On Generalized Hasse-Witt Invariants of an Algebraic Curve

Shōichi Nakajima

§ 1. Introduction

Let k be an algebraically closed field of characteristic $p>0$, and C a connected complete non-singular curve over k. Denote by $\pi_{1}(C)$ the Grothendieck fundamental group of C. (cf. [3] exp. V. The group $\pi_{1}(C)$ is isomorphic to $\mathrm{Gal}\left(K_{\mathrm{ur}} / K\right)$, where K is the function field of C and K_{ur} means the maximal unramified extension field of K.) Concerning this group $\pi_{1}(C)$, we shall generalize the result of Katsurada [7] (Theorem 1 in Section 2) and then prove another related theorem (Theorem 2 in Section 4).

To begin with, a short account will be given on the known facts about the structure of the group $\pi_{1}(C)$. For a non-negative integer g, put $\Gamma_{g}=\left\langle a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1\right\rangle$, the group generated by $2 g$ elements $a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}$ with one defining relation $a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1 . \quad\left(\Gamma_{g}=\{1\}\right.$ if $g=0$.) The group Γ_{g} is nothing but the topological fundamental group of a Riemann surface of genus g. Further, let $\hat{\Gamma}_{g}$ be the pro-finite completion of Γ_{g}, i.e. $\hat{\Gamma}_{g}=\lim _{\longleftarrow}\left(\Gamma_{g} / \Gamma\right)$ where Γ ranges over all normal subgroups of Γ_{g} with finite indices. Then, we can state a fundamental result of Grothendieck about $\pi_{1}(C)$ ([3] exp. X): If the genus of C equals g, then there exists a surjective continuous homomorphism $\varphi: \hat{\Gamma}_{g} \rightarrow \pi_{1}(C)$ with the following property:

Ker φ is contained in every open normal subgroup N of $\hat{\Gamma}_{g}$ such that [$\hat{\Gamma}_{g}: N$] is prime to p.

The surjectivity of φ says that to each finite étale covering $C^{\prime} \rightarrow C$ there corresponds a unique open subgroup N of $\hat{\Gamma}_{g}$. (The correspondence is given by $N=\varphi^{-1}\left(\pi_{1}\left(C^{\prime}\right)\right)$.) And the property ($*$) ensures that each open normal subgroup N of $\hat{\Gamma}_{g}$ with [$\hat{\Gamma}_{g}: N$] prime to p can be obtained as $\varphi^{-1}\left(\pi_{1}\left(C^{\prime}\right)\right)$ for some connected étale covering $C^{\prime} \rightarrow C$. But how about the groups N for which $\left[\hat{\Gamma}_{g}: N\right.$] is divisible by p ? Or, we naturally ask a
question: Can we determine the whole structure of $\pi_{1}(C)$, not only its "prime-to-p part"? Unfortunately, when $g \geqq 2$ no complete answer is known to the question above. If $g \geqq 2$, the structure of $\pi_{1}(C)$ has not yet been determined explicitly for any single example of C.

But classically, the following two facts have been known about the structure of $\pi_{1}(C)$. Let γ_{c} be the Hasse-Witt invariant of C. (cf. [6]; it is an integer satisfying $0 \leqq \gamma_{c} \leqq g$, and coincides with the p-rank of the Jacobian variety of C.) Then we have
(i) There exists an isomorphism

$$
\pi_{1}(C)^{\mathrm{ab}} \cong\left(\prod_{l \neq p} Z_{l}^{2 g}\right) \times \boldsymbol{Z}_{p}^{\gamma_{c}}
$$

where $\pi_{1}(C)^{\text {ab }}$ denotes the maximal abelian quotient of $\pi_{1}(C)$ and, on the right side, l ranges over all primes other than p (Hasse-Witt [6]).
(ii) The maximal pro- p quotient of $\pi_{1}(C)$ is isomorphic to the free pro- p group of rank γ_{c} (Šafarevič [14]).
The results (i) and (ii) above ensure, in particular, that the structures of the maximal abelian and the maximal pro- p quotients of $\pi_{1}(C)$ are determined by the invariants g and γ_{c} of C. Then naturally, we come to a question: Is it true that the structure of $\pi_{1}(C)$ itself is determined by g and γ_{c} only? But Katsurada [7] showed that the answer to this question is No, by introducing generalized Hasse-Witt invariants of C. His result will be generalized hereafter in this paper.

In Section 2, generalized Hasse-Witt invariants are defined and Theorem 1 is stated which connects the generalized Hasse-Witt invariants with the structure of $\pi_{1}(C)$. The proof of Theorem 1 is given in Section 3. In Section 4, the notion of " n-ordinary curve" is introduced, and in Section 5 is proved Theorem 2 which states that "general" curves of given genus are n-ordinary. Examples are given in Section 6. Finally, a recent result of the author is mentioned in Section 7. It does not concern the generalized Hasse-Witt invariants, but gives a necessary condition for a finite group to be a quotient group of $\pi_{1}(C)$.

The author wishes to express his hearty thanks to Professor Y. Ihara, particularly for suggesting Theorem 2.

§ 2. Generalized Hasse-Witt invariants

As above, let C be a connected complete non-singular algebraic curve over an algebraically closed field k of characteristic $p>0$. We shall define the generalized Hasse-Witt invariants of C. For that purpose, some notations are necessary.

Let \mathfrak{D} and \mathfrak{D} be respectively the divisor group and the divisor class group of C. For a natural number n, put

$$
\overline{\mathfrak{D}}_{n}=\{\bar{A} \in \overline{\mathfrak{D}} \mid n \bar{A}=0\}
$$

and

$$
{ }_{n} \overline{\mathfrak{D}}=\left\{\bar{A} \in \bar{D}_{n} \mid \text { the order of } \bar{A} \text { is precisely equal to } n\right\} .
$$

Further, for a natural number n which is prime to $p=$ char k, define an equivalence relation \approx in \mathscr{D}_{n} (and also in ${ }_{n}(\mathfrak{D})$ by

$$
\bar{A} \approx \bar{B} \Longleftrightarrow \bar{A}=p^{k} \bar{B} \quad \text { for some } k \in N \quad\left(\bar{A}, \bar{B} \in \bar{D}_{n}\right)
$$

(Since n is prime to p, \approx is actually an equivalence relation.) Then put $\mathfrak{A}_{n}=\overline{\mathfrak{D}}_{n} / \approx$ and ${ }_{n} \mathfrak{U}={ }_{n} \overline{\mathfrak{D}} / \approx$, the sets of equivalence classes under \approx. Obviously we have

$$
\mathfrak{A}_{n}=\bigcup_{d \backslash n} d^{\mathfrak{U}} \quad \text { (disjoint union) }
$$

Corresponding to each element $\alpha \in \mathfrak{Z}=\bigcup_{n n^{\mathfrak{U}}}$ (n varies over all natural numbers prime to p), the generalized Hasse-Witt invariant γ_{α} is defined in the following way: Let n be the natural number for which $\alpha \in{ }_{n} \mathfrak{U}$ holds, and let m be the order of p in $(Z / n Z)^{\times}$. Take an element $\bar{A} \in_{n} \overline{\mathfrak{D}}$ which belongs to α, and a divisor A in the class \bar{A}. Since $n \mid\left(p^{m}-1\right)$ and $n \bar{A}=0$, there is a rational function x on C such that $(x)=$ $\left(p^{m}-1\right) A$ holds. Let $\mathscr{L}(A)$ be the invertible sheaf determined by A (cf. [16] chap. II; we regard $\mathscr{L}(A)$ as contained in the constant sheaf of rational functions on C). Multiplication by the rational function x induces an isomorphism $\mu=\mu_{x}: \mathscr{L}\left(p^{m} A\right) \leftrightarrows \mathscr{L}(A)$. On the other hand, we have a morphism $F^{m}=\left(F^{m}\right)^{*}: \mathscr{L}(A) \rightarrow \mathscr{L}\left(p^{m} A\right)$, where F denotes the Frobenius morphism of C. Hence we have a morphism $\mu F^{m}: \mathscr{L}(A) \rightarrow \mathscr{L}(A)$, and it induces a map $\mu F^{m}: H^{1}(C, \mathscr{L}(A)) \rightarrow H^{1}(C, \mathscr{L}(A))$. Put

$$
H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}=\left\{\xi \in H^{1}(C, \mathscr{L}(A)) \mid \mu F^{m}(\xi)=\xi\right\}
$$

Then $H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}$ is a vector space over $\boldsymbol{F}_{q}\left(q=p^{m}\right)$ since μF^{m} : $H^{1}(C, \mathscr{L}(A)) \rightarrow H^{1}(C, \mathscr{L}(A))$ is a q-linear map, i.e.

$$
\mu F^{m}\left(a_{1} \xi_{1}+a_{2} \xi_{2}\right)=a_{1}^{q} \mu F^{m}\left(\xi_{1}\right)+a_{2}^{q} \mu F^{m}\left(\xi_{2}\right)
$$

holds for any $a_{1}, a_{2} \in k, \xi_{1}, \xi_{2} \in H^{1}(C, \mathscr{L}(A))$. We define the invariant γ_{α} by

$$
\gamma_{\alpha}=\operatorname{dim}_{F_{q}} H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}
$$

It is easily verified that γ_{α} depends only on the class \bar{A}, i.e. γ_{α} does not depend on the choice of A or x. Further, by virtue of Lemma 1 below, γ_{α} is also independent of the choice of $\bar{A} \in \alpha$, and hence γ_{α} is well-defined.

