Advanced Studies in Pure Mathematics 2, 1983 Galois Groups and their Representations pp. 69-88

# On Generalized Hasse-Witt Invariants of an Algebraic Curve

## Shōichi Nakajima

### §1. Introduction

Let k be an algebraically closed field of characteristic p > 0, and C a connected complete non-singular curve over k. Denote by  $\pi_1(C)$  the Grothendieck fundamental group of C. (cf. [3] exp. V. The group  $\pi_1(C)$ is isomorphic to Gal  $(K_{ur}/K)$ , where K is the function field of C and  $K_{ur}$ means the maximal unramified extension field of K.) Concerning this group  $\pi_1(C)$ , we shall generalize the result of Katsurada [7] (Theorem 1 in Section 2) and then prove another related theorem (Theorem 2 in Section 4).

To begin with, a short account will be given on the known facts about the structure of the group  $\pi_1(C)$ . For a non-negative integer g, put  $\Gamma_g = \langle a_1, \dots, a_g, b_1, \dots, b_g | a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} = 1 \rangle$ , the group generated by 2g elements  $a_1, \dots, a_g, b_1, \dots, b_g$  with one defining relation  $a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} = 1$ . ( $\Gamma_g = \{1\}$  if g = 0.) The group  $\Gamma_g$  is nothing but the topological fundamental group of a Riemann surface of genus g. Further, let  $\hat{\Gamma}_g$  be the pro-finite completion of  $\Gamma_g$ , i.e.  $\hat{\Gamma}_g = \lim_{i \to \infty} (\Gamma_g/\Gamma)$ where  $\Gamma$  ranges over all normal subgroups of  $\Gamma_g$  with finite indices. Then, we can state a fundamental result of Grothendieck about  $\pi_1(C)$  ([3] exp. X): If the genus of C equals g, then there exists a surjective continuous homomorphism  $\varphi: \hat{\Gamma}_g \to \pi_1(C)$  with the following property:

(\*) Ker  $\varphi$  is contained in every open normal subgroup N of  $\hat{\Gamma}_g$  such that  $[\hat{\Gamma}_g: N]$  is prime to p.

The surjectivity of  $\varphi$  says that to each finite étale covering  $C' \rightarrow C$  there corresponds a unique open subgroup N of  $\hat{\Gamma}_g$ . (The correspondence is given by  $N = \varphi^{-1}(\pi_1(C'))$ .) And the property (\*) ensures that each open normal subgroup N of  $\hat{\Gamma}_g$  with  $[\hat{\Gamma}_g: N]$  prime to p can be obtained as  $\varphi^{-1}(\pi_1(C'))$  for some connected étale covering  $C' \rightarrow C$ . But how about the groups N for which  $[\hat{\Gamma}_g: N]$  is divisible by p? Or, we naturally ask a

Received December 7, 1982.

question: Can we determine the whole structure of  $\pi_1(C)$ , not only its "prime-to-p part"? Unfortunately, when  $g \ge 2$  no complete answer is known to the question above. If  $g \ge 2$ , the structure of  $\pi_1(C)$  has not yet been determined explicitly for any single example of C.

But classically, the following two facts have been known about the structure of  $\pi_1(C)$ . Let  $\gamma_c$  be the Hasse-Witt invariant of C. (cf. [6]; it is an integer satisfying  $0 \leq \gamma_c \leq g$ , and coincides with the *p*-rank of the Jacobian variety of C.) Then we have

(i) There exists an isomorphism

$$\pi_1(C)^{\mathrm{ab}} \cong (\prod_{l \neq p} Z_l^{2g}) \times Z_p^{r_G},$$

where  $\pi_1(C)^{ab}$  denotes the maximal abelian quotient of  $\pi_1(C)$  and, on the right side, *l* ranges over all primes other than *p* (Hasse-Witt [6]).

(ii) The maximal pro-*p* quotient of  $\pi_1(C)$  is isomorphic to the free pro-*p* group of rank  $\gamma_c$  (Šafarevič [14]).

The results (i) and (ii) above ensure, in particular, that the structures of the maximal abelian and the maximal pro-p quotients of  $\pi_1(C)$  are determined by the invariants g and  $\gamma_c$  of C. Then naturally, we come to a question: Is it true that the structure of  $\pi_1(C)$  itself is determined by g and  $\gamma_c$  only? But Katsurada [7] showed that the answer to this question is No, by introducing generalized Hasse-Witt invariants of C. His result will be generalized hereafter in this paper.

In Section 2, generalized Hasse-Witt invariants are defined and Theorem 1 is stated which connects the generalized Hasse-Witt invariants with the structure of  $\pi_1(C)$ . The proof of Theorem 1 is given in Section 3. In Section 4, the notion of "*n*-ordinary curve" is introduced, and in Section 5 is proved Theorem 2 which states that "general" curves of given genus are *n*-ordinary. Examples are given in Section 6. Finally, a recent result of the author is mentioned in Section 7. It does not concern the generalized Hasse-Witt invariants, but gives a necessary condition for a finite group to be a quotient group of  $\pi_1(C)$ .

The author wishes to express his hearty thanks to Professor Y. Ihara, particularly for suggesting Theorem 2.

## § 2. Generalized Hasse-Witt invariants

As above, let C be a connected complete non-singular algebraic curve over an algebraically closed field k of characteristic p>0. We shall define the generalized Hasse-Witt invariants of C. For that purpose, some notations are necessary.

Let  $\mathfrak{D}$  and  $\mathfrak{\overline{D}}$  be respectively the divisor group and the divisor class group of C. For a natural number n, put

$$\overline{\mathfrak{D}}_n = \{ \overline{A} \in \overline{\mathfrak{D}} \mid n\overline{A} = 0 \}$$

and

$$_{n}\overline{\mathfrak{D}} = \{\overline{A} \in \overline{\mathfrak{D}}_{n} \mid \text{the order of } \overline{A} \text{ is precisely equal to } n\}.$$

Further, for a natural number *n* which is prime to p = char k, define an equivalence relation  $\approx \text{ in } \overline{\mathfrak{D}}_n$  (and also in  $n\overline{\mathfrak{D}}$ ) by

$$\overline{A} \approx \overline{B} \iff \overline{A} = p^k \overline{B}$$
 for some  $k \in N$   $(\overline{A}, \overline{B} \in \overline{\mathfrak{D}}_n)$ .

(Since *n* is prime to p,  $\approx$  is actually an equivalence relation.) Then put  $\mathfrak{A}_n = \mathfrak{D}_n / \approx$  and  $\mathfrak{A} = \mathfrak{D} / \approx$ , the sets of equivalence classes under  $\approx$ . Obviously we have

$$\mathfrak{A}_n = \bigcup_{d \mid n} \mathfrak{A}$$
 (disjoint union).

Corresponding to each element  $\alpha \in \mathfrak{A} = \bigcup_{n \in \mathbb{N}} \mathfrak{A}$  (*n* varies over all natural numbers prime to *p*), the generalized Hasse-Witt invariant  $\gamma_a$  is defined in the following way: Let *n* be the natural number for which  $\alpha \in \mathfrak{A}$  holds, and let *m* be the order of *p* in  $(\mathbb{Z}/n\mathbb{Z})^{\times}$ . Take an element  $\overline{A} \in \mathfrak{A} \mathfrak{D}$  which belongs to  $\alpha$ , and a divisor *A* in the class  $\overline{A}$ . Since  $n \mid (p^m - 1)$  and  $n\overline{A} = 0$ , there is a rational function *x* on *C* such that  $(x) = (p^m - 1)A$  holds. Let  $\mathscr{L}(A)$  be the invertible sheaf determined by *A* (cf. [16] chap. II; we regard  $\mathscr{L}(A)$  as contained in the constant sheaf of rational functions on *C*). Multiplication by the rational function *x* induces an isomorphism  $\mu = \mu_x : \mathscr{L}(p^m A) \cong \mathscr{L}(A)$ . On the other hand, we have a morphism of *C*. Hence we have a morphism  $\mu F^m : \mathscr{L}(A) \to \mathscr{L}(A)$ , and it induces a map  $\mu F^m : H^1(C, \mathscr{L}(A)) \to H^1(C, \mathscr{L}(A))$ . Put

$$H^{1}(C, \mathscr{L}(A))^{\mu F^{m}} = \{ \xi \in H^{1}(C, \mathscr{L}(A)) \mid \mu F^{m}(\xi) = \xi \}.$$

Then  $H^1(C, \mathscr{L}(A))^{\mu F^m}$  is a vector space over  $F_q$   $(q = p^m)$  since  $\mu F^m$ :  $H^1(C, \mathscr{L}(A)) \rightarrow H^1(C, \mathscr{L}(A))$  is a q-linear map, i.e.

$$\mu F^{m}(a_{1}\xi_{1}+a_{2}\xi_{2})=a_{1}^{q}\mu F^{m}(\xi_{1})+a_{2}^{q}\mu F^{m}(\xi_{2})$$

holds for any  $a_1, a_2 \in k, \xi_1, \xi_2 \in H^1(C, \mathcal{L}(A))$ . We define the invariant  $\gamma_a$  by

$$\gamma_{\alpha} = \dim_{F_{\alpha}} H^{1}(C, \mathscr{L}(A))^{\mu F^{m}}.$$

It is easily verified that  $\gamma_{\alpha}$  depends only on the class  $\overline{A}$ , i.e.  $\gamma_{\alpha}$  does not depend on the choice of A or x. Further, by virtue of Lemma 1 below,  $\gamma_{\alpha}$  is also independent of the choice of  $\overline{A} \in \alpha$ , and hence  $\gamma_{\alpha}$  is well-defined.

