proof is constructed from Diagram (9.4)
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¢112Q "“Az(—ax)]uQ - A1(+ az)ImQ

(P4 Bril,Q
+ P+ Bri)(Ph—SH(— 0,0 + Pol(—0,),,t,0)
+Z _ChPfShIz(—a,)I,zQ
+ (P54 Bri}(PL—S)(+0)1.0 + P.I,(+8,);1,0)
+Z Co Pise (4310

OD5l,Q — AL —0,) Pl 1,0 — A(40,) 11,0
= ¢Q — A —0)Q— 4,(+3,)0
+¢112112Q_‘A2('—61)112t12Q - Al( + az)lxzth-

Diagram (9.3)

which describes the face relations. Note again that P$,0,1,,0— P%,1,,Q
and P¢,0,1,0=P%,1,0. Diagram (9.4) represents the 3-chain which
bounds

(¢ - Az(“ al) - A1(+ az))PfZImQ - (SZS_ Az("“ al) - A1(+az))112t12Q
=(p—A(—09,)— 4,(+3,)Q.

For each face of Diagram (9.4), we have a 3-chain bounding the
2-cycle on its boundary. Thus the upper half of the front faces of
Diagram (9.4) corresponds to' Diagram (9.2), and the three top faces of
Diagram (9.4) correspond to Diagram (9.3).

The 3-chains corresponding to the faces with (*) in Diagram (9.4)
are obtained easily. These are the top face and the three front faces of
Diagram (9.5). In Diagram (9.5), we do not write the orientations of
edges. The face relations such as

anzIﬂQ = ]12Q “‘pfzImQ - szaInQ

are written in Diagram (9.5) modulo the terms such as r$,/,,0, r%S,0.1,,0,
etc. For, these terms are 2-cycles homologous to zero by Theorem (8.1)
or (8.2). To check this diagram, note that we have @(5,)"P¢,=PLO(B)™
by the definition of P¢, and P%, and 3 P4O(8,)V0,8,,1,,0 =p, P40,1,:t,0.
Note also that Diagram (9.5) consists of the faces of 4-chains P¢,S,7,0,
37 Cp Pis, 1,0 and P, P51t Q modulo the terms containing r.
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A, pio1.0 PhlQ p30,1,.0 4,
Pt * P
/ o *) e /
——— A Isz azlsz Al—"'

2 9,1,0

™ S,

A, 9,5.1,,0 51,0 — 9,5,1,,0 A;—
Z Cﬁl (*) Z‘l Cﬁx

A4; o,p.01,Q pudtQ 0,p,1:1,Q AP—]
P, Q) P,

A; a1[1 tlQ IlztlQ 52’1 tlQ All"_

S,

Ay 0:8.01.1,0 Sod 1t Q 0,5:0,:,Q A—
Z Cﬂa Z Cﬂz

A;p 31pz[12t12Q pZIIZtIEQ azpzlutsz Al'_{
P, P,

A, 31[12t12Q T:1,Q azllzth Al__

Diagram (9.4)

The 3-chains corresponding to the faces in the upper half of Diagram
(9.4) which contain A4,, 45, A7 and 9, (the faces on the right of (x)) are
obtained from Diagram (9.6) by substituting 3,/,,0 for Q. Note again
that the face relations are written up to the terms such as r%S,[0,
rP51t. Q. The front faces of Diagram (9.6) are the faces of Diagram
(9.1). Diagram (9.6) is obtained from Diagram (9.1) by taking the prod-
uct with “the edge P¢”. Note that, to represent 3-chains, we are writing
the symbols C,,, P,, P§, P%, S, in this order. Thus the 3-chain corre-
sponding to the top face in Diagram (9.4), bounding P%,1,,0 — A4,0,1,,0 +
A, pi0,1,,0 is given by the top face and the faces on the left-hand side of
Diagram (9.6). The 3-chains corresponding to the other three faces con-
taining @, are obtained from the front faces of Diagram (9.6) (as are writ-
ten down after Diagram (9.1)). Note that Diagram (9.6) consists of the
faces of the 4-chains P§PES.1,Q, > Cp PiPts, 1,0 and P,PiPHELLQ
modulo the terms containing r.

On the other hand, the 3-chains corresponding to the faces in the
upper half of Diagram (9.4) containing A4,, A} and 9, (the faces on the left
of (x)) are obtained from Diagram (9.7). Diagram (9.7) is obtained from
A,0,5,1,,Q by taking the product with the edges > C,, and P,. Here note
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that @(8)VCp,= Cp,@(8,)" by Remark (5.3). The 3-chain corresponding
to the top face in Diagram (9.4) bounding P3$0,1,,Q — A4,0,1,,Q + 4,p0,1,,Q

Diagram (9.5)

P11, 0
Pi0.1,0 P10 P9,1,0
1,0
0 PRS0 P55:0.1,,0
0 P1,5,0,1,,0
0 8.1,.0 $,0.1,,0
Piasil10-
P30.5,1,,0 PisiI,0 P{y5,0,1,,0
$,.1,,Q
2. Ca P05 120 22 Ca,piesp 11,0 2 Cﬂ;szsglaszQ
25 Cs, Pidys, 1,0 > CyiP1o55,0:.1:Q
2. Cp018511,0 22 Casp 10 > Cﬂlsﬁlazlle '
PPl @
pIP;;alllztlQ PG 0 PiP5i0, 13,0
Pl Q
P, pho .t Q P, pial .1, Q P, pd.1,1,0
PPOL0 PPioI 1,0
Po1.10 P I,t,0 Po,1,t,0
JzI A
P30, 01,0 PiL:tQ P5o1,1,0
1,1, O
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is obtained as the product of A,8,51,,0=4,9,1,,Q and “the edge P5”.
These 3-chains containing 8, are faces of the diagram which is the product

PiPLILQ
PO PiPLLQ Piphl,Q
PLLQ
JZANAY PiP%S 10 PiphS 0
P3S,10Q Pipi,S.LO
S0 PES I Q PLS L0
PiPLs 0
Pis 1,0 PiPLs 10 P;pts, 1 Q
Pis Q0
Z Cy, P35 1,0 2 Cﬁlpgplizsp.le > Cﬂ‘p;p(lizsﬁlllQ
Z CﬂLP‘EShIIQ Z CplpgpfzsplllQ
2. Cosp 1,0 2 CﬂAPIiZSﬁAIIQ > Cﬁ,l’ilzsplle
p.PsPE1LQ
pPiLtQ P.PiPELLQ pPipiitQ
. PELLO
P pilt,Q P piPRLtQ P pipiilt,Q
PPiLLQ PPipii1t,Q
P10 PPLLLQ P pt1it,Q
PiPELLO
Pl Q PPLILLQ spaltQ
PHILQ

Diagram (9.6)
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of Diagram (9.7) and “the edge P¢{”. Note again that, to represent
3-chains, we are writing the symbols Cj,, C,,, P;, P, P% or PE, S, or S,in
this order.

PLIAsT,0
> Codidisp 1,0 3 CoPaI 355 1,0 S Co 0l 3,55 100
PPRIA 0
S.1.9,5,1,.Q P L3110 PPHID 10 P, pBIA 1,10
25 CpS:10155, 11,2 PAIA, 11,0
PpSIA 1,10
PS,I13.1,1,0
3 Cosulidiss 10 S,I 0,10
22 Cpsp 005510 Ps,La 1,0
37 CoCa5edd 15510
22 Copisp 100200
: 37 CpPisp 18,11, 0
22 Co 2025110 T Cpsp I 01,0
37 PI3,s, 11,0 P.p.I3 ] t,0
37 Co Pl B, 10,0
P13 1ot 0
PP,IA.I,1.0
22 CoLdis, 1,0 P13 Jt.0
PIa 11,0

Diagram (9.7)

Now we consider the third homology of BDiff7(R"). We have the
[n/3]

subsemigroup A, X A, X A4, (4, 52 x Z.;7=1,2,3) of (Z,x Z,)" given
in Section 5 and the construction of 1,0 for a 3-cube Q with support in
U. We would like to use I,;,Q to construct a map 4: 0% ,(BG,)—Q%(BG)
such that =084+ 43. As we did in this section, by using 4, (j=1, 2, 3),
we can define 4;=A4|0Q/;,, We can also define 4,,;,=4|0(,.;»(BGy)
(1=/,<J,=3) by using 4;, X 4;,. Note that 4; or A4,,;, are defined for
1- or 2-cubes with support in an appropriate compact subset of R* such
as K. Then, as we constructed Diagram (9.4) in the second homology
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case, we try to construct Diagram (9.8), which would imply the existence
of A126=A l Q{z,z,s)(BG)-

