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Algebraic Methods in the Theory of
Algebraic Threefolds

—surrounding the works of Iskovskih, Mori
and Sarkisov—

Masayoshi Miyanishi

This is an expository report on the recent developments in the theory
of algebraic threefolds, with emphasis on algebraic (not transcendental)
methods. One of the works which this report is based on is Mori’s theory
[24, 25], which, the reporter believes, is a real break-through in the theory
of algebraic threefolds and will be published soon in a complete paper.
Though Mori’s theory treats mainly the case where the base field is an
algebraically closed field of characteristic zero and the canonical divisor
of an algebraic threefold is not numerically effective, he succeeded in giving
a clear-cut view of this case and gave significant directions in pointing out
divisors which should be contracted first in order to construct minimal
models of algebraic threefolds. Moreover, we expect that his theory can
be extended, to some extent, to the case of positive characteristic, since his
approach is similar to that of Mumford [29], in which Mumford renovated
some parts of the arguments in the classification theory of algebraic sur-
faces, for the purpose of extending the theory to the case of positive char-
acteristic. This expectation is one of the reasons why we stick to the
algebraic methods in this report.

In the first half of this report, we shall give a concise presentation of
the theory of algebraic threefolds along the line set by Mori’s theory. In
the second half, several basic results will be given on conic bundles, which,
on the analogy of vector bundles, have more to be worked out algebraically.

The plan of this report is as follows:

§ 1. Outline of the theory,

§ 2. Preliminary results,

§ 3. Several central lemmas in Mori’s theory,

§4. Conic bundles,
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§1. Outline of the theory

An algebraic threefold X is a nonsingular projective variety of dimen-
sion 3 defined over an algebraically closed field £ of characteristic zero,
which we fix as the base field throughout this report. Let K, be the
canonical divisor. Mori considers an algebraic threefold X' with K, not
numerically effective. Then, let NE(X) be the closed convex cone spanned
by all effective 1-cycles on X modulo numerical equivalence (denoted by =).
If K, is not numerically effective then the side of NE(X) with — K, >¢L
>0, (a bit away from the hyperplane —K,=0, where L is an ample
divisor on X), is a convex polyhedral cone, which is spanned by finitely
many rays R, (1<i<n) such that

(1) R,=R.[l]with a rational curve /,, where R, is the set of non-
negative real numbers, and

(2) z,+z,eR, and z, z, e NE(X) imply z, z, ¢ R;; such rational
curves [, are called extremal rational curves and rays R, are called extremal
rays. Mori shows that if K, is not numerically effective, there exists an
extremal rational curve /.

If the Picard number p(X) equals 1, then — K, is ample and hence
X is a Fano threefold with p(X)=1. Under an additional hypothesis that
0(X)=2, one may choose a numerically effective divisor H such that H*-
NNE(X)=R=R_[l], where Hl={ze NE(X);(H-z)=0}. It can be
shown that (H*)>0 if and only if R is not numerically effective.

On the other hand, the Riemann-Roch theorem and a variation of
the Kodaira vanishing theorem imply the following equalities:

K(mH)=y(mH)=3(H")m’+{(c,(X) - H)m"
+15(H- ¢,(X)* + c(X)m+4(ci(X) - (X))

for a sufficiently large integer m. Then Mori’s theory asserts that the
results (1) ~(4) below hold true. Note that if R is not numerically ef-
fective there exists an irreducible, reduced divisor D on X such that (D-])
<0. Throughout the assertions (1) ~ (4), the morphism @, : X—
D\ (X) is called the contraction of R and denoted by cont,, while
@,z (X) is denoted by cont, (X).

(1) If R is not numerically effective. and H-D=0 on D, then the
divisor D is uniquely determined by the extremal ray R=R.[/] and D is
isomorphic to either P* or a possibly singular quadric surface V" in P2,
If D=P? then O,(D)=0p(—1) or Op(—2). If D=V then O,(D)=
0,(—1), where 0,(1) is the sheaf of hyperplane sections. Moreover, if m
is sufficiently large, the mapping Q,,,,: X—X, C P¥™=I™#l i5 a birational
morphism onto a normal threefold X, such that P:=®,, (D) is a point,
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@, induces an isomorphism X—D=xX,, —{P}, and

(i) P is asmooth point if D=P? and 0,(D)=0p,(—1),

(ii) P is an ordinary double point of the analytic type @,=
kl[x, y, z, ull|(x* +y*+2°+ o) if D= P X P, i.e., D is a nonsingular quadric
in P?,

(iii) P is a double point of the analytic type 0,=k[[x, v, z, ul]/(x*+
y: 422 +u®) if D is a quadric cone in P?,

(iv) Pis a quadruple point of the analytic type 0,=k[[x, y, z]]® if
D=P? and O, (D)= Op.(—2), where k[x, y, z]]® is the invariant subring
of k[[x, y, z]] under the Z/2Z-action defined by (x, y, z)—>(—x, —y, —2).

The divisor D is called the exceptional divisor associated with R.

(2) If Ris not numerically effective and H-D=z0 on D, then D is
uniquely determined by the extremal ray R and D is a P'-bundle over a
nonsingular complete curve Y. Moreover, for a sufficiently large integer
M, ¢ =0,y X—X, CPU™I™H js a birational morphism onto a non-
singular projective threefold X,,, ¢, contracts D to a curve Y,, in X, iso-
morphic to Y, and ¢, induces an isomorphism X—D=X,—7Y,. As
in the assertion (1), D is called the exceptional divisor associated with R.

3 If (H*)=0 and (¢,(X)- H) >0, then f:=0,, 5 : X—YC Pmind
is a morphism onto a nonsingular projective surface ¥, and f: X—Y is a
conic bundle, i.e., every fiber X, of f is isomorphic to a possibly singular
conic in P?, where m is a sufficiently large integer. Moreover, we have:

(i) [Cle R=R.[!] if and only if dim f(C)=0, where C is an ir-
reducible curve,

(i) p()=p(¥)+1,

(iii)) f~*(Z) is irreducible for any irreducible curve Z on Y.

4) If (H*)=0 and (¢,(X)- H)<O0, then H*=0, (c(X)*+c(X)-H)
>0 and p(X)=2. Moreover, for a sufficiently large integer m, f:=0, . :
X—YC PY=ImHl i a surjective morphism onto a nonsigular complete curve
Y whose arbitrary fiber X, is an irreducible and reduced surface with wz}
ample, where wy, is the dualizing invertible sheaf of X,;; f: X— Y is called
a del Pezzo fiber space. For any irreducible curve Con X, [C] e R=R,[I]
if and only if dim f(C)=0.

We have an analogue for a nonsingular projective surface S with Kj
not numerically effective. As in the case of algebraic threefolds, there
exists an extremal rational curve /on S. If p(S)=1 then — K is ample
and hence S is isomorphic to P?.  So, assume that p(S)=2. Then there .
exists a numerically effective divisor H such that HLNNE(S)=R:=
R.[l]]. The extremal ray R is not numerically effective, i.e., (/*)<0, if and
only if (H?)>>0. In this case, /is an exceptional curve of the first kind,
and, for a sufficiently large integer m, ¢,:=@, 4 : S—>S' CP¥™™™Hl i a
birational morphism onto a nonsingular projective surface S’ such that P
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:=g¢,(l)is a point and ¢,,: S—/—S"—{P} is an isomorphism. Conversely,
if /is an exceptional curve of the first kind on S, then / is an extremal
rational curve such that R:=R,[/] is not numerically effective. Thus the
absence of extremal rational curves which are not numerically effective is
equivalent to the condition that S is relatively minimal. On the other
hand, if R is numerically effective, then 2=, : S—>CCP¥=I"H j5 a
surjective morphism onto a nonsingular complete curve C for a sufficiently
large integer m, and S is, in fact, a P'-bundle over C. Moreover, an.ir-
reducible curve Z is a fiber of f if and only if [Z] e R.

However, in the case of algebraic threefolds, the assertion (1) shows
that we cannot necessarily contract D to a smooth point or a smooth
curve. Reid remarked that the point P has only canonical (hence rational)
singularity of index 1 (in the cases (ii) and (iii)) and index 2 (in the case
(iv)). The fact that the new threefold X’ (:=X,,) obtained from X by
contracting D acquires a canonical singularity seems to be an obstacle (or
a key result) to finding (or defining) a relatively minimal model of X in the
correct sense.

Meanwhile, Mori’s theory contains the following result: Let f7 X
Y be a birational morphism of nonsingular projective threefolds. If fis
not an isomorphism, then X contains an extremal rational curve / such
that f,/=0. The extremal ray R:=R,[/] is not numerically effective and f
factors through cont,: X—X,:=cont, (X), i.e., f=g-cont, with g: X;—
Y, and the exceptional set of f contains the exceptional divisor D associated
with R. This result implies the following, which is a special case of
Danilov’s result [6]:

Let f: X—Y be a small birational morphism of nonsingular- pro-
jective threefolds; namely, dim f~*(»)<1 for every point y ¢ Y. Then fis
decomposed into a product of blowing-ups along nonsingular curves.