**Lemma 1.** Define the morphism  $\tilde{\mu}: \mathscr{L}(p^{m+1}A) \to \mathscr{L}(pA)$  and the  $F_q$ -vector space  $H^1(C, \mathscr{L}(pA))^{\tilde{\mu}F^m}$  as above, taking pA and  $x^p$  instead of A and x. Then we have an isomorphism  $H^1(C, \mathscr{L}(A))^{\mu F^m} \cong H^1(C, \mathscr{L}(pA))^{\tilde{\mu}F^m}$  as  $F_q$ -vector spaces.

*Proof.* We have morphisms  $F: H^1(C, \mathcal{L}(A)) \to H^1(C, \mathcal{L}(pA))$  and  $\mu F^{m-1}: H^1(C, \mathcal{L}(pA)) \to H^1(C, \mathcal{L}(A))$ . Then since  $\tilde{\mu}F \doteq F\mu$  holds, it is easy to check that the restrictions of F and  $\mu F^{m-1}$  above give isomorphisms between  $H^1(C, \mathcal{L}(A))^{\mu F^m}$  and  $H^1(C, \mathcal{L}(pA))^{\mu F^m}$  which are inverse to each other.

By the following Proposition 1, we see that  $\gamma_a$  is an integer satisfying

$$0 \leq \gamma_{\alpha} \leq \dim_{k} H^{1}(C, \mathscr{L}(A)) = \begin{cases} g & (n=1) \\ g-1 & (n>1) \end{cases}$$

where g is the genus of C. (Since deg  $\mathscr{L}(A) = \text{deg } A = 0$ , dim<sub>k</sub>  $H^1(C, \mathscr{L}(A))$  is easily calculated by using the Riemann-Roch theorem.) Proposition 1 is due to Hasse-Witt [6]. (In [6] only the case l = -1 is treated. But the proof there applies to arbitrary l.)

**Proposition 1** (Hasse-Witt). Let k be an algebraically closed field of characteristic p > 0, and V a vector space over k of dimension d. If l is a non-zero integer and f:  $V \rightarrow V$  is a  $p^{t}$ -linear map, then the set  $V^{f} = \{x \in V | f(x) = x\}$  is an  $\mathbf{F}_{q}$ -vector space  $(q = p^{|t|})$ . Let  $V_{s}$  be the k-linear subspace of V spanned by  $V^{f}$ , and put  $V_{n} = \{x \in V | f^{d}(x) = 0\}$ . Then  $V_{n}$  is also a k-linear subspace of V, and we have

- (i)  $V = V_s \oplus V_n$  (direct sum),
- (ii)  $\dim_k V_s = \dim_{F_q} V^f$ . In particular,  $\dim_{F_q} V^f = d \Longrightarrow V_s = V$  $\iff f: V \longrightarrow V$  is invertible  $\iff f$  is surjective  $\iff f$  is injective.

**Remarks.** (1) When n=1, the set  $_1\mathfrak{A}$  consists of only one element 0, and the corresponding invariant  $\gamma_0$  coincides with the classical Hasse-Witt invariant  $\gamma_c$  of C. Hence  $\gamma_a$ 's are called generalized Hasse-Witt invariants.

(2) The value of  $\gamma_{\alpha}$  can be calculated by using differentials and the Cartier operator (Proposition 2 below). The formula in Proposition 2 may be regarded as the definition of  $\gamma_{\alpha}$ .

(3) Originally, the generalized Hasse-Witt invariants  $\gamma_{\alpha}$  were defined in Katsurada [7] under the assumption that n|(p-1), i.e. for  $\alpha \in {}_{n}\mathfrak{A}$  such that n|(p-1). (For definition, he used differentials. cf. Remark (2) above.) He also proved Theorem 1 below in that case. Our definition of  $\gamma_{\alpha}$ 's for arbitrary n  $(p \nmid n)$  is a natural generalization of Katsurada's one. But by this generalization, infinitely many invariants  $\{\gamma_{\alpha}\}$  have been defined for each curve C.

(4) The generalized Hasse-Witt invariants  $\{\gamma_{\alpha}\}$  are actually new invariants other than g or  $\gamma_c$ , that is, there exist curves with the same g and  $\gamma_c$  which have different  $\gamma_{\alpha}$ 's. This fact is shown in [7] and Section 6 of this article by concrete examples. However, I do not know whether the infinitely many invariants  $\{\gamma_{\alpha}\}$  are "independent" or not.

Now we state Theorem 1 which connects the structure of  $\pi_1(C)$  with the generalized Hasse-Witt invariants  $\{\gamma_a\}$  defined above. For a natural number *n* which is prime to *p*, put

$$G_{n,p} = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in GL(2, F_q) \middle| a^n = 1 \right\},$$

where  $q = p^{n}$  and *m* is the order of *p* in  $(\mathbb{Z}/n\mathbb{Z})^{\times}$ . By the definition of *m*, the field  $F_q$  contains a primitive *n*-th root of unity, and hence the order of  $G_{n,p}$  equals  $np^{m}$ . By the word " $G_{n,p}$ -covering of *C*" we mean a Galois covering  $C' \rightarrow C$  with Galois group isomorphic to  $G_{n,p}$ . Let  $N = N_{C,n}$  be the number of *C*-isomorphism classes of connected étale  $G_{n,p}$ -coverings of *C*. In other words, *N* is the number of open normal subgroups *H* of  $\pi_1(C)$  for which  $\pi_1(C)/H \cong G_{n,p}$  holds. Then, we have the following

**Theorem 1.** The number  $N = N_{C,n}$  is expressed by the generalized Hasse-Witt invariants  $\{\gamma_{\alpha} | \alpha \in \mathbb{R}\}$  in the form

$$N = \sum_{\alpha \in \mathfrak{n} \mathfrak{A}} \frac{q^{\tau \alpha} - 1}{q - 1},$$

where  $q = p^m$  and m is the order of p in  $(Z/nZ)^{\times}$ .

**Remark.** By virtue of Theorem 1, we see that the structure of  $\pi_1(C)$  actually depends on generalized Hasse-Witt invariants and can not be determined by g and  $\gamma_c$  only. (cf. examples in Section 6 and [7].)

Theorem 1 will be proved in Section 3. Before that, we explain here a method of calculating  $\gamma_{\alpha}$  by using differentials and the Cartier operator. Let K be the function field of C over k and  $\Omega_c$  the module of rational differentials on C;  $\Omega_c = \{xdy | x, y \in K\}$ . Further, for a divisor A of C, put  $\Omega_c(A) = \{\omega \in \Omega_c | (\omega) > A\}$ , which is a finite-dimensional vector space over k. Let  $\gamma$  be the Cartier operator. It is a map  $\gamma: \Omega_c \rightarrow \Omega_c$  with the following properties (cf. [1], [15]);

(i) 
$$\gamma(x_1^p \omega_1 + x_2^p \omega_2) = x_1 \gamma(\omega_1) + x_2 \gamma(\omega_2), \quad x_1, x_2 \in K, \quad \omega_1, \omega_2 \in \Omega_c.$$
  
(ii)  $\gamma(dx) = 0, \quad \gamma\left(\frac{dx}{x}\right) = \frac{dx}{x}, \quad x \in K^{\times}.$   
(iii)  $\gamma(\Omega_c(pA)) \subset \Omega_c(A)$  for any divisor A of C.