Pi / A / ﬁ / P /
Ixsz—'— axl a.1, uQ g IzaQ“'"'"_‘Alz"‘

; Az Ay s
| S, S, S,
f—s,ImQ 9,8,1,,,0 A, 9,5,.1,5,0 Ay 038,015,0— A5, ]
2.Ch 22Cy 2. G 2.Cs
ko010t O 8, p 0531, Q ——— A} 3,p,1,,,1,0 A%~ 03 Pt Q——— AL —]
P, P, P, P,
winae 31,,1,.0 A3 0,11,:1,0 A}~ . Byl gt O——— Ay~
S, S, ‘ S,
b5, 10,t,0 0,5, 11551,0 ——— A} 3,5, 1 551, QA 8,8, 13t QA
2Ch 2iCh 2Ch 2. Ca
o010 8, pod it 1,0 A 8, p, 1551, QA1 9;p.1 _ﬂtﬂQ-—-—A{;’—
P, P, P, . P,
12t Q 0Lt nQ AR Bolut QA 30, t,,0—— Al
S, S, S,
830 10311,Q — 0,5,1,551,.0 ——— A2 0,5 1,051,,0 A3 08,1, gqt,,0 —— A1
22 Cs, 22 Ca, 2Ch »IE Ce,
FPd st = 01l igstin QAR 8, Pilt QAU 0yl inst iy QA
P, P, P, Py
e yJ 55t 0@ —— Ay, 8pd53t,13Q e 4, 051 55t10,Q—— A,

Diagram (9.8)

As we used Diagram (9.1) in order to define A4,, 4f, A7, we try to use
Diagram (9.9) in order to define A,,, A45,, A%. Diagram (9.9) makes sense
at least up to the terms containing r. - For, Diagram (9.5) and Diagram
(9.6) substituted 9,7,,0 for Q are faces of 4-chains which match up modulo
the terms containing . The 4-chains we are looking for are those in
Diagrams (9.5) and (9.6) with P¢,, P replaced by P%,, P%4. That is, the
diagram consisting of P$,S.1,,0, 33 Cp Phys, .0 and P,PHI,1,0, and
that consisting of PLPES 1,0, > Cp PLP%s, 1,0 and P PLPLILLO.

By now, however, we have not been able to control the terms con-
taining r. The difficulty is that the 3-chains bounding rf,;s, 1,0, r%:1,:%,0,
r3S.1,Q, etc. are obtained by using Theorem (8.2) and these 3-chains
usually have big support. '

In the next section, we use a little more complicated construction to



Diagram (9.9)
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P Pl Py P4
Az nzle -12Q - 2zIzQ Al_—
S,
a
P _pa, Phy _~PY
A, 9,5,1,,0 501,Q 0,5.1,,0 Al —
Z Cﬂl Z Cﬁx
Py _Pa Py P4
A4; 0,p. 11,0 Pidut,Q 0,p11,Q AP —
Py P,
P Py P Pg
A3 AR I.1,0 0,1,,1,0 Al —
S,
PE_~Py Pl s
Ay 9,5,1,:t,0 51,1, Q 0,8,1,,1,0 A} ——
Z Cﬂ: E C"
Py~ PiE_pg
g 0,P:11:1,.Q Polt1:Q 0, P:11:1,,Q —A, —
P, P,
P _ PR PP
A, 01,0 I,t,.0 0, 11:1,,0 A —

show that the higher homology of BDiff7(R") vanishes provided that » is

a little larger.

There, we prove the vanishing of the m-th homology

group inductively on m by using the partitions with respect to families of

closed balls.

§10. The m-th homology of BDiff7(R") (1 <r<[(n+1)/m]—1)

In this section we prove the following theorem.

Theorem (10.1). H,(BDiff?(R"); Z2)=0 if 1 <r<[(n+1)/m]—1.

First we consider the case where 1<r<[n/m]—1 and show that
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H,(BDiffz(R"); Z)=0. The proof is easily modified for 1 <r<[(n+1)/m]
—1.

For a k-cube Q (k<m) of Diff7(R™) with support in an appropriate
subset of R", we define a k-cube I .0 and inductively construct a map
A: @, .(BDiff;(R™) — Q4 (BDiff;(R™)) such that ¢3, = (¢4)d+3(cA).
Then by Proposition (7.4), we obtain the desired result.

Let @: (Z, * Z,)"—PDiff?(R™) denote the homomorphism given in
Section 5 with an open ball U such that @A)(U), 2e(Z, = Z,)" are
disjoint. Since m([n/m]—1)+-m=<n, as we saw in Section 5, we have a

[n/m]}-1
subsemigroup (Z)"X A, X ---X 4, (4;= - Z, (i=1,---,m) of
(Z.xZ)". Let?,r”,---,7"™ be the generators of (Z,)™ and B,={;}
the generating set of 4, (i=1, ---, m).

By using 4, X ---X4;, 1=j,<---<j,Zm), we have the con-
struction of 7;,...;,Q for a k-cube Q & QJ;, ... ,,,(BDIfT7(R")) with support
in a suitable compact subset of R" (see § 8). Here, the k-cubes of the
2t#m1-1.subdivision of a k-cube Q € O, ....;,,(BDiff;(R")) are indexed by
B, X+ X By;

Q=3 Sﬁ];'"ﬂ!kQ'
I,..;. Qis given by

1j..;.90= U Q’Ih'”lﬂc’

1) = =U(2j3)
where, for 2,,=8,(p)- - -8;,,(1) (g=1, - -, k),

Qi1 =P(B(P) - '.31E(P))(')Spmp)-»ﬁjk(m
= DB (D) - - B (P00 Q-

Since the C’-norm of Q@ ...,;, is estimated by (2-0"/"1*(2+4¢)")'¢n|Q)|
(Lemma (5.2)), I;,...;,Q is a smooth k-cube of Diff7(R") provided that
r<[n/m]—1. 1I,,..,(Q) is defined if Int Supp Q;, ..., are disjoint.

Define I{)..,,Q by

IR.00= U  O(r®))DQ,, .4,

1(3jy) =vee=L(Az)

If r<[n/m]—1, then I{® _, Q is also a smooth singular k-cube of
Diff7(R™).

Put K{" =@(r*)W([—1,1]") and K{P=CI([—1, 1]"—K{®»). Note
that K{* and K{® are closed balls. For a k-cube

Q e 0,.....1»(BDIff7(R")
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with support in K{®, we can define I{¥)..;,0. Let p*® denote the partition
with respect to K{* and K{®.

We also use the partition g, (i=1, - - -, m) with respect to the family
of closed balls

Kp=0(@)"(—1,11" (. € B)).
Consider the set of closed balls
U KpN---NKp, NKLN - - NKEY
(‘Bz € Bi: ai:Os 1; i=1: o '9m)'

The interiors of these balls are disjoint. Moreover, we can shrink U and
K{ and fatten K{” and K, so that these closed balls (intersections)
become disjoint. Hereafter, U and K{” shrinked or K{* and Kj, fattened
are denoted by the same symbols as well as the partitions defined above.
Let V denote the interior of the union of these balls (intersections). Note
that, if Q is supported in ¥ NK{N - - - N K{®, then I, ; O is supported
in VAK;N--- NKF-Y,

For a k-cube Q and 1</ <k, put

t...0= U Bld)(ﬂl)msm. . -@(ﬁl)wst-

(B1veees BIYEB1X -+ X

Here, 5,0=25,0 (i=1, - - -, m) is the partial subdivision of Q consid-
ered as an element of O, ... ,,(BDiff7(R")). Let 1 Q denote @(r®)MQ.
Note that

I#.,.0=0UI& t®t...0
forQe Qzl,---,k)(Bﬁﬁ‘{nt(Kén---nK“,’”)(R")) and
p(k)I{{C.).kQ=Q+Iﬁc.).kt(k)t1...kQ'

The construction of the map 4: 0}, .(BDiff;,(R"))—Q; . (BDiff;(R™)
is carried out inductively on k as follows. Let 4,,...;, denote

A l Q:jl ----- Jk)(BD——iﬂ'{nt(Kaﬂ'-'ﬂKék))(Rn))'

By using I{®.,Q, 4,...;.... 1Zi<k) and the action of Z.(7)X---X
Z. (™)X A, -+ X Ay, we construct A,..., such that

k
l¢:alA12...k “l"; lAl...i...]c(— l)iai'

Then we can construct 4;,...;, such that
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2
p=0td;ysut 25 g 10y (=A< <Ju=m)

in a similar way by using Z,(7")X - - - X Z, ()X 4;,X - - - X 4;,. Thus,
hereafter we construct A4,,..., assuming the existence of A4,..;..,.. By
Proposition (7.4), the existence of 4,,...,, implies H,(BDiff7(R"); Z)=0.