In general, we have no further results.

In view of Mori’s theory, when we consider algebraic threefolds whose
canonical divisors are not numerically effective, the following three classes
remain to be studied further.

(I) A threefold X having a conic bundle structure f: X—Y over a
nonsingular projective surface Y such that p(X)=p(Y)+1;

(1) A threefold X which is a del Pezzo fiber space f: X—Y over a
nonsingular projective curve ¥, and p(X)=2;

) p(X)=1. Inthiscase, —K, is ample, hence X is a Fano three-
fold with p(X)=1; this class was thoroughly investigated by Iskovskih [16,
18], as we mention again later.

(I) A conicbundlef: X—Y is said to be standard if Pic X=f*PicY
@ZKy; this is equivalent to saying that p(X)=p(Y)+1 and the generic
fiber of f'is a conic defined over the function field k(Y) without any k(Y)-
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rational points. Concerning the rigidity of a given conic fibration f: X—
Y, Sarkisov [37] proved the following result:

: Let Y be a nonsingular projective surface with y(0,)=>1 and let f: X
—Y be a standard conic bundle such that |4K, + 4,|+¢, where 4, is the
degeneracy locus of f. Then the given conic fibration f: X—Y is rigid in
the following sense: Let f’: X— Y’ be a rational mapping whose general
fibers are rational curves; then there are birational mappings &: X—X and
9: Y=Y’ such that f/-&£=y.f. Therefore X is irrational.

Indeed, Sarkisov succeeded in constructing an example of a unira-
tional, irrational threefold X with a standard conic bundle structure such
that H*(X, Z)=(0); note that the torsion subgroup of H*(X, Z) is a bira-
tional invariant [1].

His proof depends on an extension of the arguments of Iskovskih-
Manin [21] used to prove that a smooth quartic hypersurface in P* is not
rational. The condition y(@,)=1 implies that either ¥ is not ruled or ¥
is rational. So, one has to care about this latter case.

On the other hand, if f: X—P? is a conic bundle such that 4, is non-
singular, Beauville [4] established an isomorphism between the Chow group
(4)°(X) = {l-cycles algebraically equivalent to 0}/(rational equivalence)
and the k-rational points of the Prym variety of the pseudo-covering
G(f)/4, associated with f: X—P*?. Thereby, he proved the irrationality
of certain conic bundles.

(II) We have little knowledge on del Pezzo fiber spaces f: X—Y
with p(X)=2. Let y be the generic point of ¥ and let F be the generic
fiber X, of /. = Since p(X)=2, F is a relatively minimal model defined over
k() in the sense of Iskovskih [20], in view of which we have the following
result. '

Let f: X—Y be as above. Then — K}, is ample on F, Pic F=Z, and
one of the following cases takes place:

(1) —K5 is divisible by 3 in Pic F; then X is a P?>-bundle over Y;

(2) —Kj is divisible by 2 in Pic F; then X is a quadric bundle over
Y, i.e., all fibers of f are isomorphic to a possibly singular quadric in P?;

(3) — K is a generator of Pic F; then a general fiber X, of f contains
finitely many exceptional curves of the first kind ; there exists an irreducible
reduced divisor Z on X such that ZN X, is the union of all exceptional
curves of the first kind contained in X, ; moreover, 1 <(K3)<6.

(III) Before stating relevant results in the last case, we shall make
several comments on Fano threefolds. An algebraic threefold X is called
a Fano threefold (or a Fano variety) if — K, is ample; this notion is, of
course, a generalization of that of a del Pezzo surface in the two-dimen-
sional case. The largest (positive) integer r, which divides — K, in Pic X
is called the index of X; then r<4, and we may write — Ky ~rH with H
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Pic X. Iskovskih [16, 17, 18] succeeded in modernizing the old theory of
Fano threefolds originated by G. Fano. More precisely, he classified all
Fano threefolds with index r>2 or with Picard number p=1, under the
assumption that the linear system | H | contains a smooth member. How-
ever, Shokurov [40] soon removed this restriction by proving that | H| con-
tains a smooth member.

Let X be a Fano threefold with p(X)=1. The index r of X is not
larger than 4. If r=4 then X is isomorphic to P. If r=3 then X is iso-
morphic to a quadric hypersurface Q, in P*. If r=2 there are five dif-
ferent classes 7, (1<d<5) up to flat deformations, for which (— K, )=
84:

a double covering of the Veronese cone W,,

a double covering of P?® branched in a quartic hypersurface,

a cubic hypersurface in P*,

a complete intersection of type (2, 2) in P5,

a section by a linear space of codimension 3 of the Grassmann
variety G(1, 4)C P° (Pliicker embedding).

If r=1, they are divided into ten classes, for which the following assertions
hold:

(1) (—Ky)iseven, 2<(—K)*<22 and (—Ky)*+20.

(2) —K, is very ample except in the following two classes:

V,: a double covering of P® branched in a sextic hypersurface, for

which (— K3)}=2,

V,: a double covering of Q,C P* branched in a surface of degree 8.

(3) Except in V; and V', X (identified with the anti-canonical model
in P%=I-Xxl) contains a line (cf. Shokulov [41], Reid [34]).

More precisely, Shokurov proved the following result.

Let X be a Fano threefold. An irreducible curve C on X is called a
line if (—K;-C)=1. Then just one of the following holds: (i) X con-
tains a line; (i) index (X)>=2; (lii)) X=P! X P2

Recently, Mori and Mukai [28] gave a complete classification of Fano
threefolds with the Picard number >2. According to their results, there
are eighty seven different classes up to flat smooth deformations. We only
mention that Mori’s theory plays a quite natural and significant role in
this work (cf. Mukai’s article in this volume).

In the subsequent sections, we shall look into the details of these
results. . The third section where we attempt to account for a part of Mori’s
theory is based on various preprints of Mori’s, among which we refer to
[25, 26, 27].

AN
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§2. Preliminary results

2.1. Blowing-ups. Let X be a nonsingular projective threefold and
let f: X’—X be the blowing-up along a nonsingular subvarietyY, where
dim Y=0 or 1. Let Y'=f-(Y). Then we have the following com-
mutative diagram:

X’—f—>X

b,

Y=>Y.

If Y is a point then Y’=P? and if Y is a curve then Y’ is a P'-bundle over
Y. Let/be aline on P (or a fiber of the P!-fibration of ¥’ over Y, resp.)
if Y is a point (or a curve, resp.). For a nonsingular complete variety T,
we denote by 4% T) the Chow group of codimension 7 cycles on 7" modulo
numerical equivalence, and by A(T)=®, A(T) the Chow ring graded by
codimensions. Then the following assertions hold (cf. [18]):

(1) AX)=f*AX)DZY'DZI as an additive group, and f,(¥") =
F)=0and f,, f5(E)=¢ for & € AX);

(2) the multiplicative structure of 4(X”) is given as follows;

(i) Case where Y is a point: Y?*=—1I, (Y*)=—(Y"-I)=1 and
(Y- f*8)=(-f*§)=0 for § € A(X);

(ii) Case where Y is a curve: Y*=—f*Y+ c;(Ny,0)I, (Y?)=
—¢(Ny,x), (Y- 1)=—1, Y- f*D=(Y-D)l and (/- f*D)=0 for D e A'(X),
Y- f*C)y=(-f*C)=0 for Ce A(X), and ¢(Ny,x)+2—2p,(Y)=
(c(X)- Y), where ¢,(Ny,y) is the first Chern class of the normal bundle of
Yin X.

Let ¢,(X) and ¢,(X”) be the i-th Chern classes of X and X’, respec-
tively. Then the following assertions hold (cf. Porteous [32]):

(i) Case where Y is a point: c¢(X')=f*c(X)—2Y, c,(X)=
F*e(X), and ¢(X)=cy(X)+2;

(ilY Case where Yis a curve: c(X)=f*c(X)—Y’, c(X")=f*c(X)
—Y"—jg*c(Y), and ¢(X")=c(X)+2¢,(Ny/x) +2—2p,(Y).

2.2. Blowing-downs. Let X’ be a nonsingular, projective threefold
and let Y’ be a codimension 1 subvariety of X” such that either Y’ is iso-
morphic to P* or Y’ is a P!-bundle over a nonsingular complete curve Y.
As above, let / be a line on P? if Y= P? and a fiber of a P!-bundle if Y’
is a P'-bundle over Y. Assume that (¥Y’-/)=—1. Then there exist a
complete nonsingular algebraic space X and a birational morphism f: X’
— X such that fis the blowing-up of X along a nonsingular subvariety ¥
and Y'=f-'(Y). As to when X is projective we have few criteria except
in the following special cases:
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(1) Let¢’: X’—S’ be a conic bundle over a nonsingular projective
surface. Assume that (Y. Z)=0 for a general fiber Z of ¢’. Then X has
a conic bundle structure ¢: X—S such that ¢-f=¢-¢/, where ¢: S’—S is
a birational morphism with S nonsingular. In particular, X is projective.