For a given  $\alpha \in {}_{n}\mathfrak{A}$   $(p \nmid n)$ , choose  $\overline{A} \in \overline{\mathfrak{D}}$ ,  $A \in \mathfrak{D}$  and  $x \in K^{\times}$  in the same way as at the beginning of this section. Define a map  $\beta = \beta_{A,x} : \mathfrak{Q}_{c}(A) \rightarrow \mathcal{Q}_{c}(A)$  by  $\beta(\omega) = \gamma^{m}(x\omega)$  for  $\omega \in \mathfrak{Q}_{c}(A)$  (*m* is the order of *p* in  $(\mathbb{Z}/n\mathbb{Z})^{\times}$ ). By the property (iii) of  $\gamma$ ,  $\beta$  is well-defined. Since  $\beta$  is a  $p^{-m}$ -linear map (cf. property (i) of  $\gamma$ ), the set  $\mathfrak{Q}_{c}(A)^{\beta} = \{\omega \in \mathfrak{Q}_{c}(A) \mid \beta(\omega) = \omega\}$  is a vector space over  $F_{q}$   $(q = p^{m})$ . Here Proposition 2 below holds, which gives us a method of calculating the generalized Hasse-Witt invariant  $\gamma_{\alpha}$ .

**Proposition 2.** With the notations above, we have

 $\gamma_a = \dim_{F_a} \Omega_c(A)^{\beta}.$ 

*Proof.* The vector spaces  $H^1(C, \mathcal{L}(A))$  and  $\Omega_c(A)$  are dual to each other ([16] chap. II). And as is easily checked (cf. [15]  $n^\circ$  10), the q-linear map  $\mu F^m \colon H^1(C, \mathcal{L}(A)) \to H^1(C, \mathcal{L}(A))$  (for  $\mu F^m$ , see the definition of  $\gamma_a$ ) is the transpose of the  $q^{-1}$ -linear map  $\beta \colon \Omega_c(A) \to \Omega_c(A)$ , i.e.  $\langle \mu F^m(\xi), \omega \rangle = \langle \xi, \beta(\omega) \rangle^q$  holds for any  $\xi \in H^1(C, \mathcal{L}(A))$  and  $\omega \in \Omega_c(A)$ . ( $\langle \xi, \omega \rangle$  is the dual pairing; cf. [15] Proposition 9.) Then the argument of [15] p. 38–39 shows that  $H^1(C, \mathcal{L}(A))^{\mu F^m}$  and  $\Omega_c(A)^\beta$  are dual vector spaces over  $F_q$ . Therefore we have  $\gamma_{\alpha} = \dim_{F_q} H^1(C, \mathcal{L}(A))^{\mu F^m} = \dim_{F_q} \Omega_c(A)^\beta$ , and Proposition 2 is proved.

## § 3. Proof of Theorem 1

The group  $G_{n,p}$  has a normal (hence unique) p-Sylow subgroup  $H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in GL(2, F_q) \right\}$ , and the quotient  $G_{n,p}/H$  is isomorphic to Z/nZ. Hence, if  $C'' \to C$  is a connected étale  $G_{n,p}$ -covering of C, then  $C'' \to C$  has a unique subcovering  $C' \to C$  which is cyclic of degree n. For each connected étale cyclic covering  $C' \to C$  of degree n, let  $N_{c'}$  be the number of connected étale  $G_{n,p}$ -coverings of C which contain  $C' \to C$  as a subcovering. Then, by the fact explained above, we have

$$(3.1) N = \sum_{C'} N_{C'},$$

where C' ranges over all connected étale cyclic coverings of degree n of C. Therefore we fix a connected étale cyclic covering  $C' \rightarrow C$  of degree n, and will calculate  $N_{c'}$ .

74

Let  $\mu_n$  be the group of *n*-th roots of unity in *k* and let  $\mathfrak{D}_n$  be as defined in Section 2. Then, by Kummer theory, we have an isomorphism  $\mathfrak{D}_n \cong \operatorname{Hom}(\pi_1(C), \mu_n)$  (the right side means, also in the following, the group of *continuous* homomorphisms). Let  $\mathfrak{D}(C')$  be the subgroup of  $\mathfrak{D}_n$ which corresponds to Hom (Gal  $(C'/C), \mu_n$ ) by the above isomorphism. Obviously this set  $\mathfrak{D}(C')$  is closed under the equivalence relation  $\approx$  defined in Section 2. Put  $\mathfrak{A}(C') = \mathfrak{D}(C')/\approx$  and  ${}_n\mathfrak{A}(C') = \mathfrak{A}(C') \cap {}_n\mathfrak{A}$ . Then we have

(3.2)  ${}_{n}\mathfrak{A} = \bigcup_{\alpha} \mathfrak{A}(C')$  (disjoint union)

where C' ranges over all connected étale cyclic coverings of degree n of C. Our aim is to prove the equality

$$N_{C'} = \sum_{\alpha \in \mathbb{R}^{\mathfrak{A}(C')}} \frac{q^{\gamma \alpha} - 1}{q - 1}.$$

Concerning the set  $\mathfrak{A}(C')$ , we have

**Proposition 3.** Let R be the set of all equivalence classes of  $F_p$ irreducible representations of the group Gal (C'/C) on vector spaces over  $F_p$ . Then we have a bijective map  $f: \mathfrak{A}(C') \rightarrow R$  such that, for  $\alpha \in \mathfrak{A}(C')$ , the  $F_p$ irreducible representation  $f(\alpha)$  of Gal (C'/C) is faithful if and only if  $\alpha \in \mathfrak{A}(C')$ .

*Proof.* The map f is constructed as follows: For an element  $\alpha \in$  $\mathfrak{A}(C')$ , we have  $\alpha = \{\overline{A}, p\overline{A}, \dots, p^{l-1}\overline{A}\}\$  for some  $\overline{A} \in \overline{\mathfrak{D}}_n$  and  $l \in N$ . Let  $\chi = \chi_{\overline{A}}$  be the element of Hom (Gal (C'/C),  $\mu_n$ ) which corresponds to  $\overline{A}$ . Then,  $\chi$ ,  $\chi^p$ , ...,  $\chi^{p^{l-1}}$  are all the conjugates of  $\chi$  over  $F_p$ . Hence the representation  $\rho = \chi \oplus \chi^p \oplus \cdots \oplus \chi^{p^{l-1}}$  is equivalent to a representation which is realized and irreducible over  $F_{p}$ . This element  $\rho$  of R is the image  $f(\alpha)$  of  $\alpha$ . The map f thus defined is obviously injective. Since Gal (C'/C) is abelian, all irreducible representations of Gal (C'/C) over an algebraically closed field are one-dimensional. Hence an element  $\rho$ of *R* decomposes over *k* in the form  $\rho \sim \chi \oplus \chi^p \oplus \cdots \oplus \chi^{p^{l-1}}$  where  $\chi \in$  Hom (Gal (*C'*/*C*),  $\mu_n$ ) and  $\chi, \chi^p, \dots, \chi^{p^{l-1}}$  are all the conjugates of  $\chi$  over  $F_{p}$  ( $\rho$  is  $F_{p}$ -irreducible). This means that  $\rho = f(\alpha)$  for some  $\alpha \in \mathfrak{A}(C')$ , that It is an immediate consequence of the decomis, f is also surjective. position

(3.3)  $f(\alpha) \sim \chi \oplus \chi^p \oplus \cdots \oplus \chi^{p^{l-1}}$ 

 $(\chi = \chi_{\overline{A}}, \alpha = \{\overline{A}, p\overline{A}, \dots, p^{l-1}\overline{A}\} \in \mathfrak{A}(C')\}$  that  $f(\alpha)$  is faithful if and only if the order of  $\chi$ , hence the order of  $\overline{A}$ , equals n, i.e. if and only if  $\alpha \in \mathfrak{A}(C')$ .

(When  $\alpha \in \mathfrak{A}(C')$ , we have l=m= the order of p in  $(\mathbb{Z}/n\mathbb{Z})^{\times}$ .)

We regard the group  $\pi_1(C')$  as an open normal subgroup of  $\pi_1(C)$ , for which  $\pi_1(C)/\pi_1(C') \cong \text{Gal}(C'/C)$  holds. Consider the set  $\text{Hom}(\pi_1(C'), Z/pZ)$  which is a vector space over  $F_p$ . The group Gal(C'/C) acts on Hom  $(\pi_1(C'), Z/pZ)$  in the following way: For  $\sigma \in \text{Gal}(C'/C)$ , choose a  $\tilde{\sigma} \in \pi_1(C)$  whose image in Gal(C'/C) coincides with  $\sigma$ . Then for  $\chi \in$ Hom  $(\pi_1(C'), Z/pZ)$ ,  $\chi^{\sigma}$  is given by  $\chi^{\sigma}(\tau) = \chi(\tilde{\sigma} \cdot \tau \cdot \tilde{\sigma}^{-1})$  for any  $\tau \in \pi_1(C')$ . (This action is well-defined since Z/pZ is abelian.)