For the construction of A4,,...,, it is necessary to treat the locally
degenerate chains.

In general, let V' be a finite disjoint union of bounded open balls
U, (j=1,---,N) in R*. An m-cube Q of BDiff}(R") is said to be
locally degenerate if the following condition is satisfied: For any je
{1, - - -, N}, there exists k e {1, - --, m} such that the holonomy in the
direction of e, is the identity on U;. A cubic m-chain is said to be locally
degenerate if it is a sum of locally degenerate m-cubes.

There are no nontrivial 1-chains which are locally degenerate. Any
locally degenerate 2-cube is a product of two l-cubes with support in the
unions of U; which are disjoint. Hence any locally degenerate 2-chain is
a 2-cycle. If H(BDiff7(R"); Z)=0, any locally degenerate 2-cycle is
homologous to zero. Moreover it is the boundary of a locally degenerate
3-chain (which is in fact a sum of product 3-cubes).

We consider locally degenerate chains with respect to the union V' of
open balls given before. Note that r*®Q and r,Q (k=1, --.,m) are
“product chains”; hence are locally degenerate chains. Moreover, if. Q
is locally degenerate, S, Q, P*Q and P,Q (k=1, - .., m) are also locally
degenerate as well as 5,0, 7 Q and 7,0.

First we look at the construction of 4,,...,, for m=1, 2, 3.

For a 1-cube Q e O, (BDIifff,;,(R™), we have the following dia-
gram (Diagram (10.1)). Hereafter, C,u denotes C,,a,. This diagram
plays a role similar to Diagram (9.1).

From this diagram, A4,, A and A? are defined. For example,

A1Q= —P,I{Q+C7'I{Q+S1IIIIQ+Z CplspLI{tIQ_PJ{t,hQ'
Hence, for r, n such that 4,Q is well-defined, we see that
H(BDiff7(R"); Z)=0.

To construct A4,,, we look at Diagram (10.2) for a 2-cube Q
with support in K5 Ky, Here, for a 1-cube Q € Ql,,(BDIfl ],k (R™). 4,
is obtained in a way similar to 4,, by using 7; and the action of ¥’ and 4,.

Diagram (10.2) corresponds to Diagram (9.4). A,;Q is obtained as
the 3-chain which bounds the difference between the top edge and the
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C.IQ P'IQ
Lit'Q 1o —p'IIQ=0+It',Q
SIt'Q SI0 JANHY
C.s 110 P'sI0
sIit'Q 5110 r'sIiQ
2 Casalit’'Q 2. CaspiQ 2. CaP'spliQ
Cr’pllitlQ P'pIit,Q
plit't,Q pdit,0 Plpx_I{tlQ
PIt'HQ P10 P,p'I1,Q
C,It,0 PItO
't Q - 110 pItQ

Diagram (10.1)

bottom edge of Diagram (10.2).

Let B,[P"”]=B|[P"9,I;;0], B|C,.]=B|[C,-0,I;0], etc., denote the 3-
chains which correspond to the faces indicated in Diagram (10.2). For
example, B,[S,]=B,[S,3,I1;¢”’Q] is a 3-chain which bounds S,0,13t"Q—
A10.173t" Q-+ Ajo.s, 115t 0.

The 3-chains B, ] or B[ ] are obtained from Diagrams (10.3) and
(10.4) up to the terms which bound 2-cycles of the form »'Q, r”’Q, r,Q,
r,Q. Since p’, p”’, p,, P, are partitions with respect to closed balls, these
2-cycles are locally degenerate. Since H,(BDiff7(R"); Z)=0, these terms
are homologous to zero. Moreover, we can choose the bounding 3-chains
which are also locally degenerate.

Diagrams (10.3) and (10.4) correspond to Diagrams (9.6) and (9.7).
The method to write down the 3-chains is similar to that in Section 9.

Diagram (10.3) is obtained from Diagram (10.1) by putting the
product of 4,0 and the two edges C,.. and P".

Now, B[ ]are obtained as follows.

B/[S\] = B|[S:0.11:t" QL B> Cpl = B[} Cp,0u55, 112" 0, Bj[P] =
B,[P,3,I;t"'t,Q] are obtained from the front faces of Diagram (10.3) sub-
stituted 9,11,Q for Q. In fact, they are

CS 10175t O — P'S\I10,113t" O,
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A, 3, P10 3, 4
B[P"] p” P” B[P
A, 0,17 T 3,115 4,
BJC,] C. C, B[C.]
A, 3, It 3, 4,
S, B|[S]
A, 0, s 15" Q 0, A3
B2 Cl 2.Cs 2.Cy, B3 Gl
A, 0, p It Q a3, AP
BJP] P, P, B|[P]
A, 9, I571,0 0, Ay
B[S, S, |
Aj 0, s, It 6,0 a, A,
B2, Cs) 22 Ca, 2Cs B[22 Cp)
A? 0, pI1st"t,0 a, A4,
BJP}] P, P, B[P,
A, a, I5t"t,0 2, A,

Diagram (10.2)

37 CCp,sp 110,155t Q+ > Cp P'sp 10,155t Q  and
CT’PII{aZI{;t”tlQ_P/PII{aZI{ét”tlQ
up to the 3-chains which bound the 2-cycles of the form r’Q, r”’Q, r,Q,

r,Q.

B[P"1=B[P"3,I;Q] and B|C,.]=B|[C,.0,1;;0] are obtained from
Diagram (10.3). They are the 3-chains corresponding to the top faces
and the faces on the left-hand side of Diagram (10.3) substituted 3,17
for Q.

BJ[P"] and B,[C,.] are obtained similarly to B,[P”'] and B,[C,.].

On the other hand, B,[3, C,,] and B,[P,] are obtained from Diagram
(10.4). Diagram (10.4) is obtained as a product of 4, and two edges
> Cp and P,.
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C, P’
P pr” pr
1O
C C. Cpn
I{t’t"Q ’;t”Q pII;t///Q
C,’ .P/
PH
Sl S1 Sl
Cy
P”
Z Cﬁl Z Cﬁl Z CﬁA
Cy
P/I
P, P, P,
C,. -
C,. P’
Diagram (10.3)
I
& > a0
2.2 Ca, Cs, 2. Ca
PI x x

S,
Z Cﬂl
Z Cﬁz
Z Cﬁl
P,
P,
W

P
&

Z Cﬂz

Diagram (10.4)
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Note that, to obtain the 3-chains, we should write down the symbols
C,, C, Cp, Cq,, P’, P”, P, Py, S, o1 S, always in this order.

Diagrams (10.3) and (10.4) concern the upper half of Diagram (10.2)
and the lower half of Diagram (10.2) is obtained similarly. These diagrams
represent face relations modulo the terms containing 2-cycles of the form

rIQ5 r”Qa r1Q9 er'

Thus we can complete Diagram (10.2) and define 4,,. Therefore, by
Proposition (7.4), H,(BDiff7(R"); Z)=0.

