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§ Introduction 

Some Morse Theoretic Aspects of 
Holomorphic Vector Bundles 

Hiroshi Morimoto 

In this paper we shall consider certain theory of stationary points or 
loci arising from families of holomorphic sections of holomorphic vector 
bundles. The notion of Morse functions will be generalized to families 
of holomorphic sections, called quasilinear sections or holomorphic sec­
tions in quasilinear position. One of our results shows that this kind of 
sections exist generically in certain cases. We shall define a particular 
subset of Schubert cycles, called stationary loci, associated to quasilinear 
holomorphic sections. We are also concerned with a relation between 
these loci and characteristic classes. As Morse functions give us some in­
formation of topology of differentiable manifolds, it will tum out that our 
loci tell us some complex analytic structure of complex manifolds. 

Let M be a compact complex manifold and let E~M be a holomor­
phic vector bundle of rank q. We denote by EBT reM, (!}(E)) the set of 
all the families of holomorphic r-sections {O"t> ••• , O"T} of E~M, r<q. 
Topology of the set EBT reM, (!}(E)) is naturally defined taking into con­
sideration higher order differentials. For the definition of quasilinear 
sections, see Section 1. Our generic existence theorem is stated as follows. 

Generic existence Theorem. Let M be a compact complex manifold 
and let E~M be a holomorphic vector bundle of rank q such that each fibre 
is generated by global holomorphic sections. Then, for any integer r<q, 
the set of all families of holomorphic sections {O"I' ••• , O"r} in quasilinear 
position forms an open and dense subset in EBr reM, (!}(E)). 

Let O"t> ••• , O"r be holomorphic sections of E~M. The Schubert 
cycle denoted by Y(O"I' ••• , O"T) is defined to be the subset of M consisting 
of points where 0"1' ••• , O"r fail to be linearly independent (see § 2). If 
(11' ••• , O"r are in quasilinear position, then it follows that the Schubert 
cycle Y(O"I' ••. , O"r) has only singularities of quasilinear type (see Def. 1.1). 
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Among Schubert cycles, we shall define quasilinear bordism. This 
bordism is certain complex analytic bordism admitting only singularities 
of quasilinear type. See for the precise definition, Section 4. We shall 
show the following bordism theorem. 

Quasilinear bordism Theorem. Let M, E-+ M as in the generic ex­
istence theorem. Let {at> ... , ar} and {st> ... , sr} be two sets of holomor­
phic sections of E-+M in quasilinear position. Then, their associated Schubert 
cycles Y(a l , ... , ar) and Y(st> ... , sr) are quasilinearly bordant in M. 

Our third theorem is concerned with certain stationary loci associa­
ted to quasilinear holomorphic sections. Let at> ... , ar be quasilinear 
holomorphic sections of E -+ M. The stationary locus denoted by 
2(at> ... , a r ) consists of those points z in Y(at> ... , a r ) at which Plucker 
coordinates of planes generated by al(z), ... , ar(z) vary stationarily as z 
runs over Y(a l , •.• , ar). 

Stationary loci represent certain invariants of the structure of the 
base manifold and the bundle E-+M. We shall exhibit a complete calcula­
tion of their associated cohomology classes by polynomials in terms of 
Chern classes of M and E-+ M in case that the rank of the bundle is equal 
to the dimension of M. The result is as follows. For the definitions of 
cohomology class {{2(a l , ••• , ar )}} associated to the stationary locus 
2(al , ••• , ar) and polynomials RrCM, E), see Section 7 and Section 9 
respectively. 

Stationary locus Theorem. Let M be a compact complex manifold of 
dimension n and let E-+M be a holomorphic vector bundle of rank n such 
that each fibre is generated by global holomorphic sections. Let {ai, ... , ar} 
(r<n) be holomorphic sections of E-+M in quasilinear position. Then, the 
associated cohomology class of the stationary locus 2(al , ••• , ar) coincides 
with Rr(M, E); 

in H2(n-r+2)(M, Z) 

provided that the dimension of 2(al , ••• , ar) is strictly lower than that of 
Y(a l , ..• , ar)· 

In particular, in case that M is a complex analytic surface, we see 
that the polynomials Rr(M, E) will turn out to be Euler characteristic, 
arithmetic genus and so on, as follows; 

R2(M, TM)=2X(M) 

R2(M, T* M) = 24 L: ( _1)k dim (Hk(M, C9(M))). 
Ie 
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The stationary locus formula holds also for open complex manifolds. 
In open cases, one can show that there exists at least one set of hoi om or­
phic sections {alo .. " ar} in quasilinear position for each r, if the bundle 
has global holomorphic sections generating each fibre. 

Section 1 and Section 2 contain definitions and basic results about 
quasilinearity. Section 3 is devoted to the proof of the generic existence 
theorem. Section 4 contains the proof of the quasilinear bordism theo­
rem. In Section 6 we shall give an example of quasilinear bordism in­
variants. Section 7 contains precise definitions of stationary loci and 
their associated cohomology classes. Sections 8, 10 and 11 are devoted to 
the proof of the stationary locus theorem. 

§ 1. Definition of quasilinear structure 

In this section we shall recall some notions concerning quasilinearity. 
QuasiIinear subvarieties are characterized by the type of their singularities. 
The quasilinear structure of singularities is modeled on some corns in the 
space of complex matrices. We shall denote by mer, s) the set of all 
r xs complex matrices. We define 

mk(r, s)={A E mer, s); corank (A»k}, 

where r<s, k= 1, .. " r. Notice that mk(r, s)::Jmk+l(r, s) and mr(r, s) 
= Or .• (=zero-matrix). Consider a sequence of subvarieties of mer, s) 
X C t for an integer t, 

This sequence gives a regular stratification, and the non-singular submani­
fold Or .• X C t can be regarded as a center. Our model is the structure of 
stratification of this sequence in the neighbourhood of this center. And 
the quasilinearity of subvarieties is defined as follows. 

Definition 1.1. A complex analytic subvariety V of a complex mani­
fold M is said to be quasilinear if it has a regular stratification 

where VI = V and Vi is the set of singular points of Vi - lo such that for 
any point z of any stratum Vi - Vi+I, there exist some integers r, s, t and 
a biholomorphic map cp of a neighbourhood U at z in M onto a neigh­
bourhood Wat (Or . ., 0t) in mer, s) X c t such that 

k=l, .. ·,i. 
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If V is a quasilinear subvariety of M, we also say that V has only 
singularities of quasilinear type. 