There exists a one-to-one correspondence between the two sets  $S_1$  and  $S_2$  below;

 $S_1 = \{C'' \longrightarrow C' | C'' \longrightarrow C' \text{ is a connected étale Galois covering} \}$ 

such that Gal 
$$(C''/C') \cong (Z/pZ)^{i}$$
 for some  $l$ ,

 $S_2 = \{V | V \text{ is an } F_p \text{-subspace of Hom}(\pi_1(C'), \mathbb{Z}/p\mathbb{Z})\}.$ 

The correspondence is given by

(a)  $C'' \to C'$  is the covering determined by the open subgroup  $\bigcap_{\chi \in V} (\text{Ker } \chi) \text{ of } \pi_1(C'),$ 

(b)  $V = \text{Hom}(\text{Gal}(C''/C'), \mathbb{Z}/p\mathbb{Z}).$ 

When  $C'' \rightarrow C' \in S_1$  and  $V \in S_2$  correspond, elementary Galois theory shows

- (i)  $\operatorname{Gal}(C''/C') \cong (\mathbb{Z}/p\mathbb{Z})^l \iff \dim_{\mathbb{F}_p} V = l,$
- (ii)  $C'' \rightarrow C$  is a Galois covering  $\iff V$  is stable under the action of Gal (C'/C) on Hom  $(\pi_1(C'), Z/pZ)$ .

Assume that  $C'' \rightarrow C$  is Galois, i.e. Gal(C'/C) acts on V. Then we have

**Lemma 2.** (i) Let  $V^*$  be the dual vector space of V with the action of Gal (C'/C) contragredient to that on V. Then we have an isomorphism Gal  $(C''/C) \cong$  Gal  $(C'/C) \ltimes V^*$  where the right side is the semi-direct product of Gal (C'/C) and  $V^*$  defined by the above action of Gal (C'/C) on  $V^*$ . (Here  $V^*$  is regarded as an additive group.)

(ii) We have  $\operatorname{Gal}(C''/C) \cong G_{n,p}$  if and only if the action of  $\operatorname{Gal}(C'/C)$  on  $V^*$  (hence on V) is faithful and  $F_n$ -irreducible.

*Proof.* (i) Since V = Hom(Gal(C''/C'), Z/pZ), we have an exact sequence of groups  $1 \rightarrow V^* \rightarrow \text{Gal}(C''/C) \rightarrow \text{Gal}(C'/C) \rightarrow 1$ . This sequence necessarily splits because the orders of  $\text{Gal}(C'/C) (\cong Z/nZ)$  and  $V^*$   $(\cong (Z/pZ)^i)$  are prime to each other (cf. [5] Theorem 15.2.2., for example). Hence we have  $\text{Gal}(C''/C) \cong \text{Gal}(C'/C) \ltimes V^*$ .

(ii) By (i), our task is to prove that  $\operatorname{Gal}(C'/C) \ltimes V^* \cong G_{n,v}$  holds

if and only if the action of Gal (C'/C) on  $V^*$  is faithful and  $F_p$ -irreducible. The group  $G_{n,p}$  is of the form  $G_{n,p} \cong D \ltimes H$  (semi-direct product), where

$$D = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \in GL(2, F_q) \middle| a^n = 1 \right\} \qquad (\cong \mathbb{Z}/n\mathbb{Z})$$

and

$$H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in GL(2, \mathbf{F}_q) \right\} \qquad (\cong \mathbf{F}_q \cong (\mathbf{Z}/p\mathbf{Z})^m).$$

If an isomorphism  $\varphi: \operatorname{Gal}(C'/C) \ltimes V^* \cong G_{n,p}$  exists, it induces an isomorphism  $\varphi_0: V^* \cong H$  since  $V^*$  [resp. H] is the unique *p*-Sylow subgroup of  $\operatorname{Gal}(C'/C) \ltimes V^*$  [resp.  $G_{n,p}$ ]. Then  $\varphi$  also induces an isomorphism  $\varphi_1:$   $\operatorname{Gal}(C'/C) \cong D$ . Here the action  $\rho'$  of  $\operatorname{Gal}(C'/C)$  on  $V^*$  is given by  $\rho' = \varphi_0^{-1} \circ \rho \circ \varphi_1$  where  $\rho$  is the action of D on H. Since  $\rho$  is faithful and  $F_p$ -irreducible,  $\rho'$  is also faithful and  $F_p$ -irreducible. Conversely, if  $\rho'$  is a faithful  $F_p$ -irreducible representation of  $\operatorname{Gal}(C'/C)$ , then  $\rho'$  has a decomposition (3.3) (replacing  $f(\alpha)$  by  $\rho'$ ). In that decomposition, the order of  $\chi$  equals n since  $\rho'$  is faithful, and hence we have l=m. Therefore, we can easily construct isomorphisms  $\varphi_0: V^* \cong H$  and  $\varphi_1: \operatorname{Gal}(C'/C) \cong D$  so that  $\rho' = \varphi_0^{-1} \circ \rho \circ \varphi_1$  holds, and from these, an isomorphism  $\varphi: \operatorname{Gal}(C'/C) \ltimes V^* \cong G_{n,p}$ .

By Lemma 2 the number  $N_{C'}$  is equal to the number of  $\operatorname{Gal}(C'/C)$ invariant subspaces of  $\operatorname{Hom}(\pi_1(C'), \mathbb{Z}/p\mathbb{Z})$  which correspond to faithful  $F_n$ -irreducible representations of  $\operatorname{Gal}(C'/C)$ .

Put  $H^1(C') = H^1(C', \mathcal{O}_{C'})$  and  $H^1(C')^F = \{\xi \in H^1(C') | F(\xi) = \xi\}$ , where *F*:  $H^1(C') \to H^1(C')$  donotes the *p*-linear map induced by the Frobenius morphism of *C'*. (The group Gal (C'/C) acts on  $H^1(C')$  and  $H^1(C')^F$  in the natural way.) Then we have an isomorphism Hom  $(\pi_1(C'), \mathbb{Z}/p\mathbb{Z}) \cong$  $H^1(C')^F$  (cf. [15] Proposition 12, for example). As is easily checked, this isomorphism commutes with the action of Gal (C'/C). For each element  $\chi \in$  Hom (Gal  $(C'/C), \mu_n$ ), put  $H^1(C')^{\chi} = \{\xi \in H^1(C') | \xi^{\sigma} = \chi(\sigma)\xi$  for every  $\sigma \in$  Gal  $(C'/C)\}$ . Since *F* is *p*-linear, we have

$$(3.4) F(H^1(C')^{\chi}) \subset H^1(C')^{\chi^p}$$

For  $\alpha \in \mathfrak{A}(C')$ , let  $f(\alpha)$  be the representation of Gal (C'/C) defined in Proposition 3 and denote by  $(H^1(C')^F)^{\alpha}$  the union of all Gal (C'/C)-invariant subspaces of  $H^1(C')^F$  which correspond to the representation  $f(\alpha)^*$  of Gal (C'/C). Here  $f(\alpha)^*$  means the contragredient representation of  $f(\alpha)$ .

Assume  $\alpha \in {}_n\mathfrak{A}(C')$ . Then we have  $f(\alpha) \sim \chi \oplus \chi^p \oplus \cdots \oplus \chi^{p^{m-1}}$  for some  $\chi \in \text{Hom}(\text{Gal}(C'/C), \mu_n)$  of order *n*, where *m* is the order of *p* in

 $(\mathbb{Z}/n\mathbb{Z})^{\times}$  (cf. proof of Proposition 3). Consequently, we have  $f(\alpha)^{*} \sim \chi^{-1}$  $\oplus \chi^{-p} \oplus \cdots \oplus \chi^{-p^{m-1}}$ . Here (3.4) shows that  $F^{m}$  acts on  $H^{1}(C')^{\chi^{-1}}$ . Put  $(H^{1}(C')^{\chi^{-1}})^{F^{m}} = \{\xi \in H^{1}(C')^{\chi^{-1}} | F^{m}(\xi) = \xi\}$ . Then we have

## **Lemma 3.** There exists an isomorphism of Gal(C'/C)-modules

$$(H^{1}(C')^{F})^{\alpha} \cong (H^{1}(C')^{\chi^{-1}})^{F^{m}}.$$

Proof. Put  $W = \bigoplus_{\chi'} H^1(C')^{\chi'} \subset H^1(C')$ , where  $\chi'$  ranges over  $\{\chi^{-1}, \chi^{-p}, \dots, \chi^{-p^{m-1}}\}$ . Then, from definition we have  $(H^1(C')^F)^{\alpha} = W^F = \{\xi \in W | F(\xi) = \xi\}$ . Consider the projection  $\pi \colon W \to H^1(C')^{\chi^{-1}}$ . We have  $\pi(W^F) \subset (H^1(C')^{\chi^{-1}})^{F^m}$  by the property (3.4). Further, the map  $\mu \colon (H^1(C')^{\chi^{-1}})^{F^m} \to W^F, \mu(\xi) = (\xi, F(\xi), \dots, F^{m-1}(\xi))$ , gives a homomorphism inverse to  $\pi$ . Hence we have  $W^F \cong (H^1(C')^{\chi^{-1}})^{F^m}$ .

