Regular Holonomic Systems and their Minimal Extensions II

Application to the Multiplicity Formula for Verma Modules

Jiro Sekiguchi

§0. Introduction

(0.1) This note together with [10] is an introduction to a part of Professor Kashiwara's lectures at RIMS in 1981. As explained in [10], the contents of the lectures were concerned with the recent development of the regular holonomic systems and its application to the representation theory of a semisimple Lie algebra.

In this note, we give a report on the part of "its application to the representation theory".
(0.2) The multiplicity formula for Verma modules conjectured by Kazhdan-Lusztig [7] was proved by Brylinski-Kashiwara [3] and BeilinsonBernstein [1].

In this note we give an outline of a proof of the multiplicity formula based on Kashiwara's lectures. Needless to say, we do not give a complete proof of all the results stated in [3]. We mainly give a summary and describe in detail the theorems whose proofs are slightly different from the ones in [3]. They are Theorems (3.3) and (3.4) in this note. We use the Beilinson-Bernstein Theorem in [1] to prove Theorem (3.3) and simplify the proof of Theorem (3.4) by using the Bernstein-Gelfand-Gelfand Theorem stated in (1.11.1).
(0.3) We frequently use the notation and results in [10] without notice. Accordingly we recommend the reader to consult the report [10] in reading this note. On the other hand, the report written by Tanisaki [12] contains topics related to the text of this note and further applications of the \mathscr{D} Modules to the representation theory.
§ 1. The category $\tilde{\mathscr{O}}$
$(1,1) \quad$ Let g be a semisimple Lie algebra over \boldsymbol{C} and let t be a Cartan
subalgebra of \mathfrak{g}. Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g} containing t. Then $\mathfrak{b}=t+\mathfrak{n}$ is a direct sum decomposition, where $\mathfrak{n}=[\mathfrak{b}, \mathfrak{b}]$ is the nilpotent radical of \mathfrak{b}.

For a Lie algebra $\mathfrak{a}, U(\mathfrak{a})$ denotes the universal enveloping algebra of \mathfrak{a}.
(1.2) Let Δ be the root system of (g, t) and let Δ^{+}be the positive system of Δ corresponding to \mathfrak{b}. For later use, we define $\rho=1 / 2 \sum_{a \in \Lambda^{+}} \alpha$ as usual. Let W be the Weyl group.

Definition (1.3). Let $\tilde{\mathcal{O}}$ be the category of $U(\mathfrak{g})$-modules defined as follows.

A $U(\mathrm{~g})$-module M is an object of $\tilde{\mathcal{O}}$ if and only if M satisfies the following properties:
(1.3.1) $\quad M$ is a finitely generated $U(\mathfrak{g})$-module.
(1.3.2) For any $u \in M$, we have $\operatorname{dim} U(\mathfrak{b}) u<\infty$.

A morphism in this category is a g -homomorphism.
(1.4) If M is a g-module, then for any $\lambda \in t^{*}$ we define

$$
M_{\lambda}=\left\{u \in M ;(H-\lambda(H))^{N} u=0 \quad \text { for any } H \in \mathrm{t}, N \gg 0\right\}
$$

The category \mathcal{O} introduced in [2] is a full subcategory of $\tilde{\mathscr{O}}$. An object M of $\tilde{\mathcal{O}}$ is contained in \mathcal{O} if and only if $(H-\lambda(H)) M_{\lambda}=0$ for any $\lambda \in t^{*}$ and $H \in t$.
(1.5) Let θ be an involution of g such that $\theta \mid t=-I d$. We note that such a θ exists unique up to inner automorphisms of g. Using θ, we induce a g -module structure on $\operatorname{Hom}_{C}(M, C)$ in the following way: For any $A \in \mathfrak{g}$, the action of A on $\operatorname{Hom}_{C}(M, C)$ is defined by

$$
\begin{equation*}
\langle A f, u\rangle=-\langle f, \theta(A) u\rangle \text { for } f \in \operatorname{Hom}_{c}(M, C) \text { and } u \in M \tag{1.5.1}
\end{equation*}
$$

Let M be an object of $\tilde{\mathcal{O}}$. Then we define M^{*} by
$M^{*}=\left\{f \in \operatorname{Hom}_{C}(M, C) ; f\left(M_{\lambda}\right)=0\right.$ except a finite number of $\left.\lambda\right\}$.
(1.6) We now state some fundamental properties of the category $\tilde{\mathscr{O}}$. Most of the results are shown by arguments similar to those for the results to the category \mathcal{O}. For this reason, we omit their proof. The reader may consult [2, 4].
(1.6.1) Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence of \mathfrak{g}-modules.