Lemma 1. Define the morphism $\tilde{\mu}: \mathscr{L}\left(p^{m+1} A\right) \rightarrow \mathscr{L}(p A)$ and the \boldsymbol{F}_{q} vector space $H^{1}(C, \mathscr{L}(p A))^{\tilde{a} F^{m}}$ as above, taking $p A$ and x^{p} instead of A and x. Then we have an isomorphism $H^{1}(C, \mathscr{L}(A))^{\mu F^{m}} \cong H^{1}(C, \mathscr{L}(p A))^{\tilde{F^{m}}}$ as \boldsymbol{F}_{q}-vector spaces.

Proof. We have morphisms $F: H^{1}(C, \mathscr{L}(A)) \rightarrow H^{1}(C, \mathscr{L}(p A))$ and $\mu F^{m-1}: H^{1}(C, \mathscr{L}(p A)) \rightarrow H^{1}(C, \mathscr{L}(A))$. Then since $\tilde{\mu} F \doteq F \mu$ holds, it is easy to check that the restrictions of F and μF^{m-1} above give isomorphisms between $H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}$ and $H^{1}(C, \mathscr{L}(p A))^{\tilde{F^{F m}}}$ which are inverse to each other.

By the following Proposition 1, we see that γ_{α} is an integer satisfying

$$
0 \leqq \gamma_{\alpha} \leqq \operatorname{dim}_{k} H^{1}(C, \mathscr{L}(A))=\left\{\begin{array}{cc}
g & (n=1) \\
g-1 & (n>1)
\end{array}\right.
$$

where g is the genus of C. (Since $\operatorname{deg} \mathscr{L}(A)=\operatorname{deg} A=0, \operatorname{dim}_{k} H^{1}(C, \mathscr{L}(A))$ is easily calculated by using the Riemann-Roch theorem.) Proposition 1 is due to Hasse-Witt [6]. (In [6] only the case $l=-1$ is treated. But the proof there applies to arbitrary l.)

Proposition 1 (Hasse-Witt). Let k be an algebraically closed field of characteristic $p>0$, and V a vector space over k of dimension d. If l is a non-zero integer and $f: V \rightarrow V$ is a p^{l}-linear map, then the set $V^{f}=$ $\{x \in V \mid f(x)=x\}$ is an F_{q}-vector space $\left(q=p^{|l|}\right)$. Let V_{s} be the k-linear subspace of V spanned by V^{f}, and put $V_{n}=\left\{x \in V \mid f^{d}(x)=0\right\}$. Then V_{n} is also a k-linear subspace of V, and we have
(i) $V=V_{s} \oplus V_{n}$ (direct sum),
(ii) $\operatorname{dim}_{k} V_{s}=\operatorname{dim}_{F_{q}} V^{f}$. In particular, $\operatorname{dim}_{F_{q}} V^{f}=d \Longleftrightarrow V_{s}=V$
$\Longleftrightarrow f: V \longrightarrow V$ is invertible
$\Longleftrightarrow f$ is surjective
$\Longleftrightarrow f$ is injective.
Remarks. (1) When $n=1$, the set ${ }_{1} \mathfrak{U}$ consists of only one element 0 , and the corresponding invariant γ_{0} coincides with the classical Hasse-Witt invariant γ_{c} of C. Hence γ_{α} 's are called generalized Hasse-Witt invariants.
(2) The value of γ_{α} can be calculated by using differentials and the Cartier operator (Proposition 2 below). The formula in Proposition 2 may be regarded as the definition of γ_{α}.
(3) Originally, the generalized Hasse-Witt invariants γ_{α} were defined in Katsurada [7] under the assumption that $n \mid(p-1)$, i.e. for $\alpha \in_{n} \mathfrak{H}$ such that $n \mid(p-1)$. (For definition, he used differentials. cf. Remark (2)
above.) He also proved Theorem 1 below in that case. Our definition of γ_{α} 's for arbitrary $n(p \nmid n)$ is a natural generalization of Katsurada's one. But by this generalization, infinitely many invariants $\left\{\gamma_{\alpha}\right\}$ have been defined for each curve C.
(4) The generalized Hasse-Witt invariants $\left\{\gamma_{\alpha}\right\}$ are actually new invariants other than g or γ_{c}, that is, there exist curves with the same g and γ_{c} which have different γ_{α} 's. This fact is shown in [7] and Section 6 of this article by concrete examples. However, I do not know whether the infinitely many invariants $\left\{\gamma_{\alpha}\right\}$ are "independent" or not.

Now we state Theorem 1 which connects the structure of $\pi_{1}(C)$ with the generalized Hasse-Witt invariants $\left\{\gamma_{\alpha}\right\}$ defined above. For a natural number n which is prime to p, put

$$
G_{n, p}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \in G L\left(2, F_{q}\right) \right\rvert\, a^{n}=1\right\}
$$

where $q=p^{m}$ and m is the order of p in $(Z / n Z)^{\times}$. By the definition of m, the field \boldsymbol{F}_{q} contains a primitive n-th root of unity, and hence the order of $G_{n, p}$ equals $n p^{m}$. By the word " $G_{n, p}$-covering of C " we mean a Galois covering $C^{\prime} \rightarrow C$ with Galois group isomorphic to $G_{n, p}$. Let $N=N_{C, n}$ be the number of C-isomorphism classes of connected étale $G_{n, p}$-coverings of C. In other words, N is the number of open normal subgroups H of $\pi_{1}(C)$ for which $\pi_{1}(C) / H \cong G_{n, p}$ holds. Then, we have the following

Theorem 1. The number $N=N_{C, n}$ is expressed by the generalized Hasse-Witt invariants $\left\{\gamma_{\alpha} \mid \alpha \in{ }_{n} \mathfrak{H}\right\}$ in the form

$$
N=\sum_{\alpha \in n^{\mathfrak{R}}} \frac{q^{\gamma \alpha}-1}{q-1}
$$

where $q=p^{m}$ and m is the order of p in $(\boldsymbol{Z} \mid n \boldsymbol{Z})^{\times}$.
Remark. By virtue of Theorem 1, we see that the structure of $\pi_{1}(C)$ actually depends on generalized Hasse-Witt invariants and can not be determined by g and γ_{c} only. (cf. examples in Section 6 and [7].)

Theorem 1 will be proved in Section 3. Before that, we explain here a method of calculating γ_{α} by using differentials and the Cartier operator. Let K be the function field of C over k and Ω_{C} the module of rational differentials on $C ; \Omega_{C}=\{x d y \mid x, y \in K\}$. Further, for a divisor A of C, put $\Omega_{c}(A)=\left\{\omega \in \Omega_{c} \mid(\omega) \succ A\right\}$, which is a finite-dimensional vector space over k. Let γ be the Cartier operator. It is a map $\gamma: \Omega_{c} \rightarrow \Omega_{C}$ with the following properties (cf. [1], [15]);
(i) $\gamma\left(x_{1}^{p} \omega_{1}+x_{2}^{p} \omega_{2}\right)=x_{1} \gamma\left(\omega_{1}\right)+x_{2} \gamma\left(\omega_{2}\right), \quad x_{1}, x_{2} \in K, \quad \omega_{1}, \omega_{2} \in \Omega_{c}$.
(ii) $r(d x)=0, \quad r\left(\frac{d x}{x}\right)=\frac{d x}{x}, \quad x \in K^{\times}$.
(iii) $\gamma\left(\Omega_{c}(p A)\right) \subset \Omega_{c}(A) \quad$ for any divisor A of C.

For a given $\alpha \in{ }_{n} \mathfrak{A}(p \nmid n)$, choose $\bar{A} \in \mathscr{D}, A \in \mathfrak{D}$ and $x \in K^{\times}$in the same way as at the beginning of this section. Define a map $\beta=\beta_{A, x}: \Omega_{c}(A) \rightarrow$ $\Omega_{c}(A)$ by $\beta(\omega)=\gamma^{m}(x \omega)$ for $\omega \in \Omega_{c}(A)$ (m is the order of p in $(\boldsymbol{Z} / n \boldsymbol{Z})^{\times}$). By the property (iii) of γ, β is well-defined. Since β is a p^{-m}-linear map (cf. property (i) of γ), the set $\Omega_{c}(A)^{\beta}=\left\{\omega \in \Omega_{c}(A) \mid \beta(\omega)=\omega\right\}$ is a vector space over $\boldsymbol{F}_{q}\left(q=p^{m}\right)$. Here Proposition 2 below holds, which gives us a method of calculating the generalized Hasse-Witt invariant γ_{α}.

Proposition 2. With the notations above, we have

$$
\gamma_{\alpha}=\operatorname{dim}_{F_{q}} \Omega_{c}(A)^{\beta} .
$$

Proof. The vector spaces $H^{1}(C, \mathscr{L}(A))$ and $\Omega_{c}(A)$ are dual to each other ([16] chap. II). And as is easily checked (cf. [15] $n^{\circ} 10$), the q-linear map $\mu F^{m}: H^{1}(C, \mathscr{L}(A)) \rightarrow H^{1}(C, \mathscr{L}(A))\left(\right.$ for μF^{m}, see the definition of γ_{α}) is the transpose of the q^{-1}-linear map $\beta: \Omega_{c}(A) \rightarrow \Omega_{c}(A)$, i.e. $\left\langle\mu F^{m}(\xi), \omega\right\rangle$ $=\langle\xi, \beta(\omega)\rangle^{q}$ holds for any $\xi \in H^{1}(C, \mathscr{L}(A))$ and $\omega \in \Omega_{c}(A) . \quad(\langle\xi, \omega\rangle$ is the dual pairing; cf. [15] Proposition 9.) Then the argument of [15] p. 38-39 shows that $H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}$ and $\Omega_{c}(A)^{\beta}$ are dual vector spaces over \boldsymbol{F}_{q}. Therefore we have $\gamma_{\alpha}=\operatorname{dim}_{F_{q}} H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}=\operatorname{dim}_{F_{q}} \Omega_{C}(A)^{\beta}$, and Proposition 2 is proved.