(2) Let ¢': X’—C be a del Pezzo fiber space over a nonsingular
complete curve, whose Picard number p(X”) is not necessarily 2. Assume
that ¢’(Y)=C and ¢, (/)=0. Then X has a del Pezzo fiber space struc-
ture ¢: X—C such that ¢'=¢-f. In particular, X is projective.

2.3. Cone of effective curves. Let X be a nonsingular projective
variety of dimension n. We denote by N(X) the vector space over the
reals R of dimension p(X),

({1-cycles on X}/(E))@R(*>.

The smallest convex cone in N(X) containing all effective 1-cycles and
closed under multiplications by the nonnegative reals R, is denoted by
NE(X) and called the effective cone of curves. The closure NE(X) of
NE(X) with respect to the metric topology of N(X) is called the closed
cone of curves. Let D be a divisor on X. D is called pseudo-ample if -
(D#- Y)=0 for every closed subvariety Y of dimension s (1<s<n). On
the other hand, D is said to be numerically effective if (D-C)=0 for every
irreducible curve C on X. Then we know:

(1) (Kleiman) A divisor D is pseudo-ample if and only if D is nu-
merically effective.
' We denote by N(X)* the real vector space of dimension p(X),

({Divisors on X}/(=))QR.

The convex cone generated by all pseudo-ample divisors on X is called the
pseudo-ample cone of X and denoted by P(X). Note that

(2) P(X)is the dual cone of NE(X), i.e., P(X)={D e N(X)*|(D-C)
>0 for every C e NE(X)}, and vice versa.

Let P°(X) be the convex cone generated by all ample divisors on X.
Then we have:

(3) P(X)=int P(X).
In fact, this is equivalent to the following criterion of ampleness by
Kleiman:

(4) Let| | be any norm on the real vector space N(X). Then a
divisor D is ample if and only if there exists a real number ¢ >0 such that
(D-C)=e|| C|| for every irreducible reduced curve C on X.

*) Zy=Z; or Z;=Z,y: Z; is numerically equivalent to Z,.
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For these results, we refer to Kleiman [22] or Hartshorne [14].

§ 3. Several central lemmas in Mori’s theory

3.1. Let X be a nonsingular projective variety of dimension »n and
let L be an ample divisor on X. We consider the metric topology on N(X)
and any norm || || which accords with the given metric topology. Lete
be a positive number. Define

NX)={Z e NX)|(Z-c(X))<e(Z- L)}, and
NE(X)=NEX)NN,(X).
Then the fundamental theorem on the shape of NE(X) is the following:

Theorem. For an arbitrary positive number e, there exist a finite num-
ber of rational curves I, - - -, 1, on X such that (I;-c,(X)Z<n+1 for 1<i<r
and

NE(X)=R,[L]+- - - +R.[I]+NEX).

In the proof of this result, essential roles are played by the following
lemma and the reduction of the arguments to the case of positive charac-
teristic.

Lemma (Mori [23]). Let C be a nonsingular projective curve of genus
g.  Then, for any morphism f: C—X, there exist a morphism h: C—X and
an effective 1-cycle Z such that

@ (1 (C)-c(X)=ng,

(b) an arbitrary irreducible component Z' of Z is a possibly singular
rational curve with (Z'-c(X))<n+1,

(©) fi(C) is algebraically equivalent to hy(C)+Z, f(C)=h,(C)+Z
by notation.

A halfline R=R,[Z] in NE(X) is called an extremal ray if (Z- c,(X))
>0 and Z,, Z, € R whenever Z,+Z, ¢ Rand Z,, Z, e NE(X). A rational
curve [ on X is an extremal rational curve if (I-c(X))<n+1 and R
:=R.[/] is an extremal ray. In view of the above theorem, NE(X) is a
convex polyhedral cone on the side ¢,(X)>¢L for every positive number &.
Note that every extremal ray is spanned by an extremal rational curve.
Therefore, X has an extremal rational curve if and only if Ky (= —c¢,(X))
is not numerically effective. If —K, is ample then X contains finitely
many rational curves /, - - -, [, such that (/;-¢,(X))<n+-1 for 1<i<r and
NE(X)=NE(X)=R.[l]+---+R.[l]. Indeed, taking ¢ so that 1/cisa
positive integer and ¢~ '¢,(X)— L is ample, we have only to apply the above
theorem. ‘

Consider the case where n=2, i.e., X is a nonsingular projective
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surface. Suppose that K, is not numerically effective. Hence X has an
extremal rational curve /. If p(X)=1, then — K is ample and X is hence
a del Pezzo surface; X is, in fact, isomorphic to P2, So, we assume that
p(X)>1. We know that (/*) <0 and that if (/*)<C0 then / is an exceptional
curve of the first kind, while if (/*)=0 then /= P*, (/*)=0 and dim |/|=1.
Conversely, let  be an exceptional curve of the first kind on X. Suppose
that Z, 4+ Z,=al with Z,, Z, e NE(X) and a>0. Let g: X—Y be the con-
traction of /. Then ¢,(Z)) +04(Z,)=0 and ¢,(Z,) e NE(Y) (i=1,2).
Hence ¢,(Z,)=0, ie., Z, e R,[]], for i=1, 2. Thus / is an extremal
rational curve and R:=R.[/] is an extremal ray.

Let X, be the nonsingular projective surface obtained from P? by
blowing up # points P, - - -, P, in general position. It is known that if
0<r<8, X, is a del Pezzo surface with p(X)=r-+1. The shape of NE(X)
=NE(X) is rather easy to describe. Let #(X) be the section of NE(X)
by a hyperplane not passing through the point of origin. Then Z(X) is
an r-dimensional convex polyhedron which has as many vertices as excep-
tional curves of the first kind on X if r=2;

[
r=0 r=1 r=2
However, if r>9, X, is no longer a del Pezzo surface and X, contains in-
finitely many exceptional curves of the first kind (cf. Nagata [31]; note also
that X, contains no rational curves C with C=P" and (C*)= —2). Thus,
as we make a positive number ¢ smaller and smaller, the cone NE(X) on
the side ¢,(X)>¢L gets more and more extremal rays.

Let X be a nonsingular projective variety of dimension #n. X is said
to be uniruled if the function field £(X) of X has a finite algebraic extension
which is a simple transcendental extension of some subfield. If X is uni-
ruled, then K, is not numerically effective. Indeed, if f: Y—X is a gener-
ically finite surjective morphism of nonsingular projective varieties, then
K, ~f*K, - B with an effective divisor B on Y. If fis birational then K,
~f«Ky. Suppose first that Y=P* X T. Then (K,-C)=—2for C,:=P!
X {t} with teT. More generally, if Y is birational to P'X 7, we can
readily see that K, is not numerically effective and there exists an (n— 1)-
dimensional family of curves {C,}, . such that (K- C,)<<0. Now suppose
that X is uniruled. Then there exists a generically finite surjective mor-
phism f: Y—X as above, where Y is birational to P*X 7. Then, for a
curve C, on Y with C,& Supp (B), we have (Ky-f,.C))=(f*K;-C,)=
(Ky-C)—(B-C)<0. Hence K, is not numerically effective.
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3.2. One of the results which are used effectively in Mori’s theory is
the following:

Lemma. Let Y be an irreducible reduced projective Gorenstein surface
defined over k such that wy' is ample and y(0y) =0, where wy, is the dualizing
invertible sheaf on Y. Then hN(0,)=0 and hence y(0,)=1.

We shall give the following

Remark. Let Y be a surface as considered in the above lemma. If
Y is normal, a precise structure of such a surface was clarified by Brenton
[5] and Hidaka-Watanabe [15]. Let ¥ be a minimal resolution of singu-
larities of Y. According to their result, ¥ is a rational surface or an
elliptic ruled surface P(0,D%), where C is a nonsingular elliptic curve
and % is a line bundle with deg.#>0. If ¥'is a rational surface, then ¥
is isomorphic to F, (n=0, 2), where F, = P{0p.P0p.(n)), or obtained from
P? by blowing up r points P;, - .-, P, (r<38) in such a position that

(i) no four of them are collinear,

(ii) no seven of them lie on a conic,

(iii) for each i, dil,,P, (=the exceptional curve arising from the
blowing-up of P,) carries at most one P;; in short, P,, - - -, P, are in such
a po~sition that, after blowing up P,, - - -, P,, at most (—2)-curves appear
onY.