Then the following statements hold.
(i) M is an object of $\widetilde{\mathscr{O}}$ if and only if M^{\prime} and $M^{\prime \prime}$ are objects of $\tilde{\mathscr{O}}$.
(ii) If M is an object of $\tilde{\mathcal{O}}$, then for any $\lambda \in t^{*}$ we have an exact sequence $0 \rightarrow M_{\lambda}^{\prime} \rightarrow M_{\lambda} \rightarrow M_{\lambda}^{\prime \prime} \rightarrow 0$. Moreover, $\operatorname{dim} M_{\lambda}<\infty$.
(1.6.2) Each object of $\tilde{\mathscr{O}}$ has a composition series of finite length.
(1.6.3) (i) If M is an object of $\tilde{\mathcal{O}}$, so is M^{*}.
(ii) For any object M of $\tilde{\mathcal{O}}$, we have $\left(M^{*}\right)^{*}=M$.
(iii) If we define a functor $*$ of $\widetilde{\mathscr{O}}$ to $\widetilde{\mathscr{O}}$ by $M \rightarrow M^{*}$, then ${ }^{*}$ is a contravariant exact functor.

We here note that (1.6.1) (i) is particular to $\tilde{\mathcal{O}}$ and does not hold for 0.
(1.7) For any $M \in \tilde{\mathcal{O}}$, we define

$$
\operatorname{ch} M=\sum_{\lambda \in t^{*}} \operatorname{dim}\left(M_{\lambda}\right) e^{\lambda}
$$

and call it the character of M (cf. [4]).
We here give two basic properties of $\operatorname{ch} M$ which are consequences of (1.6).
(1.7.1) If M is an object of $\tilde{\mathcal{O}}$, then

$$
\operatorname{ch} M=\operatorname{ch} M^{*}
$$

(1.7.2) If $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is an exact sequence of objects of $\tilde{\mathcal{O}}$, then we have

$$
\operatorname{ch} M=\operatorname{ch} M^{\prime}+\operatorname{ch} M^{\prime \prime}
$$

(1.8) For any $\lambda \in \mathrm{t}^{*}$, we define a g -module $M(\lambda)$ by

$$
M(\lambda)=U(\mathfrak{g}) / U(\mathrm{~g}) \mathfrak{n}+\sum_{H \in \mathfrak{t}} U(\mathfrak{g})(H-(\lambda-\rho)(H))
$$

and call it the Verma module with the highest weight $\lambda-\rho$. There exists a unique maximal proper \mathfrak{g}-submodule K of $M(\lambda)$. We set $L(\lambda)=M(\lambda) / K$. The g-module $L(\lambda)$ is a simple module.

Proposition (1.8.1) (cf. [4]). For any $\lambda \in \mathrm{t}^{*}$, we have

$$
\operatorname{ch} M(\lambda)=\frac{e^{\lambda-\rho}}{\prod_{a \in A^{+}}\left(1-e^{-\alpha}\right)}
$$

(1.9) Let $Z(\mathrm{~g})$ be the center of $U(\mathrm{~g})$. Then it is known (cf. [4]) that
for any $\lambda \in t^{*}$, there exists an algebra homomorphism χ_{λ} of $Z(\mathrm{~g})$ to C such that $\left(P-\chi_{\lambda}(P)\right) \mid M(\lambda)=0$ for any $P \in Z(\mathfrak{g})$. Noting this, we define

$$
\tilde{\mathcal{O}}_{[\lambda]}=\left\{M \in \widetilde{\mathscr{O}} ;\left(P-\chi_{\lambda}(P)\right) \mid M=0 \quad \text { for any } P \in Z(\mathrm{~g})\right\} .
$$

Clearly $M(\lambda)$ and $L(\lambda)$ are contained in $\tilde{\mathcal{O}}_{[\lambda]}$. We note that $\tilde{\mathcal{O}}_{[w \lambda]}=\tilde{\mathcal{O}}_{[\lambda]}$ for any $w \in W$ and that any simple module contained in $\widetilde{\mathcal{O}}_{[\lambda]}$ is isomorphic to some $L(w \lambda)(w \in W)$.
(1.10) It follows from (1.6.2) that for any $M \in \tilde{\mathcal{O}}$, there exists a sequence of \mathfrak{g}-modules $\left\{M_{j}\right\}_{j=0}^{r}$ such that $M_{0}=M, M_{r}=0, M_{j} \supset M_{j+1}$ and M_{j} / M_{j+1} is a simple module. Then we put $r(M)=r$ and call it the length of M. For a simple object S of $\tilde{\mathcal{O}}$, we denote by [$M: S$] the number of times of the appearance of S in the composition factor series of M. It follows from (1.6.2) that [$M: S$] is always finite.
(1.11) We introduce a Bruhat order \leqq on W. Let w and w^{\prime} be in W. Then $w \leqq w^{\prime}$ if and only if $\bar{X}_{w} \subseteq \bar{X}_{w^{\prime}}$. Here X_{w} and $X_{w^{\prime}}$ denote the Bruhat cells defined in (2.3) of the next section.

We state a fundamental result due to Bernstein-Gelfand-Gelfand [2].
Theorem (1.11.1) (cf. [2]). For any two elements w, w^{\prime} of W, we have $\left[M(-w \rho): L\left(-w^{\prime} \rho\right)\right] \neq 0$ if and only if $w \geqq w^{\prime}$.
(1.12) For later use, we define $K\left(\tilde{\mathscr{O}}_{[\rho]}\right)=\sum_{w \in W} Z(\operatorname{ch} L(w \rho))$. Then it is clear from the definition that for any $M \in \tilde{\mathscr{O}}_{[\rho]}$, ch M is contained in $K\left(\tilde{O}_{[\rho]}\right)$.