§ 3. Proof of Theorem 1

The group $G_{n, p}$ has a normal (hence unique) p-Sylow subgroup $H=$ $\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in G L\left(2, F_{q}\right)\right\}$, and the quotient $G_{n, p} / H$ is isomorphic to $Z / n Z$. Hence, if $C^{\prime \prime} \rightarrow C$ is a connected étale $G_{n, p}$-covering of C, then $C^{\prime \prime} \rightarrow C$ has a unique subcovering $C^{\prime} \rightarrow C$ which is cyclic of degree n. For each connected étale cyclic covering $C^{\prime} \rightarrow C$ of degree n, let $N_{C^{\prime}}$ be the number of connected étale $G_{n, p}$-coverings of C which contain $C^{\prime} \rightarrow C$ as a subcovering. Then, by the fact explained above, we have

$$
\begin{equation*}
N=\sum_{C^{\prime}} N_{C^{\prime}} \tag{3.1}
\end{equation*}
$$

where C^{\prime} ranges over all connected étale cyclic coverings of degree n of C. Therefore we fix a connected étale cyclic covering $C^{\prime} \rightarrow C$ of degree n, and will calculate $N_{C^{\prime}}$.

Let μ_{n} be the group of n-th roots of unity in k and let \bar{D}_{n} be as defined in Section 2. Then, by Kummer theory, we have an isomorphism $\bar{D}_{n} \cong \operatorname{Hom}\left(\pi_{1}(C), \mu_{n}\right)$ (the right side means, also in the following, the group of continuous homomorphisms). Let $\bar{D}\left(C^{\prime}\right)$ be the subgroup of $\overline{\mathfrak{D}}_{n}$ which corresponds to $\operatorname{Hom}\left(\operatorname{Gal}\left(C^{\prime} / C\right), \mu_{n}\right)$ by the above isomorphism. Obviously this set $\bar{D}\left(C^{\prime}\right)$ is closed under the equivalence relation \approx defined in Section 2. Put $\mathfrak{A}\left(C^{\prime}\right)=\overline{\mathfrak{D}}\left(C^{\prime}\right) / \approx$ and ${ }_{n} \mathfrak{U}\left(C^{\prime}\right)=\mathfrak{A}\left(C^{\prime}\right) \cap_{n} \mathfrak{Y}$. Then we have

$$
\begin{equation*}
{ }_{n} \mathfrak{U}=\bigcup_{C^{\prime}}{ }_{n} \mathfrak{U Y}\left(C^{\prime}\right) \quad \text { (disjoint union) } \tag{3.2}
\end{equation*}
$$

where C^{\prime} ranges over all connected étale cyclic coverings of degree n of C. Our aim is to prove the equality

$$
N_{C^{\prime}}=\sum_{\alpha \in n^{\pi}\left(C^{\prime}\right)} \frac{q^{\gamma \alpha}-1}{q-1} .
$$

Concerning the set $\mathfrak{H}\left(C^{\prime}\right)$, we have
Proposition 3. Let R be the set of all equivalence classes of $\boldsymbol{F}_{p^{-}}$ irreducible representations of the group $\mathrm{Gal}\left(C^{\prime} / C\right)$ on vector spaces over \boldsymbol{F}_{p}. Then we have a bijective map $f: \mathfrak{U}\left(C^{\prime}\right) \rightarrow R$ such that, for $\alpha \in \mathfrak{U}\left(C^{\prime}\right)$, the $\boldsymbol{F}_{p^{-}}$ irreducible representation $f(\alpha)$ of $\operatorname{Gal}\left(C^{\prime} / C\right)$ is faithful if and only if $\alpha \in$ ${ }_{n} \mathfrak{2}\left(C^{\prime}\right)$.

Proof. The map f is constructed as follows: For an element $\alpha \in$ $\mathfrak{Y}\left(C^{\prime}\right)$, we have $\alpha=\left\{\bar{A}, p \bar{A}, \cdots, p^{l-1} \bar{A}\right\}$ for some $\bar{A} \in \bar{D}_{n}$ and $l \in N$. Let $\chi=\chi_{\bar{A}}$ be the element of $\operatorname{Hom}\left(\operatorname{Gal}\left(C^{\prime} / C\right), \mu_{n}\right)$ which corresponds to \bar{A}. Then, $\chi, \chi^{p}, \cdots, \chi^{p^{l-1}}$ are all the conjugates of χ over \boldsymbol{F}_{p}. Hence the representation $\rho=\chi \oplus \chi^{p} \oplus \cdots \oplus \chi^{p^{l-1}}$ is equivalent to a representation which is realized and irreducible over F_{p}. This element ρ of R is the image $f(\alpha)$ of α. The map f thus defined is obviously injective. Since $\mathrm{Gal}\left(C^{\prime} / C\right)$ is abelian, all irreducible representations of $\mathrm{Gal}\left(C^{\prime} / C\right)$ over an algebraically closed field are one-dimensional. Hence an element ρ of R decomposes over k in the form $\rho \sim \chi \oplus \chi^{p} \oplus \cdots \oplus \chi^{p^{l-1}}$ where $\chi \in$ Hom $\left(\operatorname{Gal}\left(C^{\prime} / C\right), \mu_{n}\right)$ and $\chi, \chi^{p}, \cdots, \chi^{p l-1}$ are all the conjugates of χ over \boldsymbol{F}_{p} (ρ is \boldsymbol{F}_{p}-irreducible). This means that $\rho=f(\alpha)$ for some $\alpha \in \mathfrak{Y}\left(C^{\prime}\right)$, that is, f is also surjective. It is an immediate consequence of the decomposition

$$
\begin{equation*}
f(\alpha) \sim \chi \oplus \chi^{p} \oplus \cdots \oplus \chi^{p l-1} \tag{3.3}
\end{equation*}
$$

$\left(\chi=\chi_{\bar{A}}, \alpha=\left\{\bar{A}, p \bar{A}, \cdots, p^{l-1} \bar{A}\right\} \in \mathfrak{H}\left(C^{\prime}\right)\right)$ that $f(\alpha)$ is faithful if and only if the order of χ, hence the order of \bar{A}, equals n, i.e. if and only if $\alpha \in{ }_{n} \mathfrak{H}\left(C^{\prime}\right)$.
(When $\alpha \in{ }_{n} \mathfrak{2}\left(C^{\prime}\right)$, we have $l=m=$ the order of p in $(Z / n Z)^{\times}$.)
We regard the group $\pi_{1}\left(C^{\prime}\right)$ as an open normal subgroup of $\pi_{1}(C)$, for which $\pi_{1}(C) / \pi_{1}\left(C^{\prime}\right) \cong \operatorname{Gal}\left(C^{\prime} / C\right)$ holds. Consider the set Hom $\left(\pi_{1}\left(C^{\prime}\right)\right.$, $\boldsymbol{Z} / p \boldsymbol{Z})$ which is a vector space over \boldsymbol{F}_{p}. The group $\operatorname{Gal}\left(C^{\prime} / C\right)$ acts on Hom $\left(\pi_{1}\left(C^{\prime}\right), \boldsymbol{Z} / p \boldsymbol{Z}\right)$ in the following way: For $\sigma \in \operatorname{Gal}\left(C^{\prime} / C\right)$, choose a $\tilde{\sigma} \in \pi_{1}(C)$ whose image in $\operatorname{Gal}\left(C^{\prime} / C\right)$ coincides with σ. Then for $\chi \in$ Hom $\left(\pi_{1}\left(C^{\prime}\right), \boldsymbol{Z} / p \boldsymbol{Z}\right), \chi^{\sigma}$ is given by $\chi^{\sigma}(\tau)=\chi\left(\tilde{\sigma} \cdot \tau \cdot \tilde{\sigma}^{-1}\right)$ for any $\tau \in \pi_{1}\left(C^{\prime}\right)$. (This action is well-defined since $\boldsymbol{Z} / p \boldsymbol{Z}$ is abelian.)

There exists a one-to-one correspondence between the two sets S_{1} and S_{2} below;
$S_{1}=\left\{C^{\prime \prime} \longrightarrow C^{\prime} \mid C^{\prime \prime} \longrightarrow C^{\prime}\right.$ is a connected étale Galois covering such that $\operatorname{Gal}\left(C^{\prime \prime} / C^{\prime}\right) \cong(\boldsymbol{Z} / p \boldsymbol{Z})^{l}$ for some $\left.l\right\}$,
$S_{2}=\left\{V \mid V\right.$ is an \boldsymbol{F}_{p}-subspace of $\left.\operatorname{Hom}\left(\pi_{1}\left(C^{\prime}\right), Z / p \boldsymbol{Z}\right)\right\}$.
The correspondence is given by
(a) $C^{\prime \prime} \rightarrow C^{\prime}$ is the covering determined by the open subgroup $\bigcap_{x \in V}(\operatorname{Ker} \chi)$ of $\pi_{1}\left(C^{\prime}\right)$,
(b) $\quad V=\operatorname{Hom}\left(\operatorname{Gal}\left(C^{\prime \prime} / C^{\prime}\right), Z / p Z\right)$.

