A Geometric Significance of Total Curvature on Complete Open Surfaces

Masao Maeda

1. Let M be a 2-dimensional complete non-compact Riemannian manifold with non-negative Gaussian curvature K. Then the total curvature of M satisfies the inequality

$$
\int_{M} K d v \leqq 2 \pi
$$

where $d v$ is the volume element of M induced from the Riemannian metric on M. This was proved by Cohn-Vossen in [2]. Obviously in contrast with compact case, the total curvature of M is not a topological invariant when M is non-compact and it depends on the Riemannian structures on M. Concerning this fact, in [5], [7], we showed that the total curvature of M is expressing a certain curvedness of M. We will state it in the following.

For a point $q \in M$, put $S_{q}(M):=\left\{v \in T_{q}(M)\right.$; norm of $\left.v=1\right\}$, where $T_{q}(M)$ is the tangent space of M at q. From the Euclidean metric on $T_{q}(M), S_{q}(M)$ becomes a Riemannian submanifold of $T_{q}(M)$ isometirc to the standard unit circle. Thus we can consider the Riemannian measure on $S_{q}(M)$. Let $A(q) \subset S_{q}(M)$ be the set defined as

$$
\left\{v \in S_{q}(M) ; \text { geodesic } \gamma:[0, \infty) \rightarrow M \text { given by } \gamma(t)=\exp _{q} t v \text { is a ray }\right\}
$$

Here $\exp _{q}: T_{q}(M) \rightarrow M$ is the exponential mapping of M and geodesic γ is called a ray when any subarc of γ is a shortest connection between its end points. Using these notations, the facts mentioned above are stated as follows.

Fact 1. Let M be a 2-dimensional complete Riemannian manifold with non-negative Gaussian curvature K diffeomorphic to a Euclidean plane. Then for any point $q \in M$,

[^0]$$
\text { measure } A(q) \geqq 2 \pi-\int_{M} K d v
$$

Note that from classification by Cohn-Vossen, 2-dimensional complete non-compact Riemannian manifold with non-negative Gaussian curvature is diffeomorphic to a Euclidean plane or isometric to a flat cylinder or a flat Möbius band.

And in [6], we have tried to estimate the measure $A(q)$ from above;
Fact 2. Let M be a 2-dimensional complete non-compact Riemannian manifold with non-negative Gaussian curvature K. Then it holds

$$
\inf _{q \in M} \text { measure } A(q) \leqq 3 \pi-\int_{M} K d v
$$

Here note that for each value $u \in(0,2 \pi]$, we can easily construct a complete non-compact rotation surface in 3-dimensional Euclidean space with non-negative Gaussian curvature K satisfying $\int_{M} K d v=u$ and with point $q \in M$ satisfying measure $A(q)=2 \pi$. Thus it will be reasonable to consider on an estimate of $\inf _{q \in M}$ measure $A(q)$. And as is easily seen, the estimation in Fact 2 is very rough. So in this paper, we will give a more sharper estimation which is

Theorem. Let M be a 2-dimensional complete non-compact Riemannian manifold with non-negative Gaussian curvature K. Then it holds

$$
\inf _{q \in M} \text { measure } A(q) \leqq 2 \pi-\int_{M} K d v
$$

An upper bound $2 \pi-\int_{M} K d v$ is optimal in this type of estimation, because together with Fact 1, we have

Corollary. Let M be a 2-dimensional complete Riemannian manifold with non-negative Gaussian curvature K diffeomorphic to a Euclidean plane. Then it holds

$$
\int_{M} K d v=2 \pi-\inf _{q \in M} \text { measure } A(q)
$$

Thus we get a geometrical significance of the total curvature of M. Another trials to give a geometrical significance of the total curvature are done by K. Shiohama, see [8], [9].
2. We will give the proof of the Theorem. For convenience of the
proof, we will restate a main part of the proof of Fact 1, following in [6]. From classification by Cohn-Vossen, it sufficies to prove when M is diffeomorphic to a Euclidean plane. Then from [4], we have a family of compact domains $\left\{Q_{r_{i}}\right\}_{i=1,2}, \ldots$ satisfying
(1) the boundary of $Q_{r_{i}}$ is a geodesic quadrateral, $i=1,2, \cdots$
(2) $Q_{r_{i}} \subset Q_{r_{i+1}}$ for $i=1,2, \cdots$ and
(3) $\bigcup_{i=1}^{\infty} Q_{r_{i}}=M$.