When Y is rational, this is exactly the case which Demazure studied
in [7]. The surface Y is obtained from ¥ by contracting all (— 2)-curves
(when Y is rational) or the minimal section of P(0,D.%) (when Y is
elliptic ruled). Consider first the case where ¥ = P(0,0.%) with d:=deg &
>0. If.# is very ample, i.e., d=3, then w3 is very ample and Y is iso-
morphic to a cone over a nonsingular elliptic curve C of degree 4 in P?-'.
If d=1 or 2, then Y is not embedded into a projective space as an
elliptic cone. Consider next the case where Y is rational. If either ¥ is
isomorphic to F, (n=0,2) or Y=dil,, ... , P* with 0<r<6, then Y is
embedded into the projective space P? as a surface of degree d, where d=
(0%). Namely, w3’ is very ample. However, if r=7 or 8, wz' is not very
ample. In fact, wz® is very ample if r=7 and w3® is very ample if »=8.
Moreover, in the last two cases, ¥ cannot be embedded into a projective
space P™ as a surface of degree n.

Now consider the case where Y is not necessarily normal. We use
the following notations: z:Y—Y is the normalization of ¥, .# is the
conductor ideal, E=Vy(#) and E=V,(#). Then E=P! and E is iso-
morphic to a conic. Goto and, then independently, Reid (cf. [35]) proved
that H'(w7™)=0 for every integer n. Suppose that wy' is very ample.
Then Y is embedded into P? as a surface of degree d, where d:=(w}).
By virtue of Nagata [30; I. Th. 8 and Prop. 11], Y is obtained as a pro-
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jection of a surface X in P¢*! with the center outside of the surface X,
where deg X=d. As is well-known [ibid.; Th. 7], such a surface X is
isomorphic to one of the following:

(i) d=1and X=P?,

(ii) d=4 and X is the Veronese transform of P?,

(i) d=2,3,---,X=F, where d—s—2 is a non-negative even
integer; X is embedded into P4** by |M+4(d+s)!|, where M (resp. I) is
the minimal section (resp. a fiber) of F,,

(iv) d=2,3,.--,and X is a cone over a rational curve of degree d
in P4.

In order to obtain Y from X, we have to exclude trivially unsuitable
cases: (i), d=2 in (iii), d=2 in (iv). There are examples for which E=
P', E=P'+ P! and E=a double line, respectively:

(1) Y=a point projection of the Veronese transform of P? in P%;
€.8., (X5, XXy, X3, XX, Xy X, X3) (X5, XXy XT, XoXo, x3);

(2) Y=a cone over a plane nodal cubic;

(3) Y=a cone over a plane cuspidal cubic.

However, we have no further informations as to when wz* is not very
ample. For example, we may ask the following questions:

(1) Does Sing (Y) coincide with E? Namely, does Y have isolated
singular points?

(2) Is wy® very ample?

3.3. The following result is used in Mori’s theory to test whether a
given curve (mostly belonging to an extremal ray) moves in a positive-
dimensional family.

Lemma. Let X be a nonsingular projective threefold and let C be an
irreducible reduced curve on X such that (K- C)<<0 and that y(0;)=0 for
every one-dimensional closed subscheme C’ of X with C,.q=C." Then C =
P' and one of the following cases takes place:

(1) Ngx=0(—1)DO and hence (K- C)=—1,

(2) Ngyyx=0% and C is numerically effective,

(3) Ngyx=0(1D)DPOL,(—2) and C is numerically effective; moreover,
let ¢ be the ideal defined by % ;D ¢ D% and §=0,2)+ 5%, S, being
the ideal defining C in X; then f| #°=04] D0,/ 7.

Remark. Referring to the results stated in § 1 concerning Mori’s
theory, we consider a nonsingular rational curve C as chosen in each of
the cases as follows.

(I) Ris not numerically effective:

Case E;: H-D=£0on D and D is a P'-bundle over a nonsingular
curve Y; Cis a fiber of the P!-fibration of D;
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Case E,: H-D=0on D, D=P*? and 0,(D)=0p(—1); Cis a line
on P?;

Case E;: H-D=0on D, D=P'X P! and O0,(D)=0piyp:(—1, —1);
C=(s) X P! with (s) e P*; .

Case E,: H-D=0on D, Dza quadric cone V in P® and 0,(D)=
0,(—1); C is a generator of the cone V;

Case E;: H-D=0on D, D=P* and 0,(D)=0p,(—2); C is a line
on P=.

(II) R is numerically effective and f/: X—Y is a conic bundle.

Case C,: fis not a P'-fiber bundle; hence the conic fibration con-
tains a degenerate fiber; C is an irreducible (reduced) component of a
degenerate fiber and C, is a general fiber of f;

Case C,: fis a P'-fiber bundle; C is a fiber of f.

(1) R is numerically effective and f: X—Y is a del Pezzo fiber
space.

Case D,: f: X—Y is not a P*>-bundle nor a quadric bundle; C is an
exceptional curve of the first kind contained in a general fiber of f;

Case D,: f: XY is a quadric bundle; C is a fiber of one of two
distinct P!-fibrations on a general fiber of f;

Case D,: f: X—Y is a P>-bundle; C is a line on a general fiber of f.

The curve C as chosen as above satisfies the condition:
—(Ky-C)=min {—(K;-B)| B is a curve such that [B] e R=R_[/]}.
We have the following list:

Type | —(Ky-C) Neix
E, 1 oDO(—1) ()
E, 2 o(1)DO(—1) not (x)
E, 1 0DO(—1)
E, 1 oDO(—1)
E, 1 o(DI(—-2)
ODO(—1) | C+C’ is a fiber of f; C£C’; (x)
G 1 o()DO(—2) 2C is a fiber of f; (x)
G, 2 S (*)
D, 1 ODO(—1)
D, 2 o0
D, 3 o()eo not (x)
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1In the above list, (x) means that the curve C enjoys the property that y(0,.)
>0 for every 1-dimensional closed subscheme C’ of X with C,,=C.

3.4. We only note that the following result from Fujita’s theory of
A-genus is used to determine D and @,(D) in the case E, (i=2, 3, 4, 5).

Lemma [9; Th. 4.8]. Let D be an irreducible reduced scheme defined
over k and let M be an ample Cartier divisor on D. Set A(D, M):=dim D
+ (M3 Py —_p(D, M). Then the following assertions hold:

(1) 4(D, M)>dim Bs |M|, where Bs|M| denotes the set of base
points of | M| and dim Bs | M |= —1 if Bs | M |=¢;

(2) A(D, M)==0 implies that D is normal, Cohen-Macaulay and M is
very ample.

§4. Conic bundles

In this section, we shall gather together most of the basic results con-
cerning the conic bundles over a nonsingular projective surface. On the
analogy of relatively minimal ruled surfaces, we introduce the notion of a
standard conic bundle and its degeneracy locus and explain how to pro-
duce a standard conic bundle from the given “general” conic bundle; this
is done by contracting extra components of codimension 1 lying over the
degeneracy locus. Then, in order to change a conic bundle within its
birational class so that the degeneracy locus acquires the properties which
match better for specific purposes, we introduce two operations called the
-process and the g-process. Next, we consider a conical fibration over
an irreducible projective surface S which, roughly speaking, corresponds
to a plane conic defined over the function field k(S). The notion of
conical fibration plays an important role, when we consider the problems
of birational nature on a given conic bundle, e.g., the problem of deter-
mining whether or not a conic bundle is irrational over the base field k.
‘Concerning a conical fibration, there is a result due to Zagorskih [42],
according to which a conical fibration is birationally equivalent to a
(standard) conic bundle. Since the original proof of Zagorskih contains
a gap, we present another proof based on his idea. Finally, depending
on the paper by Artin-Mumford [1], we shall give a result which assures
the existence of conic bundles in some special, though effective in practical
use, cases.

4.1. A nonsingular projective threefold X is called a conic bundle
over a nonsingular projective surface Y if there exists a surjective mor-
phism f: X— Y such that every fiber X, is isomorphic to a possibly singular
«conic in P%:. A conic bundle f: X—Y is said to be standard if Pic X=
f*Pic YDZK,. '
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Lemma (cf. [4; Prop. 1.2]). Let f: X—Y be a conic bundle. Then
the following assertions hold:

(1) There exists a vector bundle & of rank 3 over Y, a line bundle .#
over Y and a section q € H'(Y, S*(&)QM*?) such that X is isomorphic to the
zero locus of q in P(6Q.4):=Proj (6QR.H#).

(2) There exists a curve 4, on Y satisfying the properties:

(i) 4, has only normal crossing as singularities;

(ii) X, is a smooth conic, a reducible conic or a double line according
asy ¢ d;, yed,—Sing 4, or y e Sing 4, respectively.

The curve 4, on Y is called the degeneracy locus (or the discriminant
locus) of the conic bundle f: X—Y. If 4, is nonsingular (singular, resp.),
the conic bundle f: X— Y is called ordinary (special, resp.).