To construct 4,,, for a 3-cube Q with support in KjN Ky NK’, we
need A$,, A%, etc. These are obtained from Diagram (10.5), whichisa
product of the vertical part of Diagram (10.2) and the edges P/ and C,..
For example, the 3-chain 4,0 which bounds s5,0—A4,(—09)5,Q0—

A, 0, 150 3, A,

N
\

A,—0,I7; 150 0,117 A,

T

D

REANAN

S

)
N

2

NG

RN

N
AN

d; pIit"t,0 3

5

D

3
N

23

g

Nr1Q 3

>
>
M
o
it
53
-~
X
N
=
D

s

P//

N\

\é‘
N

1

£

N
oy
Q

'
M~
o
53
~
X
N
o~
5,
D
>

-
o

N
SO

A, d; 105710
Diagram (10.5)

&
=
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Ai(+0,)s5,0 is obtained as the 3-chain in Diagram (10.5) bounding

P"sd130 — A(—3)p"'s 11,0 — AN(+3,)p"'s IQ
— (s I55t"t,Q — A(— apsdit"t,0 — Ai(40,)s,155t"'1,,0).

For a 2-cube Q, we can read from Diagrams (10.6) and (10.7), the
4-chains BlZ[SIQ], B[>, Cps54,0], ete., bounding

S:0—4,,0 + A35,0 ~+ By[S,3,0],
Z Cﬁ1sﬂ1Q_A182S1Q +Afzplt1Q+Bl[Z CplaszQ]’*‘Bz[Z Cﬂl(_a1)sﬁ1Q]’

etc., modulo the 3-chains of the form CrQ (for example, C.r"" Q% Cor’ Q%
and the locally degenerate 3-chains.

Diagram (10.6) is obtained as a product of Diagram (10.1) and the
edges P”” and C,.. The top faces, the front faces and the faces on the

C, P’
P// Pll PII
10 S,
C, G, G
S,
’
s, < s, P s,
P// P//
s 110 22Ca
C., C,.
’ Z Cﬁx
C. P
Z Cﬂn ! Z Cﬁl Z Cﬁx
—
Pl/
Pll
p.Iit,Q P,
C,. (o
C P’ &
P, " P, P,
P” . P,, P
110
c, C,r G
C P’

Diagram (10.6)
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left-hand side of Diagram (10.6) is Diagram (10.3). The 4-chain B,[S,0]
is the sum of C,.S.I1,0, —P”S,I1;Q0, and the four 4-cubes on the
third floor of Diagram (10.6) G.e., C.P"”S,I9,I1;Q0, —P’P"S,I;3,11,0,
—C,C.8,I10,11,0, — C,.P'S,I{3,I1;0) up to the terms needed for the 3-
chains of the form CrQ and the locally degenerate 3-chains.

Diagram (10.7) is also obtained as a product of Diagram (10.4)
and the edges P” and C,.. The 4-chain B[}, C,s,0] is the sum of
2. CCa5p 1150, 3 Cy P"sp 11,0, the 4-cubes represented by the second
floor of Diagram (10.7) and those represented by the second floor of
Diagram (10.6) substituted 3,/{;Q for Q (up to the chains as above).

Now we can complete Diagram (10.8) which corresponds to Diagram
(9.8). Note that the terms B[ ] (i=1, 2, 3) cancel by themselves because
*=0.

From Diagram (10.8), we obtain a 4-chain which bounds Q—
Ap(—0)0 — A15(+8,)0—A,5(—8,)Q modulo the 3-chains of the form
CrQ® and locally degenerate 3-chains. For the 3-chain of the form CrQ?
since H,(BDiff7(R"); Z)=0, we obtain a locally degenerate 3-chain b such
that rQ*=0b (b is in fact of the form Q%X Q', where Q? and Q' are sup-
ported in the unions of connected components of ¥ which are disjoint).
We have

0Cb=b—cb—CrQ*

P‘: Z Cﬂ: S2 CI P’

/} /’ I P

| Z

Z Cﬁ: Z Cﬂx
P//

C,.

P, P,

P

C,.

P2 Z C.-’: S C? P/

Diagram (10.7)
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By adding the boundary of 4-chains of the form Cb, we obtain a 3-cycle
homologous to Q — A, (—9,)0 — A,(+3,)0 — A4,,(—3,)0, which is locally
degenerate. Note that ¢b is again a locally degenerate 3-chain. Since
H/(BDiff7(R"); Z)=0 (i=1, 2), the resulted 3-cycle is homologous to
zero (see Lemma (10.2)).

Therefore, by Proposition (7.4), H,(BDiff7(R"); Z)=0.

Note that we can use P%,;, P¢, Pt P¢instead of P””’. Hence, by using

Sl(n+1)/3]1-1

the semigroup (Z,)*X A, XA, X A, (4,= =  Z, (i=1,2,3)), we can
prove that H(BDIiff7(R™); Z)=0 (r<[(n+1)/3]1—1).

Ay d;

P 9, % Ay d; Ay
/ p / " /P/// ; /P/// ;
I150 9, Ay 0, Ay d Ay
Co / c..

175077 Q J, Aoy 0y A, 0Oy A,y
S, l S, S,
s, L5 O 9, A,y X 33 0y A5y
2.2Ca 2.Cs 2:Cs 22Ca
—p,lt"'t.0 0; Ay 0, ALy 0y A?,
P, P, P, P,
L1 Q 3, Ay 3, Ay 3, A,
S, S, S,
s, I1551" 1,0 0, Ay 0y Ay | A Ay
2.Cs 2.C 2.Cs 25.Cs
—p Lt 10— O Al 9, Ay ALy
P, P, P, P,
—I5t"'1,0 oy 23 0, Ay A A,
S, S, S,
F——s, 0502”1, 00—  0; Az — 0y As; Jy Ay
NG | | ZCh 3iC 31Cs,
It 10—y AL— 0 Al 2, As
P, P, Py P,
et Q—— \ Ay d. Ay 3, A,

Diagram (10.8)
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To construct 4,,...,, inductively on m, we first show the following
lemma. Here we suppose that H,(BDiff7(R"); Z)=0 for i=1, - - -, m—1.

Lemma (10.2). Let V=\JY_, U, be a finite disjoint union of bounded
open balls in R*. Let a=y, +Q, be an m-cycle of BDiff;(R") which
is locally degenerate with respect to V. Then the cycle ta is homologous to
zero in SL(BDIff7(R"™)). In fact, there exists a locally degenerate (m+1)-
chain b e Q/(BDiff7(R™)) such that ta=2acb and the support of b is contained
in a neighborhood of the support of a.

To prove this lemma, consider the following action of the symmetric
group &, on 0,.(BG). For e ¥, and Q: [0, 11"—G, define Ox: [0, 1]
—G by

(Qﬂ)(tv Y trn)z(det TC)Q(TC(tU ] tm))'

Here = € &,, is considered as a permutation matrix. Then the boundary
homomorphism 9: Q,(BG)—Q,_,(BG) induces a map 9: Q,(BG)/S%,—
0,..(BG)/#;_;. Let Q. (BG)/¥ denote the quotient complex. Then
¢: Q(BG)—S(BG) (§ 6) factors through Q,(BG)/<; ‘

0.(BG)——>5,(BG)

7

0.(BG)/¥ .

Proof of Lemma (10.2). We prove Lemma (10.2) by an induction on
N. If N=1, the locally degenerate cycle a is in fact a degenerate cycle.
Hence, Lemma (10.2) is true when N=1.

Let p denote the partition with respect to | JY5' U, and U,. Then
pa is an m-cycle homologous to a. '

First, the part pa of pa is homologous to zero. For, the m-cycle a
restricted to Uy is a degenerate cycle. On the other hand, the m-cycle a
restricted to | J{! U, satisfies the assumption of Lemma (10.2) for N—1
bounded open balls U, - --, Uy_,. Hence, it is homologous to zero by
the induction hypothesis (it is the boundary of a locally degenerate chain).