When $C^{\prime \prime} \rightarrow C^{\prime} \in S_{1}$ and $V \in S_{2}$ correspond, elementary Galois theory shows
(i) $\quad \operatorname{Gal}\left(C^{\prime \prime} / C^{\prime}\right) \cong(\boldsymbol{Z} / p \boldsymbol{Z})^{l} \Longleftrightarrow \operatorname{dim}_{F_{p}} V=l$,
(ii) $C^{\prime \prime} \rightarrow C$ is a Galois covering
$\Longleftrightarrow V$ is stable under the action of $\operatorname{Gal}\left(C^{\prime} / C\right)$ on $\operatorname{Hom}\left(\pi_{1}\left(C^{\prime}\right)\right.$, $Z / p Z)$.
Assume that $C^{\prime \prime} \rightarrow C$ is Galois, i.e. $\operatorname{Gal}\left(C^{\prime} / C\right)$ acts on V. Then we have

Lemma 2. (i) Let V^{*} be the dual vector space of V with the action of $\mathrm{Gal}\left(C^{\prime} / C\right)$ contragredient to that on V. Then we have an isomorphism $\operatorname{Gal}\left(C^{\prime \prime} / C\right) \cong \operatorname{Gal}\left(C^{\prime} / C\right) \ltimes V^{*}$ where the right side is the semi-direct product of $\mathrm{Gal}\left(C^{\prime} / C\right)$ and V^{*} defined by the above action of $\mathrm{Gal}\left(C^{\prime} / C\right)$ on V^{*}. (Here V^{*} is regarded as an additive group.)
(ii) We have $\operatorname{Gal}\left(C^{\prime \prime} / C\right) \cong G_{n, p}$ if and only if the action of $\mathrm{Gal}\left(C^{\prime} / C\right)$ on $V^{*}($ hence on $V)$ is faithful and \boldsymbol{F}_{p}-irreducible.

Proof. (i) Since $V=\operatorname{Hom}\left(\operatorname{Gal}\left(C^{\prime \prime} / C^{\prime}\right), Z / p Z\right)$, we have an exact sequence of groups $1 \rightarrow V^{*} \rightarrow \operatorname{Gal}\left(C^{\prime \prime} / C\right) \rightarrow \operatorname{Gal}\left(C^{\prime} / C\right) \rightarrow 1$. This sequence necessarily splits because the orders of $\operatorname{Gal}\left(C^{\prime} / C\right)(\cong Z / n Z)$ and V^{*} $\left(\cong(\boldsymbol{Z} / p \boldsymbol{Z})^{l}\right)$ are prime to each other (cf. [5] Theorem 15.2.2., for example). Hence we have $\operatorname{Gal}\left(C^{\prime \prime} / C\right) \cong \operatorname{Gal}\left(C^{\prime} / C\right) \ltimes V^{*}$.
(ii) By (i), our task is to prove that $\operatorname{Gal}\left(C^{\prime} / C\right) \ltimes V^{*} \cong G_{n, p}$ holds
if and only if the action of $\operatorname{Gal}\left(C^{\prime} / C\right)$ on V^{*} is faithful and \boldsymbol{F}_{p}-irreducible. The group $G_{n, p}$ is of the form $G_{n, p} \cong D \ltimes H$ (semi-direct product), where

$$
D=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) \in G L\left(2, \boldsymbol{F}_{q}\right)\right|^{n}=1\right\} \quad(\cong \boldsymbol{Z} \mid n \boldsymbol{Z})
$$

and

$$
H=\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \in G L\left(2, \boldsymbol{F}_{q}\right)\right\} \quad\left(\cong \boldsymbol{F}_{q} \cong(\boldsymbol{Z} / p \boldsymbol{Z})^{m}\right) .
$$

If an isomorphism $\varphi: \operatorname{Gal}\left(C^{\prime} / C\right) \ltimes V^{*} \leftrightharpoons G_{n, p}$ exists, it induces an isomorphism $\varphi_{0}: V^{*} \leftrightarrows H$ since $V^{*}[$ resp. H] is the unique p-Sylow subgroup of $\operatorname{Gal}\left(C^{\prime} / C\right) \ltimes V^{*}\left[\right.$ resp. $G_{n, p}$]. Then φ also induces an isomorphism φ_{1} : $\operatorname{Gal}\left(C^{\prime} / C\right) \leftrightarrows D$. Here the action ρ^{\prime} of $\operatorname{Gal}\left(C^{\prime} / C\right)$ on V^{*} is given by $\rho^{\prime}=$ $\varphi_{0}^{-1} \circ \rho \circ \varphi_{1}$ where ρ is the action of D on H. Since ρ is faithful and \boldsymbol{F}_{p} irreducible, ρ^{\prime} is also faithful and \boldsymbol{F}_{p}-irreducible. Conversely, if ρ^{\prime} is a faithful \boldsymbol{F}_{p}-irreducible representation of $\operatorname{Gal}\left(C^{\prime} / C\right)$, then ρ^{\prime} has a decomposition (3.3) (replacing $f(\alpha)$ by ρ^{\prime}). In that decomposition, the order of χ equals n since ρ^{\prime} is faithful, and hence we have $l=m$. Therefore, we can easily construct isomorphisms $\varphi_{0}: V^{*} \leftrightarrows H$ and $\varphi_{1}: \operatorname{Gal}\left(C^{\prime} / C\right) \leftrightarrows D$ so that $\rho^{\prime}=\varphi_{0}^{-1} \circ \rho \circ \varphi_{1}$ holds, and from these, an isomorphism $\varphi: \operatorname{Gal}\left(C^{\prime} / C\right)$ $\ltimes V^{*} \cong G_{n, p}$. Thus Lemma 2 has been proved.

By Lemma 2 the number $N_{C^{\prime}}$ is equal to the number of $\operatorname{Gal}\left(C^{\prime} / C\right)$ invariant subspaces of $\operatorname{Hom}\left(\pi_{1}\left(C^{\prime}\right), \boldsymbol{Z} \mid p \boldsymbol{Z}\right)$ which correspond to faithful F_{p}-irreducible representations of $\operatorname{Gal}\left(C^{\prime} / C\right)$.

Put $H^{1}\left(C^{\prime}\right)=H^{1}\left(C^{\prime}, \mathcal{O}_{C^{\prime}}\right)$ and $H^{1}\left(C^{\prime}\right)^{P}=\left\{\xi \in H^{1}\left(C^{\prime}\right) \mid F(\xi)=\xi\right\}$, where $F: H^{1}\left(C^{\prime}\right) \rightarrow H^{1}\left(C^{\prime}\right)$ donotes the p-linear map induced by the Frobenius morphism of C^{\prime}. (The group Gal $\left(C^{\prime} / C\right)$ acts on $H^{1}\left(C^{\prime}\right)$ and $H^{1}\left(C^{\prime}\right)^{F}$ in the natural way.) Then we have an isomorphism $\operatorname{Hom}\left(\pi_{1}\left(C^{\prime}\right), Z \mid p Z\right) \cong$ $H^{1}\left(C^{\prime}\right)^{F}$ (cf. [15] Proposition 12, for example). As is easily checked, this isomorphism commutes with the action of $\operatorname{Gal}\left(C^{\prime} / C\right)$. For each element $\chi \in \operatorname{Hom}\left(\operatorname{Gal}\left(C^{\prime} / C\right), \mu_{n}\right)$, put $H^{1}\left(C^{\prime}\right)^{x}=\left\{\xi \in H^{1}\left(C^{\prime}\right) \mid \xi^{\sigma}=\chi(\sigma) \xi\right.$ for every $\left.\sigma \in \operatorname{Gal}\left(C^{\prime} / C\right)\right\}$. Since F is p-linear, we have

$$
\begin{equation*}
F\left(H^{1}\left(C^{\prime}\right)^{x}\right) \subset H^{1}\left(C^{\prime}\right)^{x^{p}} \tag{3.4}
\end{equation*}
$$

For $\alpha \in \mathfrak{A}\left(C^{\prime}\right)$, let $f(\alpha)$ be the representation of $\operatorname{Gal}\left(C^{\prime} / C\right)$ defined in Proposition 3 and denote by $\left(H^{1}\left(C^{\prime}\right)^{F}\right)^{\alpha}$ the union of all $\mathrm{Gal}\left(C^{\prime} / C\right)$-invariant subspaces of $H^{1}\left(C^{\prime}\right)^{F}$ which correspond to the representation $f(\alpha)^{*}$ of $\operatorname{Gal}\left(C^{\prime} / C\right)$. Here $f(\alpha)^{*}$ means the contragredient representation of $f(\alpha)$.

Assume $\alpha \in{ }_{n}{ }^{2}\left(C^{\prime}\right)$. Then we have $f(\alpha) \sim \chi \oplus \chi^{p} \oplus \cdots \oplus \chi^{p m-1}$ for some $\chi \in \operatorname{Hom}\left(\operatorname{Gal}\left(C^{\prime} / C\right), \mu_{n}\right)$ of order n, where m is the order of p in
$(Z / n Z)^{\times}$(cf. proof of Proposition 3). Consequently, we have $f(\alpha)^{*} \sim \chi^{-1}$ $\oplus \chi^{-p} \oplus \cdots \oplus \chi^{-p^{m-1}}$. Here (3.4) shows that F^{m} acts on $H^{1}\left(C^{\prime}\right)^{x^{-1}}$. Put $\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}=\left\{\xi \in H^{1}\left(C^{\prime}\right)^{x^{-1}} \mid F^{m}(\xi)=\xi\right\}$. Then we have

Lemma 3. There exists an isomorphism of $\mathrm{Gal}\left(C^{\prime} / C\right)$-modules

$$
\left(H^{1}\left(C^{\prime}\right)^{F}\right)^{\alpha} \cong\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}
$$

Proof. Put $W=\oplus_{x^{\prime}} H^{1}\left(C^{\prime}\right)^{x^{\prime}} \subset H^{1}\left(C^{\prime}\right)$, where χ^{\prime} ranges over $\left\{\chi^{-1}\right.$, $\left.\chi^{-p}, \cdots, \chi^{-p^{m-1}}\right\}$. Then, from definition we have $\left(H^{1}\left(C^{\prime}\right)^{F}\right)^{\alpha}=W^{F}=$ $\{\xi \in W \mid F(\xi)=\xi\}$. Consider the projection $\pi: W \rightarrow H^{1}\left(C^{\prime}\right)^{x^{-1}}$. We have $\pi\left(W^{F}\right) \subset\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}$ by the property (3.4). Further, the map μ : $\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}} \rightarrow W^{F}, \mu(\xi)=\left(\xi, F(\xi), \cdots, F^{m-1}(\xi)\right)$, gives a homomorphism inverse to π. Hence we have $W^{F} \cong\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F m}$.

The set $\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}$ has a structure of vector space over F_{q} where $q=p^{m} \quad$ (cf. Proposition 1), and an element $\sigma \in \operatorname{Gal}\left(C^{\prime} / C\right)$ acts on $\left(H^{1}\left(C^{\prime}\right)^{\chi^{-1}}\right)^{F^{m}}$ as multiplication by $\chi^{-1}(\sigma) \in \mu_{n} \subset \boldsymbol{F}_{q}$. Since $\chi^{-1}: \operatorname{Gal}\left(C^{\prime} / C\right)$ $\rightarrow \mu_{n}$ is surjective (χ^{-1} has order n) and μ_{n} generates \boldsymbol{F}_{q} over \boldsymbol{F}_{p}, an $\boldsymbol{F}_{p^{-}}$ subspace of $\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}$ is $\mathrm{Gal}\left(C^{\prime} / C\right)$-invariant if and only if it is an \boldsymbol{F}_{q}-subspace of $\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}$. Consequently, a $\mathrm{Gal}\left(C^{\prime} / C\right)$-invariant $\boldsymbol{F}_{p^{-}}$ subspace of $\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}$ is irreducible if and only if it is a one-dimensional \boldsymbol{F}_{q}-subspace. Hence by Lemma 3 and the following Lemma 4, we have an equality ($\alpha \in{ }_{n} \mathfrak{2}\left(C^{\prime}\right)$),

$$
\text { the number of irreducible } \operatorname{Gal}\left(C^{\prime} / C\right) \text {-invariant subspaces of }
$$

$$
\begin{equation*}
\left(H^{1}\left(C^{\prime}\right)^{F}\right)^{\alpha}=\frac{q^{\gamma \alpha}-1}{q-1} \tag{3.5}
\end{equation*}
$$

Lemma 4. $\gamma_{\alpha}=\operatorname{dim}_{F_{q}}\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}$
Proof. We have $\chi=\chi_{\bar{A}}$ for some $\bar{A} \in \alpha$. Choose A and x as in the definition of $\gamma_{\alpha}(\S 2)$. Then $y=x^{l-1}\left(l=p^{m}-1\right)$ is a rational function on C^{\prime} whose divisor (y) coincides with A considered as a divisor on C^{\prime}. Further we have $y^{\sigma}=\chi(\sigma) y$ for any $\sigma \in \operatorname{Gal}\left(C^{\prime} / C\right)$. Let $\mathcal{O}_{C^{\prime}}^{x-1}$ be a subsheaf of $\mathcal{O}_{C^{\prime}}$ whose stalk at $z \in C^{\prime}$ equals

Then, multiplication by the rational function y gives an isomorphism η : $\underset{O^{\prime}, z}{x-1} \leftrightarrows f^{-1} \mathscr{L}(A)\left(f: C^{\prime} \rightarrow C\right)$. Hence we have an isomorphism

$$
H^{1}\left(C^{\prime}\right)^{x^{-1}}=H^{1}\left(C^{\prime}, \mathcal{O}_{C^{\prime}}^{x-1}\right) \xrightarrow{\eta} H^{1}\left(C^{\prime}, f^{-1} \mathscr{L}(A)\right)=H^{1}(C, \mathscr{L}(A)),
$$

and further we have $\mu F^{m}=\eta F^{m} \eta^{-1}\left(\right.$ for $\mu F^{m}: H^{1}(C, \mathscr{L}(A)) \rightarrow H^{1}(C, \mathscr{L}(A))$, see § 2). Therefore η gives an isomorphism $\left(H^{1}\left(C^{\prime}\right)^{\chi^{-1}}\right)^{F^{m}} \rightarrow H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}$, and in particular, we have $\gamma_{\alpha}=\operatorname{dim}_{F_{q}} H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}=\operatorname{dim}_{F_{q}}\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}$.

Now we are at the final step of the proof of Theorem 2. By Proposition 3, Lemma 2 (ii) and the formula (3.5), we have

$$
N_{C^{\prime}}=\sum_{\alpha \in n^{2 \mu}\left(C^{\prime}\right)} \frac{q^{\gamma_{\alpha}}-1}{q-1}
$$

Therefore the equalities (3.1) and (3.2) show

$$
N=\sum_{\alpha \in n_{\mathfrak{q}}} \frac{q^{\gamma \alpha}-1}{q-1}
$$

and hence Theorem 2 has been proved.

§4. n-ordinary curves

In this section we introduce the notion of " n-ordinary curve" and state Theorem 2 which says that "general" curves of given genus are n-ordinary.

Let k be an algebraically closed field of characteristic $p>0$, and C a connected complete non-singular algebraic curve of genus g over k. We have the generalized Hasse-Witt invariants $\left\{\gamma_{\alpha}\right\}$ of C defined in Section 2. Let n be a natural number prime to $p=\operatorname{char} k$. Then we call the curve C " n-ordinary" if and only if $\gamma_{\alpha}=\left\{\begin{array}{cc}g & (n=1) \\ g-1 & (n>1)\end{array}\right.$ for all $\alpha \in{ }_{n}{ }^{2}$ 2. When $n=1$, the word " 1 -ordinary" means the same as the word "ordinary" in the usual sense (i.e. $\gamma_{C}=g$). As is seen from Theorem 1, an n-ordinary curve has a maximal possible number of connected étale $G_{n, p}$-coverings, as a curve of genus g over k. (Recall that $l=\left\{\begin{array}{cc}g & (n=1) \\ g-1 & (n>1)\end{array}\right.$ is the maximal possible value of γ_{α} for $\alpha \in{ }_{n} \mathfrak{2}$.) The fundamental group $\pi_{1}(C)$ of an n-ordinary curve C is "big" in this sense.

Here we mention a sufficient condition for a curve to be n-ordinary.
Proposition 4. Let C and n be as above. Then C is n-ordinary if for every connected étale cyclic covering $C^{\prime} \rightarrow C$ of degree n, C^{\prime} is an ordinary curve.

Proof. We use the notation of Section 3. For $\alpha \in{ }_{n} \mathfrak{A}$, Lemma 4 in Section 3 shows that $\gamma_{\alpha}=\operatorname{dim}_{F_{q}}\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}$ for some connected étale
cyclic covering $C^{\prime} \rightarrow C$ of degree n. But $F: H^{1}\left(C^{\prime}\right) \rightarrow H^{1}\left(C^{\prime}\right)$ is invertible since C^{\prime} is ordinary by assumption. Then, a fortiori, $F^{m}: H^{1}\left(C^{\prime}\right)^{x^{-1}} \rightarrow$ $H^{1}\left(C^{\prime}\right)^{x^{-1}}$ is invertible. Hence we have by Proposition 1,

$$
\begin{aligned}
\gamma_{\alpha} & =\operatorname{dim}_{F_{q}}\left(H^{1}\left(C^{\prime}\right)^{x^{-1}}\right)^{F^{m}}=\operatorname{dim}_{k} H^{1}\left(C^{\prime}\right)^{x^{-1}}=\operatorname{dim}_{k} H^{1}(C, \mathscr{L}(A)) \\
& =\left\{\begin{array}{cl}
g & (n=1) \\
g-1 & (n>1)
\end{array} \quad\right. \text { (cf. proof of Lemma 4) }
\end{aligned}
$$

This equality holds for every $\alpha \in{ }_{n} \mathfrak{A}$, i.e. the curve C is n-ordinary.
Until now we considered generalized Hasse-Witt invariants, fixing a curve. Here we let curves vary, fixing genus, and show that "general" curves of given genus are n-ordinary for each fixed natural number n which is prime to p. First we recall the moduli space of curves over k. As before, k denotes an algebraically closed field of characteristic $p>0$. For a non-negative integer g, let $M_{g} \rightarrow \operatorname{Spec} k$ be the coarse moduli scheme of connected complete non-singular algebraic curves of genus g over k. For the precise definition of coarse moduli scheme, see [11]. In particular, for any algebraically closed field Ω which contains k, Ω-valued points of M_{g} correspond bijectively with isomorphism classes of connected complete non-singular algebraic curves of genus g over Ω. The existence of M_{g} is shown in [11]. It is known that M_{g} is an irreducible quasi-projective variety over k (cf. [2], [11]).

Let n be a natural number prime to $p=$ char k, and U_{n} the subset of M_{g} consisting of all points which correspond to n-ordinary curves. Then we have

Theorem 2. The set U_{n} is a non-empty Zariski-open set of M_{g}. (Hence U_{n} is Zariski-dense in M_{g} since M_{g} is irreducible.)

Remark. By Theorem 2, U_{n} is open in M_{g} for each n. But I do not know whether or not the intersection $\bigcap_{p \nmid n} U_{n}$ of U_{n} for all $n(p \nmid n)$ is still an open set of M_{g}.

Theorem 2 will be proved in the following section.

§ 5. Proof of Theorem 2

First we settle the cases $g=0$ and $g=1$. When $g=0$, the projective line P^{1} is the only one curve of genus zero and is n-ordinary for any n. Hence Theorem 2 is formally true (but trivial) in this case. When $g=1$, all curves of genus one (i.e. elliptic curves) are n-ordinary by definition, if $n \geqq 2$. When $n=1$, it is a well-known fact that 1 -ordinary (i.e. ordinary)
elliptic curves make an open set in j-line, the coarse moduli variety of elliptic curves.

Hereafter, we assume $g \geqq 2$ and prove Theorem 2. The proof is divided into two parts.

I. Openness of U_{n}

Since $g \geqq 2, M_{g}$ is obtained in the following way: There is a proper smooth morphism $f: \Gamma \rightarrow H$ of varieties over k such that the fibers of f are connected curves of genus g. An algebraic group G acts on $\Gamma \rightarrow H$ and M_{g} is the geometric quotient of H by G. (cf. [2], [11]. We can take as $f: \Gamma \rightarrow H$ the universal family of tri-canonically embedded connected complete non-singular curves of genus $g\left(\Gamma \subset H \times \boldsymbol{P}^{5 g-6}\right.$ and $G=$ PGL($5 \mathrm{~g}-6)$).) Let V_{n} be the subset of H consisting of all points x for which the fiber $f^{-1}(x)$ is n-ordinary. Then V_{n} is stable by the action of G and U_{n} is the quotient set of V_{n}. Hence it suffices for us to prove that V_{n} is an open subset of H.

Since $f: \Gamma \rightarrow H$ is proper smooth, [9] chap. VI Corollary 4.2 shows that the sheaf $R^{1} f_{*}\left(\mu_{n}\right)$ is locally isomorphic to $(Z / n Z)^{2 g}$ in the étale topology of H (μ_{n} is the group of n-th roots of unity. We have $\mu_{n} \cong$ $Z / n Z)$. Hence we can take an open covering $\left\{U_{i}\right\}$ of H in the étale topology such that $g_{i}^{*} R^{1} f_{*}\left(\mu_{n}\right)=R^{1}\left(f_{i}\right)_{*}\left(\mu_{n}\right) \cong(\boldsymbol{Z} / n \boldsymbol{Z})^{2 g}$ holds.

It is sufficient to prove that, for each $i, g_{i}^{-1}\left(V_{n}\right)$ is open in U_{i}. Hence, in order to save symbols, we assume that $R^{1} f_{*}\left(\mu_{n}\right) \cong(\boldsymbol{Z} / n \boldsymbol{Z})^{2 g}$ holds for f : $\Gamma \rightarrow H$ itself, and prove that V_{n} is open. Further we may assume that $f: \Gamma \rightarrow H$ admits a section. For, if f does not have a section, replace f : $\Gamma \rightarrow H$ by $g: \Gamma \times{ }_{H} \Gamma \rightarrow \Gamma$ (the diagram below).

This g admits a section (diagonal embedding), and V_{n} is open in H if and only if $f^{-1}\left(V_{n}\right)$, which consists of all points x of Γ such that the fiber $g^{-1}(x)$ is n-ordinary, is open in Γ. (f is proper smooth, hence a surjective open mapping.) Therefore we assume that $f: \Gamma \longrightarrow H$ has a section.

Concerning an algebraic curve C over k, we see, by Proposition 1
and the definition of γ_{α}, that $\gamma_{\alpha}=\left\{\begin{array}{cc}g & (n=1) \\ g-1 & (n>1)\end{array}\right.$ if and only if the map $\mu F^{m}: H^{1}(C, \mathscr{L}(A)) \rightarrow H^{1}(C, \mathscr{L}(A))$ is invertible (for the notation, see Section 2), which is equivalent to the condition that $F^{m}: H^{1}(C, \mathscr{L}(A)) \rightarrow$ $H^{1}\left(C, \mathscr{L}\left(p^{m} A\right)\right)=H^{1}\left(C,\left(F^{m}\right)^{*} \mathscr{L}(A)\right)$ is invertible $\left(\mu: H^{1}\left(C, \mathscr{L}\left(p^{m} A\right)\right) \rightarrow\right.$ $H^{1}(C, \mathscr{L}(A))$ is always invertible). Hence C is n-ordinary if and only if $F^{m}: H^{1}(C, \mathscr{L}) \rightarrow H^{1}\left(C,\left(F^{m}\right)^{*} \mathscr{L}\right)$ is invertible for every invertible sheaf \mathscr{L} whose order (in the Picard group of C) equals n. We shall prove the openness of V_{n} using this fact.

From $R^{1} f_{*}\left(\mu_{n}\right) \cong(Z / n Z)^{2 g}$ we obtain $\operatorname{Pic}(\Gamma / H)_{n}=\{\xi \in \operatorname{Pic}(\Gamma / H) \mid n \xi$ $=0\} \cong(Z / n Z)^{2 g}$. The homomorphism $\operatorname{Pic}(\Gamma) \rightarrow \operatorname{Pic}(\Gamma / H)$ is surjective since $f: \Gamma \rightarrow H$ has a section (cf. [4]). Therefore we can choose a finite number of elements $\mathscr{L}_{1}, \cdots, \mathscr{L}_{\lambda} \in \operatorname{Pic}(\Gamma)$ such that
the image of \mathscr{L}_{i} in $\operatorname{Pic}(\Gamma / H)$ has order $n(i=1, \cdots, \lambda)$, and each element of order n in $\operatorname{Pic}(\Gamma / H)$ is the image of $\mathscr{L}_{i} \in \operatorname{Pic}(\Gamma)$ for some $i=1, \cdots, \lambda$.

For each $y \in H$ and invertible sheaf \mathscr{L} over Γ, put $\Gamma_{y}=f^{-1}(y)$ and $\mathscr{L}_{y}=$ $\left.\mathscr{L}\right|_{r_{y}}$. Then for every $y \in H$ and $i=1, \cdots, \lambda,\left(\mathscr{L}_{i}\right)_{y}$ is an invertible sheaf of order n over the curve Γ_{y} and further, because of the property (*), $\left(\mathscr{L}_{i}\right)_{y}(i=1, \cdots, \lambda)$ give all the elements of order n in Pic $\left(\Gamma_{y}\right)$. (Since $R^{1} f_{*}\left(\mu_{n}\right)$ is a constant sheaf, we have $\left.\operatorname{Pic}(\Gamma / H)_{n} \leftrightarrows \operatorname{Pic}\left(\Gamma_{y}\right)_{n}.\right) \quad$ For each $i=1, \cdots, \lambda$, we have

$$
\operatorname{dim}_{\kappa(y)} H^{1}\left(\Gamma_{y},\left(\mathscr{L}_{i}\right)_{y}\right)=\operatorname{dim}_{\kappa(y)} H^{1}\left(\Gamma_{y},\left(\left(F^{m}\right)^{*} \mathscr{L}_{i}\right)_{y}\right)=\left\{\begin{array}{cc}
g & (n=1) \\
g-1 & (n>1)
\end{array}\right.
$$

where $\kappa(y)$ denotes the residue field of $y(F$ is the (p-th power) Frobenius morphism and m is the order of p in $\left.(Z / n Z)^{\times}\right)$. Therefore by [10] p. 50 Corollary 2, there exists a covering $H=\bigcup_{j \in I} W_{j}\left(W_{j}=\operatorname{Spec} R_{j}\right)$ of H by affine open subsets such that

$$
H^{1}\left(\left.\Gamma\right|_{W_{j}},\left.\mathscr{L}\right|_{W_{j}}\right) \cong R_{j}^{l} \quad\left(l=\left\{\begin{array}{cr}
g & (n=1) \\
g-1 & (n>1)
\end{array}\right)\right.
$$

holds for each $j \in I$ and $\mathscr{L} \in\left\{\mathscr{L}_{1}, \cdots, \mathscr{L}_{\lambda},\left(F^{m}\right)^{*} \mathscr{L}_{1}, \cdots,\left(F^{m}\right)^{*} \mathscr{L}_{\lambda}\right\}$. For every $j \in I$ and $i=1, \cdots, \lambda$, we have a p^{m}-linear map

$$
F^{m}: H^{1}\left(\left.\Gamma\right|_{W_{j}},\left.\mathscr{L}_{i}\right|_{W_{j}}\right) \longrightarrow H^{1}\left(\left.\Gamma\right|_{W_{j}},\left.\left(F^{m}\right)^{*} \mathscr{L}_{i}\right|_{W_{j}}\right) .
$$

Since we have

$$
H^{1}\left(\left.\Gamma\right|_{W_{j}},\left.\mathscr{L}_{i}\right|_{W_{j}}\right) \cong H^{1}\left(\left.\Gamma\right|_{W_{j}},\left.\left(F^{m}\right)^{*} \mathscr{L}_{i}\right|_{W_{j}}\right) \cong R_{j}^{l}
$$

we obtain, fixing R_{j}-bases of $H^{1}\left(\left.\Gamma\right|_{W_{j}},\left.\mathscr{L}_{i}\right|_{W_{j}}\right)$ and $H^{1}\left(\left.\Gamma\right|_{W_{j}},\left.\left(F^{m}\right)^{*} \mathscr{L}_{i}\right|_{W_{j}}\right)$, the determinant $d_{i, j} \in R_{j}$ of the map F^{m} above. Put $d_{j}=\prod_{i=1}^{2} d_{i, j} \in R_{j}$. Then, $d_{j} \neq 0$ at $y \in W_{j}=\operatorname{Spec} R_{j}$ if and only if

$$
F^{m}: H^{1}\left(\Gamma_{y},\left(\mathscr{L}_{i}\right)_{y}\right) \longrightarrow H^{1}\left(\Gamma_{y},\left(F^{m}\right)^{*}\left(\mathscr{L}_{i}\right)_{y}\right)
$$

is invertible for every $i=1, \cdots, \lambda$. Hence $d_{j} \neq 0$ at $y \in W_{j}$ is equivalent to the condition that the curve Γ_{y} is n-ordinary, because $\left(\mathscr{L}_{i}\right)_{y}(i=$ $1, \cdots, \lambda$) give all the invertible sheaves of order n over Γ_{y}. In other words, we have $V_{n} \cap W_{j}=\left\{y \in W_{j} \mid d_{j} \neq 0\right.$ at $\left.y\right\}$, and consequently $V_{n} \cap$ W_{j} is open in W_{j} for all $j \in I$. Therefore V_{n} is open in H (recall $H=$ $\bigcup_{j \in I} W_{j}$) and hence U_{n} is open in M_{g} as we wanted to prove.
II. Non-emptiness of U_{n}

In [8], Koblitz used the degenerate curve C_{0} below to show the existence of an ordinary (i.e. 1-ordinary) curve of genus g. Here we start from the curve C_{0} and construct an n-ordinary (non-singular) curve as a deformation of C_{0}.

Let C_{0} be a stable curve of genus g over k of the following form (for the definition of stable curve, see [2]):

$$
C_{0}=E_{1} \cup \cdots \cup E_{g}
$$

(a) each E_{i} is an ordinary elliptic curve over k.
(b) for $i<j, E_{i} \cap E_{j}=\left\{\begin{array}{cl}P_{i} & j=i+1 \\ \phi & \text { otherwise }\end{array}\right.$.
(c) each P_{i} is an ordinary double point of C_{0}.

Concerning this curve C_{0}, we have
Proposition 5. (i) Pic $\left(C_{0}\right)_{n} \cong(\boldsymbol{Z} / n \boldsymbol{Z})^{2 g}$.
(ii) Let $f: C_{0}^{\prime} \rightarrow C_{0}$ be an étale covering of degree n and $F: C_{0}^{\prime} \rightarrow C_{0}^{\prime}$ the (p-th power) Frobenius morphism. Then

$$
F=F^{*}: H^{1}\left(C_{0}^{\prime}, \mathcal{O}_{C_{0}^{\prime}}\right) \longrightarrow H^{1}\left(C_{0}^{\prime}, \mathcal{O}_{C_{0}^{\prime}}\right)
$$

the p-linear map induced by F, is invertible.
Proof. (i) Let $\mathcal{O}_{P_{i}}^{\times}(i=1, \cdots, g-1)$ be a sheaf over C_{0} whose stalk at $x \in C_{0}$ is given by

$$
\mathcal{O}_{P_{i}, x}^{\times}=\left\{\begin{array}{ll}
k^{\times} & x=P_{i} \\
\{1\} & x \neq P_{i}
\end{array} .\right.
$$

Then there is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{C_{0}}^{\times} \longrightarrow \oplus_{i=1}^{g} \mathcal{O}_{E_{i}}^{\times} \longrightarrow \stackrel{g-1}{\oplus} \mathcal{O}_{P_{i}}^{\times} \longrightarrow 0
$$

From the cohomology sequence of this exact sequence and the exactness of

we have

$$
H^{1}\left(\mathcal{O}_{C_{0}}^{\times}\right) \cong{\underset{i=1}{g}}_{{ }_{i}} H^{1}\left(\mathcal{O}_{E_{i}}^{\times}\right)
$$

Hence we obtain

$$
\operatorname{Pic}\left(C_{0}\right)_{n}=H^{1}\left(\mathcal{O}_{C_{0}}^{\times}\right)_{n} \cong \bigoplus_{i=1}^{g} H^{1}\left(\mathcal{O}_{E_{i}}^{\times}\right)_{n} \cong(Z / n Z)^{2 g}
$$

(ii) Since $f: C_{0}^{\prime} \rightarrow C_{0}$ is an étale covering, every singular point of C_{0}^{\prime} lies over some $P_{i}(i=1, \cdots, g-1)$ and is an ordinary double point. Further, each irreducible component of C_{0}^{\prime} is an ordinary elliptic curve since it is a finite étale covering of some $E_{i}(i=1, \cdots, g)$. Consequently, C_{0}^{\prime} is of the form

$$
C_{0}^{\prime}=E_{1}^{\prime} \cup \cdots \cup E_{l}^{\prime}
$$

where each E_{i}^{\prime} is an ordinary elliptic curve and $E_{i}^{\prime} \cap E_{j}^{\prime}(i \neq j)$ consists of a finite number of ordinary double points. Put $f^{-1}\left(P_{i}\right)=\left\{Q_{n(i-1)+1}, \cdots, Q_{n i}\right\}$ $(i=1, \cdots, g-1)$. Then $Q_{1}, \cdots, Q_{n(g-1)}$ are ordinary double points of C_{0}^{\prime} and give all the singular points of $C_{0}^{\prime} . \quad$ For each $i=1, \cdots, n(g-1)$, define a sheaf $\mathcal{O}_{Q_{i}}$ over C_{0}^{\prime} by

$$
\mathcal{O}_{Q_{i}, x}=\left\{\begin{array}{cc}
k & x=Q_{i} \\
\{0\} & x \neq Q_{i}
\end{array} \quad \text { for each } x \in C_{0}^{\prime}\right.
$$

From the exact sequence

$$
0 \longrightarrow \mathcal{O}_{C_{0}^{\prime}} \longrightarrow \oplus_{i=1}^{l} \mathcal{O}_{E_{i}^{\prime}} \longrightarrow \oplus_{i=1}^{n(g-1)} \mathcal{O}_{Q_{i}} \longrightarrow 0
$$

we have a commutative diagram

Here $F: H^{0}\left(\mathcal{O}_{Q_{i}}\right) \longrightarrow H^{0}\left(\mathcal{O}_{Q_{i}}\right)$ is surjective since it is the p-th power map of $k=H^{0}\left(\mathcal{O}_{Q_{i}}\right)$, and $F: H^{1}\left(\mathcal{O}_{E_{i}^{\prime}}\right) \rightarrow H^{1}\left(\mathcal{O}_{E_{i}^{\prime}}\right)$ is also surjective since E_{i}^{\prime} is an
ordinary elliptic curve. Therefore, as is easily checked by diagram chase, $F: H^{1}\left(\mathcal{O}_{C_{0}^{\prime}}\right) \rightarrow H^{1}\left(\mathcal{O}_{C_{0}^{\prime}}\right)$ is surjective, i.e. it is invertible.

Put $R=k\left[\left[t_{1}, \cdots, t_{N}\right]\right](N=g-1)$ and let s and η be respectively the closed and generic points of $\operatorname{Spec} R$. Then by the results of [2] Section 1, there exists a scheme $\mathscr{C} \rightarrow \operatorname{Spec} R$ with the following properties:
(i) $\mathscr{C} \rightarrow \operatorname{Spec} R$ is a stable curve of genus g.
(ii) Denote by \mathscr{C}_{s} and \mathscr{C}_{η} the fibers of $\mathscr{C} \rightarrow \operatorname{Spec} R$ at s and η. Then \mathscr{C}_{s} is isomorphic to the curve C_{0} defined above, and \mathscr{C}_{η} is nonsingular.
Put $\kappa=k\left(\left(t_{1}, \cdots, t_{N}\right)\right)$ and let $\bar{\kappa}$ be the algebraic closure of κ. We shall show that $C=\mathscr{C}_{\eta} \times_{\text {Spec } \kappa} \operatorname{Spec} \bar{\kappa}$ is an n-ordinary curve. We first prove

Lemma 5. Let $C^{\prime} \rightarrow C$ be a connected étale cyclic covering of degree n. Then there exists a connected étale cyclic covering $\mathscr{C}^{\prime} \rightarrow \mathscr{C}$ of degree n such that $\mathscr{C}_{\eta}^{\prime} \times \operatorname{Spec} \bar{\kappa} \rightarrow \mathscr{C}_{\eta} \times \operatorname{Spec} \bar{\kappa}=C$ is isomorphic to $C^{\prime} \rightarrow C$.

Proof. By [3] exp. X Corollaire 2.3, the specialization homomorphism $\pi_{1}(C) \rightarrow \pi_{1}\left(\mathscr{C}_{s}\right) \cong \pi_{1}(\mathscr{C})$ is surjective. Hence Hom $\left(\pi_{1}\left(\mathscr{C}_{s}\right), Z / n Z\right) \rightarrow$ Hom $\left(\pi_{1}(C), Z / n Z\right)$ is injective. On the other hand, $\operatorname{Hom}\left(\pi_{1}\left(\mathscr{C}_{s}\right), \boldsymbol{Z} / n \boldsymbol{Z}\right)$ $\cong \operatorname{Pic}\left(C_{0}\right)_{n} \cong(Z / n Z)^{2 g}$ holds by Proposition 5 (i) (recall $\mathscr{C}_{s} \cong C_{0}$), and $\operatorname{Hom}\left(\pi_{1}(C), Z \mid n Z\right)$ is also isomorphic to $(Z / n Z)^{2 g}$ since C is non-singular of genus g. Therefore, $\operatorname{Hom}\left(\pi_{1}(\mathscr{C}), \boldsymbol{Z} / n \boldsymbol{Z}\right)=\operatorname{Hom}\left(\pi_{1}\left(\mathscr{C}_{s}\right), \boldsymbol{Z} / n \boldsymbol{Z}\right) \rightarrow$ Hom $\left(\pi_{1}(C), \boldsymbol{Z} / n \boldsymbol{Z}\right)$ is an injective homomorphism between finite groups of the same order, hence an isomorphism. In particular it is surjective, which is nothing but the assertion of Lemma 5 .

Let $C^{\prime} \rightarrow C$ be an arbitrary connected étale cyclic covering of degree n. Then by Lemma 5, it is obtained from a connected étale cyclic covering $\mathscr{C}^{\prime} \rightarrow \mathscr{C}$ of degree n. Consider the morphism $f: \mathscr{C}^{\prime} \rightarrow \operatorname{Spec} R$. By Corollary 2 of [10] p. 50, the sheaf $R^{1} f_{*}\left(\mathcal{O}_{8^{\prime}}\right)$ is locally free on $\operatorname{Spec} R$. But R is a local ring, and hence $R^{1} f_{*}\left(\mathcal{O}_{\mathscr{C}^{\prime}}\right)$ is free over $\operatorname{Spec} R$, i.e. $H^{1}\left(\mathscr{C}^{\prime}, \mathcal{O}_{\mathscr{C}^{\prime}}\right)$ is a free R-module. Choose an R-basis of $H^{1}\left(\mathscr{C}^{\prime}, \mathcal{O}_{\mathscr{G}^{\prime}}\right)$ and let $d_{F} \in R$ be the determinant of the Frobenius morphism $F: H^{1}\left(\mathscr{C}^{\prime}, \mathcal{O}_{\mathscr{Q}^{\prime}}\right) \rightarrow H^{1}\left(\mathscr{C}^{\prime}, \mathcal{O}_{\mathscr{Q}^{\prime}}\right)$ with respect to this basis. Then Proposition 5 (ii) shows that $d_{F} \neq 0$ at $s \in$ Spec R, which means $d_{F} \in R^{\times}$since s is the closed point of $\operatorname{Spec} R$. In particular, $d_{F} \neq 0$ at $\eta \in \operatorname{Spec} R$ and hence the Frobenius morphism F : $H^{1}\left(C^{\prime}, \mathcal{O}_{C^{\prime}}\right) \rightarrow H^{1}\left(C^{\prime}, \mathcal{O}_{C^{\prime}}\right)$ is invertible (recall $\left.C^{\prime}=\mathscr{C}_{\eta}^{\prime} \times \operatorname{Spec} \bar{\kappa}\right)$, i.e. C^{\prime} is an ordinary curve. Therefore by Proposition 4 in Section 4, the curve C is n-ordinary. Thus we have shown that U_{n} has at least one $\bar{\kappa}$-valued point. Hence the set U_{n} is not empty.

Thus, by the two steps I and II, the proof of Theorem 2 is completed.

§ 6. Examples

Given a connected complete non-singular curve C, we can calculate the generalized Hasse-Witt invariants of C by using Proposition 2 in Section 2. In this section, the results of computations are given for the case $p=2, g=2, n=3$. (The process of computations is omitted here. Details are explained in [12].) Examples of generalized Hasse-Witt invariants are also given in [7].

Let C be a connected complete non-singular algebraic curve of genus two over an algebraically closed field k of characteristic two. We shall give the values of γ_{α} 's for $\alpha \in{ }_{3} \mathfrak{H}$. Since the genus of C equals two, we have $\gamma_{\alpha}=0$ or 1 for $\alpha \in{ }_{3} \mathfrak{Y}$. Then, if we denote by N the number of connected étale $G_{3,2}$-coverings of $C\left(G_{3,2} \cong\right.$ the alternating group of degree 4), we have, by Theorem 1,

$$
N=\sum_{\alpha \in 3_{3}} \frac{q^{\gamma \alpha}-1}{q-1}=\sharp\left\{\alpha \in{ }_{3} \mathfrak{X} \mid \gamma_{\alpha}=1\right\} .
$$

The set ${ }_{3} \mathfrak{H}$ consists of 40 elements, hence the curve C is 3 -ordinary if and only if $N=40$.

Connected complete non-singular curves of genus two over k (char k $=2$) are classified into three types (I, II and III below) according to the number of Weierstrass points. We give the number N above, for each curve.
I. $y^{2}+y=x^{5}+A x^{3}(A \in k)$.

For every $A \in k, N=40$.
II. $y^{2}+y=A x^{3}+\frac{B}{x}\left(A, B \in k^{\times}\right)$.

For every $A, B \in k^{\times}, N=40$.
III. $y^{2}+y=A x+\frac{B}{x}+\frac{C}{x+1}\left(A, B, C \in k^{\times}\right)$.

In this case, we have
(a) When $(A+B+C)^{3}+A B C \neq 0$,
$N=40$.
(b) When $(A+B+C)^{3}+A B C=0$ and $(A+B)(B+C)(C+A) \neq 0$,

$$
N=39 .
$$

(c) When $(A+B+C)^{3}+A B C=(A+B)(B+C)(C+A)=0$

$$
\text { (i.e. } A=B=C \text {), } \quad N=38
$$

The classical Hasse-Witt invariants of curves of type I, II and III are
respectively equal to 0,1 and 2 . Hence, curves of type I and II are 3ordinary but not 1 -ordinary. Conversely, curves of type III (b) and (c) give examples of curves which are 1-ordinary but not 3-ordinary. Curves of type III (a) are both 1- and 3-ordinary.

§ 7. A recent result

In this section a result of the author will be mentioned, which was obtained after the Symposium.

Let C be a connected complete non-singular curve of genus g over an algebraically closed field k of characteristic $p>0$. Put

$$
\begin{aligned}
& \mathscr{G}=\left\{G \mid G=\operatorname{Gal}\left(C^{\prime} / C\right)\right. \text { for a connected étale finite Galois } \\
& \text { covering } \left.C^{\prime} \longrightarrow C\right\},
\end{aligned}
$$

i.e. \mathscr{G} is the set of all finite groups G such that $G=\pi_{1}(C) / N$ for some open normal subgroup N of $\pi_{1}(C)$. When $g \geqq 2$, the set \mathscr{G} has not yet been determined explicitly. But the result of Grothendieck referred to in Section 1 gives a necessary condition for a finite group to belong to \mathscr{G};

$$
\text { If } G \in \mathscr{G} \text {, then } G \text { is a quotient group of } \Gamma_{g} \text {. }
$$

(If $p=$ char k does not divide the order of G, the converse of (\sharp) is also true.)

In [13] the author obtained another necessary condition. Namely,
Theorem 3. Let G be a finite group and I_{G} the augmentation ideal of its group algebra over k;

$$
I_{G}=\left\{\sum_{\sigma \in G} a_{\sigma} \cdot \sigma \in k[G] \mid \sum_{\sigma \in G} a_{\sigma}=0\right\} .
$$

If G belongs to \mathscr{G}, there exists a surjective $k[G]$-homomorphism $k[G]^{g} \rightarrow I_{G}$ where g is the genus of C.

If the order of G is prime to $p=\operatorname{char} k, I_{G}$ is a direct summand of $k[G]$ as a $k[G]$-module and there always exists a surjective homomorphism $k[G]$ $\rightarrow I_{G}$. Hence Theorem 3 poses no restriction on such groups. But if the order of G is a multiple of p, there does not always exist a surjective homomorphism $k[G]^{g} \rightarrow I_{G}$, and Theorem 3 gives some information about the set \mathscr{G}. For example, take $G=(\boldsymbol{Z} / p \boldsymbol{Z})^{d}$ where d is a natural number. Then, a surjective homomorphism $k[G]^{g} \rightarrow I_{G}$ exists if and only if $d \leqq g$. On the other hand, this group G is a quotient of Γ_{g} if and only if $d \leqq 2 g$. Thus the necessary condition given in Theorem 3 is not contained in the condition (\#) above. (Now we have concluded from Theorem 3 that the
inequality $d \leqq g$ holds if $(\boldsymbol{Z} / p \boldsymbol{Z})^{d} \in \mathscr{G}$. But this fact itself is well-known and can be derived from Hasse-Witt theory.) It seems a difficult problem to determine the minimal number of generators of I_{G} as a $k[G]$-module, and hence I do not know to what extent Theorem 3 restricts the set \mathscr{G}.

References

[1] P. Cartier, Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, 244 (1957), 426-428.
[2] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES, 36 (1969), 75-109.
[3] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), Springer lecture note 224 (1971).
[4] - Les schema de Picard: Theorèmes d'existence, Sem. Bourbaki, exp. 232 (1962).
[5] M. Hall, Jr., The theory of groups, Macmillan, New York (1959).
[6] H. Hasse and E. Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrad p über einem algebraischen Funktionenkörper der Charakteristik p, Monatshefte Math. Phys., 43 (1936), 477-492.
[7] H. Katsurada, Generalized Hasse-Witt invariants and unramified Galois extensions of an algebraic function field, J. Math. Soc. Japan, 31 (1979), 101-125.
[8] N. Koblitz, P-adic variation of the zeta function over families of varieties defined over finite fields, Compositio Math., 31 (1975), 119-218.
[9] J. S. Milne, Etale cohomology, Princeton Univ. Press, Princeton (1980).
[10] D. Mumford, Abelian varieties, Oxford Univ. Press, London (1970).
[11] D. Mumford and J. Fogarty, Geometric invariant theory (second enlarged edition), Springer Verlag, Berlin-Heidelberg-New York (1982).
[12] S. Nakajima, Generalized Hasse-Witt invariants and unramified extensions of function fields (in Japanese), Master thesis, Univ. of Tokyo (1980).
[13] - On Galois module structure of the cohomology groups of an algebraic variety (to appear).
[14] I. Šafarevič, On p-extensions, Math. Sbornik, 20 (1947), 351-363 (In Russian). (AMS transl. ser. 2, 4 (1956), 59-72).
[15] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposium internacional de topologia algebraica, Univ. of Mexico and UNESCO, Mexico City (1958), 24-53.
[16] -, Groupes algébriques et corps de classes, Hermann, Paris (1959).

[^0]
[^0]: Department of Mathematics
 Faculty of Science
 University of Tokyo
 Hongo, Tokyo 113
 Japan