4.2. Let C be a connected reduced curve having only ordinary
double points as singularities. A double covering z: C—C is called a
pseudo-covering if the following conditions are satisfied:

(1) IfseCisa smooth point, there exists an open neighborhood
U of s in C such that z,: z-*(U)—U is an étale covering of degree 2;

(2) if s e Cis a singular point and if (ﬁs,c_:";k[[u, v]l/(uv) then z~(s)
= {5} and 0; ;=K][x, y]l/(xy) with z*u=x* and z*v=)".

For a conic bundle f: X— 7, define g: G(f)—4,C Y as follows:

G(f),:={lines in X, CP%.}
g: G(f)——> Y is the natural mapping.

Then the image of g is apparently the discriminant locus 4,.

Lemma [4; Prop. 1.5]. Let f: X—Y be a conic bundle and let 4, be
the discriminant locus of f. 1If f is ordinary, then g: G(f)—4; is an étale
covering of degree 2; if f is special, then g: G(f)—4, is a pseudo-covering.

Remark. Assume that a conic bundle f: X— Y satisfies the condi-
tion: For every irreducible curve C on Y, f~!(C) is irreducible. Assume
furthermore that 4,-#¢. Then every nonsingular rational component of
4, (if it exists at all) meets other components of 4, in at least two points.

In the subsequent two paragraphs, we shall define, after Sarkisov [37],
two fundamental transformations on conic bundles, the “p-process” and

the “g-process”.

4.3. Letf: X—Y be a conic bundle. Let B be a nonsingular com-
plete curve on X such that f: B—f(B)is an isomorphism and f(B) N 4,=¢.
Let p: X’—X be the blowing-up with center B, let E:=p"'(B), let Z:=
SfU(f(B)) and let Z’:=y/(Z) be the proper transform of Z, where Z'=Z.
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Let / be a fiber of the ruled surface Z’—f(B). Since 0=(u(l)-Z)=(-2Z")
+(-EY=(-Z")+1, we have (I.Z’)=—1.. Thus Z’ is contractible.
Namely, there exist a nonsingular projective threefold X; and a birational
morphism g,: X’— X, such that B,:=y,(Z’) is a nonsingular curve and g,
is the blowing-up with center B, (cf. Remark 2.2). Moreover, X, has a
conic bundle structure over 7, f;: X,—7Y;

The process of obtaining X, from X is called the elementary transformation
with center B (or the @-process with center B, for short). The conic bundle
fi: X,—Y is standard if f: X— Y is a standard conic bundle (cf. [37]).

4.4. Lemma. Letf: X—Y be a conic bundle and let 6: Y'— Y be the
blowing-up with center at a point y ¢ Y. Then there exist a conic bundle
[ X’ Y’ and a birational mapping ©v: X'—X such that ¢-f'=f-z. Fur-
thermore, f': X'->Y" is standard if so is f: X—Y. Then f': X'—Y" is said
to be obtained from f: X—Y by the B-process with center at y.

Proof. We consider separately the following three cases: (I) y ¢ 4,,
(II) y e 4,—Sing 4,, (IIT) y € Sing 4,.

(I) Suppose that y¢ 4,. Let X’=XX, Y’ and let z: X’—X be
the first projection. - Then z is the blowing-up with center at X, = Pi.
Hence X” is smooth, and the second projection f/: X’— Y’ endows X’ with
a conic bundle structure. Let E:=z"'(X,)=f"""(¢c"(»)). Then K, =
t*Ky+E and Pic X’=1* Pic X(®ZE. Then it is easy to see that f/: X’
— Y’ is standard if so is 7 X— Y.

(II) Suppose that y e 4,—Sing 4,. Then X, =L, UL, with L, =L,
=P.. Let yu: X,;—X be the blowing-up with center at L, and let y,: X,
— X, be the blowing-up with center at the proper transform g(L;). Let
E :=p"(L,) and let E,:=p;*(uiL,). We show that F, is a quadric F,=
P! X P and L, is contractible onto a fiber of the ruling E,—y; L,.

Indeed, let T be a nonsingular complete curve on Y such that T meets
4, transversally at y and let Z:=f-'(T). Then Z is nonsingular along X,
CZ, Ngjz1,=0;, and (L?),=—1. From an exact sequence:

0 NLI/Z NL1/X NZ/X]L1 > 0

\ J

0.,(=1) Or,
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we deduce that N, ,, =0PO(—1). Therefore, E,=P(N¥ ) =F, (cf. 3.2),
where P(N%,,x) = Proj (S,, (N%,x). Let Ly:=p(L,) and Z’':= py(Z).
It is clear that (Z’-L))=—1, (E,-L,)=1 and (L;?),, = —1. Therefore we
have an exact sequence

0——>Nyym—>Nyye,—>Nyryxy2,—>0

| J

@Lg(" 1) @Lg(“ 1)

Hence Ny, =0(—1)PO(—1) and E,=P(N}, x,)=F,. Letl, ands, be
fibers of two distinct P'-fibrations of F,. Then E, z,~ —IL—s,. Indeed,
(E)=—c(Nyyx)=2 and (E,-1)=(E}-L,);,= — 1. Hence, writing E, 5, ~
al,+ Bs,, we easily obtain ¢=pg=—1. Therefore, (E,-s,)=—1. This
implies that E, is contractible onto the generator [,. Denote by v: X,—X"
the contraction of E,, where X’ is, for the moment, a nonsingular alge-
braic space of dimension 3. We shall show that X’ has a conic bundle
structure f”: X’— Y, which makes X’ projective as well.

Let A be a very ample divisor on Y and let |D|=|f*A4|. We claim
that:

(1) |p*D— ytE —E,| cuts on pfE = uFE, a pencil without base
points and such that every member except one is a nonsingular rational
curve, while one member consists of two irreducible components, where
L=y e

@) (g*D— i E,—E,-s) =0. |

In order to verify these assertions, write (yfD—E))|p ~al -+ Bs;,
where /, is a fiber of E, and s, is the minimal section of E,. Then (u¥D—
E -I)=—(E-1)=1, whence §=1. Note that Tr;|pFD— E,| has a unique
base point P:=FE, N L,. On the other hand, we have

((p¥D—EY - E)=((1i* D) - E))—2(ui¥ D - ED+(ED
=(D*- L1) +2(D . Lx) - cl(NLl/X) =L

Hence (5, +al))’=—1+42a=1,1ie., a=1. Therefore, Try, |gfD—E |is a
pencil of rational curves, whose unique singular fiber is s,-+/. Let E;
:=wE,. The blowing-up of X; with center at L, induces the blowing-up
of E, with center at P. Thus p(Try, |pfD—E,]) is a pencil of rational
curves without base points, whose section is E, E; and whose unique
singular fiber is g(s,+7). Note that

(ﬂ*D—Ei‘—Ez;Sz)= —(E1-8)—(—5;— 1 $p)p,= — 1 +1=0.

Therefore the linear system |py*D— E;— E,| defines a flat morphism f/: X’
— ¥’ such that f” induces an isomorphism between y;(P)=FE,N E; and
o~'(»). Note that 4,,=0'(4,).
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We can show that f": X’— Y is standard if so is f: X— Y.

(III) Suppose that y e Sing 4,. Then y is an ordinary double point
of 4,. Let L;:=(X,)a=P%, let ,: X,—X be the blowing-up with center
at L, and let E;:=p7(L,). Let 4 be a very ample divisor on Y and let D
:=f*A. Then the following assertions hold, which we state without proof.

(1) Let Z be a general member of |D|—X,. Then Z has two ordi-
nary double points lying on L,, and is smooth elsewhere.

(2) The linear system |pf D —E,| has a base curve s; on E,.

(B) N, x=0(—2)®0Q1) and E,=P(N#,y)=F,, where the above s,
is the minimal section.

4 Let Z':=p(Z). Then Z' is a smooth ruled surface, and Z’- E, .
=5, 1P 41, where (s?),, = —1 and ((?)}, =—2 for i=1,2. On the
other hand, Z’- E, ;, =s,+I® + 1 with (s})z,= —3 and (I{*)},=0 for i=
1, 2.

(5) Let pg,: X,—X, be the blowing-up along L,:=s,, let E,:=u;(L,)
and let E;:=4(E,). Then N, 3, =0(—1)PO(—1) and E,=P(N}, ;) =F,.
Let [, and s, be a fiber and a minimal section of E,, respectively.

(6) Ei-Eyp,~s5,+2L and Ej-E, 5 ~s, if we identify E] with E,.
E2 ;,~ —s,—1, and E, is contractible analytically onto a fiber /,.

(1) Trg |p*D—E;—2E) is a pencil contained in [2/,| and (u*D— E;
—2E,-5,)=0.

