Advanced Studies in Pure Mathematics 2, 1983 Galois Groups and their Representations pp. 55-61

On the Absolute Galois Groups of Local Fields I

Hiroo Miki

§1. Introduction

Let p be an odd prime number and let Q_p be the field of p-adic numbers. Let k be a finite algebraic extension of Q_p and let G_k denote the absolute Galois group of k, i.e., the Galois group $G(\bar{k}/k)$ of the algebraic closure \bar{k} of k. Jakovlev [7] [8] describes G_k in terms of generators and relations when $n = [k: Q_p]$ is even. Recently, Jannsen and Wingberg [10] succeeded in giving a simpler description of G_k in terms of generators and relations for any k, by using Demuškin formation (a group theoretical characterization of G_k) due to Koch [13]. The purpose of the present paper is to give a historical exposition of a way to the concept of Demuškin formation, as the preliminaries of Komatsu [14]. We shall emphasize a number theoretical process and omit the proofs of the purely group theoretical parts.

§ 2. Šafarevič's theorem (the case where $\zeta_1 \in k$)

Put $n = [k: Q_p]$. Let k(p) be the maximal *p*-extension of *k* and put $G_k(p) = G(k(p)/k)$. Let ζ_i be a primitive p^i -th root of unity for $i \ge 1$. Let L(i) be a free group of rank *i* and let F(i) be a free pro-*p*-group of rank *i*, i.e., $F(i) = \lim_{k \to \infty} L(i)/N$, where the projective limit is taken over all normal subgroups N of L(i) such that L(i)/N are finite *p*-groups.

The following lemma is well known.

Lemma 1 (Schreier). Any subgroup of L(i) of index j is a free group of rank j(i-1)+1.

By using Lemma 1 and local class field theory, Šafarevič [18] proves the following

Theorem 1. Let the notation and assumptions be as above. Moreover, assume that $\zeta_1 \in k$. Then $G_k(p)$ is a free pro-p-group of rank (n+1).

Proof. Put $G = G_0 = G_k(p)$ and $G_{i+1} = [G_i, G_i]G_i^p$ for $i \ge 0$, where Received November 30, 1982.

Hiroo Miki

[G, G] is the closed subgroup of G generated by all commutators $[a, b] = aba^{-1}b^{-1}$ $(a, b \in G)$. Let k_{i+1} be the maximal elementary abelian *p*-extension of k_i for each $i \ge 0$ (put $k_0 = k$). Then by Galois theory and local class field theory, $G_i/G_{i+1} \cong G(k_{i+1}/k_i) \cong k_i^{\times}/(k_i^{\times})^p$ for $i \ge 0$. Hence $[G_i: G_{i+1}] = [k_i^{\times}: k_i^{\times p}] = p^{[G:G_i]n+1}$ for $i \ge 0$, so

(1)
$$[G:G_{i+1}] = [G:G_i][G_i:G_{i+1}] = [G:G_i]p^{[G:G_i]n+1} \quad \text{for } i \ge 0.$$

On the other hand, put L = L(n+1) and F = F(n+1). Then by Lemma 1, $[L_i: L_{i+1}] = p^{\operatorname{rank}(L_i)} = p^{[L:L_i]n+1}$, so

(2)
$$[L: L_{i+1}] = [L: L_i][L_i: L_{i+1}] = [L: L_i]p^{[L:L_i]n+1}$$
 for $i \ge 0$.

By (1) and (2), $[G: G_i] = [L: L_i]$ $(i \ge 0)$, so $[G: G_i] = [F: F_i]$ $(i \ge 0)$, since $L/L_i \cong F/F_i$. Hence $F/F_i \cong G/G_i$ for $i \ge 0$. Taking the projective limit, we obtain $G \cong F$.

Remark. Serre [23, II, § 5.6, Theorem 3] gives another proof of Theorem 1 by using Tate's duality theorem. Marshall [16] gives a generalization of Theorem 1 to the case where the residue field is perfect, by using Serre's local class field theory [20]. [17] gives an elementary proof of this generalization, not using Serre's local class field theory.

§ 3. Kawada-Demuškin's theorem (the case where $\zeta_1 \in k$)

In this section, we suppose that $\zeta_1 \in k$. Let *s* be the natural number such that $\zeta_s \in k$ and $\zeta_{s+1} \notin k$. Kawada [11] proves that $G_k(p)$ has only one relation, and Demuškin [1] [2] [3] determines the relation when $p^s \neq 2$. Serre [22] and Labute [15] determine the relation when $p^s=2$.

A pro-p-group is a topological group which is the projective limit of finite p-groups. For any pro-p-group G, let m(G) be the minimal number of topological generators of G. The following group theoretical lemma is fundamental (e.g. [23]).

Lemma 2. If G is a pro-p-group, then the following (i) and (ii) hold.

(i) $\dim_{F_n} H^1(G, F_p) = m(G)$, where F_p is the field of p elements.

(ii) $\dim_{F_p} H^2(G, F_p)$ is equal to the number of relations of G, i.e., the minimal number of elements whose conjugates generate a dense subgroup of R if $G \cong F(m)/R$ with m = m(G).

Definition. A pro-*p*-group G is called a *Demuškin group* if the following (i), (ii) and (iii) hold.

- (i) $\dim_{F_n} H^1(G, F_p) < \infty$.
- (ii) $\dim_{F_{p}} H^{2}(G, F_{p}) = 1.$

(iii) The cup product $H^1(G, F_p) \times H^1(G, F_p) \to H^2(G, F_p)$ is a nondegenerate skew symmetric bilinear form.

If G is a Demuškin group, then by Lemma 2, $m=m(G) < \infty$ and $G \cong F/(r)$ with $r \in [F, F]F^p$, where F=F(m) and (r) is the closed normal subgroup of F generated by r. Then $G/[G, G] \cong \mathbb{Z}_p^{m-1} \times (\mathbb{Z}_p/p^*\mathbb{Z}_p)$, where $p^*=p(G)$ is a power of p or 0. Here \mathbb{Z}_p is the ring of p-adic integers. The numbers m(G) and p(G) are invariants of G. Under the above notation and assumptions, Demuškin [1] [2] [3] proves the following

Theorem 2. Assume that $p^* \neq 2$. Then a pro-p-group G is a Demuškin group if and only if the following (i) and (ii) hold.

(i) m(G) = m is even.

(ii) There exists a basis x_1, \dots, x_m of F such that $r = x_1^{p^*}[x_1, x_2]$ $[x_3, x_4] \cdots [x_{m-1}, x_m].$

Theorem 2 and the following Lemma 3 give a complete determination of the structure of $G_k(p)$ in terms of generators and relations when $p^s \neq 2$.

Lemma 3. If $\zeta_1 \in k$, then $G_k(p)$ is a Demuškin group with m(G) = n+2 and $p(G) = p^s$.

Proof. Put $G = G_k(p)$. Identify the three groups $\langle \zeta_1 \rangle$, F_p and

$$\left(\frac{1}{p}Z\right)/Z$$
 by $\zeta_1 \longleftrightarrow 1 \mod pZ \longleftrightarrow \frac{1}{p} \mod Z$.

Since $H^1(G, F_p) = \text{Hom}(G/[G, G]G^p, F_p)$ is the character group of the Galois group of the maximal elementary abelian *p*-extension of *k*, by Kummer theory we have $k^{\times}/k^{\times p} \cong H^1(G, F_p)$ by $a \in k^{\times} \to \chi_a \in H^1(G, F_p)$, where $\binom{p}{\sqrt{a}}^{p-1} = \zeta_1^{\chi_a(\rho)}$ with $\rho \in G$. Hence m(G) = n+2. By the exact sequence

$$0 \longrightarrow F_p \xrightarrow{f} k(p)^{\times} \xrightarrow{g} k(p)^{\times} \longrightarrow 0$$

 $(f(t) = \zeta_1^t \text{ with } t \in F_p \text{ and } g(a) = a^p \text{ with } a \in k(p)^{\times})$, we obtain the exact sequence

$$H^{1}(G, k(p)^{\times}) \longrightarrow H^{2}(G, F_{p}) \longrightarrow H^{2}(G, k(p)^{\times}) \xrightarrow{h} H^{2}(G, k(p)^{\times}),$$

where h is the p-th power homomorphism. Since $H^1(G, k(p)^{\times})=0$ by Hilbert's theorem 90 and since $H^2(G, k(p)^{\times})$ is the p-primary component of the Brauer group Br (k) if $H^2(G, k(p)^{\times})$ is imbedded into Br (k)=Q/Zby inflation, we obtain the exact sequence

$$0 \longrightarrow H^{2}(G, F_{p}) \longrightarrow \mathcal{Q}_{p}/\mathcal{Z}_{p} \xrightarrow{i} \mathcal{Q}_{p}/\mathcal{Z}_{p} \longrightarrow 0,$$

where i is the p-times homomorphism. Hence

(*)
$$H^2(G, F_p) \cong \frac{1}{p} \mathbb{Z}/\mathbb{Z}.$$

Thus we obtain (ii) in the definition of a Demuškin group. If we consider $\chi_a \cup \chi_b$ $(a, b \in k^{\times})$ as an element of (1/p)Z/Z by (*), then $(a, b) = \zeta_1^{p(\chi_a \cup \chi_b)}$ is the Hilbert norm residue symbol of degree p, i.e., $(a, b) = (p\sqrt{a})^{\rho_k(b)-1}$ where ρ_k is the Artin map (cf. Serre [21, XIV, § 2, Proposition 6). Hence we obtain (iii) in the definition of a Demuškin group. Since G/[G, G] is the Galois group of the maximal abelian p-extension of k, by local class field theory, we have

$$G/[G, G] \cong \varprojlim_{i} k^{\times/k^{\times p^{i}}} \cong U_{k}^{(1)} \times \varprojlim_{i} Z/p^{i} Z \cong (Z/p^{s}Z) \times Z_{p}^{n+1},$$

so $p(G) = p^s$, where $U_k^{(1)}$ is the group of principal units of k.

§ 4. Hasse-Iwasawa's theorem (the tamely ramified case)

Let k_u be the maximal unramified extension of k and let k_t be the maximal tamely ramified extension of k. Then $k \subset k_u \subset k_t$. Let q be the number of elements of the residue field of k. Then Hasse [4] and Iwasawa [5] prove the following

Theorem 3. $G(k_t/k)$ is topologically generated by σ and τ with a relation $\sigma\tau\sigma^{-1} = \tau^q$, where $\sigma | k_u$ is the Frobenius automorphism of k_u/k and τ is a topological generator of $G(k_t/k_u)$.

Outline of proof. Let ξ_e $(e \ge 1)$ be a primitive *e*-th root of unity and let π be a prime element of *k*. We can prove that $k_u = \bigcup k(\xi_e)$ and $k_t = \bigcup k(\xi_e, {}^e\sqrt{\pi})$, where the sum is taken over all natural number *e* such that $e \equiv 0 \pmod{p}$. Take $\sigma \in G(k_t/k)$ such that $\sigma({}^e\sqrt{\pi}) = {}^e\sqrt{\pi}$ and $\sigma(\xi_e) = \xi_e^*$, and take $\tau \in G(k_t/k)$ such that $\tau({}^e\sqrt{\pi}) = \xi_e {}^e\sqrt{\pi}$ and $\tau(\xi_e) = \xi_e$ for all $e \ge 1$ such that $e \equiv 0 \pmod{p}$. Then $\sigma \tau \sigma^{-1} = \tau^q$.

§ 5. Demuškin formation due to Koch (a group theoretical characterization of G_k)

Let p be an odd prime number and let G be a pro-finite group generated by σ and τ with a relation $\sigma\tau\sigma^{-1}=\tau^q$, where $q=p^{f_0}(f_0\geq 1)$. Let n, s be natural numbers and let $\alpha: G \rightarrow (\mathbb{Z}/p^s\mathbb{Z})^{\times}$ be a homomorphism such that, if n is odd, then f_0 is odd and $\alpha(\tau)^{(p-1)/2} \equiv -1 \pmod{p}$. **Definition.** A pro-finite group X is called a *Demuškin formation* over G with degree n, torsion p^s and character α if there exists a surjective homomorphism $\phi: X \rightarrow G$ such that Ker ϕ is a pro-p-group and for any open normal subgroup $H(\subset \text{Ker } \alpha)$ of G the maximal pro-p-factor group X_H of $\phi^{-1}(H)$ satisfies the following (I), (II) and (III).

(I) X_H is a Demuškin group with $p(X_H) = p^s$.

(II) Regarding $H^1(H, F_p)$ as a subspace of $H^1(X_H, F_p)$ by the inflation associated with the natural homomorphism $X_H \rightarrow H/H_1$ $(H_1 = [H, H]H^p)$, let $H^1(H, F_p)^{\perp}$ be the orthogonal complement of $H^1(H, F_p)$ in $H^1(X_H, F_p)$ with respect to the bilinear form in the definition of a Demuškin group. Then $H^1(H, F_p)^{\perp}/H^1(H, F_p) \cong F_p[\overline{G}]^n$ $(\overline{G} = G/H)$ as $F_p[\overline{G}]$ -modules. Moreover, the left hand side is a direct sum of two totally isotropic $F_p[\overline{G}]$ -submodules.

(III) Making G operate on $H^2(X_H, \mathbb{Z}/p^s\mathbb{Z})$ by the inner automorphisms, we have $\rho x = \alpha(\rho)x$ with $\rho \in G$, $x \in H^2(X_H, \mathbb{Z}/p^s\mathbb{Z})$.

Now put $G = G(k_t/k)$ and $n = [k: Q_p]$. Let s be such that $\zeta_s \in k_t$ and $\zeta_{s+1} \notin k_t$, and let $\alpha: G \to (Z/p^s Z)^{\times}$ be such that $\zeta_s^{\rho} = \zeta_s^{\alpha(\rho)}$ with $\rho \in G$. By Theorem 3, G and α satisfy the above conditions.

Theorem 4 ([13]). Under the above notation and assumptions, G_k is a Demuškin formation over G with degree n, torsion p^s and character α .

For the proof of Theorem 4, Lemma 3 and the following Lemma 4 are essential. Let K/k be a finite tamely ramified Galois extension containing ζ_1 with Galois group \overline{G} and let ν be the normalized additive valuation of K. Put $e' = \nu(p)/(p-1)$ and $U_K^{(i)} = \{x \in K^{\times} | \nu(x-1) \ge i\}$ $(i \ge 1)$.

Lemma 4. (i) ([5]) $M = U_{K}^{(1)}/U_{K}^{(e'p)}(U_{k}^{(1)})^{p} \cong F_{p}[\overline{G}]^{n}$ as $F_{p}[\overline{G}]$ -modules. (ii) ([12]) *M* is a direct sum of two totally isotropic $F_{p}[\overline{G}]$ -submodules with respect to the Hilbert norm residue symbol of degree *p*.

For the proof of (ii) of Lemma 4, Koch [12] uses Šafarevič's formulas [19] on the Hilbert norm residue symbol.

Proof of Theorem 4. Let $\phi: G_k \to G$ be the restriction homomorphism and let K be the fixed field by H in k_t . Then K/k is a finite tamely ramified Galois extension containing ζ_s with Galois group $\overline{G} = G/H$, and $X_H = G(K(p)/K)$. By Lemma 3, we have (I) in the definition of a Demuškin formation. By Kummer theory, identify $H^1(X_H, F_p)$ and $K^{\times}/K^{\times p}$. Then $H^1(H, F_p) = U_K^{(e'p)}(K^{\times})^p/(K^{\times})^p$, since $H^1(H, F_p)$ is the character group of the Galois group G(L/K) of the unramified extension L/K of degree p. Since $N_{L/K}(U_L) = U_K(U_K)$: the group of units of K) and $\rho_K(\pi)|_L$ generates G(L/K) (π : a prime element of K), by the fundamental

Hiroo Miki

properties of the Hilbert norm residue symbol we have $H^{1}(H, F_{p})^{\perp} =$ $U_{\kappa}(K^{\times})^{p}/(K^{\times})^{p} = U_{\kappa}^{(1)}(K^{\times})/(K^{\times})^{p}$. Hence

$$H^{1}(H, \mathbf{F}_{p})^{\perp}/H^{1}(H, \mathbf{F}_{p}) \cong U_{K}^{(1)}/U_{K}^{(e'p)}(U_{K}^{(1)})^{p}.$$

Therefore we have (II) by Lemma 4. By Kummer theory we can identify $H^1(X_H, \mathbb{Z}/p^s\mathbb{Z})$ and $K^{\times}/K^{\times p^s}$ by $\chi_a \leftrightarrow a \mod K^{\times p^s}$ $(a \in K^{\times})$, where $(p^s\sqrt{a})^{\gamma-1}$ $=\zeta_s^{\chi_a(\gamma)}$ with $\gamma \in X_H$. In the same way of the proof of Lemma 3, we can identify $H^2(X_H, \mathbb{Z}/p^s\mathbb{Z})$ and $(1/p^s)\mathbb{Z}/\mathbb{Z}$. Then $(a, b) = \zeta_s^{p^s(\chi_a \cup \chi_b)}$ $(a, b \in K^{\times})$ is the Hilbert norm residue symbol of degree p^s , i.e., $(a, b) = (p^s \sqrt{a})^{\rho_{\mathcal{K}}(b)-1}$, where ρ_{K} is the Artin map. Since $\rho \chi_{a} = a^{\rho} \mod K^{\times p^{s}}$ where $(\rho \chi_{a})(x) =$ $\chi_a(\rho^{-1}x\rho)$ with $x \in X_H$, we have $(a^{\rho}, b^{\rho}) = \zeta_s^{p^s((\rho\chi_a) \cup (\rho\chi_b))} = \zeta_s^{p^s(\rho(\chi_a \cup \chi_b))}$. On the other hand, $(a^{\rho}, b^{\rho}) = (a, b)^{\rho}$ (e.g. [6, § 8.2]). Hence $\rho(\chi_a \cup \chi_b) = \alpha(\rho)$ $(\gamma_a \cup \gamma_b)$. This gives (III).

As in the next lecture of Komatsu, by the above Theorem 4 and the following Theorems 5 and 6 we can determine the structure of G_k in terms of generators and relations.

Theorem 5 ([13]). The uniqueness of a Demuškin formation with given invariants.

For the details of the proof, see Wingberg [24].

Theorem 6 (Jannsen-Wingberg [10]). A group theoretical construction of a Demuškin formation with given invariants.

References

- [1] S. Demuškin, The group of the maximal p-extension of a local field (Russian), Dokl. Akad. Nauk SSSR., 128 (1959), 657-660.
- [2] -, On the maximal p-extension of a local field (Russian), Izv. Akad. Nauk USSR. Math. Ser., 25 (1961), 329-346.
- -, On 2-extensions of a local field (Russian), Sibirsk. Mat. Ž., 4 (1963), [3] 951-955.
- [4] H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1949; 3rd edition 1969 =Number Theory, Grundl. math. Wiss., 229, Springer-Verlag, Berlin, 1980.
- [5] K. Iwasawa, On Galois groups of local fields, Trans. Amer. Math. Soc., 80 (1955), 448-469.
- [6] ______, Local class field theory (Japanese), Iwanami Shoten, 1980.
 [7] A. V. Jakovlev, The Galois group of the algebraic closure of a local field (Russian), Izv. Akad. Nauk SSSR, 32 (1968)=English transl., Math. USSR Izv., 2 (1968), 1231–1269.
- -, Remarks on my paper "The Galois group of the algebraic closure of [8] a local field" (Russian), Izv. Akad. Nauk SSSR, 42 (1978)=English transl., Math. USSR Izv., 12 (1978), 205-206.
- [9] U. Jannsen, Über Galoisgruppen lokaler Körper, Invent. Math., 70 (1982), 53-69.
- [10] and K. Wingberg, Die Struktur der absoluten Galoisgruppe p-adischer

Zahlkörper, Invent. Math., 70 (1982), 71-98.

- [11] Y. Kawada, On the structure of the Galois group of some infinite extensions, I., J. Fac. Sci. Univ. Tokyo, 7 (1954), 1-18.
- [12] H. Koch. Über Darstellungsräume und die Struktur der multiplikativen Gruppe eines p-adischen Zahlkörpers, Math. Nachr., 26 (1963), 67–100.
- [13] —, The Galois group of a p-closed extension of a local field, Dokl. Akad. Nauk SSSR, 238 (1978)=Soviet Math Dokl., 19 (1978), 10-13.
- [14] K. Komatsu, On the absolute Galois groups of local fields II, this volume.
- [15] J. P. Labute, Classification of Demushkin groups, Canad. J. Math., 19 (1967), 106-132.
- [16] M. A. Marshall, The maximal p-extension of a local field, Canad. J. Math., 23 (1971), 398–402.
- [17] H. Miki, On some Galois cohomology groups of a local field and its application to the maximal p-extension, J. Math. Soc. Japan, 28 (1976), 114-122.
- I. R. Šafarevič, On p-extensions (Russian. English summary), Mat. Sbornik, 20 (1947), 351-363=English transl., Amer. Math. Soc. Transl. Ser. 2, 4 (1956), 59-72.
- [19] —, A general reciprocity law (Russian), Mat. Sbornik, 26 (1950), 113– 146=English transl., Amer. Math. Soc. Transl. Ser. 2, 4 (1956), 73–106.
- [20] J.-P. Serre, Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France, 89 (1961), 105-154.
- [21] —, Corps locaux, Hermann, Paris, 1962. 2nd edition, 1968.
- [22] —, Structure de certains pro-*p*-groupes, Séminaire Bourbaki 15 (1962/63), n°252.
- [23] —, Cohomologie Galoisienne, Lecture Notes in Math. 5, Springer, Berlin, 1964, 4th edition 1973.
- [24] K. Wingberg, Der Eindeutigkeitssatz f
 ür Demuškinformationen, Invent. Math., 70 (1982), 99-113.

Department of Mathematics Faculty of Science Tokyo Metropolitan University Setagaya-ku, Tokyo 158 Japan