# On Unramified Extensions of Function Fields over Finite Fields 

## Yasutaka Ihara

Let $k$ be an algebraic function field of one variable with genus $g$ over a finite constant field $\boldsymbol{F}_{q}$, and $S$ be a given non-empty set of prime divisors of $k$. Denote by $k_{S}^{\mathrm{ur}}$ the maximum unramified Galois extension of $k$ in which all prime divisors of $k$ belonging to $S$ decompose completely. Since $S$ is nonempty, the algebraic closure of $\boldsymbol{F}_{q}$ in $k_{S}^{\mathrm{ur}}$ must be finite over $\boldsymbol{F}_{q}$. In this report, we shall give a survey of our results on this type of extensions $k_{S}^{\mathrm{ur}}$.
§ 1.*) First, one expects that if $k_{S}^{\mathrm{ur}} / k$ is an infinite extension, then $S$ cannot be "too big". What is the natural quantitative result along this line? The Chebotarev density of $S$ is of course 0 , but we need a stronger result. By studying the behaviour of zeta functions of intermediate fields of $k_{S}^{\mathrm{ur}} / k$ near $s=\frac{1}{2}$, using the Weil's Riemann hypothesis for curves, we obtained the following

Theorem 1. Suppose that $M$ is an infinite unramified Galois extension of $k$. For each prime divisor $P$ of $k$, let $\operatorname{deg} P$ denote its degree over $F_{q}$, put $N(P)=q^{\operatorname{deg} P}$, and let $f(P)(1 \leq f(P) \leq \infty)$ denote the residue extension degree of $P$ in $M / k . \quad$ Let $g \geq 1$. Then

$$
\begin{equation*}
\sum_{\substack{P \\ f(P)<\infty}} \frac{\operatorname{deg} P}{N(P)^{\frac{1}{2} f(P)}-1} \leq g-1, \tag{1.1}
\end{equation*}
$$

the series on the left being convergent.
Corollary 1. If $k_{S}^{\mathrm{ur}} / k$ is infinite, then

$$
\begin{equation*}
\sum_{P \in S} \frac{\operatorname{deg} P}{N(P)^{1 / 2}-1} \leq g-1 \tag{1.2}
\end{equation*}
$$

In particular,

[^0]Corollary 2 If $k_{S}^{\mathrm{ur}} / k$ is infinite, and $S$ consists only of a finite number of prime divisors of degree one, then

$$
\begin{equation*}
|S| \leq(\sqrt{q}-1)(g-1) \tag{1.3}
\end{equation*}
$$

We have a similar result for algebraic number fields assuming the generalized Riemann hypothesis. In each case, the proof is based on the studies of $[K: k]^{-1}(d / d s) \log \zeta_{K}(s)$, its inverse Mellin transform, and their limit as $K \rightarrow M$, where $K$ runs over the finite subextensions of $M / k$ (cf. [Ih 7]).

A basic open question related to Theorem 1 is: Does there exist $M$ with which the set $\{P ; f(P)<\infty\}$ is infinite? On the other hand, we have a family of examples of $M / k$ for which the equality in (1.1) (and in fact, Corollary 2 with the equality) holds. Such examples appear in connection with liftings of the Frobenius-like correspondence " $\Pi+\Pi$ '" of $k$ to characteristic 0 , and with irreducible discrete subgroups of $P S L_{2}(\boldsymbol{R}) \times P G L_{2}\left(F_{p}\right)$ ( $F_{\mathfrak{p}}:$ a $\mathfrak{p}$-adic field, $q=N(\mathfrak{p})^{2}$ ). This will be discussed as one of the main subjects in the next sections.
§ 2. We shall meet with the case where the Galois group of $k_{S}^{\mathrm{ur}} / k$ is isomorphic with the profinite completion of some topological fundamental group. ([Ih 4] [Ih 5]).