(8) Let y: X,—X’ be the contraction of E, onto a fiber /,, Then
vy |p*D— E|—2FE,| defines a conic bundle structure f”: X’— Y’ such that

(i) o)A,

(il) X, is a reducible conic if 3’ e 6-(y)— (¢~ ()N o’4,) and X7, is
a double line if y’ e ~(¥) N o’ 4,.

(9) The conic bundle f: X’— Y’ is standard if so is f: X— 7.

Remark. The notations and the assumptions being the same as
above, if X, is a reducible conic, there are two different g-processes with
center at y. Namely, one is to blow up L, first and L] next, and the other
is to blow up L, first and L] next.

We have the following result:

Corollary. Let f': X' Y’ be the conic bundle obtained from a conic
bundle f: X—Y by the B-process with center at y e Y. Then 4,,=¢*4, if
yed,and 4, =c*(d;)—a*(y) if y e 4,.

Remark. Let f: X—Y be a conic bundle. Suppose that there exists
an exceptional curve y of the first kind on Y such that yN4,=¢. Let
I':=f"'(y). Then [ is a relatively minimal ruled surface with the P!-fibra-
tion induced by /. Let / be its fiber and s a minimal section. Then (I"-s)
=(["*-5)p=—(-5)=—1. Hence if I'=F,, then I" is contractible onto a
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fiber /. Namely, there exists a conic bundle /: X—Y such that Y =cont, ¥,
Q=cont, y and X=cont, X, and that f: X—7Y is obtained from f: X—Y
by the g-process with center at Q. However, I is not necessarily isomor-
phic to F,. A counterexample can be constructed as follows: Start with
a conic bundle f: X—Y and an irreducible curve C on Y with an ordinary
n-ple point Q, where Q ¢ 4;. By applying g-processes to f: X—Y, we may
assume that CN4;=¢. Let ¢: Y—Y be the blowing-up of Q, let y:=
o7'(Q), let C:=0'(C) and let f: X,—Y be the base change of f: X—Y
relative to ¢: Y—Y. Then I',:=f,"'(y) is isomorphic to F,. Let CNy=
{P, -+, P,}, let 5, be a minimal section of I'; and let P,:=f£"(P)Ns,
for 1<i<n. We assume that C is a nonsingular curve of genus g. Let
Z:=f"%(C). Then Z is a relatively minimal ruled surface over C. Let /
be a fiber of Z and let b be a section of Z. For m >0, we know that
dim |b+ml|,=2m—a+2(1—g), where = —(b%),. Then a general mem-
ber b, of |b+ml|,— > 7., P, is an irreducible curve if m>>0. Let f: X—
Y be the conic bundle obtained from f;: X;— Y by the ¢p-process with center
ath,. Let I' :=f~'(y). Then it is apparent that I" is obtained from I,
by means of elementary transformations at the points Z,, - - -, P.. Hence
I'=F,. Since ncan be an arbitrary nonnegative integer, this is one of the
required counterexamples.

4.5. Lemma. Let f: X—Y be a conic bundle. Then the following
conditions are equivalent to each other:

(1) A general fiber X, is an extremal rational curve.

2 pX)=p(Y)+1.

(3) For any irreducible curve C on Y, f~*(C) is irreducible.

Proof. (1)=(3). - Suppose that f~(C)=D,U D, for an irreducible
curve C. Then CC4,, and D, and D, are irreducible reduced surfaces.
Let y be a general point of C and write X, =/, 41, with [,CD, (i=1, 2).
Then clearly (/,- D;)=(l,- D,)=1. Hence (I,- D,)=(,- D,)= —1. However,
since [1], [L] € R,[X,/] with a general point }’ of ¥, we have [[]=a,[X,]
and (D;-X,)=0. Hence (/,-D,)=0. This is a contradiction. Thus
JS~YC) is irreducible for every irreducible curve C on Y.

(3)=(2). Let D be a divisor on X. Define D’ by D/:=2D+
(D-X,)Ky. Then (I¥-X,)=0 for every fiber X, of £ We shall show that
D' ~f*N for some divisor N on Y. Since Pic (X,)=Z for the generic
point 5 of ¥, we may assume that every irreducible component of D’ has
the image of dimension one on Y. Thus, for our purpose, we may assume
that D’ is an irreducible reduced surface with (D'-X,)=0. Let C=f(D’),
which is an irreducible reduced curve. By the hypothesis, f*(C) is an
irreducible reduced surface such that D' < f*(C). Hence D’'= f*(C).
Hence p(X)=p(Y)+1. ‘
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(2)=(1). Clearly, (X,-c,(X))=2>>0. We shall show that R=R_{X,]
is an extremal ray. Suppose that §+yp=a[X,] with &, e NE(X)and a e
R,. Then f,é+fin=afX,=0on Y, where f,& and f,» are effective 1-
cycles on Y. Hence f,.£§=f,7=0. This implies that both & and » are R, -
linear combinations of irreducible components of fibers of f. However,
since o(X)=p(Y)+1, we have NE(X)N(f*Pic Y®, R =R.[X,].
Therefore &, » ¢ R,[X,]. Namely, X, is an extremal rational curve.
Q.E.D.

4.6, Lemma (cf. [28]). Let f: X—Y be a conic bundle. Let C be an
irreducible curve on Y such that f~'(C) is reducible and let f~'(Cy=D,U D,,
where D, and D, are irreducible reduced surfaces. Then the following as-
sertions hold.:

() Cc4,—Sing4, and C is smooth.

(2) For 1—1 2, there exist a conic bundle f,: X,—Y and the contrac-
tion 8,: X—X, of D, to a nonsingular curve such that f=f,-6,.

Remark. The above lemmas imply that, given a conic bundle f; X— -
Y, a composition of contractions of P'-bundles onto nonsingular curves
applied to X provides us with a conic bundle f: X—Y with o(X)=0(Y)
+1.

4.7. Recall that a conic bundle f: X—7Y is said to be standard if
Pic X= f* Pic YDZK,. The following result is an easy consequence of
the definitions.

Lemma. Let f:X—Y be a conic bundle with o(X)=p(Y)+1. Then
the following conditions are equivalent to each other:

(1) f: X—Y is not a standard conic bundle;

Q) f: X—>Yis a P'-bundle in the Zariski topology.

Remark. (1) Itis clear that if a conic bundle f: X—Y is standard,
then we have p(X)=p(Y)+1. Thus the above lemma asserts that if one
excludes P'-bundles in the Zariski topology, two conditions “‘standard”
and “p(X)=p(Y)+1” are equivalent.

(2) If a conic bundle f: X— Y satisfies the condition p(X)=p(Y¥)+1
and 4,5, then the generic fiber X, is not rational over k() =k(Y).

4.8. As a generalization of the notion of conic bundle, we introduce
the notion of conical fibration. Let ¥ be an irreducible projective variety
defined over k. A structure of conical fibration over an irreducible pro-
jective variety S is'a dominant mapping z: V—S, whose general fibers are
rational curves. Two conical fibrations z: V—S and »’: V'— S’ are
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equivalent to each other if there exist birational mappings 2: V— V" and
7. S—S’ such that z’-1=7%-x.

We shall prove the following result due to Zagorskih. Since his
original proof contains a gap, we propose another proof.

Theorem (cf. Zagorskih [42]). Let g: V—S be a conical fibration over
an irreducible projective surface S. Then there exists a conic bundle f: X —
Y such that p(X)=p(Y)+1.and f: X—Y is equivalent to g: V—S.

Proof. The proof consists of three steps.

(I) Resolving the singularities on ¥ and S and the indeterminacy
of g by blowing-ups on ¥ and S, we. may assume that

(1) V and S are nonsingular;

(2) g is a morphism whose general fibers are isomorphic to P!, al-
though g may not be flat.

If the generic fiber V, is rational over k()=£k(S), the assertion holds
- clearly. 1In fact, g: V—S is equivalent to the trivial P*-bundle p,: SX P!
—>S. Therefore we assume henceforth that ¥, is not rational over k(7).

There exists an open set U of .S such that every closed fiber of g,;: V;,
:=g (U)—U is a nonsingular rational curve. Let 2" be the relative
canonical sheaf £, ,, on V. Let &,:=(gy)4¢ . Then, asin Lemma
4.1, there exists a section g, of HY(P(Ey), Op ()R p* A% such that V,
embedded into P(&;,) as a U-scheme, is identified with the zero locus of
gy, where p: P(8,)— U is the canonical projection and .# is an invertible
sheaf on U. :

By shrinking U if necessary, we assume that &, (resp. .#) is a trivial
0,-bundle of rank 3 (resp. rank 1). Hence P(&,)=UX P2 Choose a
system of homogeneous coordinates (X,, X}, X,) on P; and write g, in the
form:

o= 2, a XX, with a; el (U, ).
0sisj=2

By shrinking U again if necessary, we may assume that the matrix

1 1
Ao 2dn 2%
1 1
2 G 34

1 1
7y  2ln Ao

is a diagonal matrix, i.e., a;; =0 for i==j; this is. possible after a suitable
change of homogeneous coordinates of UX P;. Thus we have

QU:ang‘i‘%X%‘*“azX; with @, e I'(U, 0s).