For the structure of singularities of mk(r, q), we can show the fol­
lowing. 

Lemma 1.2. For any integer k, 1 <k<r, the subvariety mk(r, q) is 
quasilinear in mer, q). 

Although mk(r, q) is quasilinear in the neighbourhood of the zero­
matrix, it is not trivial that all the singularities of mk(r, q) are of qua­
silinear type. For the proof of the above lemma, we refer to H. Mori­
moto [8]. 

§ 2. Schubert cycles and quasilinear position 

Let {O"I' •• " O"r} be holomorphic sections of aholomorphic vector 
bundle E~M. We define the associated Schubert cycle.9 =.9(0"1' .. " O"r) 
by setting 

Let 0"1> .. " O"r be represented as 

q 

O"iz) = L: atlz)elz), q=rank(E), 
j=1 

for some local frame {ej} on a small open subset U. And let tPu(z)= 
(atlz» be the holomorphic map of U into mer, q). 

Definition 2.1. Holomorphic sections {O" I, •• " 0" r} are said to be in 
quasiIinear position if at any point z e M, there is a neighbourhood U 
such that the map tPu is transversal to any stratum of ml(r, q) (i.e., 
mk(r, q)- mk+l(r, q), 1 <k<r) at any point of U. 

Note that tPu(z) e ml(r, q) if and only if z e .9(0"1> .. " O"r)' Recall­
ing that ml(r, q) is quasilinear in mer, q), we have the following lemma. 

Lemma 2.2. If holomorphic sections {O" I> •• " 0" r} are in quasilinear 
position, then the Schubert cycle .9(0"1' .. " O"r) has only singularities of 
quasilinear type. 

§ 3. Proof of the generic existence theorem 

This section is devoted to the proof of the generic existence theorem. 
For holomorphic sections {O"I' • ", O"T} of the bundle E~M, we define 
subvarieties SiO"I> "', O"r)cM, k=l, "', r by setting, 
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Sk(al, .. " ar)={z EM; @u(z) E 9nk(r, q)}, 

where U is some neighbourhood of Z and the map @u: U---+9n(r, q) is the 
associated map defined in Section 2. Notice that SI(ah .. " ar ) coincides 
with the Schubert cycle [/(ah •• " ar)' We define some order of qua­
silinear position as follows. 

Definition 3.1. Holomorphic sections {ai, .. " ar } are said to be in 
quasilinear position of order k if for any point Zo in M there is some 
neighbourhood U at Zo such that the map @u:U ---+ 9n(r, q) is transversal 
on U to any stratum of 9nr - k +l(r, q). 

In particular, quasilinear position of order r is equivalent to the qua­
silinear position defined in 2.1. 

From the quasilinear structure of 9nk(r, q), the following lemma 
follows easily. 

Lemma 3.2. If holomorphic sections {ai, .. " ar} are in quasilinear 
position of order k at Zo E Sr-k+I(ah "', ar)-Sr-k+z(ah .. " ar), then 
{ai, .. " ar} are already in quasilinear position of order r on some neigh­
bourhood of Zo in M. 

In general, if V = VI~ ... ~ Vr is quasilinear, then the transversality 
to V!- V!+I implies the transversality to V.- VS+h for any s, l<s<1 on 
some small neighbourhood of V. Especially, the quasilinearity of9nk(r, q) 
gives the above lemma. 

From the same reason, we have; 

Lemma 3.3. If holomorphic sections {ai, .. " ar} are in quasilinear 
position of order k at Zo E Sr-k+l(ah .. " ar) - Sr-k+Z(ah .. " ar), then there 
exist 0>0 and some neighbourhood U of Zo in M such that if holomorphic 
sections Sl' .. " Sr satisfies Iisi -at l!u<o, then {Sl' .. " sr} are in quasilinear 
position of order r. 

From previous two lemmas, we show the stability of quasilinear 
position of order k. 

Proposition 3.4. Let M be a compact complex manifold and E ---+ M a 
holomorphic vector bundle of rank q. Then the set of holomorphic sections 
{ai, .. " ar} (r fixed) which are in quasilinear position of order k, 1 <k<r 
forms an open subset in the set of all holomorphic r-sections EBr reM, (!}(E). 

Proof If Z E Sr-hl(ah •• " ar), then Z is contained in some stratum 
S!-S!+I' r-k+l<l<r. From Lemma 4.3, there are some neighbour­
hood U. and 0.>0 such that if Iisi-aillsl<o. then {St} are in quasilinear 
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position of order s, s>l. Therefore the lemma follows from the com­
pactness of Sr-k+I((11> ••• , (1T). Q.E.D. 

Now we proceed to prove the density of holomorphic sections in 
quasilinear position. Throughout the remainder of this section, we assume 
that the bundle E-+M has global sections 'rl' ••• , 'rN which generate each 
fibre. We begin with showing the existence of particular neighbourhoods. 

Lemma 3.5. Fix Zo E M and an integer k<r-l. Suppose that holo­
morphic k-sections {ul , ••• , Uk} are linearly independent at ZOo Then there 
exists a compact neighbourhood of Zo in M which we shall denote by 
U(zo; UI, ••• , Uk) such that for any global holomorphic sections {Sl' ••• , Sr-k} 

and any e>O there exist some global holomorphic sections SI' ... , Sr-k such 
that (a) IIst-stll.M<e and (b) holomorphic sections {UI> ••• , Uk' SI' ••. , ST-k} 

are in quasilinear position of order k + 1 on U(zo; UI, ••• , Uk). 

Proof. From the assumption we can take 'rlt, ••• , 'r tq_. so that 
holomorphic sections UI> ••• , Uk, 'rt" ••• , 'rtq _> form a local frame on some 
compact neighbourhood U of ZOo We shall show that this neighbourhood 
satisfies our requirements. 

Let arbitrary holomorphic sections Sl' ••• , Sr-k be given. We deform 
these sections into the following form; 

i=l, ···,r-k, 

e} E C. 

Since UI> •• " Uk' 'rt" •• " 'rt ._. form a basis for each fibre of U, Sl> •• " Sr-k 

can be expressed as 

and hence, we have 

Therefore the associated map fjju: U-+Rn(r, q) (see § 2) with respect to 
sections {UI"'" Uk, SI ••• " Sr-I:} under the local frame UI,"', Uk, 

'rt1 , •• " 'rto_r has the following form; 

[

1 0 

o 1 

at(z) 
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Take as Co=(5~j) E 9n(r-k, q-k) a sufficiently small regular value of the. 
map which sends each ZE Vto (-f3~(z»)E9n(r-k,q-k). Then holo­
morphic sections {UI> .. " Uk' SI' .. " Sr-k} satisfy our quasilinear position 
requirement of order k+ 1. Q.E.D. 