Let $q=p^{2 f}$, an even power of a prime $p$, and $C / \boldsymbol{F}_{q}$ be a smooth complete model of $k$. Let $C^{\prime} / \boldsymbol{F}_{q}$ be its conjugate over $\boldsymbol{F}_{p f}$, and let $\Pi$ (resp. $\Pi^{\prime}$ ) be the graphs on $C \times C^{\prime}$ of the $p^{f}$-th power morphisms $C \rightarrow C^{\prime}$ (resp. $C^{\prime} \rightarrow C$ ). Consider $\Pi+\Pi^{\prime} \subset C \times C^{\prime}$ as a reduced closed subscheme. Note that the set of singular points of $\Pi+\Pi^{\prime}$ is:

$$
\begin{aligned}
\Pi \cap \Pi^{\prime} & =\left\{\left(x, x^{\prime}\right) \in C \times C^{\prime} ; x^{p f}=x^{\prime}, x^{\prime p f}=x\right\} \\
& \approx \text { the } F_{q} \text {-rational points } x \text { of } C
\end{aligned}
$$

We shall be concerned with lifting of the triple ( $C, C^{\prime} ; \Pi+\Pi^{\prime}$ ) to characteristic 0 and its application to the Galois group of $k_{S}^{\mathrm{ur}} / k$ (for some $S$ determined by the lifting). Let $\mathfrak{o}_{\mathfrak{p}}$ be the ring of integers of a $\mathfrak{p}$-adic field with residue field $\boldsymbol{F}_{p f}$ (e.g. $\mathfrak{o}_{p}=W\left(\boldsymbol{F}_{p f}\right)$, the ring of Witt vectors), and $\mathfrak{o}_{p}^{(2)}$ be its unique unramified quadratic extension. By a lifting of $\left(C, C^{\prime} ; \Pi+\Pi^{\prime}\right)$ over $\mathfrak{D}_{\mathfrak{p}}^{(2)}$, we mean a triple $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$, where $\mathscr{C}, \mathscr{C}^{\prime}$ are smooth proper $\mathfrak{o}_{\mathfrak{p}}^{(2)}$-schemes that lift $C, C^{\prime}$ respectively, and $\mathscr{T}$ is an irreducible closed subscheme of $\mathscr{C} \times \mathscr{C}^{\prime}$, flat over $\mathfrak{o}_{\mathfrak{p}}^{(2)}$, that lifts $\Pi+\Pi^{\prime}$. (When $k$ has a model $C$ over $\boldsymbol{F}_{p f}$, we look for liftings of $\left(C, C ; \Pi+\Pi^{\prime}\right)$ over $\mathfrak{o}_{p}$, and this is sometimes easier.) We say that $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ is symmetric, if $\mathscr{C}$ and $\mathscr{C}^{\prime}$ are conjugate over $\mathfrak{o}_{\mathfrak{p}}$ and if ${ }^{t} \mathscr{T}=\mathscr{T}^{\prime}\left(t\right.$ : the transpose, ${ }^{\prime}$ : the $\mathfrak{o}_{\mathfrak{p}}$-conjugation).

Suppose that $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ is a lifting of $\left(C, C^{\prime} ; \Pi+\Pi^{\prime}\right)$. Take any closed point $P=\left(x, x^{\prime}\right) \in \Pi \cap \Pi^{\prime}$ and consider it as a point of $\mathscr{T}$ (via $\Pi$ $+\Pi^{\prime} \subset \mathscr{T}$, the inclusion as the special fiber). When $P$ is a normal point on $\mathscr{T}$, we say that $x \in C$ is a special point with respect to $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$. Let $S$ be the set of all special points. By definition, $S$ consists only of $\boldsymbol{F}_{q^{-}}$ rational points of $C$. (The corresponding set of prime divisors of $k$ of degree one will also be called the set of special points and denoted by $S$.) As for the cardinality of $S$, we have

Proposition 1. (i) $|S| \geq(\sqrt{q}-1)(g-1)$, (ii) the equality holds if and only if the normalization $\mathscr{T}^{*}$ of $\mathscr{T}$ is unramified over $\mathscr{C}$ (resp. $\left.\mathscr{C}^{\prime}\right)$ on the general fiber.

Thus, we call $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ unramified when $|S|=(\sqrt{q}-1)(g-1)$, and ramified when $|S|>(\sqrt{q}-1)(g-1)$. Leaving aside the question of liftability till Section 3, we first discuss the main consequences assuming the existence of $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$.

