
CHAPTER 18

General Central Limit Theorems for Associated
Sequences, by H. Sangaré and G.S. Lo
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Sangaré H. and Lo, G.S. (2018). General Central Limit Theorems for As-
sociated Sequences. In A Collection of Papers in Mathematics and Related
Sciences, a festschrift in honour of the late Galaye Dia (Editors : Seydi H.,
Lo G.S. and Diakhaby A.). Spas Editions, Euclid Series Book,
pp. 321 – 342. Doi : 10.16929/sbs/2018.100-04-01

c©Spas Editions, Saint-Louis - Calgary 2018. H. Seydi et al. (Eds.) A
Collection of Papers in Mathematics and Related Sciences, a festschrift in
honour of the late Galaye Dia. Doi : 10.16929/sbs/2018.100

321



A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of
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1. Introduction
We consider the problem of the central limit theorem for associated se-
quences. This problem goes back to Newman (1980). Since then, a num-
ber of CLT ’s, and strong laws of large numbers (SLLN ’s) or weak laws of
large numbers (WLLN ’s), and invariance principles and laws of the iterated
logarithm (LIL ’s) have been provided in the recent literature by different au-
thors. Burton et al. (1986) and Dabrowski and Dehling (1988)) considered
weakly associated random variables to establish invariance principles in
the lines of Newman and Wright (1981), as well as Berry-Essen-type re-
sults and functional LIL ’s. The weak convergence for empirical processes
using associated sequences has been discussed by Louhichi (2000) and
Yu (1993).

The most general CLT seems to be the one provided by Cox and Grimmett
(1984) for arbitrary associated rv’s fulfilling a number of moment condi-

tions and those given by Oliveira (2012).

This question arises in the active research field on the concept of associa-
tion and its application in many sciences, especially in percolation theory
in Physics and in Reliability. The books by Rao (2012) and the monograph
by Oliveira (2012) present a review of these researches. The book of Bulin-
ski and Shashkin (2007) treats random associated sequences and inten-
sively uses properties of regularly varying functions and provides CTL ’s,
LLN ’s, LIL ’s and invariance principles.

Although many results concerning the CLT problem are available for such
sequences, there are still a number of open problems, especially regarding
nonstationary sequences.

Here, we intend to provide more general CLT ’s for arbitrary associated se-
quences. Precisely, here, we want to use all the power of the Newman
method and express the conditions in the most general frame based on
moment conditions so that any other result might be derived from them.
In such a way, a Lyapounov-Feller-Levy type Theorem will be possible to be
stated given some general assumptions. From this approach, more general
CLT ’s may be conceived only by turning back the Newman’s method.

The paper is organized as follows. Since association is the central notion
used here, we first make a quick reminder of it in Section 2. In Section
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3, we make a round up of CLT’s available in the literature with the aim
of comparing them to our findings. In Section 4, we state our general
CLT versions for arbitrary associated rv’s and give comparison study and
concluding remarks.

2. A brief Reminder of Association
The concept of association has been introduced by Lehman (1966) in the
bivariate case, and extended later in the multivariate case by Esary et al.
(1967). The concept of association for random variables generalizes that

of independence and seems to model a great variety of stochastic models.

This property also arises in Physics, and is quoted under the name of FKG
property Fortuin et al. (1971)), in percolation theory and even in Finance
(see Jiazhu (2002)).

The definite definition is given by Esary et al. (1967) as follows.

Definition 5. A finite sequence of rv’s (X1, ..., Xn) is associated if, for any
couple of real and coordinate-wise non-decreasing functions h and g defined
on Rn, we have

(2.1) Cov(h(X1, ..., Xn), g(X1, ..., Xn)) ≥ 0,

whenever the covariance exists. An infinite sequence of rv’s are associated
whenever all its finite sub-sequences are associated.

We have a few number of interesting properties to be found in (Rao (2012)) :

(P1) A sequence of independent rv’s is associated.

(P2) Partial sums of associated rv’s are associated.

(P3) Order statistics of independent rv’s are associated.

(P4) Non-decreasing functions and non-increasing functions of associated
variables are associated.

(P5) Let the sequence Z1, Z2, ..., Zn be associated and let (ai)1≤i≤n be positive
numbers and (bi)1≤i≤n real numbers. Then the rv’s ai(Zi−bi) are associated.
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As immediate other examples of associated sequences, we may cite Gauss-
ian random vectors with non-negatively correlated components (see Pitt
(1982)) and a homogeneous Markov chain (see Daley (1968)).