The neighbourhood U(zo; UI> .. " Uk) will be called approximating 
neighbourhood at Zo with respect to holomorphic sections UI> ... Uk' In 
case k=O, it follows from the proof of the above lemma that there is 
a neighbourhood U(zo) such that for any global holomorphic sections 
SI' .. " Sr there are holomorphic sections SI> .. " sr satisfying (a) and (b) 
withk=O. 

Lemma 3.6. Let {O'I> .. " aT} be holomorphic sections of E~M and 
K a compact subset of M. Let k be an integer, O<k<r-1. Suppose 
that there exists a subset {tl> "', tk}c{l, "', r} such that at<, .. ',O't1o are 
linearly independent at each point of K (in case k=O, we suppose nothing). 
Then for any 5> 0 there exist global holomorphic sections Sl' .. " ST which 
are in quasilinear position of order k+l and satisfy II00t-stIlM<e, (i=l, 
.. " r). 

Proof We may assume {tl' .. . ,tk}={I, .. ·,k}. From Lemma 
3.5, there are compact neighbourhoods U(z; aI, .. " 0'10) at each point Z E 

K. Hence Khas a finite covering {U(Zt; 0'1> "', O'k)}, i=l, "', N. 
From the property of U(ZI; 0'1> •• " a/<) in Lemma 3.5, we can deform 

{aI, .. ',0'10, O'UI' .. " O'r} into the form {aI, •. " O'r., s~, .. " s~_r.} such that 

and {aI, .. " 0'10' s~, .. " S;-k} are in quasilinear position of order k+ 1. 
Notice that under the deformation, sections aI, .. ',0'10 remain unchanged. 
Therefore we can apply Lemma 3.5 and use the neighbourhood U(Z2; 
aI, .. ',0'10) in order to deform {aI, .. " ak' s~, .. " s;-r.}. By induction 
on i, we obtain holomorphic sections st, .. " S:-k, i= 1, .. " N such that 
sections {aI, .. " ak, st, .. " S:_k} are in quasilinear position of order 
k+ 1 on U(Zj; aI, .. " ak ) for each i and satisfy 

l<j<r-k. 

From the stability of quasilinear position, we can take st, •. " S:_10 
so that {aI, .. " a", st, .. " S:_k} are in quasilinear position of order 
k+l on U(z,; aI, "', O'r.), /=1,.", i. Set {Sb "', sT}={ab "',0'1" 
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sf, .. " S~_k}' Then holomorphic sections {Sl> .. " sr} are in quasilinear 
position of order k+l and satisfy IIqt-stIIM<e (;=1, "', r). Q.E.D. 

Lemma 3.7. Let {ql> . ", qr} be holomorphic sections of E~Mwhich 
are in quasilinear position of order k on M. Then for any e>O there exist 
holomorphic sections {Sl' .. " sr} which are in quasilinear position of order 
k+ 1 and satisfy IIqt-s,IIM<e, i= 1, .. " r. 

Proof. From Lemma 3.2, it follows that {ql> . ", qr} are already 
in quasilinear position of order k + 1 on some neighbourhood W of 
Sr-k+I(ql, •• " qr) in M. From the stability of quasilinear position, there 
is 8>0 such that if Ilqt-Stllw<8, i= 1, .. " r, then Sl> .. " Sr are also in 
quasilinear position of order k+ 1 on W. 

By the definition of Sr-k+I(ql> •• " qr), for each point z eM -Sr-k+I, 

there is a subset {tl' .. " tk } C {I, .. " r} such that q tl' .. " q t~ are linearly 
independent at z. Therefore M- Whas the following covering consisting 
of "Ck of compact subsets of M - W; 

M - W =U W(tl> . ", tk ), 

where for each point z e W(tl> .. " tk ), qtl' .. " qtk are linearly independ­
ent at z. We shall arrange this covering in some order and denote by 

Notice that there are 0,>0 such that if IIsj-qjllw,<ot,j=l, "', r then 
Stt(t) , .. " St~(t) are linearly independent at any point in Wt. Denote by 0 
the minimum of{Ot}, i=l, .. ·,N. 

We shall prove the lemma by induction on i. From Lemma 3.6, it 
follows that there are global holomorphic sections st, .. " s; in quasilinear 
position of order k + 1 on WI which satisfy 

IIs}-qj IIM<~ min {e, 8, o}. 
N 

From the stability of quasilinear position, there is 0(1) >0 such that if 
IIst-slllwl <0(1) then {St} are also in quasilinear position of order k+ 1 on 
WI' 

Since IIsJ-qj IIw. <0, holomorphic sections S}I(Z),' • " S}k(Z) are linearly 
independent at any point in Wz• Therefore again by Lemma 3.6, we have 
holomorphic sections s~, .. " s~ in quasilinear position of order k + 1 on 
Wz which satisfy 
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Moreover there is 0(2»0 such that if IIsj-sjllw.<o(Z) then is,} are also in 
quasilinear position of order k + 1 on Wz• 

By induction on i, we have holomorphic sections sf, •. " sZ: in qua-
silinear position of order k + 1 on W N which satisfy 

IIs7 -O'jll.M<e, 
IIs7 -sJllw,<o(t), 
IIs7 -O'jllw<if. 

for any i, 

Consequently, {sf, .. " sz:} are in quasilinear position of order k+ 1 on 
M - Wand on W. This completes the proof of the lemma. Q.E.D. 

Lemma 3.7 yields by induction on k, the following density of holo­
morphic sections in quasilinear position. 

Proposition 3.8. . Let M be a compact complex manifold and E ~ M a 
holomorphic vector bundle of rank q which has global holomorphic sections 
generating each fibre. The'n the set of holomorphic sections {O'b •• " Or} 
(r fixed) in quasilinear position on M forms a dense subset in EBr reM, (!}(E», 
the set of all holomorphic r-sections of E ~ M. 

The generic existence theorem follows from Proposition 3.4 and 
Proposition 3.8. This completes the proof of the generic existence theorem. 

§ 4. The qoasilinear bordism theorem 

In this section we define an equivalent relation, called quasilinear 
bordism, for the set of quasilinear subvarieties in M, and we state our 
quasilinear bordism theorem, which asserts the existence of such bordism 
between Schubert cycles of holomorphic sections in quasilinear position. 
The proof of the theorem will be given in the next section. 

Definition 4.1. Quasilinear subvarieties Xl and X 2 of the same di­
mension k in M are said to be quasilinearly bordant in the strong sense, 
if there exists a quasilinear subvariety Win MXC of dimension k+l 
such that 

X l = WnMX{O}, 

and such that M X {O} and M X {I} cut transversally each stratum of W. 

Definition 4.2. Quasilinear subvarieties VI ~nd Vz in M are said to 
be quasilinearly bordant if there exists a sequence of quasilinear sub­
varieties Xl> •.. ; XN in M such that for any l<i<N the subvariety Xl is 



292 H. Morimoto 

quasilinearly bordant to X i + l in the strong sense and such that VI and V2 

are quasi linearly bordant to Xl and X N in the strong sense respectively. 

§ 5. Proof of the quasilinear bordism theorem 

rem. 
This section is devoted to the proof of the quasilinear bordism theo-

Let us consider the disjoint union of copies of M X C; 

N 

UXi' 
i=l 

Xi=MXC. 

We denote by X the quotient space (with singularities) of this union under 
the following identification; 

Xi Xi+1 

U ~ U, i=I,···,N-l. 
MX{l) Mx{O) 

Vector bundles and their sections on X are said to be holomorphic if they 
are holomorphic when they are restricted to each Xi' 

Let E-+M be a holomorphic vector bundle. We consider copies 
{Ei} of holomorphic vector bundle E which is induced by the canonical 
projection Xi = M X C -+ M from the bundle E on M. This gives rise a 
holomorphic vector bundle denoted by E on the space X such that E is the 
quotient of {Ei }, i= I, .. " N. 

Let us define two fundamental linear operations on reM X C, E). 
For each holomorphic section o'(x, z) of E -+ M X C, X E M, z E C, we set 

Notice that 

p(o')(x, z)=zo'(x, z), 

J.J(o')(x, z)= (l-z)O'(x, z). 

p(O')=O, J.J(O')=O', 

p(O') =0', J.J(O')=O, 

on MX{O} 

on MX{I}. 

We begin with the following lemma. 

Lemma 5.1. Fix an integer k, I <k<N. For any holomorphic section 
(J of the bundle Ek-+Xk, there exists a holomorphic section ii of the bundle 
E-+X satisfying the following; 

i) iik=O', onXk. 

ii) iik-I=O', onMx{l} and iik-I=O, on MX{O}, 
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iii) ltk+l=a,onMX{O} and ltk+1=O, onMx{1}. 

v) lti=O, for any i-=l=k-1, k, k+ 1, 

where It j denotes the restriction of It to each X j , j = 1, .. " N. 

Proof We shall first construct ltk+l' Consider the restriction aiMX{l} 
of a to MX{1}c X k. Denote by Sk+l a holomorphic section on Xk+l 
which is induced from aiMX{l} by the canonical projection X k + 1 =M X C~ 
M~Mx{1}cXk' If we put ltk+l = l.I(Sk+l), then the sectionltk+l satisfies 
iii). 

The construction of lt k - 1 is similar to that of the section ltk+l' It is 
sufficient to use the operator fl instead of l.I. 

Ifwe define lti=O for i-:::J;k-l, k, k+ 1 and ltk=a, then this completes 
the proof. Q.E.D. 

The hoi om orphic section It constructed in the above lemma will be 
called the canonical extension of a. 

Throughout the remainder of this section, we suppose that each fibre 
of the bundle E~M is generated by holomorphic global sections. We 
consider the case of three copies X = U Xi' E= U lii' i = 1, 2, 3. 

Let U;~l Kk be a compact covering of the complex plane C such that 
Kl is a compact neighbourhood of {O, I}. For any k, we shall denote by 
Lk the quotient of three copies of M X Kk C Xi' i = 1, 2, 3 under the ca­
nonical identification. This gives us a compact covering of the space X, 
X=U;~lLk' 

Holomorphic sections {hI, •. " hr } of the bundle E ~X is said to be 
in quasilinear position of order k if each restriction to the bundles lii~Xi' 
i = 1, 2, 3 is in quasilinear position of order k. 

Lemma 5.2. Let {aI' .. " aT} and {Sl' .. " ST} be holomorphic sec­
tions of E~M which are in quasilinear position on M. Then there exist 
holomorphic sections {1)1' .. " 1)r} of E ~X in quasilinear position on Ll such 
that the restriction of {1)1' "', 1)r} to MX{O}CXl and to MX{I}CXa 
coincide to {aI' "', aT} and {Si> "', sr} respectively and such that the 
restriction of {1)1' .. " 1)r} to M X {OJ and M X {I} CXz are in quasilinear 
position as sections of 

i=I,2. 

Proof From the assumption, each fibre of liz is generated by some 
global holomorphic sections {Vi> .. " UN} on Xz• Let us denote their can­
onical extensions by VI' .. " V N' From the construction of the canonical 
extensions, it follows that 
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(a) vj=O on MX{0}CX1 and on MX{I}CXs. 

(b) v1,···, V N generate each fibre of E on (Xl - M X 0) U X 2 U 
(Xs-MXl). 

Extend holomorphic sections a1, ... , aT and S1> ... , Sr to Xl and Xs 
respectively by the projection MXC~M, and denote them by a~, ... , a~ 
and s~, ... , s;. 

Define holomorphic sections h1' ... , hr of E by 

i=l, ... , r, 

where O'~ and s~ are the canonical extensions of a~ and s~. By the property 
of canonical extensions, we have 

hj=aj, i=I,·· ·,r on MX{0}CX1 

hj=Si, i=l, ···,r on MX{I}cXs. 

And moreover {hj} are in quasilinear position on Xl and Xa. 
From the stability of quasilinear position, there is 0>0 such that if 

then holomorphic sections {~h ... , ~r} on X are in quasilinear position on 
Xl and on X 3• 

Because of the property (b), it follows from the proof of the density 
of quasilinear position that we can deform {h1> ... , hT} into {1)1' ••• , 1)r} 
with 

e} E C 

so that {1)j} are in quasilinear position on M X K1 C X2 and satisfy 

(i=l, ... ,r). 

By the property of 0, sections {1)j} are in quasilinear position on M X K1 
eX1 and on MXK1cXS• Therefore {1)j} are in quasilinear position on 
L 1eX. From the property (a), it follows that {hj} remain unchanged on 
Mx{0}eX1 and on MX{I}cXs under the above deformation. This 
completes the proof. Q.E.D. 

