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A Geometric Significance of Total Curvature 
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1. Let M be a 2-dimensional complete non-compact Riemannian 
manifold with non-negative Gaussian curvature K. Then the total cur
vature of M satisfies the inequality 

f Kdv~27r, ;}[ 

where dv is the volume element of M induced from the Riemannian metric 
onM. This was proved by Cohn-Vossen in [2]. Obviously in contrast 
with compact case, the total curvature of M is not a topological invariant 
when M is non-compact and it depends on the Riemannian structures on 
M. Concerning this fact, in [5], [7], we showed that the total curvature 
of M is expressing a certain curvedness of M. We will state it in the fol
lowing. 

For a point q E M, put Sq(M): = {v E TiM); norm of V= I}, where 
TiM) is the tangent space of M at q. From the Euclidean metric on 
Tq(M), SiM) becomes a Riemannian submanifold of Tq(M) isometirc to 
the standard unit circle. Thus we can consider the Riemannian measure 
on SiM). Let A(q)cSiM) be the set defined as 

{v E Sq(M); geodesic 7: [0, oo)--->-M given by 7(t)=expq tv is a ray}. 

Here expq: Tq(M)---+ M is the exponential mapping of M and geodesic r is 
called a ray when any subarc of r is a shortest connection between its end 
points. Using these notations, the facts mentioned above are stated as 
follows. 

Fact 1. Let M be a 2-dimensional complete Riemannian manifold 
with non-negative Gaussian curvature K diffeomorphic to a Euclidean 
plane. Then for any point q E M, 
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measure A(q)~2lr-f M K du. 

Note that from classification by Cohn-Vossen, 2-dimensional com
plete non-compact Riemannian manifold with non-negative Gaussian 
curvature is diffeomorphic to a Euclidean plane or isometric to a flat 
cylinder or a flat Mobius band. 

And in [6], we have tried to estimate the measure A(q) from above; 

Fact 2. Let M be a 2-dimensional complete non-compact Rieman
nian manifold with non-negative Gaussian curvature K. Then it holds 

infmeasure A(q)<3lr-f Kdv. 
qEM M 

Here note that for each value u E (0, 2lr], we can easily construct a 
complete non-compact rotation surface in 3-dimensional Euclidean space 

with non-negative Gaussian curvature K satisfying fMKdu=u and with 

point q E M satisfying measure A(q)=2lr. Thus it will be reasonable to 
consider on an estimate of infqEM measure A(q). And as is easily seen, 
the estimation in Fact 2 is very rough. So in this paper, we will give a 
more sharper estimation which is 

Theorem. Let M be a 2-dimensional complete non-compact Rieman
nian manifold with non-negative Gaussian curvature K. Then it holds 

infmeasure A(q) <2lr-f Kdv. 
qEM M 

An upper bound 2lr - f M K d u is optimal in this type of estimation, 

because together with Fact 1, we have 

Corollary. Let M be a 2-dimensional complete Riemannian manifold 
with non-negative Gaussian curvature K diffeomorphic to a Euclidean plane. 
Then it holds 

f Kdv=2lr- inf measure A(q). 
M qEM 

Thus we get a geometrical significance of the total curvature of M. 
Another trials to give a geometrical significance of the total curvature are 
done by K. Shiohama, see [8], [9]. 

2. We will give the proof of the Theorem. For convenience of the 
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proof, we will restate a main part of the proof of Fact 1, following in [6]. 
From classification by Cohn-Vossen, it sufficies to prove when M is dif
feomorphic to a Euclidean plane. Then from [4], we have a family of 
compact domains {QTJi=1,2, ... satisfying 

(1) the boundary of QT' is a geodesic quadrateral, i = 1, 2, ... 
(2) Qr, C Qri+l for i = 1, 2, ... and 
(3) Ui=l Qr,=M. 

For this family {QT'}' we have 

Lemma 1. If M is not flat, then for each ri, there exists ri,>ri such 
that every ray starting from any point of the complement of Qr" does not 

meet QTi' 

The proof of this lemma is done by using Toponogov's splitting 
theorem [6; p.4]. 