The set  $(H^1(C')^{\chi^{-1}})^{F^m}$  has a structure of vector space over  $F_q$  where  $q = p^m$  (cf. Proposition 1), and an element  $\sigma \in \text{Gal}(C'/C)$  acts on  $(H^1(C')^{\chi^{-1}})^{F^m}$  as multiplication by  $\chi^{-1}(\sigma) \in \mu_n \subset F_q$ . Since  $\chi^{-1}$ :  $\text{Gal}(C'/C) \to \mu_n$  is surjective  $(\chi^{-1}$  has order n) and  $\mu_n$  generates  $F_q$  over  $F_p$ , an  $F_p$ -subspace of  $(H^1(C')^{\chi^{-1}})^{F^m}$  is Gal(C'/C)-invariant if and only if it is an  $F_q$ -subspace of  $(H^1(C')^{\chi^{-1}})^{F^m}$ . Consequently, a Gal(C'/C)-invariant  $F_p$ -subspace of  $(H^1(C')^{\chi^{-1}})^{F^m}$  is irreducible if and only if it is a one-dimensional  $F_q$ -subspace. Hence by Lemma 3 and the following Lemma 4, we have an equality ( $\alpha \in {}_n\mathfrak{A}(C')$ ),

(3.5)

the number of irreducible  $\operatorname{Gal}(C'/C)$ -invariant subspaces of

$$(H^{1}(C')^{F})^{\alpha} = \frac{q^{\gamma \alpha} - 1}{q - 1}$$

Lemma 4.  $\gamma_{\alpha} = \dim_{F_{\alpha}} (H^{1}(C')^{\chi^{-1}})^{F^{m}}$ 

*Proof.* We have  $\chi = \chi_{\overline{A}}$  for some  $\overline{A} \in \alpha$ . Choose A and x as in the definition of  $\gamma_{\alpha}$  (§ 2). Then  $y = x^{l-1}$   $(l = p^m - 1)$  is a rational function on C' whose divisor (y) coincides with A considered as a divisor on C'. Further we have  $y^{\sigma} = \chi(\sigma)y$  for any  $\sigma \in \text{Gal}(C'/C)$ . Let  $\mathcal{O}_{C'}^{\chi^{-1}}$  be a subsheaf of  $\mathcal{O}_{C'}$  whose stalk at  $z \in C'$  equals

$$\mathcal{O}_{C',z}^{\chi^{-1}} = \{ \xi \in \mathcal{O}_{C',z} \mid \xi^{\sigma} = \chi^{-1}(\sigma) \xi \text{ for any } \sigma \in \text{Gal}(C'/C) \}.$$

Then, multiplication by the rational function y gives an isomorphism  $\eta: \mathcal{O}_{C',z}^{n-1} \cong f^{-1} \mathscr{L}(A)$   $(f: C' \to C)$ . Hence we have an isomorphism

$$H^{1}(C')^{\chi^{-1}} = H^{1}(C', \mathcal{O}_{C'}^{\chi^{-1}}) \xrightarrow{\eta} H^{1}(C', f^{-1}\mathcal{L}(A)) = H^{1}(C, \mathcal{L}(A)),$$

and further we have  $\mu F^m = \eta F^m \eta^{-1}$  (for  $\mu F^m : H^1(C, \mathscr{L}(A)) \to H^1(C, \mathscr{L}(A))$ , see § 2). Therefore  $\eta$  gives an isomorphism  $(H^1(C')^{\chi^{-1}})^{F^m} \to H^1(C, \mathscr{L}(A))^{\mu F^m}$ , and in particular, we have  $\gamma_{\alpha} = \dim_{F_q} H^1(C, \mathscr{L}(A))^{\mu F^m} = \dim_{F_q} (H^1(C')^{\chi^{-1}})^{F^m}$ .

Now we are at the final step of the proof of Theorem 2. By Proposition 3, Lemma 2 (ii) and the formula (3.5), we have

$$N_{C'} = \sum_{\alpha \in \mathbb{R}^{\mathfrak{A}(C')}} \frac{q^{\gamma \alpha} - 1}{q - 1}.$$

Therefore the equalities (3.1) and (3.2) show

$$N = \sum_{\alpha \in n^{\mathfrak{A}}} \frac{q^{\gamma \alpha} - 1}{q - 1},$$

and hence Theorem 2 has been proved.

#### § 4. *n*-ordinary curves

In this section we introduce the notion of "n-ordinary curve" and state Theorem 2 which says that "general" curves of given genus are n-ordinary.

Let k be an algebraically closed field of characteristic p>0, and C a connected complete non-singular algebraic curve of genus g over k. We have the generalized Hasse-Witt invariants  $\{\gamma_{\alpha}\}$  of C defined in Section 2. Let n be a natural number prime to  $p = \operatorname{char} k$ . Then we call the curve C "n-ordinary" if and only if  $\gamma_{\alpha} = \begin{cases} g & (n=1) \\ g-1 & (n>1) \end{cases}$  for all  $\alpha \in {}_{n}\mathfrak{A}$ . When n=1, the word "1-ordinary" means the same as the word "ordinary" in the usual sense (i.e.  $\gamma_{C}=g$ ). As is seen from Theorem 1, an n-ordinary curve has a maximal possible number of connected étale  $G_{n,p}$ -coverings, as a curve of genus g over k. (Recall that  $l = \begin{cases} g & (n=1) \\ g-1 & (n>1) \end{cases}$  is the maximal possible value of  $\gamma_{\alpha}$  for  $\alpha \in {}_{n}\mathfrak{A}$ .) The fundamental group  $\pi_{1}(C)$  of an n-ordinary curve C is "big" in this sense.

Here we mention a sufficient condition for a curve to be *n*-ordinary.

**Proposition 4.** Let C and n be as above. Then C is n-ordinary if for every connected étale cyclic covering  $C' \rightarrow C$  of degree n, C' is an ordinary curve.

*Proof.* We use the notation of Section 3. For  $\alpha \in {}_n\mathfrak{A}$ , Lemma 4 in Section 3 shows that  $\gamma_{\alpha} = \dim_{F_{\alpha}} (H^1(C')^{\chi^{-1}})^{F^m}$  for some connected étale

cyclic covering  $C' \rightarrow C$  of degree *n*. But  $F: H^1(C') \rightarrow H^1(C')$  is invertible since C' is ordinary by assumption. Then, a fortiori,  $F^m: H^1(C')^{\chi^{-1}} \rightarrow$  $H^1(C')^{\chi^{-1}}$  is invertible. Hence we have by Proposition 1,

$$\gamma_{a} = \dim_{F_{q}} (H^{1}(C')^{\chi^{-1}})^{F^{m}} = \dim_{k} H^{1}(C')^{\chi^{-1}} = \dim_{k} H^{1}(C, \mathscr{L}(A))$$
$$= \begin{cases} g & (n=1) \\ g-1 & (n>1) \end{cases}$$
(cf. proof of Lemma 4).

This equality holds for every  $\alpha \in {}_n\mathfrak{A}$ , i.e. the curve C is *n*-ordinary.

Until now we considered generalized Hasse-Witt invariants, fixing a curve. Here we let curves vary, fixing genus, and show that "general" curves of given genus are *n*-ordinary for each fixed natural number *n* which is prime to *p*. First we recall the moduli space of curves over *k*. As before, *k* denotes an algebraically closed field of characteristic p>0. For a non-negative integer *g*, let  $M_g \rightarrow \text{Spec } k$  be the coarse moduli scheme of connected complete non-singular algebraic curves of genus *g* over *k*. For the precise definition of coarse moduli scheme,see [11]. In particular, for any algebraically closed field  $\Omega$  which contains *k*,  $\Omega$ -valued points of  $M_g$  is shown in [11]. It is known that  $M_g$  is an irreducible quasi-projective variety over *k* (cf. [2], [11]).

Let *n* be a natural number prime to  $p = \operatorname{char} k$ , and  $U_n$  the subset of  $M_g$  consisting of all points which correspond to *n*-ordinary curves. Then we have

**Theorem 2.** The set  $U_n$  is a non-empty Zariski-open set of  $M_g$ . (Hence  $U_n$  is Zariski-dense in  $M_g$  since  $M_g$  is irreducible.)

**Remark.** By Theorem 2,  $U_n$  is open in  $M_g$  for each *n*. But I do not know whether or not the intersection  $\bigcap_{p \nmid n} U_n$  of  $U_n$  for all  $n (p \nmid n)$  is still an open set of  $M_g$ .

Theorem 2 will be proved in the following section.