For this family $\left\{Q_{r_{i}}\right\}$, we have
Lemma 1. If M is not flat, then for each r_{i}, there exists $r_{i_{j}}>r_{i}$ such that every ray starting from any point of the complement of $Q_{r_{i_{j}}}$ does not meet $Q_{r_{i}}$.

The proof of this lemma is done by using Toponogov's splitting theorem [6; p.4].

Now for any small positive $\varepsilon>0$, there exists a number i_{0} such that

$$
\int_{Q_{i_{0}}} K d v \geqq \int_{M} K d v-\varepsilon
$$

This follows from the property (2) for $\left\{Q_{r_{i}}\right\}$. For this $Q_{r_{i_{0}}}$, we apply Lemma 1. Then we get $Q_{r_{j_{0}}}$ which satisfies the following; for any point $q \in\left(Q_{r_{j_{0}}}\right)^{c}$ (=the complement of $Q_{r_{j_{0}}}$), any ray starting from q does not meet $Q_{r_{i_{0}}}$. If $\# A(q)(=$ number of the elements of $A(q))=1$, then there is nothing to prove. So we consider the case $\# A(q) \geqq 2$. So $S_{q}(M)-A(q)$ is disjoint union of connected open subsets $F_{\lambda, \lambda \in \Lambda}$ of $S_{q}(M)$ i.e. $\bigcup_{\lambda \in \Lambda} F_{\lambda}$ $=S_{q}(M)-A(q)$, becauses $A(q)$ is a closed subset of $S_{q}(M)$. For each $\lambda \in \Lambda, \partial F_{\lambda}$ consists of two vectors $v_{1}^{\lambda}, v_{2}^{\lambda} \in A(q)$. Let $\gamma_{i}^{\lambda}:[0, \infty) \rightarrow M$ be the ray defined by $\gamma_{i}^{2}(t)=\exp _{q} t v_{i}^{2}, i=1,2$. Since $\gamma_{1}^{\lambda}, \gamma_{2}^{2}$ are rays, γ_{1}^{λ} and γ_{2}^{λ} do not meet other than q. Let $\delta>0$ be the convexity radius of q. Then from above facts, we get domains $D_{\lambda, \lambda \in \Lambda}$ whose boundary is $\gamma_{1}^{\lambda}([0, \infty))$ $\cup \gamma_{2}^{\lambda}([0, \infty))$ and which satisfies $\exp _{q}\left\{t v ; v \in F_{\lambda}, 0<t \leqq \delta\right\} \subset D_{\lambda, \lambda \in A}$ and $\bigcup_{\lambda \in \Lambda} \bar{D}_{\lambda}=M$.

Now, let $\left\{C_{t}\right\}_{t \geq 0}$ be the family of compact totally convex subsets of M defined by

$$
C_{t}=\bigcap_{c \in A}\left(M-B_{c_{t}}\right)
$$

where by definition, $B_{c_{t}}:=\bigcup_{s>0} B_{s}(c(t+s))\left(B_{r}(x)\right.$ is the open geodesic ball in M with radius r centered at x) and A is the set of all rays starting from q. In this paper, all geodesics have arc-length as their parameter. Since C_{t} is totally convex, C_{t} is a topological manifold and hence ∂C_{t} is homeomorphic to a circle for $t>0$, because $\operatorname{dim} M=2$, see [1]. For this
family of totally convex sets $\left\{C_{t}\right\}_{t \geq 0}$, we have shown in [5] that for each $D_{\lambda, \lambda \in 1}$, there exists a divergent sequence $\left\{t_{i}\right\}\left(t_{i} \uparrow \infty\right)$ and minimal geodesics $\gamma_{t_{i}}^{+}, \gamma_{t_{i}}^{-}:\left[0, s_{i}\right] \rightarrow \bar{D}_{\lambda}, i=1,2, \cdots$ satisfying the following conditions;
(1) $\gamma_{t_{i}}^{+}, \gamma_{t_{i}}^{-}:\left(0, s_{i}\right] \rightarrow D_{\lambda}, i=1,2, \cdots$
(2) $\gamma_{t_{i}}^{+}(0)=\gamma_{t_{i}}^{-}(0)=q, \gamma_{t_{i}}^{+}\left(s_{i}\right)=\gamma_{t_{i}}^{-}\left(s_{i}\right) \in \partial C_{t_{i}}, i=1,2, \cdots$
(3) $\gamma_{t_{i}}^{+} \rightarrow \gamma_{1}^{\lambda}, \gamma_{t_{i}}^{-} \rightarrow \gamma_{2}^{\lambda}$ as $i \rightarrow \infty$.

For these $\gamma_{t_{i}}^{+}, \gamma_{t_{i}}^{-}$, it holds;
Lemma 2. $\lim _{t_{i} \rightarrow \infty} \Varangle\left(-\dot{\gamma}_{t_{i}}^{+}\left(s_{i}\right),-\dot{\gamma}_{t_{i}}^{-}\left(s_{i}\right)\right)=0$.
Proof. Step 1. From the definition of $C_{t_{i}}$ and the fact that $\gamma_{1}^{\lambda}, \gamma_{2}^{\lambda} \in$ A, we can easily see that $\gamma_{1}^{\lambda}\left(t_{i}\right), \gamma_{2}^{\lambda}\left(t_{i}\right) \in \partial C_{t_{i}}$ for each t_{i} and $\gamma_{1}^{\lambda}\left|\left[0, t_{i}\right], \gamma_{2}^{\lambda}\right|\left[0, t_{i}\right]$ is a shortest connection between q and $\partial C_{t_{i}}$.

Step. 2. Fix a number t_{i}. We consider a function $\varphi_{i}:\left[0, s_{i}\right] \rightarrow R$ defined by $\varphi_{i}(s):=d\left(\gamma_{t_{i}}^{+}(s), \partial C_{t_{i}}\right)(d$ is the distance function on $M)$. Since $\gamma_{t_{i}}^{+}\left(\left[0, s_{i}\right]\right) \subset C_{t_{i}}$, from [1; Th. 1.10], φ_{i} is a concave function, that is, for any $a \geqq 0, b \geqq 0, a+b=1$ and $s<s^{\prime}$,

$$
\varphi_{i}\left(a s+b s^{\prime}\right) \geqq a \varphi_{i}(s)+b \varphi_{i}\left(s^{\prime}\right)
$$

And from Step 1, we see

$$
d\left(\gamma_{1}^{\lambda}(s), \partial C_{t_{i}}\right)=t_{i}-s .
$$

So

$$
\begin{aligned}
\varphi_{i}(s) & \leqq d\left(\gamma_{t_{i}}^{+}(s), \gamma_{1}^{\lambda}(s)\right)+d\left(\gamma_{1}^{2}(s), \partial C_{t_{i}}\right) \\
& =d\left(\gamma_{t_{i}}^{+}(s), \gamma_{1}^{\lambda}(s)\right)+t_{i}-s
\end{aligned}
$$

Using comparison theorem by Toponogov, we have

$$
d\left(\gamma_{1}^{2}(s), \gamma_{t_{i}}^{+}(s)\right) \leqq \sqrt{2(1-\cos \theta)} \cdot s
$$

where we put $\theta:=\Varangle\left(\dot{\gamma}_{i}^{2}(0), \dot{\gamma}_{t i}^{+}(0)\right)$. Thus

$$
\begin{aligned}
\varphi_{i}(s) & \leqq t_{i}-s+\sqrt{2(1-\cos \theta)} \cdot s \\
& =t_{i}-(1-\sqrt{2(1-\cos \theta)}) s
\end{aligned}
$$

Put $m(\theta):=1-\sqrt{2(1-\cos \theta)}$. Then $m(\theta)<1$ and $m(\theta) \rightarrow 1$ as $\theta \rightarrow 0$. Hence we have

$$
\varphi_{i}(s) \leqq t_{i}-m(\theta) s
$$

for $s \in\left[0, t_{i}\right]$ and hence $s \in\left[0, s_{i}\right]$ because of the concavity of φ_{i}.
Step 3. By using the concavity of φ_{i} and the inequality $\varphi_{i}(s) \leqq t_{i}-$ $m(\theta) s$, we can easily see that for any $s, s^{\prime}, s<s^{\prime} \leqq s_{i}$,

$$
\frac{\varphi_{i}\left(s^{\prime}\right)-\varphi_{i}(s)}{s^{\prime}-s} \leqq-m(\theta)
$$

So putting $s^{\prime}=s_{i}$ in the above inequality, we have

$$
\varphi_{i}(s) \geqq m(\theta)\left(s_{i}-s\right) \quad \text { for any } s \in\left[0, s_{i}\right],
$$

because $\varphi_{i}\left(s_{i}\right)=0$.
Step 4. For a small $\delta^{\prime}>0$, let $c:\left[-\delta^{\prime}, \delta^{\prime}\right] \rightarrow M$ be a geodesic such that $c(0)=\gamma_{t_{i}}^{+}\left(s_{i}\right) \in \partial C_{t_{i}}$ and

$$
c\left(\left[-\delta^{\prime}, \delta^{\prime}\right]\right) \subset\left(C_{t_{i}}\right)^{c} \cup \partial C_{t_{i}}
$$

Such a c is obtained as follows. Since $C_{t_{i}}$ is totally convex, tangent cone

$$
C_{\gamma_{i i}^{+}\left(s_{i}\right)}=\left\{\begin{array}{c}
v \in T_{r_{i}}^{+}\left(s_{i}\right) \\
\text { positive } t<r(M) ; \exp t v /\|v\| \in \text { int } C_{t_{i}}^{+} \text {for some } \\
\text { posi) }
\end{array}\right\} \cup\{0\}
$$

at $\gamma_{t_{i}}^{+}\left(s_{i}\right) \in \partial C_{t_{i}}$ is a convex cone in $T_{r_{t_{i}}^{+}\left(s_{i}\right)}(M)$, where $r\left(\gamma_{t_{i}}^{+}\left(s_{i}\right)\right)$ is the convexity radius at $\gamma_{t_{i}}^{+}\left(s_{i}\right)$, see [1; Prop. 1.8]. Let $v \in \partial C_{r_{t_{i}^{+}}\left(s_{i}\right)}-\{0\}$ and define $c(t)=\exp t v /\|v\|$. Then c is a desired one.

Now, choosing s sufficiently close to s_{i} and fixing it for a moment, we can assume that end point of the minimal geodesic $c_{1}:\left[0, d\left(\gamma_{t_{i}}^{+}(s)\right.\right.$, $\left.\left.c\left(\left[-\delta^{\prime}, \delta^{\prime}\right]\right)\right)\right] \rightarrow M$ from $\gamma_{t_{i}}^{+}(s)$ to $c\left(\left[-\delta^{\prime}, \delta^{\prime}\right]\right)$ is $c\left(s_{0}\right), s_{0} \in\left(-\delta^{\prime}, \delta^{\prime}\right)$. We only consider the case $s_{0} \geqq 0$. If $s_{0}<0$, then putting $\tilde{c}(s):=c(-s)$, we can obtain same conclusion. Put $d\left(\gamma_{t_{i}}^{+}(s), c\left(\left[-\delta^{\prime}, \delta^{\prime}\right]\right)\right)=d\left(\gamma_{t_{i}}^{+}(s), c\left(s_{0}\right)\right)=: s_{1}$. Then $\Varangle\left(\dot{c}\left(s_{0}\right), \dot{c}_{1}\left(s_{1}\right)\right)=\pi / 2$. If $c_{1}=\left.\gamma_{t_{i}}^{+}\right|_{\left[s, s_{i}\right]}$, then there is nothing to prove as is seen in the following. So we consider the case $c_{1} \neq\left.\gamma_{t_{i}}^{+}\right|_{\left[s, s_{i}\right]}$. Put $s_{i}-s$ $=: s_{2}$. Then because of the property of c, minimal geodesic c_{1} from $\gamma_{t_{i}}^{+}(s)$ to $c\left(\left[-\delta^{\prime}, \delta^{\prime}\right]\right)$ meet $\partial C_{t_{i}}$. Thus

$$
s_{1} \geqq \varphi_{i}(s) \geqq m(\theta)\left(s_{i}-s\right)=m(\theta) s_{2},
$$

i.e. $s_{1} \geqq m(\theta) s_{2}$. Let D be the compact domain surrounded by the geodesic triangle $\left(\left.\gamma_{t_{i}}^{+}\right|_{\left[s, s_{i}\right]},\left.c\right|_{\left[0, s_{0}\right]}, c_{1}\right)$. Put $\alpha:=\Varangle\left(-\dot{\gamma}_{t_{i}}^{+}\left(s_{i}\right), \dot{c}(0)\right)$,

$$
\beta:=\Varangle\left(\dot{\gamma}_{t_{i}}^{+}(s), \dot{c}_{1}(0)\right) \quad \text { and } \quad \gamma:=\Varangle\left(-\dot{c}\left(s_{0}\right),-\dot{c}_{1}\left(s_{1}\right)\right) \quad(=\pi / 2) .
$$

Now for any small $\varepsilon^{\prime}>0$, we choose s again sufficiently close to s_{i} satisfying $\varepsilon^{\prime} \geqq \int_{D} K d v$. Then applying Gauss-Bonnet Theorem to D, we have

$$
\varepsilon^{\prime} \geqq \int_{D} K d v=\alpha+\beta+\gamma-\pi=\alpha+\beta-\frac{\pi}{2} \geqq 0
$$

Thus

$$
\frac{\pi}{2} \leqq \alpha+\beta \leqq \frac{\pi}{2}+\varepsilon^{\prime}
$$

In particular

$$
\alpha \leqq \frac{\pi}{2}+\varepsilon^{\prime}
$$

From Toponogov's comparison theorem, if we construct a triangle in a Euclidean plane with sides having lengths s_{2}, s_{0}, s_{1} corresponding to the geodesic triangle $\left(\left.\gamma_{t_{i}}^{+}\right|_{\left[s, s_{i}\right]},\left.c\right|_{\left[0, s_{0}\right]}, c_{1}\right)$ and if $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ are the corresponding angles to α, β, γ respectively, then

So

$$
\alpha \geqq \tilde{\alpha}, \quad \beta \geqq \tilde{\beta}, \quad \gamma \geqq \tilde{\gamma}
$$

$$
\tilde{\alpha}+\tilde{\beta} \leqq \frac{\pi}{2}+\varepsilon^{\prime} \quad \text { and } \quad \tilde{\gamma} \leqq \frac{\pi}{2}
$$

Thus, using $\tilde{\alpha}+\tilde{\beta}+\tilde{\gamma}=\pi$ we have

$$
\frac{\pi}{2}-\varepsilon^{\prime} \leqq \tilde{\gamma} \leqq \frac{\pi}{2}
$$

On the other hand, from Sine formula

$$
\frac{\sin \tilde{\gamma}}{s_{2}}=\frac{\sin \tilde{\alpha}}{s_{1}}
$$

So

$$
\sin \tilde{\alpha}=\frac{s_{1}}{s_{2}} \sin \tilde{\gamma} \geqq m(\theta) \cdot \sin \left(\frac{\pi}{2}-\varepsilon^{\prime}\right)
$$

Thus we have

$$
\sin ^{-1}\left(m(\theta) \cdot \sin \left(\frac{\pi}{2}-\varepsilon^{\prime}\right)\right) \leqq \alpha \leqq \frac{\pi}{2}+\varepsilon^{\prime}
$$

where $\sin ^{-1}(\quad)$ is the principal value. Since ε^{\prime} is arbitraly letting $\varepsilon^{\prime} \rightarrow 0$, we have

$$
\begin{aligned}
& \sin ^{-1}(m(\theta)) \leqq \alpha \leqq \frac{\pi}{2}, \quad \text { i.e. } \\
& \sin ^{-1}(m(\theta)) \leqq \Varangle\left(-\dot{\gamma}_{t_{i}}^{+}\left(s_{i}\right), \dot{c}(0)\right) \leqq \frac{\pi}{2} .
\end{aligned}
$$

So together with the case $s_{0}<0$, we have

$$
\Varangle\left(-\dot{\gamma}_{t_{i}}^{+}\left(s_{i}\right), \dot{c}(0)\right) \geqq \sin ^{-1}(m(\theta))
$$

and

$$
\Varangle\left(-\dot{\gamma}_{t_{i}}^{+}\left(s_{i}\right),-\dot{c}(0)\right) \geqq \sin ^{-1}(m(\theta)) .
$$