Thus, a is homologous to pa—pa which is written in Q% (BDIiff7(R"))
/& as ‘

D EOEIXOL 4D FO0EEX O+ -+ 0L X O,

where Q77" is an (m—k)-cube with support in | J)2' U, and Q7% is a k-
cube with support in Uy (k=1, - - -, m—=1).. Since H,(BDiff/(R"); Z)=0,
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Q7 is written as a boundary; QF%,=3dBQ[ o where Supp (BQ3,)C Uy,
Then we have

pa—pa—(—D)™3(3] £ 0w X BOG,
={— (="' 20(£ Q%) X BOG + 2. = 0% X Q)
20 0 X0
Here, the terms in the parenthesis { } is rewritten as

Z o X(Z +0d )

where Q7;* are distinct. Then, >, +07 ;, is a 2-cycle with support in

Uy. For, the boundary of pa—pa—(—1)""'9(32; =07 ' X BQ,) contains

2.1 Q057" X0(22; =04, »), which is zero.
Since H,(BDIiff}(R*); Z)=0, >, =072 ,, is written as a boundary:

2. 08 »=0B(2; £04.5), where Supp(B(2.; +0¢ ) Uy. Then
we have

pa—pa—(— 1)’""6(2 + Q% X BOG,
—(—=Dm 23(2 oy ZXB(Z +0& )
={=(=D""Z% (an X B Z(+Qu,n)+2 +OWX 0%
+e 2 iQWXQ(:?"-

Again the terms in the parenthesis { } is rewritten as
Z %y SX(Z +08.0);

where Q7 are distinct and > ; =0 ;, is a 3-cycle.
Inductively, by using H/(BDiffZ(R"); Z)=0 (i=1, ---,m—1), we
obtain
ﬁa—pa—(—l)”"a(Z 00 X BOG,
— (=D a(Z Jon XB(Z +0¢»)
—=(= 1)8(}; Ot i)XB(; + Q7)) =0.

Hence we have proved Lemma (10.2).

Now we construct A4,...,. We assume that we defined A...cp-1)-
Hence, as we remarked, 4,...;..., (=1, - - -, m) is also defined. We are
going to show that
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60— f} Ayt — 18,0

is homologous to zero. We look at the cycle

I, 0— i Ayt (= DD IE,,0

and compare it with

=3 A i~ 100
Bt 0= g — 1) 10Tt .
i=1 .

We would like to show that they are homologous on one hand, and that

P(k)]ilf-).,-kg
p® s,

(k)
I3,

Co Si
1,100

4 — 51,0
"z,

srpo— L]
—pp I 1,0

. P,
Plll{'-f’f')nkt(k)th'_—‘/

_—

1.4 0,0

k (k
—p®Ps i),

Z Cﬂl

—p®IE 1,0

Diagram (10.9)
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t¢1§f’f?mQ—i' eAi...(—1)03,I™,.Q is homologous to
i=1 )
(BI ™ty Q=3 ey — 1)Lt 1,0
=1

on the other hand.

The (m+1)-chains which bound the differences of these cycles are
obtained from either the top faces or the front faces of Diagrams (10.9)-
(10.11) for k=m. Diagram (10.9)-(10.11) correspond to the three top
floors of Diagram (10.5).

Diagram (10.9) consists of

Cr(k)Slliéc?..kQ, P(k)SJ{%‘_.)..kQ, Z Cj(!g)cﬁ;sﬁll(.;c).kQ,
S1CPWs IR0, CuwoPE.,t,Q and PPPIR 1,0,

0,p 15 . Q Ak
0150 Ao
1. 100 A,...x
0, p P I%).., A,k
— .
/ Zcﬁl
05,155, 0 — As.p
/ ZCﬁA
085,51 Q. A
21 Ca| 3,p@pdip. 1,0 Ask
/
| Py
axpllfk?ulct;Q Ay...x
/ -
a,plﬁé‘?,,kt(")tlQ Ay...i
Py |0, p IR, % P
/
) P(k)
. allgc-)ktlg Ag.‘.k
/ C,u'o
oI, 1 P10 As...i

Diagram (10.10)
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9, p" I Q0 Areo
P(") l S)
a.1..0 Ao
%‘) i S1 |
IR0 Ayt ]
’ Sl aip(k)511§§.)..kQ —‘Ail;h
-~
/ Z Cﬁx
3:85,010. Q| — A
/ Z Cﬂx
9,512,470 Ao
' 22Cu |0 pPp it Qe | —— AP
_—
aszlff-)nkth — AP g v
/ -
9, p1 2.t P80 AL g »
P o, pPIR 1,0 Ayoik
/
/ P®
R e .
/ C,(kx

0. I%. L0 Ajcienr

Diagram (10.11)

The top faces of Diagrams (10.10) and (10.11) for k=m are obtained as
the products of 4,...;..., and the edges C,wm and P™. On the other hand,
the front faces of Diagrams (10.10) and (10.11) for k=m are obtained
from Diagrams (10.9)—(10.11) for k=m—1 or from the diagram which is
the product of 4,...;..., and the edges C,, and P,. Note that 4§ ;...
and A2.;..., are defined from Diagrams (10.9)-(10.11) for k=m—1
which is the product of the vertical part of 4,,....,_,, and the edges P™-"
and C,wm-». Inductively 4;..;.., is written by the symbols C,a, Cg,,
P® P, S, M<k<m, k+1, B, € B,) and the locally degenerate chains.

Thus the (m+ 1)-chain which is obtained from the top faces and the
front faces of Diagrams (10.9)—(10.11) for k=m is also written by these
symbols and the locally degenerate chains. Note again that we fixed an
order
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Co<Cp< e+ < Cpm < Cp < Cpy< v - < Cp <P/ P
< st <P<”‘)<P1<P2< te <Pm<S1’ Sz, Sty Sm~

We write the symbols in the chains obtained by these diagrams always in
this order. Then the terms which do not contain r or the locally degenerate
chains coincide with those of

¢Q—§:{ Ay n(—1)73,0.

Hence the terms which contain r or the locally degenerate chains have the
form described in Lemma (10.3). Note that the construction of A4,...;...
does not use C,im, P™, Cp, P;. Hence the locally degenerate chains
(with respect to V) which appear in 4,...;...,, can be taken locally degener-
ate with respect to V,, where ¥V, is the union of U and

Int Kﬂln e mKﬁi—anﬁiHn et nKﬂmmKo/un e nKt(lﬁ:i)
(.Bj € B;, j#i, a;=0, 1, j#=m).

Since the locally degenerate chains conjugated by 7™ or B, are again
locally degenerate, the locally degenerate chains appearing in the construc-
tion of A4,,...,, satisfy the condition (2) of Lemma (10.3).

Lemma (10.3). Let a be a cubic m-cycle which is given as a sum of
the chains of the form C,...C;,Q™ * satisfying the following conditions.

1) Cu (s=1,---,i) are Cya or Cp, (k=1, - - -, m) written in the
fixed order.

(2 Q™' is a locally degenerate (m—i)-cube as well as the cube
ClopyennCisp@Q™ (15, < - - - <5, Z1), where ¢y denotes D(r ) or D(B,)
when C(y, is Coar or Cy,.

Then the m-cycle ta is homologous to zero. In fact, there exists a cubic
(m-+1)-chain b which is a sum of the chains satisfying (1) and (2) above
such that ta=a:b.

Proof. First note the following formula.
[

(Cqyy- - 'C(“Q)=LZ'1: (=D'""Cy- - Crap(l=c1)Crrinyr - - Ciy@
+(=1D!Cyy- - - Ci1y00.

Now we put together the terms in @ which have the same terms of
Cs’s.
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a= Z Cly- - - Clipas

where a, is an (m—i,)-chain without C,,. If i, is maximum among the
terms in the cycle a, by the above formula, a, is an (m—i,)-cycle satisfy-
ing the assumption of Lemma (10.2). Hence, if i,=1, by Lemma (10.2),
we have an (m—i, -+ 1)-chain Ba, such that 9¢Ba,=¢a,. We may suppose
that Ba, is also supported in V and it is also locally degenerate. Then by
adding

—(— l)ika(cfx)’ (mBak)a

we can replace C§, - - -C¥;, a, by terms with shorter length in C,,.

Thus, by replacing successively the terms with maximal length in C,
by shorter ones, we obtain a locally degenerate m-cycle which is homo-
logous to the cycle a. Since this is homologous to zero by Lemma (10 2),
the proof of Lemma (10.3) is completed.

By Lemma (10.3), we can construct A,,..., and Theorem (10.1) is
proved for r<[n/m]—1.
For r<[(n41)/m]—1, we use the subsemigroup

ol(n+1)/m]-1

(Z) XA X XAy (L= o« Z, (=1, -, m)) of (Z, * Z,)"

The proof goes on without change except that we do not have 7™ and
P™ in Diagrams (10.9)-(10.11) for k=m. There, we replace P™ by

¢... and P¢(i=1,--.,m). Then we obtain a diagram similar to
Diagram (9.8). By using I,,...,,Q instead of I{{ .., we see that

- .5; A..iou(—1)'0,0

is homologous to zero modulo the terms containing 7, r,, ré, r,...,. or
locally degenerate chains. Hence Theorem (10.1) follows from Lemma
(10.3).