## § 5. Proof of Theorem 2

First we settle the cases g=0 and g=1. When g=0, the projective line  $P^1$  is the only one curve of genus zero and is *n*-ordinary for any *n*. Hence Theorem 2 is formally true (but trivial) in this case. When g=1, all curves of genus one (i.e. elliptic curves) are *n*-ordinary by definition, if  $n\geq 2$ . When n=1, it is a well-known fact that 1-ordinary (i.e. ordinary) elliptic curves make an open set in *j*-line, the coarse moduli variety of elliptic curves.

Hereafter, we assume  $g \ge 2$  and prove Theorem 2. The proof is divided into two parts.

### I. Openness of $U_n$

Since  $g \ge 2$ ,  $M_g$  is obtained in the following way: There is a proper smooth morphism  $f: \Gamma \to H$  of varieties over k such that the fibers of fare connected curves of genus g. An algebraic group G acts on  $\Gamma \to H$ and  $M_g$  is the geometric quotient of H by G. (cf. [2], [11]. We can take as  $f: \Gamma \to H$  the universal family of tri-canonically embedded connected complete non-singular curves of genus g ( $\Gamma \subset H \times P^{5g-6}$  and G =PGL(5g-6)).) Let  $V_n$  be the subset of H consisting of all points x for which the fiber  $f^{-1}(x)$  is *n*-ordinary. Then  $V_n$  is stable by the action of Gand  $U_n$  is the quotient set of  $V_n$ . Hence it suffices for us to prove that  $V_n$  is an open subset of H.

Since  $f: \Gamma \to H$  is proper smooth, [9] chap. VI Corollary 4.2 shows that the sheaf  $R^{1}f_{*}(\mu_{n})$  is locally isomorphic to  $(\mathbb{Z}/n\mathbb{Z})^{2g}$  in the étale topology of  $H(\mu_{n}$  is the group of *n*-th roots of unity. We have  $\mu_{n} \cong \mathbb{Z}/n\mathbb{Z}$ ). Hence we can take an open covering  $\{U_{i}\}$  of H in the étale topology such that  $g_{i}^{*}R^{1}f_{*}(\mu_{n}) = R^{1}(f_{i})_{*}(\mu_{n}) \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$  holds.



It is sufficient to prove that, for each i,  $g_i^{-1}(V_n)$  is open in  $U_i$ . Hence, in order to save symbols, we assume that  $R^1f_*(\mu_n) \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$  holds for  $f: \Gamma \to H$  itself, and prove that  $V_n$  is open. Further we may assume that  $f: \Gamma \to H$  admits a section. For, if f does not have a section, replace  $f: \Gamma \to H$  by  $g: \Gamma \times_H \Gamma \to \Gamma$  (the diagram below).

$$\begin{array}{cccc}
\Gamma & & \Gamma \\
\downarrow f & & \downarrow g \\
H & & \Gamma
\end{array}$$

This g admits a section (diagonal embedding), and  $V_n$  is open in H if and only if  $f^{-1}(V_n)$ , which consists of all points x of  $\Gamma$  such that the fiber  $g^{-1}(x)$  is *n*-ordinary, is open in  $\Gamma$ . (f is proper smooth, hence a surjective open mapping.) Therefore we assume that  $f: \Gamma \longrightarrow H$  has a section.

Concerning an algebraic curve C over k, we see, by Proposition 1

and the definition of  $\gamma_a$ , that  $\gamma_a = \begin{cases} g & (n=1) \\ g-1 & (n>1) \end{cases}$  if and only if the map  $\mu F^m \colon H^1(C, \mathcal{L}(A)) \to H^1(C, \mathcal{L}(A))$  is invertible (for the notation, see Section 2), which is equivalent to the condition that  $F^m \colon H^1(C, \mathcal{L}(A)) \to H^1(C, \mathcal{L}(p^m A)) = H^1(C, (F^m)^* \mathcal{L}(A))$  is invertible  $(\mu \colon H^1(C, \mathcal{L}(p^m A)) \to H^1(C, \mathcal{L}(A))$  is always invertible). Hence C is *n*-ordinary if and only if  $F^m \colon H^1(C, \mathcal{L}) \to H^1(C, (F^m)^* \mathcal{L})$  is invertible for every invertible sheaf  $\mathcal{L}$  whose order (in the Picard group of C) equals *n*. We shall prove the openness of  $V_n$  using this fact.

From  $R^1f_*(\mu_n) \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$  we obtain  $\operatorname{Pic}(\Gamma/H)_n = \{\xi \in \operatorname{Pic}(\Gamma/H) | n\xi = 0\} \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$ . The homomorphism  $\operatorname{Pic}(\Gamma) \to \operatorname{Pic}(\Gamma/H)$  is surjective since  $f: \Gamma \to H$  has a section (cf. [4]). Therefore we can choose a finite number of elements  $\mathscr{L}_1, \dots, \mathscr{L}_k \in \operatorname{Pic}(\Gamma)$  such that

the image of  $\mathscr{L}_i$  in Pic  $(\Gamma/H)$  has order n  $(i=1, \dots, \lambda)$ ,

(\*) and each element of order n in  $Pic(\Gamma/H)$  is the image of

 $\mathscr{L}_i \in \operatorname{Pic}(\Gamma)$  for some  $i=1, \dots, \lambda$ .

For each  $y \in H$  and invertible sheaf  $\mathscr{L}$  over  $\Gamma$ , put  $\Gamma_y = f^{-1}(y)$  and  $\mathscr{L}_y = \mathscr{L}|_{\Gamma_y}$ . Then for every  $y \in H$  and  $i=1, \dots, \lambda$ ,  $(\mathscr{L}_i)_y$  is an invertible sheaf of order *n* over the curve  $\Gamma_y$  and further, because of the property (\*),  $(\mathscr{L}_i)_y$   $(i=1, \dots, \lambda)$  give all the elements of order *n* in  $\operatorname{Pic}(\Gamma_y)$ . (Since  $R!f_*(\mu_n)$  is a constant sheaf, we have  $\operatorname{Pic}(\Gamma/H)_n \cong \operatorname{Pic}(\Gamma_y)_n$ .) For each  $i=1, \dots, \lambda$ , we have

$$\dim_{\kappa(y)} H^{1}(\Gamma_{y}, (\mathscr{L}_{i})_{y}) = \dim_{\kappa(y)} H^{1}(\Gamma_{y}, ((F^{m})^{*}\mathscr{L}_{i})_{y}) = \begin{cases} g & (n=1) \\ g-1 & (n>1) \end{cases},$$

where  $\kappa(y)$  denotes the residue field of y (F is the (p-th power) Frobenius morphism and m is the order of p in  $(\mathbb{Z}/n\mathbb{Z})^{\times}$ ). Therefore by [10] p. 50 Corollary 2, there exists a covering  $H = \bigcup_{j \in I} W_j$  ( $W_j = \operatorname{Spec} R_j$ ) of H by affine open subsets such that

$$H^{1}(\Gamma|_{W_{j}}, \mathscr{L}|_{W_{j}}) \cong R_{j}^{l} \qquad \left( l = \begin{cases} g & (n=1) \\ g-1 & (n>1) \end{cases} \right)$$

holds for each  $j \in I$  and  $\mathscr{L} \in \{\mathscr{L}_1, \dots, \mathscr{L}_{\lambda}, (F^m)^* \mathscr{L}_1, \dots, (F^m)^* \mathscr{L}_{\lambda}\}$ . For every  $j \in I$  and  $i=1, \dots, \lambda$ , we have a  $p^m$ -linear map

$$F^m \colon H^1(\Gamma|_{W_j}, \mathscr{L}_i|_{W_j}) \longrightarrow H^1(\Gamma|_{W_j}, (F^m)^* \mathscr{L}_i|_{W_j}).$$

Since we have

$$H^{1}(\Gamma|_{W_{j}}, \mathscr{L}_{i}|_{W_{j}}) \cong H^{1}(\Gamma|_{W_{j}}, (F^{m})^{*}\mathscr{L}_{i}|_{W_{j}}) \cong R^{l}_{j},$$

we obtain, fixing  $R_j$ -bases of  $H^1(\Gamma|_{W_j}, \mathscr{L}_i|_{W_j})$  and  $H^1(\Gamma|_{W_j}, (F^m)^*\mathscr{L}_i|_{W_j})$ , the determinant  $d_{i,j} \in R_j$  of the map  $F^m$  above. Put  $d_j = \prod_{i=1}^{\lambda} d_{i,j} \in R_j$ . Then,  $d_j \neq 0$  at  $y \in W_j = \operatorname{Spec} R_j$  if and only if

$$F^m: H^1(\Gamma_v, (\mathscr{L}_i)_v) \longrightarrow H^1(\Gamma_v, (F^m)^*(\mathscr{L}_i)_v)$$

is invertible for every  $i=1, \dots, \lambda$ . Hence  $d_j \neq 0$  at  $y \in W_j$  is equivalent to the condition that the curve  $\Gamma_y$  is *n*-ordinary, because  $(\mathscr{L}_i)_y$   $(i=1,\dots,\lambda)$  give all the invertible sheaves of order *n* over  $\Gamma_y$ . In other words, we have  $V_n \cap W_j = \{y \in W_j | d_j \neq 0 \text{ at } y\}$ , and consequently  $V_n \cap$  $W_j$  is open in  $W_j$  for all  $j \in I$ . Therefore  $V_n$  is open in *H* (recall  $H=\bigcup_{j\in I} W_j$ ) and hence  $U_n$  is open in  $M_g$  as we wanted to prove.