Lemma (1.13). Let f be a map of $\tilde{\mathcal{O}}_{[\rho]}$ to $K\left(\tilde{\mathcal{O}}_{[\rho]}\right)$ satisfying the conditions (i), (ii):
(i) $f(M(w \rho))=0 \quad$ for any $w \in W$.
(ii) If $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is an exact sequence of objects in $\widetilde{\mathcal{O}}_{[\rho]}$, then $f(M)=f\left(M^{\prime}\right)+f\left(M^{\prime \prime}\right)$.

Then we have $f=0$.
This lemma is easy to prove.

\S 2. Localization of \mathfrak{g}-modules

(2.1) Let G be a connected and simply connected Lie group with the Lie algebra \mathfrak{g}. Let B be the Borel subgroup of G with the Lie algebra \mathfrak{b} and let T be the maximal torus of G with the Lie algebra t.

Let $X=G / B$ be the flag manifold. Since any two Borel subgroups of G are conjugate each other and since the normalizer of B coincides with B
itself, X is regarded as the totality of Borel subgroups of G.
(2.2) For any $A \in \mathfrak{g}$, we define a vector field D_{A} on X as follows. If $f(x)$ is a function on X, then

$$
\left(D_{A} f\right)(x)=\left.\frac{d}{d t} f\left(e^{-t A} x\right)\right|_{t=0}
$$

By definition, we have $\left[D_{A}, D_{A^{\prime}}\right]=D_{\left[A, A^{\prime}\right]}$ for any $A, A^{\prime} \in \mathfrak{g}$. Therefore the map $\mathfrak{g} \rightarrow \Gamma\left(X, \mathscr{D}_{X}\right)$ defined by $A \rightarrow D_{A}$ induces an algebra homomorphism of $U(\mathfrak{g})$ to $\Gamma\left(X, \mathscr{D}_{X}\right)$.

Since $D_{A, x}(A \in \mathfrak{g})$ span the tangent space $T_{x} X$, the map $\phi: \mathfrak{g} \rightarrow T_{x} X$ defined by $\phi(A)=D_{A, x}$ is surjective. If $x=g B$, we define $\mathfrak{b}(x)=\operatorname{Ad}(g) \mathfrak{G}$ and $\mathfrak{n}(x)=\operatorname{Ad}(g) \mathfrak{n}$. Then $\operatorname{Ker} \phi=\mathfrak{b}(x)$. This implies that $T_{x} X=\mathfrak{g} / \mathfrak{b}(x)$. Accordingly we have $T_{x}^{*} X=\mathfrak{b}(x)^{\perp}$. Since $\mathfrak{b}(x)^{\perp} \subset \mathfrak{g}^{*}$, we obtain a map $T^{*} X \rightarrow X \times \mathfrak{g}^{*}$. Composing this map and the projection from $X \times \mathrm{g}^{*}$ to g^{*}, we can define a map $\gamma: T^{*} X \rightarrow \mathrm{~g}^{*}$ by $\gamma(x, \lambda)=\lambda$ for any $x \in X, \lambda \in \mathfrak{b}(x)^{\perp}$. Then it is easy to see that $\sigma_{1}\left(D_{A}\right)=A \circ \gamma$ for any $A \in \mathfrak{g}$.
(2.3) Let $W=N_{G}(T) / T$ be the Weyl group. For any $w \in W$, we take a representative \bar{w} of $N_{G}(T)$. Then we define a point $\bar{w} B$ of X. Since this point does not depend on the choice of a representative of w, we can define an injective map of W to X by $w \rightarrow \bar{w} B$. Due to this map, we may regard W as a finite subset of X. In the sequel, we frequently regard W as the finite subset of X. For any $w \in W$, we put $X_{w}=B w \subset X$. Then according to Bruhat, we see that $X=\coprod_{w \in W} X_{w}$ is a disjoint union. Define $l(w)=$ $\operatorname{dim} X_{w}$ for any $w \in W$.
(2.4) Let $M_{\text {coh }}^{\prime}\left(\mathscr{D}_{X}\right)$ be the category of coherent \mathscr{D}_{X}-Modules which have global good filtrations. Let $D_{f}(R)$ be the category of finitely generated R-modules. Here we set $R=\Gamma\left(X, \mathscr{D}_{X}\right)$. Then we have the following theorem due to Beilinson-Bernstein [1]. This plays an important role in the subsequent discussion.

Theorem (2.5). The functor taking the global sections $\Gamma: \mathscr{M} \rightarrow \Gamma(X, \mathscr{M})$ is an equivalence of the categories $M_{\mathrm{coh}}^{\prime}\left(\mathscr{D}_{x}\right)$ and $D_{f}(R)$. The inverse functor is given by $M \rightarrow \mathscr{D}_{X} \bigotimes_{R} M\left(M \in D_{f}(R)\right)$.

Remark (2.6). It is not known if any coherent \mathscr{D}_{X}-Module \mathscr{M} on X has a global good filtration. But if \mathscr{M} is regular holonomic, it follows from [6] that \mathscr{M} has a global good filtration. In the following sections, we restrict our attention mainly to regular holonomic systems. Therefore Theorem (2.5) is sufficient for our purpose.

§3. The category \mathfrak{M}

(3.1) We define a category \mathfrak{M} of coherent \mathscr{D}_{X}-Modules on X. An object \mathscr{M} of \mathfrak{M} is a regular holonomic system on X with the condition $\operatorname{Ch}(\mathscr{M}) \subseteq \bigcup_{w \in W} \overline{T_{X}^{*} X}$. It follows from [6] that \mathfrak{M} is a subcategory of $M_{\text {coh }}^{\prime}\left(\mathscr{D}_{X}\right)$.
(3.2) It follows from [9] that $\mathscr{H}_{\left[X_{w]}\right]}\left(\mathcal{O}_{x}\right)=0(k \neq n-l(w))$ for any $w \in W$. Noting this, we define

$$
\mathscr{M}_{w}=\left(\mathscr{H}_{\left[X_{w}\right.}^{n-l(w)}\left(\mathcal{O}_{X}\right)\right)^{*} .
$$

Here we put $n=\operatorname{dim} X$. The following statements hold (cf. [9, 3]).
(3.2.1) $\mathscr{M}_{w}, \mathscr{M}_{w}^{*} \in \mathfrak{M}$.
(3.2.2) $\operatorname{Supp} \mathscr{M}_{w}=\operatorname{Supp} \mathscr{M}_{w}^{*}=\bar{X}_{w}$.
(3.2.3) $\quad H^{k}\left(X, \mathscr{M}_{w}^{*}\right)=0 \quad(\forall k>0)$.
(3.2.4) $\mathscr{H}_{\left[\partial X_{w]}\right]}^{k}\left(\mathscr{M}_{w}^{*}\right)=0 \quad(\forall k)$.
(3.2.5) $\quad t$ acts semisimply on $\Gamma\left(X, \mathscr{M}_{w}^{*}\right)$.
(3.2.6) $\quad \operatorname{ch}\left(\Gamma\left(X, \mathscr{M}_{w}^{*}\right)\right)=\operatorname{ch}(M(-w \rho))$.

Theorem (3.3). The functor in Theorem (2.5) induces an equivalence between the categories \mathfrak{M} and $\tilde{\mathcal{O}}_{[\rho]}$.

Proof. Let \mathscr{M} be an object of \mathfrak{M}. We put $M=\Gamma(X, \mathscr{M})$. Then it follows from Theorem (2.5) that M is a finitely generated $U(\mathrm{~g})$-module and that $\left(P-\chi_{\rho}(P)\right) \mid M=0$ for any $P \in Z(\mathrm{~g})$. Hence to prove that M is an object of $\tilde{\mathscr{O}}_{[\rho]}$, it suffices to show that $\operatorname{dim} U(\mathfrak{b}) u<\infty$ for any $u \in M$. Since \mathscr{M} is regular holonomic, it follows from [10] that there exists a global good filtration $\{\mathscr{M}(j)\}_{j \in Z}$ satisfying the condition:
(3.3.1) For any j and m, if $P \in \mathscr{D}_{x}(m)$ satisfies that $\sigma_{m}(P) \mid \operatorname{Ch}(\mathscr{M})=0$, then $P \mathscr{M}(j) \subseteq \mathscr{M}(j+m-1)$.

We put $M_{j}=\Gamma(X, \mathscr{M}(j))$ for any $j \in Z$. It follows from the definition of a global good filtration that each $\mathscr{M}(j)$ is a coherent \mathcal{O}_{X}-Module. Since $\sigma_{1}\left(D_{A}\right) \mid \operatorname{Ch}(\mathscr{M})=0$ for any $A \in \mathfrak{b}$, we find that $D_{A} \mathscr{M}(j) \subseteq \mathscr{M}(j)(\forall j \in Z)$. Accordingly we see that $A M_{j} \subseteq M_{j}(\forall A \in \mathfrak{b})$ and moreover that $U(\mathfrak{b}) M_{j} \subseteq M_{j}$ for any $j \in Z$. Take an element u of M. Since $M=\cup_{j \in Z} M_{j}, u$ is contained in M_{j} for some $j \in Z$. Then $U(\mathfrak{b}) u \subseteq U(\mathfrak{b}) M_{j} \subseteq M_{j}$. Since X is projective algebraic, owing to Serre's theorem we conclude that $\operatorname{dim} U(\mathfrak{b}) u \leqq$
$\operatorname{dim} M_{j}<\infty$. We have thus proved that $M=\Gamma(X, \mathscr{M})$ is an object of $\tilde{\mathcal{O}}_{[\rho]}$.

We next show that for any $M \in \widetilde{\mathcal{O}}_{[\rho]}, \mathscr{D}_{X} \otimes_{R} M$ is an object of \mathfrak{M}. The proof of this is rather long. Therefore we accomplish the proof by decomposing into three steps.

Step 1. For any $w \in W, \operatorname{Ch}\left(\mathscr{D}_{X} \otimes_{R} M(-w \rho)\right) \subseteq \bigcup_{y \in W} \overline{T_{X_{y}}^{*} X}$.
Proof. It follows from (1.8) that

$$
\mathscr{D}_{X} \otimes_{R} M(-w \rho)=\mathscr{D}_{X} / \sum_{A \in \mathfrak{n}} \mathscr{D}_{X} D_{A}+\sum_{H \in \mathfrak{t}} \mathscr{D}_{X}\left(D_{H}+(w \rho+\rho)(H)\right) .
$$

Then we find that $\mathrm{Ch}\left(\mathscr{D}_{X} \otimes_{R} M(-w \rho)\right) \subseteq \gamma^{-1}(\mathfrak{b})$. Noting that $\gamma^{-1}(\mathfrak{b})=$ $\cup_{y \in W} \bar{T}_{X_{y}}^{*} \bar{X}$, we obtain the claim in Step 1.

Step 2. For any $w \in W, \mathscr{D}_{X} \otimes_{R} L(-w \rho)$ is an object of \mathfrak{M}.
Proof. Since $M(-w \rho) \rightarrow L(-w \rho) \rightarrow 0$ is exact, it follows from Theorem (2.5) that $\mathscr{D}_{x} \otimes_{R} M(-w \rho) \rightarrow \mathscr{D}_{x} \otimes_{R} L(-w \rho) \rightarrow 0$ is exact. Then we conclude from [10] that $\operatorname{Ch}\left(\mathscr{D}_{X} \otimes_{R} L(-w \rho)\right) \subseteq \gamma^{-1}(\mathfrak{b})$. Next we show that $\mathscr{D}_{X} \otimes_{R}$ $L(-w \rho)$ is regular holonomic. We set $M=\Gamma\left(X, \mathscr{M}_{w}^{*}\right)$. Then it follows from (3.2.6) that $-w \rho-\rho$ is a highest weight of M. This means that there exists an element $u(\neq 0)$ of M such that $\mathfrak{n} u=0$ and $H u=-(w \rho+\rho)(H) u$ for any $H \in \mathrm{t}$. Since Theorem (2.5) implies that $\mathscr{M}_{w}^{*}=\mathscr{D}_{X} \otimes_{R} M$ and in particular this is regular holonomic and since $L(-w \rho)$ is a subquotient module of M, we conclude from [10] that $\mathscr{D}_{X} \otimes_{R} L(-w \rho)$ is regular holonomic. Hence the claim in Step 2 is proved.

Step 3. For any $M \in \tilde{\mathcal{O}}_{[\rho]}, \mathscr{D}_{X} \otimes_{R} M$ is an object of \mathfrak{M}.
Proof. We prove the statement by induction on the length $r(M)$ of M.

If $r(M)=1$, it follows from (1.9) that there exists an element w of W such that $M=L(-w \rho)$. Then we conclude from Step 2 that $\mathscr{D}_{X} \otimes_{R} M$ is an object of \mathfrak{M}.

We fix a positive integer r. Assuming that for any $M^{\prime} \in \tilde{\mathcal{O}}_{[\rho]}$ such that $r\left(M^{\prime}\right) \leqq r-1, \mathscr{D}_{X} \otimes_{R} M^{\prime}$ is an object of \mathfrak{M}, we show that if M is an object of $\tilde{\mathcal{O}}_{[\rho]}$ such that $r(M)=r$, then $\mathscr{D}_{X} \otimes_{R} M$ is in \mathfrak{M}. It is clear that there are a g-submodule M^{\prime} of M and $w \in W$ such that $r\left(M^{\prime}\right)=r-1$ and that

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow L(-w \rho) \rightarrow 0
$$

is an exact sequence. Then it follows from Theorem (2.5) that

$$
0 \rightarrow \mathscr{D}_{X} \otimes_{R} M^{\prime} \rightarrow \mathscr{D}_{X} \otimes_{R} M \rightarrow \mathscr{D}_{X} \otimes_{R} L(-w \rho) \rightarrow 0
$$

is an exact sequence. Owing to the hypothesis of the induction and Step 2, we conclude that $\mathscr{D}_{X} \otimes_{R} M \in \mathfrak{M}$.

We have thus proved the claim in Step 3 by induction.
From the above discussion, Theorem (3.3) is completely proved.
Theorem (3.4). For any $w \in W$, the following statements hold.
(i) We put $\mathscr{L}_{w}=\mathscr{D}_{x} \otimes_{R} L(-w \rho)$. Then $\mathscr{L}_{w}=\mathscr{L}\left(\bar{X}_{w}, X\right)$. Here $\mathscr{L}\left(\bar{X}_{w}, X\right)$ is the minimal extension of $\mathscr{H}_{\left[X_{w]}\right.}^{n-l(w)}\left(\mathcal{O}_{X}\right) \mid X-\partial X_{w}$ to X.
(ii) $\Gamma\left(X, \mathscr{M}_{w}\right)=M(-w \rho), \Gamma\left(X, \mathscr{M}_{w}^{*}\right)=M(-w \rho)^{*}$.