Appendix. The first homology of BDiff7(R") (n+1<r<{oo)

In this Appendix, we describe several operations on foliated products
and give a proof of the following theorem due to Mather ([21]).

Theorem (A.1). H,(BDiff7(R"); Z)=0 if n4+1<r<oo.

Our proof is based on the study of foliated products and the tech-
niques used here are rather simple. However, there is still one step in
our proof where we need a non-elementary argument. More precisely,
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the proof of Lemma (A.2) uses Lemma (A.3) which is a consequence of
the small denominators theory ([37]) and Thurston’s technique ([33, 2]).
It would be nice to find an elementary proof of Lemma (A.2). In our
proof, we also use homothetic expansions and the Schauder-Tychonoff

fixed point theorem as in Mather [21].
Our main tool is the following homotopy which is described in

Banyaga [2] and Mather [22].

A homotopy (Fragmentation). Let {yv, ---, v} be a partition of
unity on a manifold M, i.e., a family of smooth non-negative functions on

M such that >V, v, =1. Putp,;=>7 v, (j=1,---, N)(4;=0). Define
2:[0, NI X M—[0,1] by

At x)y=(t— [t])U[:]n(x) +#m(x)'
Let 4': [0, N]™ X M—[0, 1]™ X M be the map given by
hi(t? x):(lm(t, x)s x)’

where 1,((t, - - -, 1), )=, %), - -+, A(t,,, X)). Let b: [0, N"XM—
[0, 17" X M be the map given by ;

b, x)= (™), x),

where b*(t,, - - -, t,)=(min{t, 1}, - - -, min {¢,,, 1}) as in Section 6. Then
there is a homotopy #: [0, N]™ X M X [0, 110, 1]™ X M between b and A'
given by

h(ta X, S):((l —-S)b(N)(f)—l—SZM(t, .X'), X).

It is easy to see that this homotopy commutes with the face operators.

Let # be a Cr-foliated M-product over [0, 1]™ such that the asso-
ciated map 70, 1]* X M—TM is of class C" (1<r=<o0). Suppose that
every leaf of & is transverse to the family of submanifolds {(1,(z, x), x);
xe M} (tel0, N of [0, I]*X M. Note that, if the C’-norm of & is
sufficiently small, every leaf of % is transverse to these submanifolds.

We consider the induced foliation A*%. This A*% may not be
smooth along the (N—1)" hypersurfaces ¢,=j (i=1, -.-,m;j=1, .-,
N—1in [0, N X M X[0,1]. We will see that #*%# is a C"-foliated M-
product such that the associated map T'([0, N]* X [0, 1) X M—TM is of
class C” except along these hypersurfaces.

The induced foliation. We may assume that the manifold M is the
Euclidean space R”. Put
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h((tl, R | tm)’ (xl, B} xn)a s)=((u1, Sty um)a (xla ] xn));

where u,=(1—s) min {#;, 1} 4 S((ti_[ti])v[ti]+l(x)+#tt¢](x)) (=1, ..., m).
The tangent map (7h) of 4 is given by a matrix

(8ui/6tj ou,[0x, aui/as>
0x,/dt, 8x,/0x, 0x,/ds)

where Ou, [0t =5(0L, (1 —5) + v, 74:(%)),
ou,[0x, =5((t; —[tD@vre3+1/0%.) +Opt.1/0x.)),
Ou;[/0s= —min {t;, 1} +((t,— [t v+ (x) + (X)),
ox,fot,=0,
0x,/0x,=0F and 0dx,/0s=0.
Thus (7h) is of the form
oulot oufox Oufds
0 1, o/

where 1,, denotes the identity matrix. Let

1, 0
Xx)
0 1

be the matrix whose column vectors span the tangent plane of A*%  at
(t,x,5) € [0, N]*xX R*x [0, 1]. Then we have

1, O Y y
Tmlx x =< >,
0 1 X x
where

Yi=(0u,/ot) —l—§ (Ou,/ox)X% and py'= 4? (Ou;/0x ) x"~+ (@u,/0s).

Let (1"‘)
zZ
be the matrix whose column vectors span the tangent plane of %, where

Z is an L(R™, R™)-valued C"-function on [0, 1]*X R*. By the choice of
the matrix X and the vector x, we have

ZY=X and Zy=nx.
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If Z is sufficiently small, we can find such a matrix X and such a vector x.
For, we have

X=Z((0u/ot)+(0u/ox)X) and x=Z((0u/ox)x -+ (0u/ds)).
Thus we obtain
(1,—z (8u/3x))X =Z@0ufot) and (1,—Z(0u/ox))x=ZOu/os). (x)

If the matrix Z(0u/ox) is well-defined and small, 1, — Z(du/dx) is invertible;
hence, X and x are written as

X=(1,—Z@u/ax))"Z@ufot) and x=(1,—Z(3u/ox))"'Z(3u/ds).

We see that X and x are of class C” as a function of ¢ and x if ¢, is
not an integer (i=1, ---,m). We see also that if | Z|, is small, X and x
depend continuously on Z. That is, if | #|,=|Z], is small, A*& depends
continuously on %#. Moreover, there are constants ¢, and C, , such that

|WF|,<C,,,|F], provided |F|<c..

Here we use the C™-norm of &% as an L(R™, R")-valued function on
[0, 1™ R™. This estimate is obtained by differentiating the formulae (x).
Note that Z in the formulae (x) is Z|,(,, s, While other terms are func-
tions of (z, x, ). _

Let Q: 0, 1]"—Diff;(M) be a singular m-cube such that the asso-
ciated map T[0, I]*X M—TM is of class C". Let A**Q denote the
singular cubic chain defined by

h**Q= ) Z Q,T(il,-u,'lmb
0<i1y0e 0y imSN—1
where Q’: [0, N]"—Diff;(M) represents the C"-foliated M-product 4'*F,
and -

T(il,...,im)(tla ) tm)=(t1+i19 Sty tm+im) (iv ) im € Z)

Note that the support of the holonomy of Q'z,, ...,;,, in the direction of
e, lies in Supp (v4,.,). Thus, the support of Q'z(,, ..., lies in

lL=J1 Supp vy, +1)-

We call 2** the fragmentation with respect to the partition of unity {v,}.

In order to apply the above homotopy to singular cubes or simplices
of Diff;(R"™), we can use the straightening given in Section 4 to homotope
them to smooth simplices.



110 T. Tsuboi

Smoothing along the boundary. We need the following smoothing
along the boundary. A similar idea was used to obtain an expression of
the Godbillon-Vey class in terms of holonomy (see [15], [23]). Let G
denote Diff7(M). Take a positive real number ¢ smaller than 1/4. Let
4 [0, 1]—[0, 1] be a smooth function such that

0=0v/0r<1/(1—4¢),
Y()=0 (t€[0,&]) and Y()=1 (te[l—¢,1]).
Let 4, [0, 1]"—[0, 1] denote the function given by
Yty == o5 t)=((), - - -, Y(25)).

For a smooth singular cube Q: [0, 1]"—G, consider Q+,. This Q4 is
smooth and the leaves of %, are perpendicular to 9[0, 1]™ X M. Since
Y, is homotopic to the identity by the homotopy ¥, : [0,1]™ X [0, 1]—[0, 1]™
given by

Vo, 5)=1—5)t+59n(1),

O+, is homotopic to Q by the homotopy Q¥',. Note that this homo-
topy commutes with the face operators.

If &, is a C"-foliated M-product such that 770, 1]*X M—TM is of
class C7, then so is F,,,.. To see this, we may assume that M=R". Let

() = ()
X z
be the matrices whose column vectors span the tangent plane of %, at

(¥m(2), x) € [0, 1" X R™ and that of F,,  at (¢, x) € [0, 1]™ X R, respec-
tively. Then we have

X=Z(8@/or)(1,).
From this formula we see also that
l%wmIéI%L/(l—%’)

with respect to the norm as an Z7(R")-valued continuous function on
[0, 1J™.