## II. Non-emptiness of $U_n$

In [8], Koblitz used the degenerate curve  $C_0$  below to show the existence of an ordinary (i.e. 1-ordinary) curve of genus g. Here we start from the curve  $C_0$  and construct an *n*-ordinary (non-singular) curve as a deformation of  $C_0$ .

Let  $C_0$  be a stable curve of genus g over k of the following form (for the definition of stable curve, see [2]):

$$C_0 = E_1 \cup \cdots \cup E_g,$$

(a) each  $E_i$  is an ordinary elliptic curve over k.

(b) for i < j,  $E_i \cap E_j = \begin{cases} P_i & j = i+1 \\ \phi & \text{otherwise} \end{cases}$ .

(c) each  $P_i$  is an ordinary double point of  $C_0$ . Concerning this curve  $C_0$ , we have

**Proposition 5.** (i)  $\operatorname{Pic}(C_0)_n \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$ .

(ii) Let  $f: C'_0 \rightarrow C_0$  be an étale covering of degree n and  $F: C'_0 \rightarrow C'_0$ the (p-th power) Frobenius morphism. Then

$$F = F^* \colon H^1(C'_0, \mathcal{O}_{C'_0}) \longrightarrow H^1(C'_0, \mathcal{O}_{C'_0}),$$

the p-linear map induced by F, is invertible.

*Proof.* (i) Let  $\mathcal{O}_{P_i}^{\times}$   $(i=1, \dots, g-1)$  be a sheaf over  $C_0$  whose stalk at  $x \in C_0$  is given by

$$\mathcal{O}_{P_{i,x}}^{\times} = \begin{cases} k^{\times} & x = P_i \\ \{1\} & x \neq P_i \end{cases}.$$

Then there is an exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathcal{C}_0}^{\times} \longrightarrow \bigoplus_{i=1}^{g} \mathcal{O}_{\mathcal{E}_i}^{\times} \longrightarrow \bigoplus_{i=1}^{g-1} \mathcal{O}_{\mathcal{P}_i}^{\times} \longrightarrow 0.$$

From the cohomology sequence of this exact sequence and the exactness of

$$0 \longrightarrow H^{0}(\mathcal{O}_{C_{0}}^{\times}) \longrightarrow \bigoplus_{i=1}^{g} H^{0}(\mathcal{O}_{E_{i}}^{\times}) \longrightarrow \bigoplus_{i=1}^{g-1} H^{0}(\mathcal{O}_{P_{i}}^{\times}) \longrightarrow 0,$$

we have

$$H^1(\mathcal{O}_{C_0}^{\times})\cong \bigoplus_{i=1}^g H^1(\mathcal{O}_{E_i}^{\times}).$$

Hence we obtain

$$\operatorname{Pic} (C_0)_n = H^1(\mathcal{O}_{C_0}^{\times})_n \cong \bigoplus_{i=1}^{g} H^1(\mathcal{O}_{E_i}^{\times})_n \cong (\mathbb{Z}/n\mathbb{Z})^{2g}.$$

(ii) Since  $f: C'_0 \rightarrow C_0$  is an étale covering, every singular point of  $C'_0$  lies over some  $P_i$   $(i=1, \dots, g-1)$  and is an ordinary double point. Further, each irreducible component of  $C'_0$  is an ordinary elliptic curve since it is a finite étale covering of some  $E_i$   $(i=1, \dots, g)$ . Consequently,  $C'_0$  is of the form

$$C_0' = E_1' \cup \cdots \cup E_l',$$

where each  $E'_i$  is an ordinary elliptic curve and  $E'_i \cap E'_j$   $(i \neq j)$  consists of a finite number of ordinary double points. Put  $f^{-1}(P_i) = \{Q_{n(i-1)+1}, \dots, Q_{ni}\}$  $(i=1, \dots, g-1)$ . Then  $Q_1, \dots, Q_{n(g-1)}$  are ordinary double points of  $C'_0$  and give all the singular points of  $C'_0$ . For each  $i=1, \dots, n$  (g-1), define a sheaf  $\mathcal{O}_{Q_i}$  over  $C'_0$  by

$$\mathcal{O}_{Q_{i,x}} = \begin{cases} k & x = Q_i \\ \{0\} & x \neq Q_i \end{cases} \quad \text{for each } x \in C'_0.$$

From the exact sequence

$$0 \longrightarrow \mathcal{O}_{C'_{0}} \longrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_{E'_{i}} \longrightarrow \bigoplus_{i=1}^{n(g-1)} \mathcal{O}_{Q_{i}} \longrightarrow 0,$$

we have a commutative diagram

Here  $F: H^0(\mathcal{O}_{Q_i}) \longrightarrow H^0(\mathcal{O}_{Q_i})$  is surjective since it is the *p*-th power map of  $k = H^0(\mathcal{O}_{Q_i})$ , and  $F: H^1(\mathcal{O}_{E'_i}) \longrightarrow H^1(\mathcal{O}_{E'_i})$  is also surjective since  $E'_i$  is an

ordinary elliptic curve. Therefore, as is easily checked by diagram chase,  $F: H^1(\mathcal{O}_{C_k}) \to H^1(\mathcal{O}_{C_k})$  is surjective, i.e. it is invertible.

Put  $R = k[[t_1, \dots, t_N]]$  (N = g - 1) and let s and  $\eta$  be respectively the closed and generic points of Spec R. Then by the results of [2] Section 1, there exists a scheme  $\mathscr{C} \rightarrow \text{Spec } R$  with the following properties:

- (i)  $\mathscr{C} \rightarrow \operatorname{Spec} R$  is a stable curve of genus g.
- (ii) Denote by  $\mathscr{C}_s$  and  $\mathscr{C}_{\eta}$  the fibers of  $\mathscr{C} \rightarrow \text{Spec } R$  at s and  $\eta$ . Then  $\mathscr{C}_s$  is isomorphic to the curve  $C_0$  defined above, and  $\mathscr{C}_{\eta}$  is non-singular.

Put  $\kappa = k((t_1, \dots, t_N))$  and let  $\bar{\kappa}$  be the algebraic closure of  $\kappa$ . We shall show that  $C = \mathscr{C}_{\eta} \times_{\text{Spec } \kappa} \text{Spec } \bar{\kappa}$  is an *n*-ordinary curve. We first prove

**Lemma 5.** Let  $C' \rightarrow C$  be a connected étale cyclic covering of degree *n*. Then there exists a connected étale cyclic covering  $\mathscr{C}' \rightarrow \mathscr{C}$  of degree *n* such that  $\mathscr{C}'_n \times \operatorname{Spec} \overline{k} \rightarrow \mathscr{C}_n \times \operatorname{Spec} \overline{k} = C$  is isomorphic to  $C' \rightarrow C$ .

*Proof.* By [3] exp. X Corollaire 2.3, the specialization homomorphism  $\pi_1(C) \rightarrow \pi_1(\mathscr{C}_s) \cong \pi_1(\mathscr{C})$  is surjective. Hence Hom  $(\pi_1(\mathscr{C}_s), Z/nZ) \rightarrow$  Hom  $(\pi_1(C), Z/nZ)$  is injective. On the other hand, Hom  $(\pi_1(\mathscr{C}_s), Z/nZ) \cong$  Pic  $(C_0)_n \cong (Z/nZ)^{2g}$  holds by Proposition 5 (i) (recall  $\mathscr{C}_s \cong C_0$ ), and Hom  $(\pi_1(C), Z/nZ)$  is also isomorphic to  $(Z/nZ)^{2g}$  since C is non-singular of genus g. Therefore, Hom  $(\pi_1(\mathscr{C}), Z/nZ) =$  Hom  $(\pi_1(\mathscr{C}_s), Z/nZ) \rightarrow$  Hom  $(\pi_1(C), Z/nZ)$  is an injective homomorphism between finite groups of the same order, hence an isomorphism. In particular it is surjective, which is nothing but the assertion of Lemma 5.