Similary for $\gamma_{t_{i}}^{-}$, we have
and

$$
\Varangle\left(-\dot{\gamma}_{t_{i}}^{-}\left(s_{i}\right), \dot{c}(0)\right) \geqq \sin ^{-1}(m(\theta))
$$

$$
\Varangle\left(-\dot{\gamma}_{t_{i}}^{-}\left(s_{i}\right),-\dot{c}(0)\right) \geqq \sin ^{-1}(m(\theta)) .
$$

So

$$
\Varangle\left(-\dot{\gamma}_{t_{i}}^{+}\left(s_{i}\right),-\dot{\gamma}_{t_{i}}^{-}\left(s_{i}\right)\right) \leqq 2\left(\frac{\pi}{2}-\sin ^{-1}(m(\theta))\right) .
$$

Now if $i \rightarrow \infty$, then $\theta \rightarrow 0$ and hence $m(\theta) \rightarrow 1$. Thus

$$
2\left(\frac{\pi}{2}-\sin ^{-1}(m(\theta))\right) \rightarrow 0
$$

Now, let $\Delta\left(t_{i}\right)$ be the compact domain surrounded by $\gamma_{t_{i}}^{+}$and $\gamma_{t_{i}}^{-}$contained in \bar{D}_{λ}. Applying Gauss-Bonnet Theorem to $\Delta\left(t_{i}\right)$, we have

$$
\int_{\Delta\left(t_{i}\right)} K d v=\Varangle\left(\dot{\gamma}_{i_{i}}^{+}(0), \dot{\gamma}_{t_{i}}^{-}(0)\right)+\Varangle\left(-\dot{\gamma}_{t_{i}}^{+}\left(s_{i}\right),-\dot{\gamma}_{t_{i}}^{-}\left(s_{i}\right)\right) .
$$

If $t_{i} \rightarrow \infty$, then $\Delta\left(t_{i}\right) \rightarrow \bar{D}_{\lambda}$. Thus from Lemma 2, we have
Lemma 3. $\int_{\bar{D}_{\lambda}} K d v=\Varangle\left(\dot{\gamma}_{1}^{2}(0), \dot{\gamma}_{2}^{2}(0)\right)=$ measure F_{λ}.
From the choice of the point $q \in\left(Q_{r_{j}}\right)^{c}$, any ray starting from q does not meet $Q_{r_{i_{0}}}$. So we can find $D_{\lambda_{0}}$ such that $Q_{r_{i_{0}}} \subset D_{\lambda_{0}}$. Thus we have

$$
\begin{aligned}
\int_{M} K d v-\varepsilon & \leqq \int_{Q_{i_{0}}} K d v \\
& \leqq \int_{\bar{D}_{\lambda_{0}}} K d v \\
& \leqq \sum_{\lambda} \int_{\bar{D}_{\lambda}} K d v \\
& =\sum_{\lambda} \text { measure } F_{\lambda} \\
& =\text { measure } \bigcup_{\lambda} F_{\lambda} \\
& =\text { measure }\left(S_{q}(M)-A(q)\right) \\
& =2 \pi-\operatorname{measure} A(q) .
\end{aligned}
$$

That is,

References

[1] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann of Math., 96 (1972), 413-443.
[2] S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math., 2 (1935), 69-133.
[3] D. Gromoll and W. Meyer, On complete manifolds of positive curvature, Ann. of Math., 90 (1969), 75-90.
[4] M. Maeda, On the total curvature of non-compact Riemannian manifolds, Kodai Math. Sem. Rep., 26 (1974), 95-99.
[5] -, On the existence of rays, Sci. Rep. Yokohama National Univ. Sec. I, 26 (1979), 1-4.
[6] -, Remarks on the distribution of rays, to appear in Sci. Rep. Yokohama National Univ. Sec. I.
[7] K. Shiga, On a relation between the total curvature and the measure of rays, Tsukuba, J. Math., 6 (1982), 41-50.
[8] K. Shiohama, Busemann functions and total curvature, Invent. Math., 53 (1979), 281-297.
[9] A role of total curvature on complete non-compact Riemannian 2-manifolds, to appear in Illinois, J. Math.

Department of Mathematics
Faculty of Education
Yokohama National University
Hodogaya-ku, Yokohama 240
Japan

[^0]: Received November 8, 1982.
 Revised May 8, 1983.