Composition. Let &, (i=1,---,N) be a C-foliated M-product
over [0, 1] corresponding to

a;: [0, 1]—>Diff (M) (0,(0)=1id).
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Then we can define the composition of #, (i=1, ---, N) to be the C"-
foliated M-product & over [0, 1] such that

2

SNF=3"F,,
i=1

where s denotes the N-subdivision. More precisely, the corresponding
I-simplex ¢ of Diff7(M) is given by

o()=0(Nt—(i—1)a,_,(1)- - -a,(1)

for (—1)/NZt<i/N (i=1, ---,N). The composition depends on the
number N and the order of #,. It is obvious that the composition & is
homologous to > 7, F,.

If #, (=1, ---,N) is given by an Z7(M)-valued continuous func-
tion X, on [0, 1] which vanishes on a neighborhood of {0, 1}, then # is
also given by such a function X;

X()=NX,(Nt—(E—-1), (—1)/NLt<i/N (i=1,.--,N).
Thus we have an estimate

|g’-[,§_NSllp ]‘g:i In
2

on the norm of & (as an &7(M)-valued continuous function on [0, 1]).
To X, which does not vanish on a neighborhood of {0, 1}, we can apply
the above smoothing along the boundary before taking the composition.

To prove Theorem (A.1), we use the homotopies described above to
construct a map from a certain space of foliated products to itself. Then
we apply the Schauder-Tychonoff fixed point theorem. As in Mather
[21], we have to consider the functions of class C™* with « being a modulus
of continuity.

Moduli of continuity (See [21]). A modulus of continuity is a con-
tinnous strictly increasing real valued function « on [0, o) such that
a(0)=0 and a(tx)<ta(x) for x e [0, o), t=1. An R"-valued function f
on R™ is said to be a-continuous if

) —fD/a(x—yD (x,ye R™ x+Y)

is locally bounded. We say that f is of class C™* (1<r<{oo) if fis of
class C™ and its r-th derivative is a-continuous. According to Mather
[21], the sums, the products and the compositions of functions of class
Cne (r=1) are of class C™*, as well as the inverses of diffeomorphisms of
class C™= (r=1).
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For a compact subset K of R", the space Zz“(R") of C™=-vectorfields
(1<r< o0) on R" with support in K is a Banach space with respect to the
norm | |,,. given by ’

| X|,,.=sup{|{D"X(x)—D"X(p)/a(x—¥); x, y € R*, x#)},

where |x|=>7,|x,;| for x=(x;, ---,x,) € R*. On the Banach space
Z'%(R™), we have another norm

”X”r,azsup {|X|r,a9 lXIT’ M lX‘O}’

where | X|,=sup {| D' X(x)|; x € R} (i=0, - - -, r). These norms are equi-
valent;

\Xlr,aé”X”r,aécK[X]nw

Note that the positive real number C depends on the compact subset K.
It is easy to see that

KB = TR (R

where the union is taken over all moduli of continuity «. Note that a
bounded subset of Z*(R™) is relatively compact in Z%(R").

For two moduli of continuity « and ¢/, if there are positive numbers ¢
and ¢’ such that ce<a’<c’a on a neighborhood of 0, then £ (R")=
Z%“(R") and the norms | |, . | |, are equivalent. Hence hereafter we
use the moduli of continuity « such that a(x)<1, x e [0, c0). For such a
modulus of continuity «, we have

| X|, <] X, . for X e Zp“(R").

Let Diff*(R™) denote the group of diffeomorphisms of R" of class
C7= with support in K. Diff*(R") has a Banach manifold structure
modelled on Z%*(R"). K. Masuda pointed out to me that Diff*(R") is
not a topological group with respect to this C™“topology. Hence, we
consider the C*-topology (1<s<r) for Diffg*(R") and the direct limit
topology for Diff;"“(R"), the group of C™*-difftomorphisms of R™ with
compact support. Note that Diff 2*(R") with the C*-topology (1<s<r)
is a topological group and Diff *(R™) with the C*-topology (1<s <r) has
the homotopy type of Diff}(R™). with the C'-topology. For definiteness,
hereafter we consider the direct limit C’-topology for Diff7"*(R™) and
construct BDiff7>“(R"), the classifying space for C™*-foliated R™-products
with compact support.
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For a singular m-simplex ¢: 4™—Diff 2*(R") (continuous with respect
to the C”-topology) with image in a small neighborhood of ¢(0), we have
its straightening Lo. As in Section 4, L¢ is homotopic to ¢ by a
homotopy which commutes with the face operators. Note that the map
4™ X R"—L(R™, R™) associated to Lo is of class C™*. For, the C™*norm.
[Z Lollr,« as a function on 4™ X R", we have a positive real number C, ,
such that
I

p (;5] ei)a(b)f‘—id

“ eg:—Lcr H?’,aé Cr,a Sup
1sj=m

[

Hence, the map 4™->Z'*(R"™) associated to Lg is bounded with respect
to the C™*norm | |, ..
Let # denote the set

X0, =2 55(R™;
X is continuous with respect to the C”-topology, sup | X, |, ,< oo}
t

Then, & is a Banach space with respect to the norm | |, given by

| X ;= sup | X;l, a
te[0,1]

When X is an R™-valued C™*-function on [0, 1]X R" with support in [0, 1]
X[0, 1]*, we also have its C™*norms |X|,, and |X],, Note that
X1, <X o <[ Xl

By an argument similar to that in Section 4, we see that there is a
bijective correspondence between % and the set

{o: ([0, 1], 0)—(Diff ;55:.(R™), id); ¢ is C* as a path in Diff}, ;;.(R"),
(0p,[0t)|, € X335m(R™) (s € [0, 1]), sup |@¢./61)]],,.< oo}

Here, X: [0, 1]—>%7353.(R™) corresponds to ¢: ([0, 1], 0)—(Diff;5:.(R"), id)
such that (9¢,/0t)(¢,)'=X,. Hence, such X defines a C"*-foliated R"-
product &, over [0, 1].

For an Z7*(R")-valued function X on [0, 1] which is continuous
with respect to the C"-topology and bounded with respect to the C™=-
norm, let %#(X) denote the C4-foliated R™-product over [0, 1] defined by
X. The 1-simplex of BDiff7**(R") corresponding to X is also denoted by
F(X).

We are going to construct a map « from a neighborhood of 0 in &
to & which is continuous with respect to the C"-topology. The first step
is to show the following lemma.
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Lemma (A. 2). There exist positive numbers c, C and B, such that,
for any positive number B B,, there exists a map

T {XeZ; | X,<c}—>F

satisfying the following conditions:
(1) 7, is continuous with respect to the C’-topology,
(2) F(1,X) is homologous to F(X) in BDiff;*(R"),
) |7:X,<BC|X|,, and
@) [1eX],=C|Xl,.

To prove Lemma (A.2), one can use the fact that H,(BDiff>(R"); Z)

=0, which follows from the fact that H,(BDiff*(T"); Z)=0 by using
Thurston’s technique ([33], [2]). The fact that H,(BDiff*(T"); Z)=0 is
proved by Herman [15] by using the small denominators theory. However,
it is much easier to show the following statement ([37, 19]):

For any positive integer r, the natural homomorphism

H(BDiff=(T"); Z)—> H(BDIiff (T™); Z)

is the zero map.
By Thurston’s technique, this implies the following lemma, which we
use now to prove Lemma (A.2).

Lemma (A.3). For any positive integer r, the natural homomorphism
H,(BDIiff7(R"); Z)—> H,(BDiff"(R"); Z)
is the zero map.

Proof of Lemma (A.2). The desired foliated product F(7,X) is
obtained as the straightening of the composition of —%(X’) and F(X),
where X/ is a C*-approximation of X.

Let p be a smooth function on R with support in [—1, 1] such that

f " p(x)dx=1. Put

pe(X)=p"p(x/f) (x e R).

For the vectorfield X,, let p,x X, be the vectorfield on R" with
support in [— S, 1+ S]* given by

(pp * Xz)(xl’ ) xn)

=f Pﬁ(xl_yl)' * 'pﬂ(xn_yn)Xt(yln ° ’yn)dyl ° dyn
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:fpﬂ(zl)' . 'pﬁ(zn)Xt(xl_zla R xn'—zn)dz1' : 'dzn'

Note that p, = X, is smooth. We have the following estimates.

lpﬂ* Xt !r,aé‘Xz Ir,w
lPﬁ* X, —X, ’oéﬁcole |r,n3

where the positive number C, does not depend on S.
Let k, be the affine map from R" to R" given by

kﬁ(xlr DR} xn)=(yln ° '7yn)>
where y,=(14+28)""(x,—1/2)+1/2 (i=1, - - -, n). Note that
ky(—B, 1+ A1 =[0, 1]".

The C=-approximation X’ is obtained as (kp).(os* X). We have
the following estimates.

|(Kp)xlps* X),,.=(1+20)"'|X,|,,. and

I(kﬁ)*(Pﬂ * Xz)_Xt Io
=|(kp)a(pp * Xo)—(0p % X))o+ [(0p % X)— X, o
é‘gcllXt Ir,m

where the positive number C; does not depend on 8.

Let ¢ and ¢': ([0, 1], 0)—(Diff;;5.(R™), id) be the I-simplices corre-
sponding to X and X", respectively. We consider a singular 1-simplex o
of Diff;5:.(R") given by

/(1-2¢1), 0<1<1)2
o()= {90( ), 0=r<l/

oQt—1), 12<t<1.

Then, for a(1)a(0) ' =¢(1)¢’'(1)~?, we have positive real numbers C, and c,
independent of §, such that

16(1)a(0)~' —id}, < C,|X], and |a(1)a(0)~' —id|,<BC,| X],

provided | X, <c,.

We put 7,X to be the straightening Lo of o. If | X|, is small, 7,X is
well defined, and depends continuously on X. The desired estimates
follow from the above estimates. By Lemma (A.3) (for BDiff;*(R"),
Z(X’) is homologous to zero in BDiff7**(R™). Since F(7,X) is homo-
logous to —F(X)+F(X), Z(7,X) is homologous to F#(X).
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Let N be a positive integer. We are going to construct the mapping
£ depending on N which we fix later. We use the fragmentation with
respect to the following partition of unity.

Let ¢ be a positive real number smaller than 1/2. Let  be a smooth
function on R such that

0< =1,

7(x)=0 for xe(—oc,0] and x(x)=1 for xele, ).
Put gy =1—g5x—(1—¢),

n=px—(—=DA= (I —9(x—jd—e)) (=2, ---,N=-1)
and gy=p(x—N-11—e)).

It is easy to see that {»,} is a partition of unity on R;

N
jZJl n;=1
We have  Supp () C(— o0, 1],
Supp (7,) CI(ji— (1 —e), j(1 —&)+¢] (=2, ---,N—1) and
Supp () CI(N—1)(1 —¢), o0).
We define v,,...,:R"—[0,1] (1=i, --,i,<N) by
VipoutaXs =05 Xn) =00,(X0) - -7, ().
Then we have
> Vi.a,=1 and
Supp (Viy...s,) SSUPP (7:,) X - - - XSupp (7;,,)-

We obtain constants ¢, and C,,,,, with respect to this partition of unity
{vi,...1.}, such that, for a C™=-foliated R™-product # over [0, 1],

1A% F ||, <C.,p,all Z I« provided [F|,<c,.

Here, we use the C™*norm || |, . as an R"-valued function on [0, 1] X R".
Note that ¢, and C, ,,, depend on the function » and the differentiability
r, a but they do not depend on the positive integer .

Construction of £. Let X be an element of # such that |X|,<c,
where ¢ is given in Lemma (A.2). We put 8=N"" and apply Lemma
(A.2)to X. Then we obtain 7,X such that

|7 X[,<CN-"|X|, and |V X|,<C[X],.
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Let F(L7,X) be the straightening of F(7,X). If N is sufficiently
large, L7,X is well-defined. (The element 7,X obtained by our proof of
Lemma (A.2) is already straightened.) Then there exists a positive real
number C; such that

LT, X, <C,N-"|X|, and |LipX|,<C,[X],.
These imply, by changing C,, if necessary, the following estimates:
LT, X, <C N7 X], (0<i<r).

Now, the N-subdivision s (L7,X) is a sum of N C™“foliated
R-products Z# (X;) over [0, 1] with support in [0, 1]* (=1, -- -, N).

Let &y be a smooth vectorfield on R" with compact support which
coincides with > 7, x,(3/dx;) on [—1, N+1]*. Let f* denote the time
tlog(N(1 —¢)-+¢) map of &,. Then ([0, 1]1*)=[0, N(1—&)+¢]*. Con-
sider the foliated R™-product f'#(X,)=%(f;X;) (=1, ---, N) which
has“support in [0, N(1—¢)+¢]”.  Since

FiX,(t, )=((N(A — &)+ )/ NYLT X )+ (— D)/N, x/(N(1 —¢)+e)),
we have the following estimates on the norms of f3X, (j=1, - - -, N):
|F3X, SOV =)+ "N |LT,X],.,
<C,(N(l—e)+e)' "N |X|,, and
fiXil SV —5)+5)1—iN_llLTﬁX|i
<CN(— -+~ 'N*-'|X|, (0<i<r).
Hence we have

15Xl e S CLN(1—e) €)' "N [ X,

By taking a sufficiently large positive integer N, we may assume that
1fiX;h=<c, We apply the fragmenting homotopy ~ with respect to the
partition of unity {v,,...,.}. Put

h**gz(fin)= Z y(Xj,il ,,,,, in)’
1Sig,esins ]
where X, ., ....;, has support in
[G—D(A—e), i(1—a)+e]X -+ - X[, =D —e), i(1—e)+e]. We have
an estimate on the norm of X, .....;

IX',il ----- inir,a—<_—cu,r,a”f>il<Xj Hr,aécv,r,aCL(N(l _5)+E)1_TN—1|X]E

J
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(j=1,.--,N; 10y, - -+, [,<N). Let FW*X;,,,....s,) denote the C*-
foliated R™-product over [0, 1] obtained from F(Xj ,,.....;,) by the smo-
othing along the boundary. Then we have

| F (X i) s (1= 4)7C,, JCUN (=) +e)' "N | X,

..... in

Take a one-parameter subgroup T§"..., of Diff?(R™) such that
TS)... ., restricted to

[(—D(A—e), i(1—e)+e] X - - - X[, — D1 —e), i,(1 —e)+e]

is the translation to [0, 1]*. Then T'{... , F(*X;,,. ..., has support
in [0, 1] and it is an element of % whose norm is the same as that of

"k*Xj,ib---,i,.'
Let #(kX) denote a C=-foliated R™-product over [0, 1] which is the
composition of the N™*! foliated products T... ;. F (V¥ X, 11es)s

sSVNFEX)= 3 TR F X )
N

157,005 ins
Then £X is an element of & and we have

leX], =N _sup (K720 CRT P
J in

EX2 SRAASY

=(1—4)7'C,,, LN (1 —e)+¢)' "N ™| X],.

Now suppose that r >n+1. Since C, , , and C, do not depend on
N, by chocsing a sufficiently large N, we have

X, <(1—4)D)|X],  for Xe & with |X],<c.
Note that Z(£X) is homologous to % (X) in BDiff7*(R™).

Proof of Theorem (A.1). Let X, and X, be elements of # such that
| X;|s=<c(1—4¢)/2 (i=0, 1). Then we have an element X of # such that

sOF(X)=F (¥ Xo)+ F (I X,).

It is obvious that | X|,<c¢. Hence we obtain £X. By the estimate on the
norm of X, we have

kX |, <c(1—4e)/2.

Thus X;—+£X is a map from {X, € Z; | X,|,<c(1—4¢')/2} to itself which is
continuous with respect to the C"-topology. This subset of & is compact
with respect to the C"-topology and is convex. Hence by the Schauder-
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Tychonoff fixed point theorem, we have a fixed point X, of this map. By
the construction of £X, F(xX) is homologous to #(X). Hence F(X)+
Z (X)) is homologous to # (X)), that is, #(X,) is homologous to zero.

Since every 1-cycle of BDiff**(R") is homologous to a sum of ele-
ments in {X; € Z; | X,|,<c(1—4¢)/2}, we have proved that

H(BDIff"*(R"); Z)=0.
Since this is true for any modulus of continuity «, Theorem (A.1) follows.
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