Let  $C' \to C$  be an arbitrary connected étale cyclic covering of degree n. Then by Lemma 5, it is obtained from a connected étale cyclic covering  $\mathscr{C}' \to \mathscr{C}$  of degree n. Consider the morphism  $f: \mathscr{C}' \to \operatorname{Spec} R$ . By Corollary 2 of [10] p. 50, the sheaf  $R^1f_*(\mathcal{O}_{\mathscr{C}'})$  is locally free on Spec R. But R is a local ring, and hence  $R^1f_*(\mathcal{O}_{\mathscr{C}'})$  is free over Spec R, i.e.  $H^1(\mathscr{C}', \mathcal{O}_{\mathscr{C}'})$  is a free R-module. Choose an R-basis of  $H^1(\mathscr{C}', \mathcal{O}_{\mathscr{C}'}) \to H^1(\mathscr{C}', \mathcal{O}_{\mathscr{C}'})$  with respect to this basis. Then Proposition 5 (ii) shows that  $d_F \neq 0$  at  $s \in$  Spec R, which means  $d_F \in R^{\times}$  since s is the closed point of Spec R. In particular,  $d_F \neq 0$  at  $\eta \in \operatorname{Spec} R$  and hence the Frobenius morphism  $F: H^1(C', \mathcal{O}_{\mathscr{C}'}) \to H^1(C', \mathcal{O}_{\mathscr{C}'})$  is invertible (recall  $C' = \mathscr{C}'_{\eta} \times \operatorname{Spec} \overline{k}$ ), i.e. C' is an ordinary curve. Therefore by Proposition 4 in Section 4, the curve C is n-ordinary. Thus we have shown that  $U_n$  has at least one  $\overline{k}$ -valued point. Hence the set  $U_n$  is not empty.

Thus, by the two steps I and II, the proof of Theorem 2 is completed.

## § 6. Examples

Given a connected complete non-singular curve C, we can calculate the generalized Hasse-Witt invariants of C by using Proposition 2 in Section 2. In this section, the results of computations are given for the case p=2, g=2, n=3. (The process of computations is omitted here. Details are explained in [12].) Examples of generalized Hasse-Witt invariants are also given in [7].

Let C be a connected complete non-singular algebraic curve of genus two over an algebraically closed field k of characteristic two. We shall give the values of  $\gamma_{\alpha}$ 's for  $\alpha \in {}_{3}\mathfrak{A}$ . Since the genus of C equals two, we have  $\gamma_{\alpha}=0$  or 1 for  $\alpha \in {}_{3}\mathfrak{A}$ . Then, if we denote by N the number of connected étale  $G_{3,2}$ -coverings of C ( $G_{3,2}\cong$  the alternating group of degree 4), we have, by Theorem 1,

$$N = \sum_{\alpha \in \mathfrak{M}} \frac{q^{\gamma \alpha} - 1}{q - 1} = \#\{\alpha \in \mathfrak{M} \mid \gamma_{\alpha} = 1\}.$$

The set  $_{3}\mathfrak{A}$  consists of 40 elements, hence the curve C is 3-ordinary if and only if N=40.

Connected complete non-singular curves of genus two over k (char k = 2) are classified into three types (I, II and III below) according to the number of Weierstrass points. We give the number N above, for each curve.

I.  $y^2 + y = x^5 + Ax^3$  ( $A \in k$ ).

For every  $A \in k$ , N = 40.

II.  $y^2 + y = Ax^3 + \frac{B}{x}$  (A, B  $\in k^{\times}$ ). For every A, B  $\in k^{\times}$ , N=40.

III. 
$$y^2 + y = Ax + \frac{B}{x} + \frac{C}{x+1}$$
 (A, B, C  $\in k^{\times}$ ).

In this case, we have

- (a) When  $(A+B+C)^3+ABC\neq 0$ , N=40.
- (b) When  $(A+B+C)^3 + ABC = 0$  and  $(A+B)(B+C)(C+A) \neq 0$ , N=39.
- (c) When  $(A+B+C)^3 + ABC = (A+B)(B+C)(C+A) = 0$ (i.e. A=B=C), N=38.

The classical Hasse-Witt invariants of curves of type I, II and III are

#### 86

respectively equal to 0, 1 and 2. Hence, curves of type I and II are 3ordinary but not 1-ordinary. Conversely, curves of type III (b) and (c) give examples of curves which are 1-ordinary but not 3-ordinary. Curves of type III (a) are both 1- and 3-ordinary.

## §7. A recent result

In this section a result of the author will be mentioned, which was obtained after the Symposium.

Let C be a connected complete non-singular curve of genus g over an algebraically closed field k of characteristic p > 0. Put

$$\mathscr{G} = \{G \mid G = \text{Gal}(C'/C) \text{ for a connected étale finite Galois} \}$$

covering  $C' \longrightarrow C$ ,

i.e.  $\mathscr{G}$  is the set of all finite groups G such that  $G = \pi_1(C)/N$  for some open normal subgroup N of  $\pi_1(C)$ . When  $g \ge 2$ , the set  $\mathscr{G}$  has not yet been determined explicitly. But the result of Grothendieck referred to in Section 1 gives a necessary condition for a finite group to belong to  $\mathscr{G}$ ;

(#) If  $G \in \mathcal{G}$ , then G is a quotient group of  $\Gamma_{g}$ .

(If  $p = \operatorname{char} k$  does not divide the order of G, the converse of (#) is also true.)

In [13] the author obtained another necessary condition. Namely,

**Theorem 3.** Let G be a finite group and  $I_G$  the augmentation ideal of its group algebra over k;

$$I_G = \{ \sum_{\sigma \in G} a_{\sigma} \cdot \sigma \in k[G] \mid \sum_{\sigma \in G} a_{\sigma} = 0 \}.$$

If G belongs to  $\mathscr{G}$ , there exists a surjective k[G]-homomorphism  $k[G]^g \rightarrow I_g$ where g is the genus of C.

If the order of G is prime to  $p = \operatorname{char} k$ ,  $I_G$  is a direct summand of k[G]as a k[G]-module and there always exists a surjective homomorphism  $k[G] \to I_G$ . Hence Theorem 3 poses no restriction on such groups. But if the order of G is a multiple of p, there does not always exist a surjective homomorphism  $k[G]^g \to I_G$ , and Theorem 3 gives some information about the set  $\mathscr{G}$ . For example, take  $G = (\mathbb{Z}/p\mathbb{Z})^d$  where d is a natural number. Then, a surjective homomorphism  $k[G]^g \to I_G$  exists if and only if  $d \leq g$ . On the other hand, this group G is a quotient of  $\Gamma_g$  if and only if  $d \leq 2g$ . Thus the necessary condition given in Theorem 3 is not contained in the condition ( $\sharp$ ) above. (Now we have concluded from Theorem 3 that the

inequality  $d \leq g$  holds if  $(\mathbb{Z}/p\mathbb{Z})^{d} \in \mathcal{G}$ . But this fact itself is well-known and can be derived from Hasse-Witt theory.) It seems a difficult problem to determine the minimal number of generators of  $I_{g}$  as a k[G]-module, and hence I do not know to what extent Theorem 3 restricts the set  $\mathcal{G}$ .

#### References

- P. Cartier, Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, 244 (1957), 426-428.
- [2] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES, 36 (1969), 75-109.
- [3] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), Springer lecture note **224** (1971).
- [4] —, Les schema de Picard: Theorèmes d'existence, Sem. Bourbaki, exp. 232 (1962).
- [5] M. Hall, Jr., The theory of groups, Macmillan, New York (1959).
- [6] H. Hasse and E. Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrad p über einem algebraischen Funktionenkörper der Charakteristik p, Monatshefte Math. Phys., 43 (1936), 477–492.
- [7] H. Katsurada, Generalized Hasse-Witt invariants and unramified Galois extensions of an algebraic function field, J. Math. Soc. Japan, 31 (1979), 101-125.
- [8] N. Koblitz, P-adic variation of the zeta function over families of varieties defined over finite fields, Compositio Math., 31 (1975), 119–218.
- [9] J. S. Milne, Etale cohomology, Princeton Univ. Press, Princeton (1980).
- [10] D. Mumford, Abelian varieties, Oxford Univ. Press, London (1970).
- [11] D. Mumford and J. Fogarty, Geometric invariant theory (second enlarged edition), Springer Verlag, Berlin-Heidelberg-New York (1982).
- [12] S. Nakajima, Generalized Hasse-Witt invariants and unramified extensions of function fields (in Japanese), Master thesis, Univ. of Tokyo (1980).
- [13] —, On Galois module structure of the cohomology groups of an algebraic variety (to appear).
- [14] I. Šafarevič, On *p*-extensions, Math. Sbornik, 20 (1947), 351–363 (In Russian). (AMS transl. ser. 2, 4 (1956), 59–72).
- [15] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposium internacional de topologia algebraica, Univ. of Mexico and UNESCO, Mexico City (1958), 24–53.
- [16] —, Groupes algébriques et corps de classes, Hermann, Paris (1959).

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan