Advanced Studies in Pure Mathematics 2, 1983 Galois Groups and their Representations pp. 89–97

On Unramified Extensions of Function Fields over Finite Fields

Yasutaka Ihara

Let k be an algebraic function field of one variable with genus g over a finite constant field F_q , and S be a given *non-empty* set of prime divisors of k. Denote by k_s^{ur} the maximum unramified Galois extension of k in which all prime divisors of k belonging to S decompose completely. Since S is nonempty, the algebraic closure of F_q in k_s^{ur} must be finite over F_q . In this report, we shall give a survey of our results on this type of extensions k_s^{ur} .

§ 1.*) First, one expects that if k_s^{ur}/k is an *infinite* extension, then S cannot be "too big". What is the natural quantitative result along this line? The Chebotarev density of S is of course 0, but we need a stronger result. By studying the behaviour of zeta functions of intermediate fields of k_s^{ur}/k near $s=\frac{1}{2}$, using the Weil's Riemann hypothesis for curves, we obtained the following

Theorem 1. Suppose that M is an infinite unramified Galois extension of k. For each prime divisor P of k, let deg P denote its degree over F_q , put $N(P) = q^{\deg P}$, and let $f(P) (1 \le f(P) \le \infty)$ denote the residue extension degree of P in M/k. Let $g \ge 1$. Then

(1.1)
$$\sum_{\substack{P \\ f(P) \leq \infty}} \frac{\deg P}{N(P)^{\frac{1}{2}f(P)} - 1} \leq g - 1,$$

the series on the left being convergent.

Corollary 1. If k_s^{ur}/k is infinite, then

(1.2)
$$\sum_{P \in S} \frac{\deg P}{N(P)^{1/2} - 1} \leq g - 1.$$

In particular,

Received January 6, 1983.

*) The results of §1 are obtained after the Symposium. Details will appear in [Ih 7].

Yasutaka Ihara

Corollary 2 If k_s^{ur}/k is infinite, and S consists only of a finite number of prime divisors of degree one, then

(1.3)
$$|S| \leq (\sqrt{q} - 1)(g - 1)$$
.

We have a similar result for algebraic number fields assuming the generalized Riemann hypothesis. In each case, the proof is based on the studies of $[K: k]^{-1} (d/ds) \log \zeta_K(s)$, its inverse Mellin transform, and their limit as $K \rightarrow M$, where K runs over the finite subextensions of M/k (cf. [Ih 7]).

A basic open question related to Theorem 1 is: Does there exist M with which the set $\{P; f(P) < \infty\}$ is infinite? On the other hand, we have a family of examples of M/k for which the equality in (1.1) (and in fact, Corollary 2 with the equality) holds. Such examples appear in connection with liftings of the Frobenius-like correspondence " $\Pi + \Pi$ " of k to characteristic 0, and with irreducible discrete subgroups of $PSL_2(\mathbf{R}) \times PGL_2(F_{\mathfrak{p}})$ ($F_{\mathfrak{p}}$: a \mathfrak{p} -adic field, $q = N(\mathfrak{p})^2$). This will be discussed as one of the main subjects in the next sections.

§ 2. We shall meet with the case where the Galois group of k_s^{ur}/k is *isomorphic* with the profinite completion of some topological fundamental group. ([Ih 4] [Ih 5]).

Let $q=p^{2f}$, an even power of a prime p, and C/F_q be a smooth complete model of k. Let C'/F_q be its conjugate over F_{pf} , and let Π (resp. Π') be the graphs on $C \times C'$ of the p^{f} -th power morphisms $C \rightarrow C'$ (resp. $C' \rightarrow C$). Consider $\Pi + \Pi' \subset C \times C'$ as a reduced closed subscheme. Note that the set of singular points of $\Pi + \Pi'$ is:

$$\Pi \cap \Pi' = \{ (x, x') \in C \times C'; x^{pf} = x', x'^{pf} = x \}$$

$$\approx \text{the } F_q \text{-rational points } x \text{ of } C.$$

We shall be concerned with lifting of the triple $(C, C'; \Pi + \Pi')$ to characteristic 0 and its application to the Galois group of k_S^{ur}/k (for some S determined by the lifting). Let o_p be the ring of integers of a p-adic field with residue field F_{pf} (e.g. $o_p = W(F_{pf})$, the ring of Witt vectors), and $o_p^{(2)}$ be its unique unramified quadratic extension. By a *lifting* of $(C, C'; \Pi + \Pi')$ over $o_p^{(2)}$, we mean a triple $(\mathcal{C}, \mathcal{C}'; \mathcal{T})$, where $\mathcal{C}, \mathcal{C}'$ are smooth proper $o_p^{(2)}$ -schemes that lift C, C' respectively, and \mathcal{T} is an irreducible closed subscheme of $\mathcal{C} \times \mathcal{C}'$, flat over $o_p^{(2)}$, that lifts $\Pi + \Pi'$. (When k has a model C over F_{pf} , we look for liftings of $(C, C; \Pi + \Pi')$ over o_p , and this is sometimes easier.) We say that $(\mathcal{C}, \mathcal{C}'; \mathcal{T})$ is symmetric, if \mathcal{C} and \mathcal{C}' are conjugate over o_p and if ${}^t\mathcal{T} = \mathcal{T}'$ (t: the transpose, ': the o_p -conjugation). Suppose that $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ is a lifting of $(C, C'; \Pi + \Pi')$. Take any closed point $P = (x, x') \in \Pi \cap \Pi'$ and consider it as a point of \mathscr{T} (via $\Pi + \Pi' \longrightarrow \mathscr{T}$, the inclusion as the special fiber). When P is a normal point on \mathscr{T} , we say that $x \in C$ is a special point with respect to $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$. Let S be the set of all special points. By definition, S consists only of F_q -rational points of C. (The corresponding set of prime divisors of k of degree one will also be called the set of special points and denoted by S.) As for the cardinality of S, we have

Proposition 1. (i) $|S| \ge (\sqrt{q} - 1)(g - 1)$, (ii) the equality holds if and only if the normalization \mathcal{T}^* of \mathcal{T} is unramified over \mathscr{C} (resp. \mathscr{C}') on the general fiber.

Thus, we call $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ unramified when $|S| = (\sqrt{q} - 1)(g - 1)$, and ramified when $|S| > (\sqrt{q} - 1)(g - 1)$. Leaving aside the question of liftability till Section 3, we first discuss the main consequences assuming the existence of $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$.

Assume that there exists a lifting $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ of $(C, C'; \Pi + \Pi')$ over $\mathfrak{o}_{\mathfrak{p}}^{(2)}$. Let $F_{\mathfrak{p}}$ denote the quotient field of $\mathfrak{o}_{\mathfrak{p}}$, and $\overline{F}_{\mathfrak{p}}$ its algebraic closure. Fix any isomorphism $\iota: \overline{F}_{\mathfrak{p}} \cong C, C$ being the complex number field. Take base changes $\mathscr{C} \otimes C, \mathscr{C}' \otimes C, \mathscr{T}^* \otimes C$ with respect to ι , and call $\mathfrak{R}, \mathfrak{R}', \mathfrak{R}^0$ the corresponding compact Riemann surfaces. Let $\varphi: \mathfrak{R}^0 \to \mathfrak{R}, \varphi': \mathfrak{R}^0 \to \mathfrak{R}'$ be the finite morphisms induced from the projections $\mathscr{T}^* \to \mathscr{C}, \mathscr{T}^* \to \mathscr{C}',$ respectively. Then φ, φ' have degree $p^t + 1$. Take any base point $P^0 \in \mathfrak{R}^0$, and put $P = \varphi(P^0), P' = \varphi'(P^0)$. Let $\pi_1(\mathfrak{R}), \pi_1(\mathfrak{R}'), \pi_1(\mathfrak{R}^0)$ be the topological fundamental groups of $\mathfrak{R}, \mathfrak{R}', \mathfrak{R}^0$ w.r.t. P, P', P^0 , and let

$$\Phi: \pi_1(\mathfrak{R}^0) \longrightarrow \pi_1(\mathfrak{R}), \qquad \Phi': \pi_1(\mathfrak{R}^0) \longrightarrow \pi_1(\mathfrak{R}')$$

be the group homomorphisms induced from φ , φ' . Let Γ be the free product of $\pi_1(\Re)$, $\pi_1(\Re')$ with amalgamation defined by Φ and Φ' ;

$$\Gamma = \pi_1(\mathfrak{R}) *_{\pi_1(\mathfrak{R}^0)} \pi_1(\mathfrak{R}') .$$

Then Γ is a group defined by a finite number of generators and relations. It is the fundamental group of the space obtained by amalgamating the mapping cylinders of φ and of φ' . When $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ is unramified, φ, φ' are unramified; hence Φ, Φ' are *injective* and Γ is an *infinite* group. On the other hand, when $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ is ramified, both φ, φ' are ramified, and Φ and Φ' turn out to be *surjective*; hence $\Gamma \cong \pi_1(\Re^0)/N.N'$, where N, N' denote the kernels of Φ, Φ' respectively. Denote by $\hat{\Gamma}$ the profinite completion of Γ .

Yasutaka Ihara

Theorem 2 [Ih 4] [Ih 5]^{*)}. Suppose that $(C, C'; \Pi + \Pi')$ has a lifting $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ over $\mathfrak{o}_{\mathfrak{p}}^{(2)}$, and let S be the set of special points with respect to this lifting. Then

(i) the Galois group Gal (k_s^{ur}/k) is isomorphic with $\hat{\Gamma}$;

(ii) the isomorphic groups of (i) are infinite groups if and only if $|S| = (\sqrt{q} - 1)(g - 1)$.

The main point to be stressed here is that Gal (k_S^{ur}/k) is strictly isomorphic with $\hat{\Gamma}$, not excluding the pro-p-factors. The key lemma for this is:

Lemma 1 (Ihara-Miki [Ih-Mi 1]). Let Q_p be the p-adic number field. Let \Re be a field containing Q_p , which is complete with respect to a discrete valuation $| \cdot |_{\Re}$ extending the p-adic valuation of Q_p . Suppose moreover that \Re contains a prime element (for $| \cdot |_{\Re}$) which is algebraic over Q_p , and that there is a value-preserving field-endomorphism σ of \Re into \Re inducing the p^r -th power map of the residue field for some $r \in \mathbb{Z}$, $r \ge 1$. Let $\mathfrak{M}/\mathfrak{R}$ be any finite extension. Then the following two conditions (i) (ii) on \mathfrak{M} are equivalent:

(i) there exists a finite extension Q'_p/Q_p such that $\mathfrak{M}Q'_p/\mathfrak{R}Q'_p$ is unramified,

(ii) for some positive integer m, σ^m extends to an endomorphism $\tilde{\sigma}: \mathfrak{M} \to \mathfrak{M}$ satisfying $\mathfrak{M}^{\tilde{\sigma}} \cdot \mathfrak{R} = \mathfrak{M}$.

In applying this lemma, \Re will be the completion of the function field of \mathscr{C} along its special fiber *C*, and σ is induced from the " $\Pi' \circ \Pi$ -part" of the algebraic correspondence ${}^{t}\mathcal{T} \circ \mathcal{T}$ of \mathscr{C} .

As for the assertion (ii) of Theorem 2, the "if" implication follows from the fact that in the unramified case, Γ is infinite *and residually finite* (i.e., $\Gamma \rightarrow \hat{\Gamma}$: injective; cf. [Ih 5] Section 3). The converse, conjectured in [Ih 5], is a direct consequence of Corollary 2 of Theorem 1.

§ 3. In view of Theorem 2, our attention will be focused on the following two problems.

(i) Give a method for deciding whether there exists a lifting $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ of $(C, C'; \Pi + \Pi')$ having a prescribed set of special points.

(ii) When $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ exists, give a method for calculating the group Γ explicitly. (The structure of Γ itself may depend on the choice of $\iota: \bar{F}_{\iota}$ $\Rightarrow C$, although that of $\hat{\Gamma}$ doesn't.)

As for the first problem, we gave some answers in [Ih 3] [Ih 6], using deformation theory. They do not solve the problem completely, but give some criteria for the existence (and/or) uniqueness of $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$. Further

*) In [Ih 4] [Ih 5], we used the letter q for $\sqrt{q} = p^{f}$.

results along this line (especially for the case g=2) were obtained by Y. Furukawa [F 1]. Here, we shall review some results of [Ih 6], taking f=1(i.e., $q=p^2$) and $o_v = Z_v = W(F_v)$.

Let k_0 be an algebraic function field of one variable with exact constant field F_p and genus g > 1, and put $k = k_0 \cdot F_{p^2}$. Let S_0 be a prescribed set of prime divisors of k_0 with degree ≤ 2 over F_p , and S be the set of all prime divisors of k lying above S_0 . Let C be a proper smooth model of k_0 . We consider the question of existence and/or uniqueness of those liftings $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ of $(C, C; \Pi + \Pi')$ over Z_p whose special point set is contained in S. Denote by $H_i(i=1, 2)$ the number of primes of S_0 with degree i over F_p , and put $H=|S|=H_1+2H_2$. Let U denote the F_p -vector space of all holomorphic differential forms ξ of degree p+1 on C satisfying the condition that $\xi/\eta^{\otimes p}$ is an exact differential, where η is a fixed differential $\neq 0$ of degree one on C. Then U is independent of the choice of η , and is of dimension 2(p-1)(g-1). For each $Q \in S_0$, let κ_Q denote its residue field, t_q be a local uniformization, and consider the linear map

$$\beta \colon U \ni \xi \longrightarrow (\prod_{{}^{e_Q/F_p}} (\xi/(dt_Q)^{\otimes (p+1)})_Q)_{Q \in S_0} \in F_p^{H_1+H_2},$$

where $()_{\rho}$ denotes the residue class at Q.

Theorem 3A. (i) If β is injective, then there exists a symmetric lifting of $(C, C; \Pi + \Pi')$ over Z_p whose special points are contained in S; (ii) if β is moreover bijective, such lifting is unique.

As an existence criterion, this applies only when $H_1 + H_2 \ge 2(p-1)(g-1)$; hence does not apply directly to the unramified situation H=(p-1)(g-1). As for unramified lifting, we have

Theorem 3B. There is at most one unramified lifting of $(C, C; \Pi + \Pi')$ over Z_p having a prescribed set of special points. When it exists, it is symmetric.

Theorem 3C. Suppose that $H=H_1=(p-1)(g-1)$, $p \neq 2$, β is surjective, and that there is an involutive automorphism of C leaving each point of S invariant. Then there exists a unique unramified symmetric lifting of $(C, C; \Pi + \Pi')$ over Z_p having S as the set of special points.

This is a corollary of a more general result. The range of applicability is small, but is useful for giving examples. There are also criteria for *non-existence*. In fact, the liftings of $(C, C; \Pi + \Pi')$ to Z/p^2 are completely classified in terms of some differentials of degree p-1 on C, and hence the non-existence of such differentials would imply that of liftings to Z/p^2 , and hence to Z_p (cf. [Ih 3] Example 2).

Yasutaka Ihara

In each of the following three examples, there exists a unique symmetric lifting of $(C, C; \Pi + \Pi')$ over Z_p having S as the set of special points. For other examples of unique existence, non-existence, or non-unique existence, cf. [Ih 3] [Ih 6] [F 1].

Example 1 (p=2, g=2; ramified type).

$$k_0 = F_2(x, y); \qquad y^2 + (x^3 + x + 1)y = x^2 + x + 1$$

$$S = \{(\infty, \infty), (\infty, 0)\}.$$

The unique liftability in this case follows from Theorem 3A. The reason why the special point set *coincides with* S (instead of just contained in S) is explained in [Ih 6] Section 3.1 Example 1.