Lemma 5.3. Let {h1' ... , hr } be holomorphic sections of E~X in 
quasilinear position on Lkfor some fixed k. Then for any e>O there exist 
holomorphic sections {1)1> ••• , 1)r} in quasilinear position on Lk+1 and on 
each MxU}eXj, i=l, 2, 3,j=O, 1 which satisfy thefollowing; 
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i) Ilhi-7liIlL.<e (i=I," .,r). 

ii) 7Ji=hi (i= I, .. " r) on M X {O}CXI and on M X {1}cXa. 

Proof Let 0>0 be the number such that if Ilsi-hiIIL.<athen {Si} 
are in quasilinear position on L k • By the property (b) in the previous 
lemma, we know that on Lk+ 1-Lk each fibre of E --7X is generated by 
VI' "', UN' Therefore in the same argument as the proof of Lemma 5.2, 
there are e~ E C such that holomorphic sections 

(i=I, ... ,r) 

are in quasilinear position on L k + 1 and satisfy 

The remainder part of the proof is also quite similar to that of Lemma 5.2. 
Q.E.D. 

Now we are in a position to prove our quasilinear bordism theorem. 
From Lemma 5.2 and Lemma 5.3, we have by induction on k, holomor­
phic sections {h~, .. " h~} and positive number Ok>O, k= 1,2, .. " such 
that 

.) Ilhk hk-III < . {I 01 O2 Ok-I} 
1 i - i Lk mIll ¥' ¥' 2-'---::\' .. " T . 

ii) {h~,.··, h~} are in quasilinear position on Lk and on each M X 
{j}CXi' i=l, 2, 3,j=0, 1. 

iii) If II7)i-h~IILk <Ok' then {7)i} are in quasilinear position on L k • 

iv) h~=ai on MX{O}cXI, h~=Si on MX{I}cXa. 

Taking the limit of {h~, .. " h~} as k tends to the infinity, we obtain 
holomorphic sections {hi"'" hT} of the bundle E--7X in quasilinear 
position on X and on MX {j}CXi' i= I, 2, 3,j=0, I, which coincides with 
{ai, "', aT} and {Sl' "', ST} on MX{O}cXI and on MX{I}cXa respec­
tively. 

Let us denote by Wi' i= 1,2,3, the Schubert cycles associated to 
{hi' .. " hT} restricted to each Xi' Then Wi gives rise a strong quasilinear 
bordism between Wi n M X {OJ and Wi n M X {I}, where M X {OJ and 
M X {I} are considered as those in Xi' Hence we have a strongly quasi­
linearly bordant sequence of quasilinear subvarieties of M: 

win MX{I}= w 2 n MX{O}, 
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This completes the proof of the quasilinear bordism theorem. 

§ 6. An example of quasilinear bordism invariants 

In this section we shall give an example of quasilinear bordism in­
variants which associate to each quasilinear subvarieties in Mcertain 
cohomology class in H*(M, Z). Throughout this section, cohomology is 
considered with coefficients Z. 

Let V be a quasilinear subvariety of co dimension k in M. Let V. 
denote the set of all singular points of V. In general, we have the iso­
morphism; 

for q <2k. This follows easily from the following lemma. 

Lemma 6.1. Let M be a complex manifold and W a subvariety of 
complex codimension k in M. Then, 

for q<2k. 

In case that V is quasilinear, we know more than the above. Sup­
pose that V is quasilinear. Then, it follows that the complex codimension 
of V. in V is not smaller than 2. Therefore we obtain by similar argu­
ment the isomorphism: 

Let U be a neighbourhood of V - Vs in M - V,. From the Thorn 
isomorphism and the excision property, we have 

H2(V - V.)=H2+2k(U, aU) 

=H2+2k(M_ V" M- V) 

=H2+2k(M, M- V). 

Combining with the pull back H 2+2k(M, M - V)~H2+2k(M), we have a 
homomorphism: 

Let Kv- v, denote the canonical line bundle of V - Vs. Now we define the 
operator :f as follows: 

:f(V)=lPt(c1(Kv_v,)) E H2+2k(M, Z). 
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Theorem 6.2. Let VI and V2 be quasilinear subvarieties of M. If VI 
and Vz are quasilinearly bordant in M, then 

Proof It suffices to prove the result for VI and V2 which are quasi­
linearly bordant in the strong sense. Let W eM x C be a strong quasi­
linear bordism between VI and V2• Since VI and V2 are quasilinear, we 
may assume, by the definitions of f, that VI> V2 and Ware non-singular. 

We identify VI and V2 with W n M X {O} and WeM X {I} in M xC 
respectively. We denote by [Vi]W' i= 1,2, the normal bundles of Vi in W. 
Let us define a line bundle IE on W by 

where Kw denotes the canonical line bundle of W. 
From the adjunction formula, it follows that the restrictions of IE to 

VI and V2 satisfy 

Therefore cohomology classes 
cohomology class c1(IE) of W. 
homologous to zero. 

i= 1,2. 

c1(Kv,) and c1(Kv2) are extended to the 
It is easy to prove that cl(Kv,)-Cl(Kv2) is 

Q.E.D. 

§ 7. Stationary loci and associated cohomology classes. 

In this section we shall define stationary loci associated to sets of 
holomorphic sections as subcycles in Schubert cycles and we also define 
their associated cohomology classes as elements of the cohomology group 
H*(M, Z). 

Let {O"l> ... , O"r} be a set of holomorphic sections of a holomorphic 
vector bundle E-->;M of rank q over a compact complex manifold M. 
We denote by .9"°(0"1' ... , O"r) the set of all regular points of the Schubert 
cycle .9"(0"1' ... , O"r). Taking a local frame of the bundle on some small 
open subset U about a point Zo E .9"°(0"1' ... , O"r), we let 

be a holomorphic map defined in Section 2. We denote the restriction of 
i])u to gO(O"I, •.. , O"r) by i])~. For each point Z of .9"°(0"1' ... , O"r) n U 
the matrix aij(z) defines a linear map from cq into cr. Notice that the 
image of this linear map forms a hyperplane in C r , because i])~(z) is 
included in ITn1(r, s). Consequently, there is associated to each point z of 
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,9O(al, .. " ar) n U a point of the complex projective space cpr-I. We 
thus obtain a holomorphic map: 

Definition 7.1. Let {ah •• " ar } be a set of holomorphic sections 
in quasilinear position of the bundle E->;M. The stationary locus 
I(ah .. " aT) associated to holomorphic sections {ah •• " aT} is defined 
as the subset of .cr(al, .. " aT) at which the rank of the differential di/J,& 
is degenerate, i.e., 

rank (di/J¥r)<min {r-l, n-q+r-l}, 

where n is the dimension of the base manifold M. 

We also denote by I(ah "', aT)' when the stationary locus 
I(ah .. " aT) is considered as a subcycle of .cr(ah .. " aT)' the coefficients 
of which are naturally defined as the order of the map ([J¥r at I(ah .. " aT)' 

We now define associated cohomology classes of stationary loci. In 
case that the Schubert cycle .9(ah "', aT) is non singular and hence 
I(ah .. " aT) is a closed cycle, then the associated cohomology class of 
the stationary locus coincides with the Poincare dual cohomology class of 
the cycle I(al' .. " aT) in H*(M, Z). For the simplicity, we suppose 
hereafter q=n. Similar argument applies to the case 2q-n+ 1 >r with 
no assumption to q and n. If q=n, the integer r may vary from 1 to n. 

Let X,9' and Xx denote the sets of singular points of .9(ah •• " ar) 
and I(ah .. " aT) respectively, and let N denote the complex codimension 
of the stationary locus considered as a subvariety of M. Since the case 
I(ah···,aT)=.9(al,···,aT) is trivial, we suppose the dimension of 
I(ah .. " a r ) is strictly smaller than that of .9(ab •• " ar)' In the latter 
case, we have N=n-r+2. 

Considering a long exact sequence of cohomology classes associated 
to 

M-::JM -I-::JM -(X,9'UI), 

we obtain the isomorphism: 

H2N(M, M _I)~H2N(M, M -(X,9' U I»), 

because H*(M -I, M -(X,9'UI»~O, for * =2N, 2N-I, from Lemma 
6.1. 

Since the Schubert cycle .9 is quasilinear, we see that 

2N, 2N+l<2(complex codimension of X,9')' 
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Therefore, it follows from Lemma 6.1, 

H*(M, M -(X,9' U Xl.')=O, for * =2N, 2N+ 1. 

This yields the isomorphism: 

H2N(M, M -(X,9'U.l'»=:H2N(M -(X,9' UXl.' )' M -(X,9'U.l'). 

Because HO(.l') =: HO(.l' -Xl.') =: H2N(M -(X,9' U Xl.' )' M - (X,9' U .l'»), we 
finally have 

Notice that stationary locus.l' is not necessarily closed in M. It is only 
closed in M - Xv' Therefore, if the Schubert cycle [I' is not quasilinear, 
then the above isomorphism does not necessarily hold. 

Through the last isomorphism, there is associated. to the canonical 
class of the cycle .l' in HO(.l', Z) an unique cohomology class of H2N(M, 
M -.l', Z). Pulling back to H2N(M, Z) by the injection, this defines an 
unique cohomology class, which will be denoted by {{.l'(ah .. " aT)}} and 
will be called the associated cohomology class or the fundamental coho­
mology class of the stationary locus .l'(ah .. " aT)' 

Remark. The associated cohomology class .l'(ah .. " aT) coincides 
with the natural image of the following homomorphisms through 1/); 
defined in the previous section: 

§ 8. Invariance of stationary loci .l'(al' .. " aT) 

In the previous section we have defined cohomology classes associated 
to stationary loci. In this section we shall see that these cohomology 
classes remain invariant under the change of holomorphic sections and of 
holomorphic vector bundles in certain equivalent classes. 

Let {ah .. " aT} be a set of holomorphic sections of a holomorphic 
vector bundle E-+M of rank q over a compact complex manifold M. 
We denote them as in Section 1 by 

q 

a,(z) = L: a;(z)eiz), i = I, .. " r, z E U, 
j=l 

for some local frame (e j ) on a small open subset U. And we denote each 
column of the matrix (a;(z» by 
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a}(z) 

a}(z) 
vlz) = 

aj(z) 

j=I, "', q. 

We see that if z E 09'°(0'1' .. " O'r) then vectors vI(z), .. " viz) span a 
(r-I)-plane in the complex Euclidean space C r , This defines a map from 
o9'°n U into the complex projective space cpr-I. Noticing that the map 
does not depend on the choice of a frame {e j} and an open subset U, we 
see that the map is globally well defined. We thus obtain a holomorphic 
map denoted by 

The map f turns out to be closely related to Grassmannian mani­
folds, which we shall see as follows. 

Suppose that the bundle E ~ M has global holomorphic sections 
't'1' .. " 't' N which generate each fibre E. at z E M. Let e" .. " eq be a local 
frame as above. Then sections 't'1' .. " 't'N and 0'" ' . " O'r can be written 
as 

q 

't'k(Z) = L: ~y(z)ej(z), k=l, "',N, 
j=l 

q 

O't(z) = L: a}(z)elz), i=l, "', r. 
)=1 

We consider the (N +r) X q complex matrix whose upper N rows are given 
by ~~(z) and whose lower r rows are a}(z). Denote its columns by 

~}(z) 

~r(z) 
Ulz) = 

a}(z) 

Laj~z)J 
j=l, "', q. 

Since't'lz), .. " 't'N(Z) generate each fibre E., vectors ul(z), .. " uq(z) span 
a q-plane in C N + r , which we shall denote by IF(z). Therefore this gives 
rise a holomorphic map: 

where Gq,N+r-q denotes the complex Grassmann manifold consisting q-
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planes in CN+r. 
We shall see that the map f: YO(al , .. " ar)---+Cpr-I can be regarded 

as a projection of the map 7f!. 

Theorem 8.1. Let M be a compact complex manifold and E---+M a 
holomorphic vector bundle of rank q=dim (M). Suppose that E---+M has 
global holomorphic sections which generate each fibre Ez• Let {a I, .. " a r}, 
r~q be a set of holomorphic sections of E---+M in quasilinear position. 
Then, the cohomology class {{.J:(a l , •• " ar)}} associated to the stationary 
locus .J:(a!> "', ar) does not depend on the choice of sections {a!> "', arlo 
In other words, it holds that 

for any other set of holomorphic sections {s!> ... , sr} in quasilinear position. 

Proof Since {aI, .. " ar} is in quasilinear position, the dimension 
of the Schubert cycle Y(a!> .. " ar) is equal to r-1. From Riemann­
Hurwitz theorem, it follows that 

where D denotes the ramification divisor of the map f, and Kf/o and Kcpr-, 
denote the canonical line bundle of yo and cpr-I respectively. 

Because D=.J:(a, ... , ar) as cycles, we have 

where f/J; is a homomorphism of H2(yO, Z) into H2+Zk(M, Z), k= 
codim (51') which decomposes into 

under the Thom isomorphism and the excision. See Section 6, for the 
map f/J;. Hence we have 

Let us recall some results about quasilinear bordism theory in Section 
5. We have shown that under the change of sections, their associated 
Schubert cycles remain in the same quasilinear bordism class. It has also 
been shown that .:f(5I')=f/J;(cl (Kf/)) is a quasilinear bordism invariant. 
From these results we see that the first term in the right hand remains in­
variant under the change of holomorphic sections. 

We next investigate the second term. We recall that 
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where H is a hyperplane in cpr-I. 
In the Grassmann manifold Gq,N+r-q~ there is defined in a canonical 

way the Schubert variety F with respect to the projection: 

i.e., 

F={q-plane 1: E Gq,N+r-q; codimension Of1t"r_I(11:1)~1}. 

Recall that the Schubert variety F corresponds to the (q-r+2)-th Chern 
class. 

We may suppose thatthe hyperplane H is defined by the projection: 

Considering the following commutative diagram: 

~r-l~ 0 / ~II 0/-, 
C r - l C r , 

we see that (/}:f*[H] corresponds to the pullback of the Schubert variety 
F, via the map 1Jf. It follows that 

-(/}:f*(c,(Kcpr-,)=( -l)Q- rrcq _ r +2(E). 

This completes the proof of Theorem 4.1. Q.E.D. 

For the later purpose, it is necessary to generalize Theorem 8.1 to 
the category of differentiable bundles. For this purpose, we begin with 
the following lemma, the proof of which is easy by an argument of alge­
braic topology and will be omitted. 

Lemma 8.2. Let M be a differentiable manifold and let N, and Nz be 
submanifolds of M. We suppose that N, and Nz are L-equivalent, i.e., there 
exists a differentiable manifold Win M X [0, 1] such that 

Let a and f3 be cohomology classes of H*(N" Z) and H*(Nz, Z) 
respectively. If there is a cohomology class r in H*(W, Z) such that 
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(3=itr, 

where i,: N,-,>-M, i2: N2-,>-M are injections, then it holds that in H*(M, Z) 

where f/)'tr, and f/)'tr2 are canonical homomorphisms from Hq(N,) and 
Hq(N2) into HHk(M), q=degree of a and (3, k=codimension of N, and 
N z, which were defined through the Thorn isomorphism in Section 6. 

We are now in a position to generalize Theorem 8.1 and show the 
invariance of stationary loci. 

Theorem 8.3. Let M be a compact complex minifold and let E,-'>-M 
and Ez-,>-M be holomorphic vector bundles of the same rank q=dim(M) 
such that each fibre of E, and E2 are generated by global holomorphic sec­
tions. If the bundles El and E2 are equivalent as differentiable complex 
vector bundles, then it holds that as elements of H*(M, Z), 

for arbitrary holomorphic sections {O'l')l of E, and {O'l2)} of E2 which are in 
quasilinear position. 

Proof We put 9"t=9"(O'ii), .. " O'~i»), i= 1,2. Since 9"t are quasi­
linear, the sets of their singularities have complex codimension >2. 
Because we are concerned with H 2(9"i), we may assume that 9"i are non­
singular (cf. § 6 and 7). 

Denote the normal bundle of 9"i by Nf/" i= 1,2. By the proof of 
Theorem 8.1, it suffices to show the invariance of f/)t(c,(Kf/,). 

Notice that 

(*) 

where TM denotes the restriction of the tangent bundle of M to 9"i' 
Therefore, it is sufficient to show the invariance of f/)·;.(c1{Nf/,)). 

From the assumption, we have holomorphic mappings 

for sufficiently large N. Since the bundles E, and E2 are equivalent as 
differentiable complex vector bundles, there exists a homotopy: 

H: MX[O, 1]~Gq.N*' 

between 1Jf1 and 1Jf2 for sufficiently large N*. Since 9"1 and 9"2 are both 
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pullback of the Schubert cycle FI in Gq,N* (modulo minus sign), there is a 
real subvariety Win M X [0, 1] with 

Because we can construct H so that W has only (real) quasilinear singu­
larities, we may assume by the dimension argument that W is non-singular. 
Therefore, we see that the bundles N9'l and N9'O can be extended, as dif­
ferentiable complex vector bundles, to the normal bundle of W. Con­
sequently, the theorem follows easily from Lemma 8.2. Q.E.D. 

§ 9. Polynomials Rr(M, E) 

In this section, we define polynomials which arise in the stationary 
locus theorem. They are polynomials of Chern classes of a base manifold 
and a holomorphic vector bundle which represent stationary loci defined 
in Section 7 in case that the rank of the bundle is equal to the dimension 
of the base manifold. 

We begin with the definition of certain symmetric polynomials with 
indeterminants Zl> •• " Zq. Let d=d(q, r) be the set of all combinations 
consisting r elements of the set {I, .. " q}, i.e., the family of all the 
r-subsets of {I, "', q}. Let fJI=fJI(q, r) denote the set of all combina­
tions consisting q-r+ I elements of the set d. Each element f3 of fJI 
can be written as 

We define 

Because the polynomial Pq,r is a symmetric polynomial, it can be 
represented as a polynomial of elementary symmetric functions; 

Pq,r(ZI> •. " Zq)= Qq,r(SI> •• " Sq) 

SI =ZI + ... +Zq, 

Let M be a compact complex manifold of dimension n and E~M a 
holomorphic vector bundle of rank n. We now define some polynomials 
of Chern classes of M and E~M as follows; 
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Notice that the polynomial Rr(M, E) defines a cohomology class in 
H 2(n-r+2)(M, Z). 

For small nand r, polynomials Rr(M, E) have the following inter­
resting forms. In case n=r=2, we have 

Hence, by Noether's formula, we obtain 

R2(M, TM)=2X(M), 

§ 10. Preparatory lemmas 

Before we prove the stationary locus theorem, we shall give in this 
section two preliminary lemmas. 

We first recall the result about splitting method, refering to F. 
Hirzebruch [5]. Let M be a complex manifold and ~ a holomorphic 
GL(q, C)-bundle over M. We denote by L the principal bundle associated 
to ~ and consider the quotient 

M=L/J(q, C), 

where J(q, C) denotes the set of triangular matrices. The fibration 7r: M 
__ Mis a complex analytic fibre bundle with the flag manifold 

F(q)=GL(q, C)/J(q, C) 

as fibre. 
With these notations, we have the following lemma, the proof of 

which we refer to F. Hirzebruch [5]. 

Lemma 10.1. Let 7r: M-+M be as above. Then the structure group 
of the complex analytic bundle 7r*'; over M can be complex analytically 
reduced to the group J(q, C). Let ~1' •• " ';q be the q diagonal complex 
analytic C*-bundles. Then, 7r*'; is differentiably equivalent to the holo­
morphic vector bundle ';lEB· .. EB~q. 

We continue the notations as above, and consider the homomorphism 
7r*: H*(M, Z)-+H*(M, Z). For this homomorphism, we can show the 
following. 

Lemma 10.2. Let 7r: M-+M as above. If H*(M, Z) contains only 
elements of even degree, then the homomorphism 
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is injective for any integer k. 

Proof. According to Borel [1], the cohomology ring H*(F(n), Z) 
has the structure 

where rl> .. " r n are regarded as indeterminates and where 1* is the ideal 
generated by the elementary symmetric functions CI> •• " Cn in the rt • 

We see that H*(F(n), Z)contains only elements of even degree and 
contains no torsion. Therefore, 

for any pair (p, q), one of which is odd. 
The lemma follows easily from the calculus of the spectral sequence 

associated to the fibration 70: M.-+M. Q.E.D. 

§ 11. Proof of the stationary locus theorem 

This section is devoted to complete the proof of Theorem 5.1. 
We have already proved in Section 8 that 

where !/'=!/'(al> .. " aT) is the Schubert cycle associated to holomorphic 
sections {ai, .. " aT} and K,r denotes the canonical line bundle of !/,O. 

And hence, we have 

where N,r is the normal bundle of the Schubert cycle !/'=!/'(al' "', aT)' 
In these arguments, we may suppose, without loss of generality, that!/' is 
non-singular, because of the quasilinearity of !/' (cf. § 7 and 8). 

We shall show 

where q is not necessarily equal to n. Then this will complete the proof. 
Recall that if {al> .. " aT} is in quasilinear position, then the map 1J!' 

of M into the Grassmann manifold Gq,N is transverse to the Schubert 
variety F(cf. § 8). Therefore, we see that (J)*(c,(N,r» is expressed as the 
same polynomial as that of (J)*(cl(NF». 
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Let 1t': Gq,N~Gq,N denote the fibration constructed in the previous 
section. Since the odd dimensional parts of H*(Gq,N' Z) are zero, it 
follows from Lemma 10.2 that 

1t'*: H 2(q-r+2)(G )~H2(q-r+2)(G ) 
q,N q,N 

is injective. Therefore, it suffices to show that the cohomology class 
rp*(cl(Np», P =1t'-I(F) is expressed as the polynomial Qq.r of cl(f), ... , 
cq(f), f=1t'*(r). Notice that F is also the Schubert cycle with respect to 
the bundle f~Gq.N' the lift of the universal bundle r. 

From Lemma 10.1, we see that the bundle f splits into E/B· .. ~Eq, 
for some holomorphic line bundles Et and that f is differentiably equi­
valent to El~' .. ~Eq. From Theorem 8.3, it is sufficient to calculate 
rp*(cl(Nv< ........ r») for some Schubert cycle sP(s!> ... , sr) associated to 
appropriate quasilinear holomorphic sections {Sl, ... , sr} of the bundle 
El~" .~Eq. 

In view of all the above arguments, we see that the problem has been 
reduced to the following case. Let M be a complex manifold and let 
~=El~' .. ~Eq be a holomorphic vector bundle with holomorphic line 
bundles Et , such that each Et has global holomorphic sections generating 
each fibre, i = 1, ... , q; 

Let {O'l, ... , O'r} be a set of holomorphic sections of ~ which is in 
quasilinear position. It suffices to prove 

The remainder part of this section is devoted to prove the above equation. 
And this will complete the proof of the stationary locus theorem. 

We recall the notations of Section 9. Let f3 be an element of flI. 
We denote 

Let 1t'i, ..... ir and 1t'fl denote the canonical projections: 

r 

1t'i, ..... t,: 1\ ~~Ei'/\' . . /\Eir (~EJi9 ... @Eir), 

Holomorphic sections {O'!> ... , O'r} of ~ gives rise to holomorphic 
sections 1t't, ..... t~(O'I/\· . '/\O'r) and 1t'iO'I/\ .. '/\O'r)' We consider Schu­
bert cycles of these sections and we set 
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YJ" ... ,ir =Y(7ri " .•. ,ir (lIj/\· . '/\lIr)), 

Y fi =Y(7rP(lIj/\ .. ·/\lIr)). 

We have proved in Section 5 that holomorphic sections in quasilinear 
position exist generically. Therefore, we may assume by a slight modi­
fication that sections which appear in our argument are all in quasilinear 
position. We suppose this hereafter without any comment. 

We shall seek the structure of the normal bundle of Yfi. Although 
the variety Y fi has singularities, the notion of normal bundle makes sense. 
This is because we are concerned with the first Chern class and because 
the quasilinearity of Y fi yields that the set of singular points of Y fi has 
complex codimension > 2 in Y ft. 

We set for k= 1, .. " q-r+ 1, 

Noticing that 

we have the following sequence of divisors: 

M:)Y(1):)Y(2):) . .. :)Y(q-r+ 1)=Yp• 

In the above sequence, we see that the normal bundle of Y(I) in M 
is the line bundle Eil/\ ... /\ Eir and that the normal bundle of Y(2) in 
Y(1) is the line bundle Ej,/\' . . /\Ejr and so on. Therefore, we know 
that the normal bundle of Y fi in M is given by 

N!/p= ffi (Ei ,/\' • • /\EiJ, 
{il,···,ir}ep 

We obtain 

Since Y fi is the Schubert cycle of the bundle 

ffi Eil/\ ... /\ Eir 
{il,···,ir} E f3 

associated to the section 7rP(lI j/\' . '/\lIr), it follows that Yp represents 
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Consequently, we obtain 

di*(c j(N,9'fi))=[ L: (Cj(Ei,) + ... +cj(Ei .»)] 
{ib,··,ir} ep 

x[ TI (Cj(Ei,)+,,·+Cj(Ei,)]. 
{il,···,ir}€P 

Noticing that 

we finally obtain 

di*(c/N,9'(." ... ,.,))=Pq.r (c j(Ej), .. " cj(Eq». 

This completes the proof of the stationary locus theorem. Q.E.D. 
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