Now for any small positive e >0, there exists a number io such that 

f Kdv-:z:.f Kdv-e. Q,. M 

This follows from the property (2) for {QTJ For this Qr,., we apply 
Lemma 1. Then we get Qrj. which satisfies the following; for any point 
q E (Qrj.)" (=the complement of QT,.)' any ray starting from q does not 
meet Qr,.. Iq A(q) (= number of the elements of A(q)) = 1, then there is 
nothing to prove. So we consider the case #A(q»2. So Sq(M)-A(q) 
is disjoint union of connected open subsets F" lEA of SiM) i.e. UAEAFA 
=Sq(M)-A(q), becauses A(q) is a closed subset of SiM). For each 
A E A, 8F, consists of two vectors vf, v; E A(q). Let n: [0, 00)-+ M be the 
ray defined by n(t)=expq tv:, i=l, 2. Since rt. n are rays, rt and n do 
not meet other than q. Let 0>0 be the convexity radius of q. Then 
from above facts, we get domains D).,lEA whose boundary is rt([O, 00)) 
ur;([o, 00)) and which satisfies expq{tv; v E F}., O<t<O}CDl,lEA and 
U}.EAD}.=M. 

Now, let {CtL~o be the family of compact totally convex subsets of 
M defined by 

where by definition, Bc,:=Us>o Bs(c(t+s)) (BT(x) is the open geodesic 
ball in M with radius r centered at x) and A is the set of all rays starting 
from q. In this paper, all geodesics have arc-length as their parameter. 
Since Ct is totally convex, Ct is a topological manifold and hence aCt is 
homeomorphic to a circle for t >0, because dim M =2, see [1]. For this 
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family of totally convex sets {CtL;;:o, we have shown in [5] that for each 
D)., )'EA, there exists a divergent sequence {til (ti i 00) and minimal geodesics 
r~, rt;: [0, Si]-+1»)., i = 1, 2, ... satisfying the following conditions; 

(1) r~, rt;: (0, si]-+D)., i = 1, 2, ... 
(2) r~(O)=rt;(O)=q, r~(Si)=rt;(Si) E acti , i= 1,2, ... 
(3) r~-+rt, rt;-+n as i-+oo. 

For these r~, rt;, it holds; 

Proof Step 1. From the definition of Ct, and the fact that rt, n E 

A, we can easily see that n(ti), n(ti) E aCt, for each ti and n I [0, til, n I [0, til 
is a shortest connection between q and aCt,. 

Step. 2. Fix a number ti. We consider a function <Pi: [0, si]-+R 
defined by <pi(s):=d(r~(s), aCt,) (d is the distance function on M). Since 
r~([O, SiDe Ct" from [1; Th. 1.10], <Pi is a concave function, that is, for 
any a~O, b~O, a+b= 1 and s<s', 

<p;(as+ bs') ~ a<ptCs) + b<pi(S'). 

And from Step 1, we see 

So 

d(r;(s), aCt,)=ti-s. 

<PieS) ~d(r~(s), r;(s)) + d(r;(s), aCt,) 

=d(r~(s), n(s))+ti-s. 

Using comparison theorem by Toponogov, we have 

d(n(s), r~(s))~-/2(r-cosO).s, 

where we put 0: = 1:: (fi(O), i~(O)). Thus 

<PtCS)~ti-S+ -/2(r=--cos 0)· s 

= li-(1--/2(1 ~-cos O))s. 

Put m(0):=1--/2(1-cosO). Then m(O)<l and m(O)-+l as 0-+0. 
Hence we have 

for s E [0, tJ and hence s E [0, Si] because of the concavity of <Pi' 

Step 3. By using the concavity of <Pi and the inequality <PtCs)-s;,ti -
m(O)s, we can easily see that for any s, s', S<S'~Si' 
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cp/S')-cptCs) < -m(O). 
S'-S 

So putting s' = Si in the above inequality, we have 

for any S E [0, s,], 

Step 4. For a small 0'>0, let c: [-0', o']-+M be a geodesic such 
that c(O)=r~(Si) E aClt and 

c([ - 0', o'D C (Cit)" U aCt;. 