Example 2 (p=3, g=3; unramified type).

$$k_0 = F_3(x, y); \qquad x = X/Z, \quad y = Y/Z;$$

$$X^3 Y - XY^3 + XYZ^2 + Z^4 = 0,$$

$$S = \{(1:0:0), (0:1:0), (1:1:0), (1:-1:0)\}$$

This unique liftability is an application of Theorem 3C.

Example 3 (p=5, g=2; unramified type).

$$k_0 = F_5(x, y); \qquad y^2 = x^6 + 1$$

S={(0, 1), (0, -1), (\infty, \infty), (\infty, \infty)].

This unique liftability is an application of Corollary 2 of Theorem 3 of [Ih 6], and is also obtained from a Shimura curve by reduction mod p.

By Theorem 2 for $k = k_0 F_{p^2}$, we find that the extension k_s^{ur}/k is finite for Example 1, and infinite for Examples 2, 3.

As for the second problem, it is *left open*. To illustrate the nature of the problem, let C, S be as in Example 1, and $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ be the unique symmetric lifting of $(C, C; \Pi + \Pi')$ over \mathbb{Z}_2 with the special point set S. Let $\mathfrak{R}, \mathfrak{R}' = \mathfrak{R}, \mathfrak{R}^0$ be the corresponding compact Riemann surfaces (w.r.t. ι), and $\varphi \colon \mathfrak{R}^0 \to \mathfrak{R}, \varphi' \colon \mathfrak{R}^0 \to \mathfrak{R}'$ be the projections. Let τ be the involutive automorphism of \mathfrak{R}^0 induced from the symmetry of \mathscr{T} . Then the group Γ in question is

$$\Gamma = \pi_1(\mathfrak{R}^0)/N.N^{\tau},$$

where N is the kernel of $\Phi: \pi_1(\Re^0) \to \pi_1(\Re)$, and the involution of $\pi_1(\Re^0)$ induced from τ is also denoted by τ . Now we can show (without knowing the algebraic equations for $(\mathscr{C}, \mathscr{C}'; \mathcal{T})$) that:

(a) \Re has genus 2, and \Re^0 has genus 5;

(b) $\varphi' = \varphi \circ \tau$, deg $\varphi = 3$, and φ is ramified at exactly two points of \mathfrak{R}^0 with ramification index 2;

(c) the number of fixed points of τ on \Re^0 is 4.

From these data, we can determine

(A) the group structure of $\pi_1(\Re^0)$;

(B) its normal subgroup N, up to automorphisms of $\pi_1(\mathfrak{R}^0)$,

(C) the involutive automorphism τ of $\pi_1(\mathfrak{R}^0)$, up to conjugacy in the full automorphism group of $\pi_1(\mathfrak{R}^0)$.

But this still does not determine the pair $\{N, N^{\dagger}\}$ up to automorphisms of $\pi_1(\mathfrak{R}^0)$, because the double coset space

Centralizer(τ)\Aut ($\pi_1(\mathfrak{R}^0)$)/Normalizer(N)

seems to be large and mysterious. The recent developments on the structure of the outer automorphism group of π_1 of compact Riemann surfaces still do not seem to help much.

§ 4. The unramified liftings of $(C, C'; \Pi + \Pi')$ over $\mathfrak{o}_{\mathfrak{p}}^{(2)}$ are in a close connection with discrete co-compact subgroups Γ of $PSL_2(\mathbf{R}) \times PGL_2^+(F_{\mathfrak{p}})$, where $PGL_2^+(F_{\mathfrak{p}})$ denotes the intermediate group of $PSL_2(F_{\mathfrak{p}}) \subset PGL_2(F_{\mathfrak{p}})$ corresponding to $\mathfrak{o}_{\mathfrak{p}}^{\times} F_{\mathfrak{p}}^{\times 2}/F_{\mathfrak{p}}^{\times 2}$ by the determinant. Put

$$V = PGL_2(\mathfrak{o}_{\mathfrak{p}}), \quad V' = \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix}^{-1} PGL_2(\mathfrak{o}_{\mathfrak{p}}) \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix}, \quad V^0 = V \cap V',$$

where π is a prime element of $F_{\mathfrak{p}}$, and let Γ_{V} , etc. be the projection to $PSL_2(\mathbf{R})$ of the intersection of Γ with $PSL_2(\mathbf{R}) \times V$, etc. Then Γ_{V} , etc. are discrete co-compact subgroups of $PSL_2(\mathbf{R})$. Let $\mathfrak{R}_{\Gamma}, \mathfrak{R}_{\Gamma}', \mathfrak{R}_{\Gamma}^{0}$ be the compact Riemann surfaces corresponding to $\Gamma_{V}, \Gamma_{V'}, \Gamma_{V0}$ respectively, and $\varphi_{\Gamma}: \mathfrak{R}_{\Gamma}^{0} \to \mathfrak{R}_{\Gamma}, \varphi_{\Gamma}': \mathfrak{R}_{\Gamma}^{0} \to \mathfrak{R}_{\Gamma}'$ be the canonical morphisms. Fix $\iota: \overline{F}_{\mathfrak{p}} \cong C$, as before.

Conjecture There is a categorical equivalence between

(A) Unramified liftings $(\mathcal{C}, \mathcal{C}'; \mathcal{T})$ of some $(C, C'; \Pi + \Pi')$ (not specified) over $\mathfrak{o}_{\mathfrak{p}}^{(2)}$ such that the normalization \mathcal{T}^* of \mathcal{T} is regular (as a scheme);

(B) Torsion-free co-compact discrete subgroups Γ of $PSL_2(\mathbf{R}) \times PGL_2^+(F_{\nu})$ for which the topological closure of the projection of Γ to $PSL_2(\mathbf{R})$ (resp. $PGL_2^+(F_{\nu})$) coincides with $PSL_2(\mathbf{R})$ (resp. contains $PSL_2(F_{\nu})$);

such that if Γ corresponds with $(\mathcal{C}, \mathcal{C}'; \mathcal{T})$ then the system $\{\Re_{\Gamma} \stackrel{\varphi_{\Gamma}}{\leftarrow} \Re_{\Gamma}^{\circ} \stackrel{\varphi'_{\Gamma}}{\rightarrow} \Re'_{\Gamma}\}$ of Riemann surfaces obtained from Γ in the above manner corresponds with $\{\mathcal{C} \leftarrow \mathcal{T}^* \rightarrow \mathcal{C}'\} \otimes_{\mathcal{C}} \mathcal{C}.$ The functor (B) \rightarrow (A) is established by the combination of results by Shimura, Ihara, Morita, Ohta and Margulis, except for the regularity of \mathcal{T}^* , as follows.

(a) the arithmeticity of Γ (Margulis [Ma 1]),

(b) if Γ corresponds with some $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ and $\Gamma^* \subset \Gamma$ (finite index), then Γ^* corresponds with some $(\mathscr{C}^*, \mathscr{C}'^*; \mathscr{T}^*)$ (Ihara [Ih 4])

(c) (b) with $\Gamma^* \supset \Gamma$ (cf. Ohta [Oh 1] § 3.4)

(d) congruence relations for Shimura curves for almost all p (Shimura [Sh 1]),

(e) (d) for individual \mathfrak{p} for congruence subgroups whose level is coprime with p (not \mathfrak{p}) (Morita [Mo 1]; cf. [Oh 1] § 3.4 for methods for refinement to " \mathfrak{p} ").

It should be added that (b) is based on the earlier work of [Ih-Mi 1] mentioned before, and (e) is based on the works of [Sh 1] and of [Ih 1].

For concrete description of arithmetically defined groups Γ , see [Ih 1] (b) Ch. 4. It is not known whether each Γ satisfies the congruence subgroup properties. The regularity of \mathcal{T}^* is proved only when $F = \mathbf{Q}_p$ [Ih 2]. When $F = \mathbf{Q}_p$, (\mathscr{C} , \mathscr{C}' ; \mathscr{T}) is always symmetric (Theorem 4, [Ih 6]).