Identify P(&,) with an open set of S, P;=P: and let W be the closure
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in P? of Vy:q,=0. Let z: W—S be the canonical projection. This
process is construed in the following way: Associating g, with (a,, a;, @,),
identify g, with a regular section of I'(U, 0%°) and extend it to a regular
section ¢ e I'(S, 09°Q.#) in such a way that the zero locus W of q is ir-
reducible, where .# is an invertible sheaf on S and is chosen so that g,
extending ¢,, has no common zero divisors.

Suppose that g (or (a,, a;, @,)) has a common zero P,. Letg,: S;—S
be the blowing-up of P, and let E,:=0¢;'(P,). Let y,=min {v,(a,)]|i=
0, 1, 2}, where v, (a) is defined as the largest integer » such that a € M3,
and a ¢ M2, M, being the maximal ideal of @, ;. Then considering
the proper transform ¢, of ¢ in I'(S,, ¥ (0PRQM)RRU(—,E,)), we can
reduce the order of zero of ¢ at P, by v,. We apply this operation at all
common zeroes (including infinitely near common zeroes) of a,, g, a,, and
we may assume that the equation g=a, X%+ a,X?+ a,X? satisfies the con-
ditions:

(i) ay, a,, a, are regular sections of I'(S, .#), where .# is an inver
tible sheaf on §;

(ii) a,, a,, a, have no common zeroes; in other words, the variety
W defined by ¢g=0 does not contain any fiber of Pi—S.

However, W might not be smooth. . In the next step, we shall con-
sider how to desingularize W.

(II) Let 4, be the discriminant locus of n: W—S. Namely, 4, is
the curve (or the effective divisor) on S defined by gu,a,=0. Let z: S’
—>S be the shortest succession of blowing-ups with centers at singular
points (including infinitely near singular points) of (4,).q such that, for
o*d, =3, ,C;, every C,; is smooth and (z*4,),q has only normal cross-
ings as singularities. Let W/ :=WX(S’,7) and let z’: W'—S’ be the
canonical projection. For the sake of simplicity, we may assume that z:
W—S has already these properties. Let Pe S. If P ¢ 4, then z~'(P) is
a smooth conic and W is nonsingular along z-*(P). Suppose that P ¢ 4..
Let @P,S=k[[u, v]], where we choose u, v in such a way that if C, is an
irreducible component of 4, passing through P, then C, is defined by u=0
locally at P; if C, and C, are irreducible components of 4, passing through
P, then C, and C, are defined by u=0 and v=0 locally at P, respectively.
Then we may assume that W is defined over an open neighborhood of P
by

) q—{XH”“XH”ﬁXg if P ¢ 4,—Sing ((4))

Xit+uvXi+ufv'X;  if P e Sing (4.)wd)

where «, 5, v, 6=0. We may assume that $=«. Moreover, if P moves
on C, toward one point of C,N C,, then g varies from the first equation



Algebraic Threefolds 91

to the second one. Let pu:=[p/2] and v:=[w/2]. Replace Proj (0,[X,,
X,, X,]) by Proj (0,[X;, X1, X3]), where X;=X,/u*, X{=X,/u*~ and X;=
X,, and where U is an open neighborhood of P. Then Wj,:=z"'(U) is
replaced by W}, CProj (0,[X}, X1, X3]) defined by

g (K X e if P e 4,—Sing ((4.).0)
XPLus X P Lub 0’ X?  if P e Sing (4)wa)-

Suppose that §=7; we consider only this case because the other case
y=6 can be treated similarly. Let 2:=[d/2] and p:=[y/2]. When P e
Sing ((4.).a), We replace Proj (0,[X5, X7, X;]) by Proj (6,[X7, X7, X;'D,
where

X=X/, X'=X{v** and X,/=X,.
Then W}, is replaced by W}/, which is defined by
q/I=X6/2+ua—2uvr—2pX{’2_I_uﬁ—Z,uv&—-MX;Q-

Note that the second replacement is compatible and commutative with
the first replacement near the point P e Sing ((4,)..q)- After these replace-
ments made at all points of 4,, we may assume that if W is defined by ¢
=0 in Proj (0,[X,, X;, X;]) over an open neighborhood U of P and if g is
written in the form as in (x), then we have 0<ea, <1 when Pe d,—
Sing ((4,)..q) While 0=, 8, 7, 61 if P e Sing ((4,)..a). Note that W is
then not necessarily embedded into P2 and hence that (X, X;, X;) is noth-
ing but a local system of homogeneous coordinates.

If e=p=1 in the case P e 4,—Sing ((4,)..c) as well as the case P e
Sing ((4,)..a), we make, as a convention, the following change of coordi-
nates:

Xi=X/u, X=X, and X,=X,.
Then q is changed to the equation:
uXi@+ X7+ X5 if P e 4,—Sing ((4,)rea)

g ={uXP4+vX2+vX? if PeSing ((4,).q) and (7,0)=(1, 1)
wX¢+XP+X;?  if PeSing (4.0 and (r,9)=(, D).

It is readily ascertained that the case where we have to consider another
type of desingularization is, after a permutation of coordinates (X,, X,
X,), of the form:

g=Xi+Xi+wX:; with Pe Sing ((4)wa)-
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Let ¢: S’—S be the blowing-up with center at P and let z’: W’/ :=W X
(S’, 6)— S’ be the base change of 7: W—Srelative to ¢. Let E:=0""(P).
Now introduce «’ and v’ by the relations u=vw’ and v=wutv’. Then W’
is defined by the following equation in an open neighborhood of E:

X4+ X +uv'X; if vVs£00
XX wviX: if U =oo.

By virtue of a replacement of coordinates of the said type, ¢ is trans-
formed to

’

{X32+X{2+U’X§2 if V=0
q =

XP+XP4u' X2 if /£ c0.

Then the variety W obtained by the above procedure is desingularized.

(IlT) We found a conic bundle f/: X’-»Y and birational mappings
o: Y—>Sand ¢: X’—V such that g-¢’=¢-f’. By virtue of Lemma 4.6,
we find a conic bundle f: X—Y and a birational morphism 7: X’—X such
that

1) pX)=p(Y)+1,

(2) 7 is a composition of contractions of the type considered in
Lemma 4.6, and f"=f"-7.
Since ¢-f=g-¢ with e:=¢"-57': X—V, the conical fibration g: V—S is
equivalent to a conic bundle f: XY with p(X)=p(Y)+1. Q.E.D.

4.9. We shall recall from Artin-Mumford [1] several basic results
on the Brauer group of a function field of two variables. Let .S be a non-
singular projective simply connected surface defined over k and let K:=
k(S) be the function field of S over k. We use the following notations: p,
denotes the group of n-th roots of unity, p=|J, g, and p'=\J, g;'=
(U.Hom (¢,, @/Z). Then yuand p~*' are non-canonically isomorphic to
Q/Z. Br (S) denotes the Brauer group of Azumaya algebras over S; then
Br (S)=H:(S, G,). Similarly, Br (K) denotes the Brauer group of Azu-
maya algebras over K. For an irreducible curve C on S, Hi (k(C),Q/Z)
denotes the group of cyclic extensions of the function field k(C), or the
group of cyclic ramified coverings of the normalization € of C.

4.9.1. Lemma (Artin-Mumford [1; Th. 1, p. 84]). There is a canonical
exact sequence

0—>Br S—5Br K—2> @ HL(K(C), 0/Z) > @ u
curves points
Ied P

—s>)u"——.>0,
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where the maps are explained below.

(1) The map res. is the restriction to the generic point of S.

(2) For an irreducible curve C on S, the local ring O 5 of S at the
generic point of C is a discrete valuation ring. The map a associates a
finite central simple algebra D with a collection of cyclic extensions L of
k(C), C moving over the set of all irreducible curves on S, where L is ob-
tained from a maximal order A for D over U, s as A Q,, ; k(C)/(radical).

(3) Givena cyclzc extension of k(C), one may measure its ramifica-
tion at a point P of C.  This is canonically an element of p~'. The map r
is defined as the sum of the ramification at all points of the various C lying
over P.

(4) The map s is the summation.

4.9.2. Let S and K be the same as above. For a positive integer 7,
consider an exact sequence of étale sheaves on K,

0——p,, x—>SL(n)y——>PGL(n),—>1,

from which we obtain an injection H (K, PGL(n))L—)H (K ) I
n|n’, we have a commutative diagram

H (K, PGL(n))=> H3,(K, 1,)
Ayp’p ;Bn’ n

in
Hy (K, PGL)=">H2 (K, 1),

where injections «,., and §,., are induced by

A, 0
AeGLm—>{ - |eGL@®)
0 4,
r:n’/n’ Alz ... =A7=A

and the canonical injection g,——>g,.. Then the injections {¢,} fit into
the following commutative diagram

U He (K, PGLm)=—>) He (K, 11.)