Proof. (i) We prove by induction on $l(w)$.
First we assume that $l(w)=0$. Then $w=e$. Since X_{e} consists of one point, we conclude from [10] that $\mathscr{L}_{e}=\mathscr{M}_{e}^{*}$ is a minimal extension.

Next we assume that $\mathscr{L}_{y}=\mathscr{L}\left(\bar{X}_{y}, X\right)$ for any $y \in W$ such that $l(y)<$ $l(w)$ and show that $\mathscr{L}_{w}=\mathscr{L}\left(\bar{X}_{w}, X\right)$. Putting $M=\Gamma\left(X, \mathscr{M}_{w}^{*}\right)$, we see from (3.2.6) that $L(-w \rho)$ is a subquotient of M, that is, there are g-submodules N_{1}, N_{2} of M such that $N_{1} \subset N_{2}$ and that $N_{2} / N_{1}=L(-w \rho)$. Then owing to Theorem (1.11.1), we find that each composition factor of M / N_{2} and N_{1} is isomorphic to $L\left(-w^{\prime} \rho\right)$ for some $w^{\prime} \in W$ such that $w^{\prime}<w$. Therefore it follows from Theorem (2.5) that $\left.\mathscr{L}_{w}\right|_{X-\partial X_{w}}=\left.\mathscr{M}_{w}^{*}\right|_{X-\partial X_{w}}$. Noting this, we need only to prove the following:
(3.4.1) If \mathscr{M} is a coherent \mathscr{D}_{X}-Module such that \mathscr{M} is a subquotient of \mathscr{L}_{w} and that Supp $\mathscr{M} \subseteq \partial X_{w}$, then $\mathscr{M}=0$.

Let \mathscr{M} be such a \mathscr{D}_{X}-Module. Then $\Gamma(X, \mathscr{M})$ is a subquotient of $L(-w \rho)$. But $L(-w \rho)$ is simple. Therefore we find that $\Gamma(X, \mathscr{M})$ is $L(-w \rho)$ or 0 . If $\Gamma(X, \mathscr{M})=L(-w \rho)$, then $\mathscr{M}=\mathscr{L}_{w}$ and in particular Supp $\mathscr{M}=\bar{X}_{w}$. This is a contradiction. On the other hand, if $\Gamma(X, \mathscr{M})$ $=0$, then it follows from Theorem (2.5) that $\mathscr{M}=0$. Hence (3.4.1) and therefore (i) is proved.
(ii) We put $N=\left(\Gamma\left(X, \mathscr{M}_{w}^{*}\right)\right)^{*}$. Then $\operatorname{ch} N=\operatorname{ch} N^{*}=\operatorname{ch} M(-w \rho)$. Hence $\operatorname{Hom}_{8}(M(-w \rho), N) \neq 0$. Let f be a non-trivial \mathfrak{g}-homomorphism of $M(-w \rho)$ to N and put $N^{\prime}=N / f(M(-w \rho))$. Then we obtain an exact sequence $0 \rightarrow N^{\prime *} \rightarrow N^{*} \rightarrow M(-w \rho)^{*}$. This combined with Theorem (1.11.1) implies that each composition factor of $N^{* *}$ is isomorphic to $L\left(-w^{\prime} \rho\right)$ for some $w^{\prime} \in W, w^{\prime}<w$. Therefore we find that $\operatorname{Supp}\left(\mathscr{D}_{x} \otimes_{R} N^{\prime *}\right) \subseteq \partial X_{w}$. On the other hand, we have an inclusion $\mathscr{D}_{x} \otimes_{R} N^{*} \subset \mathscr{D}_{X} \otimes_{R} N^{*}=\mathscr{M}_{w}^{*}$. It follows from (3.2.4) and [10] that $\mathscr{H}_{\partial X_{w}}^{0}\left(\mathscr{M}_{w}^{*}\right)=\mathscr{H}_{\left[\partial X_{w}\right]}^{0}\left(\mathscr{M}_{w}^{*}\right)=0$. These imply that $\mathscr{D}_{x} \otimes_{R} N^{\prime *}=0$. Therefore we find from Theorem (2.5) that $N^{\prime *}$ $=0$. This means that N^{*} is a submodule of $M(-w \rho)^{*}$. But the characters of these modules coincide. Accordingly we conclude that $\Gamma\left(X, \mathscr{M}_{w}^{*}\right)$ $=M(-w \rho)^{*}$.