As for the functor (A) \rightarrow (B), we constructed an infinite group Γ (§ 2, [Ih 4]) which has a natural embedding into $PSL_2(\mathbf{R})$, but what we could prove is only that Γ is a torsion-free co-compact discrete subgroup of $PSL_2(\mathbf{R}) \times \text{Aut}(\mathfrak{T})$, where \mathfrak{T} is the *tree* of $PGL_2^+(F_p)$.

The association $\Gamma \rightarrow (\mathscr{C}, \mathscr{C}'; \mathscr{T}) \rightarrow \Gamma$ is the identity, and (B) \rightarrow (A) makes (B) a full subcategory of "(A) without regularity of \mathscr{T}^{*} " (cf. [Ih 4]).

§ 5. Finally, let $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ be any unramified lifting of $(C, C'; \Pi + \Pi')$ over $\mathfrak{o}_{\mathfrak{p}}^{(2)}$. Then, as we have shown in [Ih 4] Section 5, the group Γ describes, not only the structure of the Galois group Gal (k_S^{ur}/k) , but also all the Frobenius elements in k_S^{ur}/k in terms of some Γ -conjugacy classes. Since each discrete subgroup Γ of $PSL_2(\mathbf{R}) \times PGL_2^+(F_{\mathfrak{p}})$ satisfying the conditions of (B) determines $(\mathscr{C}, \mathscr{C}'; \mathscr{T})$ (and hence also k and S), it describes the Galois group of k_S^{ur}/k together with all Frobenius elements as in [Ih 4] Section 5. Thus, the problem raised in [Ih 1] as conjectures $((C1) \sim (C5)$ in (c) § 1.3) have been solved affirmatively, although in a very indirect way^{*}).

References

[F1] Y. Furukawa, On the liftings of the Frobenius correspondences of algebraic curves of genus two over finite fields, to appear in J. Algebra.
[Ih 1] Y. Ihara, (a) The congruence monodromy problems, J. Math. Soc.

*) As for (C2), cf. also [Ih 2]. The elliptic modular case, which is the only case with cusps in view of [Ma 1], had been settled separately in earlier publications.

Japan, **20** (1968), 107–121.

- (b) On congruence monodromy problems, Lect. Note Univ. Tokyo, 1 (1968), 2 (1969).
- (c) Non-abelian classfields over function fields in special cases, Actes du Congres Intern. Math. Nice 1970, Tome 1, 381–389.
- —, On the differentials associated to congruence relations and the Schwarzian equations defining uniformizations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., **21** (1974), 309–332.
- [Ih 3] —, On the Frobenius correspondences of algebraic curves, "Algebraic number theory", Papers contributed for the International Symposium, Kyoto, 1976, Japan Soc. Prom. Sci., (1977), 67–98.
- [Ih 4] —, Congruence relations and Shimura curves, I, Proc. Symp. in pure Math., 33 Part 2, (1977), 291–311, Amer. Math. Soc.; II, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 25 (1979), 301–361.
- [Ih 5] —, Congruence relations and fundamental groups, J. Algebra, 75 (1982), 445–451.
- [Ih 6] —, Lifting curves over finite fields together with the characteristic correspondence II + II', ibid., **75** (1982), 452–483.
- [Ih 7] —, How many primes decompose completely in an infinite unramified Galois extension of a global field?, J. Math. Soc. Japan, 35 (1983), 693-709.
- [Ih-Mi 1] Y. Ihara and H. Miki, Criteria related to potential unramifiedness and reduction of unramified coverings of curves, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 22 (1975), 237-254.
- [Ma-1] G. A.. Margulis, Цискретные Группы Цвижений Многообразий Неположительной Кривизны, Proc. Internat. Congress Math. (Vancouver 1974) **2**, 21-34.
- [Mo 1] Y. Morita, Reduction mod \$\varphi\$ of Shimura curves, Hokkaido Math. J., 10 (1981), 209-238.
- [Oh 1] M. Ohta, On *l*-adic representations attached to automorphic forms, Japanese J. Math., 8 (1982), 1–47.
- [Sh 1] G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains I, Ann. of Math., 91 (1970), 144-222; II, ibid., 92 (1970), 528-549.

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan 97

[Ih 2]