]

Br (K) —~ > H:(K, p)

(cf. Serre [38; pp. 164~166]). This implies that H}, (K, PGL(n)) =
H:(K, p,)=Br (K), (=the n-torsion part of Br (X)). In particular, when
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n=2 this means that the Brauer-Severi varieties of dimension 1 over K
(or quaternion algebras over K) represent the 2-torsion points of Br (X)
(cf. Grothendieck [10]).

Let 5 be the generic point of S. Let 4, be a quaternion algebra over
K, which represents an element d of Br (K) of order 2. By virtue of
Lemma 4.9.1, there is a finite number of irreducible curves C,, - - -, C, on
S at which a(d) is nonzero. The union C=C,U ---UC, is called the
ramification curve of 4, and S— C is the maximal Zariski open set U of
S such that 4, extends to an Azumaya algebra over U.

An order in A, over S is a coherent Os-algebra # such that Z,=A4,.
Let o/ be a maximal order in A, over S. Then it is known (cf. [2]) that
o is a locally free Os-Module of rank four. With the open set U of S as
above, /|, is an Azumaya algebra over U. If the ramification curve C
of A, is nonsingular, we have a more precise result:

Lemma [1; Prop. 2, p. 88]. With the above notations and assumptions,
a maximal order of may be represented at a point P e C as the Og-algebra
generated by elements x, y with relations

xX*=a, y*=>bt and xy=—yx,

where t=0 is a local equation for C, and a, b are units in Og. Moreover,
a is not congruent to a square (modulo t).

Conversely, when a is not congruent to a square, the algebra presented
in this way is a maximal order in some (non-trivial ) quaternion algebra over

K.

4.9.3. Lemma [1; Th. 2, p. 90]. There is a canonical one-one cor-

respondence between

(1) maximal orders in quaternion algebras A, over K, whose rami-
fication curve C=C,U - - - U C, is nonsingular

(2) conic bundles w: V—S with the discriminant locus 4.=C and
o(V)=p(S)+1, i.e., for every irreducible component C,, the two components
of n~W(&,) (&, e C,, the generic point) are not rational over k(C,), but define
a quadratic extension of k(C,).

The correspondence is given by assigning to a maximal order </ an
S-scheme V which represents the functor

S’ & (Sch/S)—> {left O -ideals of s/ ®@S,}.
os

Moreover, the quadratic extensions thus defined are just those given by a(A,)
in Lemma 4.9.1.
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4.10. We consider the case where S is a nonsingular complete
rational surface defined over k. Then it is known that Br (S)=(0) (cf.
[12]). Then Lemma 4.9.1 gives us an exact sequence

@ 0B @ HLKC), QD @ i

Let C be a nonsingular irreducible curve on S and let p: €—C be a non-
trivial unramified double covering of C. Then there exists a quaternion
algebra A4, such that a([4,])=[p]l, where [4,] is the element of Br (K)
represented by A4, and [p] is the element of the second term of (x) repre-
sented by p. By virtue of Lemma 4.9.3, there exists a conic bundle z: V
— 8 such that 4,=C, that p: C—C is the double covering associated with
z (cf. 4.2) and that p(7)=p(S)+1. After Sarkisov [37], we call the pair
(C, p) the local invariant of the conic bundle z: V—S, or we say that r:
V—»S is defined by the local invariant (C, p).

Lemma. Let S be a nonsingular complete rational surface. Let r;:
V.—S (i=1, 2) be conic bundles defined by the local invariants (C,, p,),
where C, is an irreducible nonsingular curve on S and p,: C,—C, is a non-
trivial unramified double covering. Then there exists a birational mapping
0: V,—V, such that =, =r,-0 if and only if C,=C, and [p,]={p,] in
H,(C, Z]2Z).

Proof. 1If there is a birational mapping 8: V,—V, such that 7 =
7,0, then 6,: (V,),=(V3),. Hence [(V),]1=[(V),] in Br (K) and (C,, [p,])
=a([(V),D=a((V),D=(C,, [o:]). Conversely, if C,=C, and [p,]=[p.]
then [(7}),]=[(V2),] in Br (K). Hence there exists a K-isomorphism 6, :
(V),=(Vy),, which extends to a birational mapping ¢: V,—V, such that
T =", 0. Q.E.D.

Remark. The above construction shows the abundance of conic
bundles.

4.11. We shall now state the result of Sarkisov [37].

Theorem. Let Y be a nonsingular projective surface with y(0,)=1
and let f: X—Y be a conical fibration with a nonsingular projective three-
Jold X. Suppose that there exists a standard conic bundle f': X'— Y’ which
is equivalent to f+ X—Y and satisfies 4Ky, + A4, |+$. Then any conical
fibration on X is equivalent to the given fibration f+ X—Y.

We shall only note the following result which explains why the linear
system |4K,. 44| comes in.

Let f: X— Y be a conic bundle. Then f (K})= — (4K, +4)).
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Indeed, let T be an irreducible curve on Y. Since T~ H,— H, with
very ample divisors H,, H, on Y, we may assume that T is a nonsingular
irreducible curve not contained in 4, and meeting 4, transversally. Let
F:=f"%(T). Then we have

(K- F)=(Kx |p)i = (K — F)p=(K7)+ 4(T7).

Since F'is a smooth ruled surface over T with (4,-T) degenerate fibers
(consisting of 2 components), we have

(KP)=—4(Ky- T)+(T")—4,-T),
whence (K% - F)=(f(K%)- T)= —(4Ky+4,- T).

Corollary. Let f: X—Y be a standard conic bundle with 4K, + 4,
#¢. Then X is irrational.

4.12. We shall consider several examples.

4.12.1. Example (cf. Sarkisov [37], Roth [6]). Let V be an irre-
ducible hypersurface of degree m in P passing through a line 7 P* with
multiplicity m—2 and nonsingular outside of /. Then ¥ has a conical
fibration over Y:=P?. In order to see this, take a plane ¥ in P* such
that /N Y=g¢. Then, for each plane IT of P* with /I, wehave IT- V=
Cp+(m—2)I, where C; is a conic. Hence the projection of ¥ with center
I gives a structure of conical fibration ¢: V—Y. More precisely, let W
be the blowing-up of P* with center /. Then the mapping ¢ gives rise to
a morphism +: W—Y, with respect to which ¥ is a P*-bundle over Y.
Indeed, W=Proj (&) with &:=0p(—1)BOp.(—1)P0p,. Let L be a
tautological divisor of W. Then L~ the exceptional divisor ¢~'([) on W,
where ¢: W—P* is the said blowing-up. Let X be the proper transform
of Von W. Let H be a hyperplane on P* and let F:=+*(/) for a line /
on Y. Since ¢*H~L-+F and 6%V~ X+ (m—2)L, we know that X~2L
+mF. Let fi=+|y: X—>Y. Then f gives a standard conic bundle
structure on X because K, ~—3L—5F, Ky~ —(L4+(5—m)F)|; and
Pic (X)= f* Pic (Y)DZ(L|y). If one identifies L with ¢-'(]), then X L is
a rational 2-section because L=P* X P* and P' X () C+~*((2)) for every
t e P®. Thus X is unirational by virtue of the easy Lemma 4.12.2. The
discriminant locus 4, is linearly equivalent to (3m—4)I. This can be
computed as follows: ‘

JiKx ~ b, ((L—(m—5)F)*- 2L+ mF))~ (16 —3m)]

and
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f*KfY"’ —(4KY+Af)~ lzl_Af’

whence 4, ~(3m—4). If m=3, then deg 4,=35; if m=4, then deg 4, =
8.

4.12.2. Lemma (cf. Beauville [4; Prop. 4.1 and Cor. 4.4]). Let f: X
— Y be a conic bundle over a nonsingular projective rational surface. Then
the following assertions hold:

(1) If f has a rational section, then X is rational.

(2) If there exists a rational surface SCX such that f|s: S—Y isa
surjective morphism of degree d, then X is unirational. More precisely,
there exist a rational varzety X and a generically finite surjective morphism
X—X of degree d.

4.12.3. The following example is a generalization of 4.12.1.

Example (Sarkisov [37]). Let &:=0p,(—n)DOp.(—n)DOp,, let W
:=Proj (&) and let L be the tautological divisor of W, where. n is a non-
negative integer. Let X be a general member of |2L+(2n+1)F|, where
Fis defined in a fashion similar to that in 4.12.1. Then X is a nonsingular
threefold endowed with conic bundle structure by the restriction f of the
canonical projection +»: W— P?, whose discriminant locus 4, is linearly
equivalent to (2n43).. Moreover, since X-L is a rational 2-section
of f, X is unirational. Of course, we can take X so that X is irrational;
the condition n>5 suffices.
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