Assume that there exists a lifting $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ of $\left(C, C^{\prime} ; \Pi+\Pi^{\prime}\right)$ over $\mathfrak{0}_{\mathfrak{p}}^{(2)}$. Let $F_{\mathfrak{p}}$ denote the quotient field of $\mathfrak{o}_{\mathfrak{p}}$, and $\bar{F}_{\mathfrak{p}}$ its algebraic closure. Fix any isomorphism $\iota: \bar{F}_{\mathfrak{p}} \leftrightarrows \boldsymbol{C}, \boldsymbol{C}$ being the complex number field. Take base changes $\mathscr{C} \otimes \boldsymbol{C}, \mathscr{C}^{\prime} \otimes \boldsymbol{C}, \mathscr{T}^{*} \otimes \boldsymbol{C}$ with respect to $\iota$, and call $\mathfrak{R}, \mathfrak{R}^{\prime}, \Re^{0}$ the corresponding compact Riemann surfaces. Let $\varphi: \mathfrak{R}^{0} \rightarrow \mathfrak{R}, \varphi^{\prime}: \mathfrak{R}^{0} \rightarrow \mathfrak{R}^{\prime}$ be the finite morphisms induced from the projections $\mathscr{T}^{*} \rightarrow \mathscr{C}, \mathscr{T}^{*} \rightarrow \mathscr{C}^{\prime}$, respectively. Then $\varphi, \varphi^{\prime}$ have degree $p^{f}+1$. Take any base point $P^{0} \in \mathfrak{R}^{0}$, and put $P=\varphi\left(P^{0}\right), P^{\prime}=\varphi^{\prime}\left(P^{0}\right)$. Let $\pi_{1}(\Re), \pi_{1}\left(\Re^{\prime}\right), \pi_{1}\left(\Re^{0}\right)$ be the topological fundamental groups of $\Re, \Re^{\prime}, \Re^{0}$ w.r.t. $P, P^{\prime}, P^{0}$, and let

$$
\Phi: \pi_{1}\left(\mathfrak{R}^{0}\right) \longrightarrow \pi_{1}(\Re), \quad \Phi^{\prime}: \pi_{1}\left(\Re^{0}\right) \longrightarrow \pi_{1}\left(\Re^{\prime}\right)
$$

be the group homomorphisms induced from $\varphi, \varphi^{\prime}$. Let $\Gamma$ be the free product of $\pi_{1}(\Re), \pi_{1}\left(\Re^{\prime}\right)$ with amalgamation defined by $\Phi$ and $\Phi^{\prime}$;

$$
\Gamma=\pi_{1}(\Re) \underset{\pi_{1}(\Re 0)}{*} \pi_{1}\left(\Re^{\prime}\right)
$$

Then $\Gamma$ is a group defined by a finite number of generators and relations. It is the fundamental group of the space obtained by amalgamating the mapping cylinders of $\varphi$ and of $\varphi^{\prime}$. When $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ is unramified, $\varphi, \varphi^{\prime}$ are unramified; hence $\Phi, \Phi^{\prime}$ are injective and $\Gamma$ is an infinite group. On the other hand, when $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ is ramified, both $\varphi, \varphi^{\prime}$ are ramified, and $\Phi$ and $\Phi^{\prime}$ turn out to be surjective; hence $\Gamma \cong \pi_{1}\left(\Re^{0}\right) / N . N^{\prime}$, where $N, N^{\prime}$ denote the kernels of $\Phi, \Phi^{\prime}$ respectively. Denote by $\hat{\Gamma}$ the profinite completion of $\Gamma$.

Theorem 2 [Ih 4] [Ih 5]*). Suppose that ( $\left.C, C^{\prime} ; \Pi+\Pi^{\prime}\right)$ has a lifting $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ over $\mathfrak{o}_{\mathfrak{p}}^{(2)}$, and let $S$ be the set of special points with respect to this lifting. Then
(i) the Galois group $\operatorname{Gal}\left(k_{S}^{\mathrm{ur}} / k\right)$ is isomorphic with $\hat{\Gamma}$;
(ii) the isomorphic groups of (i) are infinite groups if and only if $|S|=$ $(\sqrt{q}-1)(g-1)$.

The main point to be stressed here is that $\mathrm{Gal}\left(k_{S}^{\mathrm{ur}} / k\right)$ is strictly isomorphic with $\hat{\Gamma}$, not excluding the pro-p-factors. The key lemma for this is:

Lemma 1 (Ihara-Miki [Ih-Mi 1]). Let $\boldsymbol{Q}_{p}$ be the p-adic number field. Let $\Re$ be a field containing $Q_{p}$, which is complete with respect to a discrete valuation $\left|\left.\right|_{\Omega}\right.$ extending the p-adic valuation of $\boldsymbol{Q}_{p}$. Suppose moreover that $\Re$ contains a prime element $\left(\right.$ for $\left|\left.\right|_{\Omega}\right)$ which is algebraic over $\boldsymbol{Q}_{p}$, and that there is a value-preserving field-endomorphism $\sigma$ of $\Re$ into $\Re$ inducing the $p^{r}$-th power map of the residue field for some $r \in Z, r \geqq 1$. Let $\mathfrak{M} / \Omega$ be any finite extension. Then the following two conditions (i) (ii) on $\mathfrak{M}$ are equivalent:
(i) there exists a finite extension $\boldsymbol{Q}_{p}^{\prime} / \boldsymbol{Q}_{p}$ such that $\mathfrak{M} \boldsymbol{Q}_{p}^{\prime} / \AA \boldsymbol{Q}_{p}^{\prime}$ is unramified,
(ii) for some positive integer $m, \sigma^{m}$ extends to an endomorphism $\tilde{\sigma}: \mathfrak{M}$ $\rightarrow \mathfrak{M}$ satisfying $\mathfrak{M}^{\boldsymbol{\sigma}} \cdot \mathfrak{R}=\mathfrak{M}$.

In applying this lemma, $\mathscr{\Omega}$ will be the completion of the function field of $\mathscr{C}$ along its special fiber $C$, and $\sigma$ is induced from the " $\Pi$ '。 $\Pi$-part" of the algebraic correspondence ${ }^{t} \mathscr{T} \circ \mathscr{T}$ of $\mathscr{C}$.

As for the assertion (ii) of Theorem 2, the "if" implication follows from the fact that in the unramified case, $\Gamma$ is infinite and residually finite (i.e., $\Gamma \rightarrow \hat{\Gamma}$ : injective; cf. [Ih 5] Section 3). The converse, conjectured in [Ih 5], is a direct consequence of Corollary 2 of Theorem 1.
§ 3. In view of Theorem 2, our attention will be focused on the following two problems.
(i) Give a method for deciding whether there exists a lifting ( $\mathscr{C}, \mathscr{C}^{\prime}$; $\mathscr{T})$ of $\left(C, C^{\prime} ; \Pi+\Pi^{\prime}\right)$ having a prescribed set of special points.
(ii) When $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ exists, give a method for calculating the group $\Gamma$ explicitly. (The structure of $\Gamma$ itself may depend on the choice of $\iota: \bar{F}_{p}$ $\leftrightarrows \boldsymbol{C}$, although that of $\hat{\Gamma}$ doesn't.)

As for the first problem, we gave some answers in [Ih 3] [Ih 6], using deformation theory. They do not solve the problem completely, but give some criteria for the existence (and/or) uniqueness of $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$. Further
*) In [Ih 4] [Ih 5], we used the letter $q$ for $\sqrt{ } \bar{q}=p^{f}$.
results along this line (especially for the case $g=2$ ) were obtained by Y. Furukawa [F 1]. Here, we shall review some results of [Ih 6], taking $f=1$ (i.e., $q=p^{2}$ ) and $\mathfrak{o}_{\mathfrak{p}}=\boldsymbol{Z}_{p}=W\left(\boldsymbol{F}_{p}\right)$.

Let $k_{0}$ be an algebraic function field of one variable with exact constant field $\boldsymbol{F}_{p}$ and genus $g>1$, and put $k=k_{0} \cdot \boldsymbol{F}_{p_{2}}$. Let $S_{0}$ be a prescribed set of prime divisors of $k_{0}$ with degree $\leq 2$ over $\boldsymbol{F}_{p}$, and $S$ be the set of all prime divisors of $k$ lying above $S_{0}$. Let $C$ be a proper smooth model of $k_{0}$. We consider the question of existence and/or uniqueness of those liftings $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ of ( $\left.C, C ; \Pi+\Pi^{\prime}\right)$ over $Z_{p}$ whose special point set is contained in $S$. Denote by $H_{i}(i=1,2)$ the number of primes of $S_{0}$ with degree $i$ over $\boldsymbol{F}_{p}$, and put $H=|S|=H_{1}+2 H_{2}$. Let $U$ denote the $\boldsymbol{F}_{p}$-vector space of all holomorphic differential forms $\xi$ of degree $p+1$ on $C$ satisfying the condition that $\xi / \eta^{\otimes p}$ is an exact differential, where $\eta$ is a fixed differential $\neq 0$ of degree one on $C$. Then $U$ is independent of the choice of $\eta$, and is of dimension $2(p-1)(g-1)$. For each $Q \in S_{0}$, let $\kappa_{Q}$ denote its residue field, $t_{Q}$ be a local uniformization, and consider the linear map

$$
\beta: U \ni \xi \longrightarrow\left(\operatorname{Tr}_{x Q} / \boldsymbol{F}_{p}\left(\xi /\left(d t_{Q}\right)^{\otimes(p+1)}\right)_{Q}\right)_{Q \in S_{0}} \in \boldsymbol{F}_{p}^{H_{1}+H_{2}}
$$

where ()$_{Q}$ denotes the residue class at $Q$.
Theorem 3A. (i) If $\beta$ is injective, then there exists a symmetric lifting of $\left(C, C ; \Pi+\Pi^{\prime}\right)$ over $Z_{p}$ whose special points are contained in $S$; (ii) if $\beta$ is moreover bijective, such lifting is unique.

As an existence criterion, this applies only when $H_{1}+H_{2} \geq$ $2(p-1)(g-1)$; hence does not apply directly to the unramified situation $H=(p-1)(g-1)$. As for unramified lifting, we have

Theorem 3B. There is at most one unramified lifting of $\left(C, C ; \Pi+\Pi^{\prime}\right)$ over $\boldsymbol{Z}_{p}$ having a prescribed set of special points. When it exists, it is symmetric.

Theorem 3C. Suppose that $H=H_{1}=(p-1)(g-1), p \neq 2, \beta$ is surjective, and that there is an involutive automorphism of $C$ leaving each point of $S$ invariant. Then there exists a unique unramified symmetric lifting of ( $\left.C, C ; \Pi+\Pi^{\prime}\right)$ over $Z_{p}$ having $S$ as the set of special points.

This is a corollary of a more general result. The range of applicability is small, but is useful for giving examples. There are also criteria for non-existence. In fact, the liftings of ( $C, C ; \Pi+\Pi^{\prime}$ ) to $Z / p^{2}$ are completely classified in terms of some differentials of degree $p-1$ on $C$, and hence the non-existence of such differentials would imply that of liftings to $Z / p^{2}$, and hence to $Z_{p}$ (cf. [Ih 3] Example 2).

In each of the following three examples, there exists a unique symmetric lifting of ( $C, C ; \Pi+\Pi^{\prime}$ ) over $Z_{p}$ having $S$ as the set of special points. For other examples of unique existence, non-existence, or non-unique existence, cf. [Ih 3] [Ih 6] [F 1].

Example 1 ( $p=2, g=2$; ramified type).

$$
\begin{gathered}
k_{0}=F_{2}(x, y) ; \quad y^{2}+\left(x^{3}+x+1\right) y=x^{2}+x+1 \\
S=\{(\infty, \infty),(\infty, 0)\} .
\end{gathered}
$$

The unique liftability in this case follows from Theorem 3A. The reason why the special point set coincides with $S$ (instead of just contained in $S$ ) is explained in [Ih 6] Section 3.1 Example 1.

Example $2(p=3, g=3$; unramified type).

$$
\begin{gathered}
k_{0}=F_{3}(x, y) ; \quad x=X / Z, \quad y=Y / Z \\
X^{3} Y-X Y^{3}+X Y Z^{2}+Z^{4}=0, \\
S=\{(1: 0: 0),(0: 1: 0),(1: 1: 0),(1:-1: 0)\}
\end{gathered}
$$

This unique liftability is an application of Theorem 3C.
Example 3 ( $p=5, g=2$; unramified type).

$$
\begin{gathered}
k_{0}=F_{5}(x, y) ; \quad y^{2}=x^{6}+1 \\
S=\{(0,1),(0,-1),(\infty, \infty),(\infty, \infty)\}
\end{gathered}
$$

This unique liftability is an application of Corollary 2 of Theorem 3 of [Ih 6], and is also obtained from a Shimura curve by reduction $\bmod p$.

By Theorem 2 for $k=k_{0} F_{p 2}$, we find that the extension $k_{S}^{\mathrm{ur}} / k$ is finite for Example 1, and infinite for Examples 2, 3.

As for the second problem, it is left open. To illustrate the nature of the problem, let $C, S$ be as in Example 1, and $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ be the unique symmetric lifting of ( $C, C ; \Pi+\Pi^{\prime}$ ) over $Z_{2}$ with the special point set $S$. Let $\mathfrak{R}, \mathfrak{R}^{\prime}=\mathfrak{R}, \mathfrak{R}^{0}$ be the corresponding compact Riemann surfaces (w.r.t. ८), and $\varphi: \mathfrak{R}^{0} \rightarrow \Re, \varphi^{\prime}: \Re^{0} \rightarrow \Re^{\prime}$ be the projections. Let $\tau$ be the involutive automorphism of $\mathfrak{R}^{0}$ induced from the symmetry of $\mathscr{T}$. Then the group $\Gamma$ in question is

$$
\Gamma=\pi_{1}\left(\Re^{0}\right) / N \cdot N^{\tau},
$$

where $N$ is the kernel of $\Phi: \pi_{1}\left(\Re^{0}\right) \rightarrow \pi_{1}(\Re)$, and the involution of $\pi_{1}\left(\Re^{0}\right)$ induced from $\tau$ is also denoted by $\tau$. Now we can show (without knowing the algebraic equations for $\left.\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)\right)$ that:
(a) $\mathfrak{R}$ has genus 2 , and $\Re^{\circ}$ has genus 5;
(b) $\varphi^{\prime}=\varphi \circ \tau, \operatorname{deg} \varphi=3$, and $\varphi$ is ramified at exactly two points of $\Re^{0}$ with ramification index 2 ;
(c) the number of fixed points of $\tau$ on $\Re^{0}$ is 4 .

From these data, we can determine
(A) the group structure of $\pi_{1}\left(\Re^{0}\right)$;
(B) its normal subgroup $N$, up to automorphisms of $\pi_{1}\left(\Re^{0}\right)$,
(C) the involutive automorphism $\tau$ of $\pi_{1}\left(\Re^{0}\right)$, up to conjugacy in the full automorphism group of $\pi_{1}\left(\Re^{0}\right)$.

But this still does not determine the pair $\left\{N, N^{\tau}\right\}$ up to automorphisms of $\pi_{1}\left(\Re^{0}\right)$, because the double coset space

$$
\text { Centralizer }(\tau) \backslash \text { Aut }\left(\pi_{1}\left(\Re^{0}\right)\right) / \operatorname{Normalizer}(N)
$$

seems to be large and mysterious. The recent developments on the structure of the outer automorphism group of $\pi_{1}$ of compact Riemann surfaces still do not seem to help much.
§ 4. The unramified liftings of ( $C, C^{\prime} ; \Pi+\Pi^{\prime}$ ) over $\mathfrak{o}_{\mathfrak{p}}^{(2)}$ are in a close connection with discrete co-compact subgroups $\Gamma$ of $P S L_{2}(R) \times P G L_{2}^{+}\left(F_{p}\right)$, where $P G L_{2}^{+}\left(F_{\natural}\right)$ denotes the intermediate group of $P S L_{2}\left(F_{p}\right) \subset P G L_{2}\left(F_{p}\right)$ corresponding to $\mathfrak{o}_{\mathfrak{p}}^{\times} F_{\mathfrak{p}}^{\times 2} / F_{\mathfrak{p}}^{\times 2}$ by the determinant. Put

$$
V=P G L_{2}\left(\mathfrak{o}_{p}\right), \quad V^{\prime}=\left(\begin{array}{ll}
\pi & 0 \\
0 & 1
\end{array}\right)^{-1} P G L_{2}\left(\mathfrak{o}_{p}\right)\left(\begin{array}{ll}
\pi & 0 \\
0 & 1
\end{array}\right), \quad V^{0}=V \cap V^{\prime}
$$