Such a c is obtained as follows. Since Cl , is totally convex, tangent cone 

c + s' = {V E Tri'; (,jM);. ~xp tv/II v II E int Cli for some} U {O} 
r,,( ,) posItIve t <r(r~(Si)) 

at r~(Si) E aCti is a convex cone in Tri';(Si)(M), where r(r~(Si)) is the con
vexity radius at r~(Si)' see [1; Prop. 1.8]. Let v E acri';(s;) - {O} and define 
c(t)=exp tv/II vii· Then c is a desired one. 

Now, choosing S sufficiently close to Si and fixing it for a moment, 
we can assume that end point of the minimal geodesic cl : [0, d(r~(s), 
c([ -0', o']))]-+M from r~(s) to c([ -0', o'D is c(so), So E (-0',0'). We only 
consider the case so:2:0. If so<O, then putting c(s):=c( -s), we can obtain 
same conclusion. Put d(r~(s), c([ -0', o']))=d(r~(s), c(So)) = : SI' Then 
1:: (c(so), c1(sl))=71:/2. If cl=r~l[s,s,], then there is nothing to prove as is 
seen in the following. So we consider the case cI*r~b,Si]' Put Si-S 
= : Sz. Then because of the property of c, minimal geodesic C1 from r~(s) 
to c([ -0', o'D meet aCt,. Thus 

SI ~cpb) :2:m(O)(si -s) =m(O)s2' 

i.e. sl~m(O)s2' Let D be the compact domain surrounded by the geodesic 
triangle (r~ b,8']' c leo, so], c,). Put a: = 1:: ( - i~(Si)' c(O)), 

Now for any small e' >0, we choose S again sufficiently close to s, 

satisfying e'~ f D K dv. Then applying Gauss-Bonnet Theorem to D, we 

have 
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Thus 

In particular 

From Toponogov's comparison theorem, if we construct a triangle in a 
Euclidean plane with sides having lengths S2' So, SI corresponding to the 
geodesic triangle (r~ b,'tJ' c!co,'oJ' c1) and if a, p, r are the corresponding 
angles to a, {3, r respectively, then 

So 

Thus, using a+P+r=rr we have 

On the other hand, from Sine formula 

sinr _ sin a 
-----. 

So sin a=~ sin r:2':m((J).sin (~-e')' 
S2 2 

Thus we have 

sin- 1(m((J),sin(; -e'))<a~; +e', 
where sin- 1 ( ) is the principal value. Since e' is arbitraly letting e'~O, 
we have 

sin- 1 (m((J))~a< ;, i.e. 

sin-l(m((J))~1::(-t~(si)' c(O))~;. 

So together with the case so<O, we have 
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1:( -t~(Si)' c(O»>sin-l(m(O» 

1:( -n(Si), -c(O»~sin-1 (m(O». 

Similary for rt;, we have 

and 

So 

1:( -tt;(Si), c(O»>sin-1 (m(O» 

1:( -tt;(Si), -c(O»> sin-I (m(O». 

1:( -t~(Si)' -tt;(Si»<2(; -sin-I (m(o))). 

Now if i-HX> , then 0-+0 and hence m(O)-+l. Thus 

457 

q.e.d. 

Now, let J(ti) be the compact domain surrounded by r~ and rt; contained 
in lJ),. Applying Gauss-Bonnet Theorem to J(ti), we have 

If t,-+oo, then J(t,)-+lJ),. Thus from Lemma 2, we have 

Lemma 3. f- Kdv= 1:(ti(O), t~(O»=measure F),. 
D), 

From the choice of the point q e (QrjoY, any ray starting from q does 
not meet Qr,.. So we can find D),. such that Qr,.cD),.. Thus we have 

That is, 

f Kdv-e::::;:f Kdv 
M Q,. 

<f Kdv 
D)'. 

::::;:2:; f Kdv 
A 15), 

= 2:; measure F), 
A 

= measure U FA 
A 

=measure (Sq(M)-A(q) 

=2;r-measure A(q). 
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Hence 

M. Maeda 

measure A(q) <21t'- fM Kdv+e. 

infmeasure A(q) <21t'-f Kdv. 
qeM M 
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