Next we put $M=\Gamma\left(X, \mathscr{M}_{w}\right)$. Since (i) shows that $\mathscr{L}_{y}^{*}=\mathscr{L}_{y}$ for any $y \in W$, the composition factors of \mathscr{M}_{w} coincide with those of \mathscr{M}_{w}^{*} including their multiplicities. Hence it follows from Theorem (2.5) that the composition factors of M coincide with those of $M(-w \rho)^{*}=\Gamma\left(X, \mathscr{M}_{w}^{*}\right)$. In particular we find that $\operatorname{ch} M=\operatorname{ch} M(-w \rho)$. Therefore we have an exact sequence $M(-w \rho) \rightarrow M \rightarrow N^{\prime} \rightarrow 0$ such that $\operatorname{Im}(M(-w \rho) \rightarrow M) \neq 0$. Then it follows from Theorem (2.5) that $\mathscr{D}_{X} \otimes_{R} M(-w \rho) \rightarrow \mathscr{M}_{w} \rightarrow \mathscr{D}_{X} \otimes_{R} N^{\prime} \rightarrow 0$ is an exact sequence. We see that $\left(\mathscr{D}_{X} \otimes_{R} N^{\prime}\right)^{*}$ is a coherent \mathscr{D}_{X}-sub-Module of \mathscr{M}_{w}^{*} and also see from Theorem (1.11.1) that $\operatorname{Supp}\left(\mathscr{D}_{X} \otimes_{R} N^{\prime}\right)^{*} \subseteq \partial X_{w}$. Hence we can show $\left(\mathscr{D}_{X} \otimes_{R} N^{\prime}\right)^{*}=0$ by an argument similar to the discussion above. Therefore $N^{\prime}=0$ and $M(-w \rho) \rightarrow M \rightarrow 0$ is exact. Since $\operatorname{ch} M(-w \rho)=\operatorname{ch} M$, we conclude that $M(-w \rho)=M$. q.e.d.

Conjecture (3.5). For any $\mathscr{M} \in \mathfrak{M}$, the following holds:

$$
\Gamma\left(X, \mathscr{M}^{*}\right) \simeq \Gamma(X, \mathscr{M})^{*}
$$

§4. The multiplicity formula for Verma modules

(4.1) Let w, w^{\prime} be elements of W. Then we can define KazhdanLusztig polynomial $P_{w, w^{\prime}}(q) \in Z[q]$ (cf. [8]). We do not give here a precise definition of $P_{w, w^{\prime}}(q)$ but only note that the following theorem holds.

Theorem (4.1.1) (cf. [8]). For any $w, w^{\prime} \in W$, we have
(i) $\sum_{k} \operatorname{dim} \mathscr{H}^{2 k}\left(\pi_{\bar{X}_{w^{\prime}}}\right)_{w} q^{k}=P_{w, w^{\prime}}(q)$.
(ii) $\mathscr{H}^{2 k-1}\left(\pi_{X_{w}}\right)=0 \quad$ for any k.

One finds in [11] an alternative proof of this theorem due to MacPherson.

Theorem (4.2). For any $w \in W$, we have the following statements.
(i) $\boldsymbol{R} \mathscr{H}_{\circ_{\mathscr{P}_{X}}}\left(\mathcal{O}_{X}, \mathscr{L}_{w}\right)=\pi_{X_{w}}[-(n-l(w))]$.
(ii) $\boldsymbol{R} \mathscr{H}_{o m_{\mathscr{O}_{X}}}\left(\mathcal{O}_{X}, \mathscr{M}_{w}\right)=\boldsymbol{C}_{X_{w}}[-(n-l(w))]$.

Proof. The claim (i) follows from a general result (cf. [3, 10]). We prove (ii).

$$
\begin{align*}
& \mathscr{D} \mathscr{R}\left(\left(\mathscr{H}_{\left[X_{w]}^{n}\right]}^{n-l(w)}\left(\mathcal{O}_{X}\right)\right)^{*}\right) \\
&=\left(\mathscr{D} \mathscr{R}\left(\mathscr{H} \mathscr{H}_{\left[X_{w}-l(w)\right.}\left(\mathcal{O}_{X}\right)\right)\right)^{*} \\
&=\left(\mathscr{D} \mathscr{R}\left(\boldsymbol{R} \Gamma_{\left[X_{w]}\right]}\left(\mathcal{O}_{X}\right)[n-l(w)]\right)\right)^{*} \tag{3.2}\\
&=\left(\boldsymbol{R} \Gamma_{X_{w}}\left(\mathscr{D} \mathscr{R}\left(\mathcal{O}_{X}\right)\right)[n-l(w)]\right)^{*} \\
&=\left(\boldsymbol{R} \Gamma_{X_{w}}\left(\boldsymbol{C}_{X}\right)\right)^{*}[-(n-l(w))] \\
&=\left(\boldsymbol{R} \mathscr{H} \operatorname{om}_{C_{X}}\left(\boldsymbol{C}_{X_{w}}, \boldsymbol{C}_{X}\right)\right)^{*}[-(n-l(w))]
\end{align*}
$$

$$
=C_{X_{w}}[-(n-l(w))] .
$$

(4.3) We review the index of a holonomic system (cf. [5]).

Definition (4.3.1). Let \mathscr{M} be a holonomic system on X. Then we define

$$
\chi_{x}(\mathscr{M})=\sum_{j}(-1)^{j} \operatorname{dim}\left(\mathscr{E} x \mathscr{E}_{X}^{j}\left(\mathcal{O}_{X}, \mathscr{M}\right)_{x}\right) \quad(\forall x \in X) .
$$

A fundamental property of $\chi_{x}(\mathscr{M})$ is the following.
Lemma (4.3.2). If $0 \rightarrow \mathscr{M}^{\prime} \rightarrow \mathscr{M} \rightarrow \mathscr{M}^{\prime \prime} \rightarrow 0$ is an exact sequence of holonomic systems on X, then we have

$$
\chi_{x}(\mathscr{M})=\chi_{x}\left(\mathscr{M}^{\prime}\right)+\chi_{x}\left(\mathscr{M}^{\prime \prime}\right) \quad \text { for any } x \in X .
$$

Theorem (4.4). For any $M \in \tilde{\mathcal{O}}_{[\rho]]}$, we have

$$
\operatorname{ch}(M)=\sum_{w \in W}(-1)^{n-\tau(w)} \chi_{w}\left(\mathscr{D}_{x} \otimes_{R} M\right) \operatorname{ch}(M(-w \rho)) .
$$

Proof. We define a map f of $\tilde{\mathcal{O}}_{[\rho]}$ to $K\left(\tilde{\mathscr{O}}_{[\rho]}\right)$ by

$$
f(M)=\operatorname{ch}(M)-\sum_{w \in W}(-1)^{n-l(w)} \chi_{w}\left(\mathscr{D}_{x} \otimes_{R} M\right) \operatorname{ch}(M(-w \rho)) .
$$

Then it follows from Theorem (4.2) (ii), (1.7.2) and Lemma (4.3.2) that the conditions (i) and (ii) in Lemma (1.13) hold for $f(M)$. Therefore Lemma (1.13) implies the theorem. q.e.d.
(4.5) We are in a position to prove the theorem conjectured by Kazhdan-Lusztig [7] and proved by Brylinski-Kashiwara [3] and BeilinsonBernstein [1].

Theorem (4.6). $\quad\left[M\left(-w_{\rho}\right): L\left(-w^{\prime} \rho\right)\right]=P_{w_{0} w_{w}, w_{0} w^{\prime}}(1)\left(\forall w, w^{\prime} \in W\right)$. Here w_{0} is the unique element of W such that $X_{w_{0}}$ is open in X.

Proof. By an inversion formula for Kazhdan-Lusztig polynomials (cf. [7]), the theorem is equivalent to the following identity:

$$
\begin{equation*}
\operatorname{ch}(L(-w \rho))=\sum_{y \in W}(-1)^{\iota(w)-l(y)} P_{v, w}(1) \operatorname{ch}(M(-y \rho))(\forall w \in W) . \tag{4.6.1}
\end{equation*}
$$

We are going to prove (4.6.1). It follows from Theorem (4.4) that

$$
\operatorname{ch}(L(-w \rho))=\sum_{y \in W}(-1)^{n-l(y)} \chi_{y}\left(\mathscr{L}_{w}\right) \operatorname{ch}(M(-y \rho)) .
$$

On the other hand, owing to Theorems (4.1.1) and (4.2), we find that

$$
\begin{aligned}
\chi_{y}\left(\mathscr{L}_{w}\right) & =\sum_{j}(-1)^{j} \operatorname{dim} \mathscr{H}^{j}\left(\pi_{X_{w}}[-(n-1(w))]\right)_{y} \\
& =\sum_{j}(-1)^{j+n-l(w)} \operatorname{dim} \mathscr{H}^{j}\left(\pi_{X_{w}}\right)_{y} \\
& =(-1)^{n-l(w)} P_{y, w}(1) .
\end{aligned}
$$

Combining these equalities, we obtain (4.6.1) and therefore have shown Theorem (4.6).

References

[1] Beilinson, A. and Bernstein, J., Localisation de g-modules, Comptes Rendus 292A (1981), 15-18.
[2] Bernstein, I. N., Gelfand, I. M. and Gelfand, S. I., Differential operators on the base affine space and a study of g-modules, in: Lie groups and their representations, edited by Gelfand, I. N., London (1975), 21-64.
[3] Brylinski, J. L. and Kashiwara, M., Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., 64 (1981), 387-410.
[4] Dixmier, J., Enveloping algebras, North-Holland (1977).
[5] Kashiwara, M., Systems of microdifferential equations, Notes by J. M. Fernandes, Birkhäuser, 1983.
[6] Kashiwara, M. and Kawai, T., On holonomic systems of micro-differential equations, III, -Systems with regular singularities-, Publ. RIMS, Kyoto Univ., 17 (1981), 813-979.
[7] Kazhdan, D. and Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184.
[8] --, Schubert varieties and Poincaré duality, Proc. Symp. in Pure Math., 36 (1980), 185-203.
[9] Kempf, G., The Grothendieck-Cousin complex of an induced representation, Adv. in Math., 29 (1978), 310-396.
[10] Noumi, M., Regular holonomic systems and their minimal extensions I, this volume.
[11] Springer, T. A., Quelques applications de la cohomologie d'intersection, Séminaire Bourbaki 34e année, no. 589 (1981/1982).
[12] Tanisaki, T., Representation theory of complex semisimple Lie algebras and \mathscr{D}-Modules, In: Reports of the fifth seminar on Algebra II, (1983), 67-163 (in Japanese).

Department of Mathematics
Tokyo Metropolitan University
Setagaya-ku, Tokyo 158
Japan