where $\pi$ is a prime element of $F_{p}$, and let $\Gamma_{V}$, etc. be the projection to $P S L_{2}(\boldsymbol{R})$ of the intersection of $\Gamma$ with $P S L_{2}(\boldsymbol{R}) \times V$, etc. Then $\Gamma_{V}$, etc. are discrete co-compact subgroups of $P S L_{2}(\boldsymbol{R})$. Let $\Re_{\Gamma}, \Re_{\Gamma}^{\prime}, \mathfrak{R}_{\Gamma}^{0}$ be the compact Riemann surfaces corresponding to $\Gamma_{V}, \Gamma_{V^{\prime}}, \Gamma_{V 0}$ respectively, and $\varphi_{\Gamma}: \mathfrak{R}_{\Gamma}^{0} \rightarrow \mathfrak{R}_{\Gamma}, \varphi_{\Gamma}^{\prime}: \mathfrak{R}_{\Gamma}^{0} \rightarrow \mathfrak{R}_{\Gamma}^{\prime}$ be the canonical morphisms. Fix $\iota: \bar{F}_{\mathfrak{p}} \leftrightharpoons \boldsymbol{C}$, as before.

Conjecture There is a categorical equivalence between
(A) Unramified liftings ( $\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}$ ) of some $\left(C, C^{\prime} ; \Pi+\Pi^{\prime}\right)$ (not specified) over $\mathfrak{O}_{\mathfrak{p}}^{(2)}$ such that the normalization $\mathscr{T}^{*}$ of $\mathscr{T}$ is regular (as a scheme);
(B) Torsion-free co-compact discrete subgroups $\Gamma$ of $P S L_{2}(\boldsymbol{R}) \times$ $P G L_{2}^{+}\left(F_{\mathfrak{p}}\right)$ for which the topological closure of the projection of $\Gamma$ to $P S L_{2}(\boldsymbol{R})$ (resp. $\left.P G L_{2}^{+}\left(F_{p}\right)\right)$ coincides with $P S L_{2}(R)$ (resp. contains $P S L_{2}\left(F_{p}\right)$ );
such that if $\Gamma$ corresponds with $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ then the system $\left\{\Re_{\Gamma} \stackrel{\varphi_{\Gamma}}{\leftarrow} \mathfrak{R}_{\Gamma}^{0} \xrightarrow{\varphi_{\Gamma}^{\prime}} \mathfrak{R}_{\Gamma}^{\prime}\right\}$ of Riemann surfaces obtained from $\Gamma$ in the above manner corresponds with $\left\{\mathscr{C} \leftarrow \mathscr{T}^{*} \rightarrow \mathscr{C}^{\prime}\right\} \otimes_{\iota} C$.

The functor $(B) \rightarrow(A)$ is established by the combination of results by Shimura, Ihara, Morita, Ohta and Margulis, except for the regularity of $\mathscr{T}^{*}$, as follows.
(a) the arithmeticity of $\Gamma$ (Margulis [Ma 1]),
(b) if $\Gamma$ corresponds with some $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ and $\Gamma^{*} \subset \Gamma$ (finite index), then $\Gamma^{*}$ corresponds with some $\left(\mathscr{C}^{*}, \mathscr{C}^{\prime} ; \mathscr{T}^{*}\right)$ (Ihara [Ih 4])
(c) (b) with $\Gamma^{*} \supset \Gamma$ (cf. Ohta [Oh 1] § 3.4)
(d) congruence relations for Shimura curves for almost all $\mathfrak{p}$ (Shimura [Sh 1]),
(e) (d) for individual $\mathfrak{p}$ for congruence subgroups whose level is coprime with $p$ (not $\mathfrak{p}$ ) (Morita [Mo 1]; cf. [Oh 1] § 3.4 for methods for refinement to " $p$ ").

It should be added that (b) is based on the earlier work of [Ih-Mi 1] mentioned before, and (e) is based on the works of [Sh 1] and of [Ih 1].

For concrete description of arithmetically defined groups $\Gamma$, see [Ih 1] (b) Ch. 4. It is not known whether each $\Gamma$ satisfies the congruence subgroup properties. The regularity of $\mathscr{T}^{*}$ is proved only when $F=\boldsymbol{Q}_{p}$ [Ih 2]. When $F=\boldsymbol{Q}_{p},\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ is always symmetric (Theorem 4, [Ih 6]).

As for the functor $(\mathrm{A}) \rightarrow(\mathrm{B})$, we constructed an infinite group $\Gamma$ (§ 2, [Ih 4]) which has a natural embedding into $P S L_{2}(\boldsymbol{R})$, but what we could prove is only that $\Gamma$ is a torsion-free co-compact discrete subgroup of $P S L_{2}(R) \times$ Aut $(\mathbb{T})$, where $\mathfrak{I}$ is the tree of $P G L_{2}^{+}\left(F_{\mathfrak{p}}\right)$.

The association $\Gamma \rightarrow\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right) \rightarrow \Gamma$ is the identity, and $(\mathrm{B}) \rightarrow(\mathrm{A})$ makes (B) a full subcategory of "(A) without regularity of $\mathscr{T}^{* "}$ (cf. [Ih 4]).
§ 5. Finally, let $\left(\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ be any unramified lifting of $\left(C, C^{\prime} ; \Pi\right.$ $+\Pi^{\prime}$ ) over $\mathfrak{o}_{p}^{(2)}$. Then, as we have shown in [Ih 4] Section 5, the group $\Gamma$ describes, not only the structure of the Galois group $\operatorname{Gal}\left(k_{S}^{\mathrm{ur}} / k\right)$, but also all the Frobenius elements in $k_{S}^{\mathrm{ur}} / k$ in terms of some $\Gamma$-conjugacy classes. Since each discrete subgroup $\Gamma$ of $P S L_{2}(R) \times P G L_{2}^{+}\left(F_{\mathfrak{p}}\right)$ satisfying the conditions of (B) determines ( $\left.\mathscr{C}, \mathscr{C}^{\prime} ; \mathscr{T}\right)$ (and hence also $k$ and $S$ ), it describes the Galois group of $k_{S}^{\mathrm{ur}} / k$ together with all Frobenius elements as in [Ih 4] Section 5. Thus, the problem raised in [Ih 1] as conjectures ((C1) ~(C5) in (c) § 1.3) have been solved affirmatively, although in a very indirect way*).

## References

[F1] Y. Furukawa, On the liftings of the Frobenius correspondences of algebraic curves of genus two over finite fields, to appear in J. Algebra. [Ih 1] Y. Ihara, (a) The congruence monodromy problems, J. Math. Soc.

[^1]Japan, 20 (1968), 107-121.
(b) On congruence monodromy problems, Lect. Note Univ. Tokyo, 1 (1968), 2 (1969).
(c) Non-abelian classfields over function fields in special cases, Actes du Congres Intern. Math. Nice 1970, Tome 1, 381-389.
[Ih 2] - On the differentials associated to congruence relations and the Schwarzian equations defining uniformizations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 21 (1974), 309-332.
[Ih 3] -, On the Frobenius correspondences of algebraic curves, "Algebraic number theory", Papers contributed for the International Symposium, Kyoto, 1976, Japan Soc. Prom. Sci., (1977), 67-98.
[Ih 4] -, Congruence relations and Shimura curves, I, Proc. Symp. in pure Math., 33 Part 2, (1977), 291-311, Amer. Math. Soc.; II, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 25 (1979), 301-361.
[Ih 5] - Congruence relations and fundamental groups, J. Algebra, 75 (1982), 445-451.
[Ih 6] ——, Lifting curves over finite fields together with the characteristic correspondence $\Pi+\Pi^{\prime}$, ibid., 75 (1982), 452-483.
[Ih 7] -, How many primes decompose completely in an infinite unramified Galois extension of a global field?, J. Math. Soc. Japan, 35 (1983), 693-709.
[Ih-Mi 1] Y. Ihara and H. Miki, Criteria related to potential unramifiedness and reduction of unramified coverings of curves, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 22 (1975), 237-254.
[Ma-1] G. A.. Margulis, Цискретные Группы Цвижений Многообразий Неположительной Кривизны, Proc. Internat. Congress Math. (Vancouver 1974) 2, 21-34.
[Mo 1] Y. Morita, Reduction mod $\mathfrak{F}$ of Shimura curves, Hokkaido Math. J., 10 (1981), 209-238.
[Oh 1] M. Ohta, On $l$-adic representations attached to automorphic forms, Japanese J. Math., 8 (1982), 1-47.
[Sh 1] G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains I, Ann. of Math., 91 (1970), 144-222; II, ibid., 92 (1970), 528-549.

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo 113
Japan


[^0]:    Received January 6, 1983.
    *) The results of § 1 are obtained after the Symposium. Details will appear in [Ih 7].

[^1]:    *) As for (C2), cf. also [Ih 2]. The elliptic modular case, which is the only case with cusps in view of [Ma 1], had been settled separately in earlier publications.