Demimartingales are set from associated centered variables exactly as
martingales are derived from partial sums of centered independent ran-
dom variables. We have

Definition 6. A sequence of rv’s {Sn, n ≥ 1} in L1(Ω,A,P) is a demi-
martingale when for any j ≥ 1, for any coordinate-wise non-decreasing func-
tion g defined on Rj, we have

(2.2) E ((Sj+1 − Sj) g(S1, ..., Sj)) ≥ 0, j ≥ 1.

Two particular cases should be highlighted. First any martingale is a demi-
martingale. Secondly, partial sums S0 = 0, Sn = X1 + ... + Xn, n ≥ 1, of
associated and centered random variables X1, X2, ... are demimartingales.
In this case, (2.2) becomes :

E ((Sj+1 − Sj) g(S1, ..., Sj)) = E (Xj+1 g(S1, ..., Sj)) = Cov (Xj+1, g(S1, ..., Sj)) ,

since EXj+1 = 0. Since (x1, ..., xj+1) 7−→ xj+1 and (x1, ..., xj+1) 7−→ g(x1, ..., xj)
are coordinate-wise non-decreasing functions and since the X1, X2, .. are
associated, we get

E ((Sj+1 − Sj) g(S1, ..., Sj)) = Cov (Xj+1 g(S1, ..., Sj)) ≥ 0.

Finally, we present the following key results for associated sequences that
one can find in almost any paper on that topic and that we need for our
proofs. A detailed review on these results is given in Sangharé and Lo
(2016).

Lemma 29 (Hoeffding (1940) (see Rao (2012))). Let (X, Y ) be a bivariate
random vector such that E(X2) < +∞ and E(Y 2) < +∞. If (X1, Y1) and (X2, Y2)
are two independent copies of (X, Y ), then we have

2Cov(X, Y ) = E(X1 −X2)(Y1 − Y2).

We also have

Cov(X, Y ) =

∫ +∞

−∞

∫ +∞

−∞
H(x, y)dxdy,
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where
H(x, y) = P(X > x, Y > y)− P(X > x)P(Y > y).

Lemma 30 (Newman (1980)). Suppose that X, Y are two random vari-
ables with finite variance and, f and g are C1 complex valued functions on
R1 with bounded derivatives f ′ and g′. Then

|Cov(f(X), g(Y ))| ≤ ||f ′||∞||g′||∞Cov(X, Y ).

The following lemma is the most used tool in this field.

Lemma 31 (Newman and Wright (1981) Theorem, see Newman and Wright
(1981)). Let X1, X2, ..., Xn be associated, then we have for all t = (t1, ..., tn) ∈
Rk,

(2.3)

∣∣∣∣∣ψ(X1,X2,...,Xn)
(t)−

n∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣ ≤ 1

2

∑
1≤i 6=j≤n

|titj|Cov(Xi, Xj).

Before we proceed any further, let us make a round up of CLT ’s for asso-
ciated sequences in stationary and non-stationary cases.

3. Central limit theorem for associated sequences
Let X1, X2, · · · , Xn be an associated sequence of mean-zero random vari-
ables defined on the same probability space (Ω,A,P). Define for each n ≥ 1,
Sn = X1 + ... + Xn. The CLT question for stationary associated sequence
turns around Newman (1980) results in which is proved that Sn/

√
n con-

verges to a normal random variable N (0, σ2) when

σ2 = Var(X1) + 2
∞∑
j=2

Cov(X1, Xj) < +∞.

And in such a situation,

s2
n = Var(Sn/

√
n)→ σ2 as n→ +∞.

A number of invariance principles and other CLT’s are available but they
are generally adaptations of this Newman result. As to the general case,
(see Cox and Grimmett (1984)), did not consider stationarity in their re-
sults which used triangular sequences. Formulated for simple sequences,
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their result is that Sn/(sn
√
n) weakly converges to a normal random vari-

able N (0, 1) if Var(Xn) is asymptotically bounded against zero, and the
sequence of the third moments E |Xn|3 is bounded and there exists a func-
tion u(r), r ∈ {0, 1, ...} such that u(r)→ 0 as r → +∞ and such for all k ≥ 1,
and all r ≥ 0 ∑

j:|k−j|≥r

Cov(Xj, Xk) ≤ u(r).

Let us recall their CLT as follows

Theorem 48. Let X1, X2, · · · , Xn be an associated sequence of mean-zero
random variables defined on the same probability space (Ω,A,P). Suppose
there exist positive and finite constants c1 and c2 such that

(3.1) V ar(Xj) ≥ c1 and E |Xj|3 ≤ c2 for all j ≥ 1,

and there is a function u(r) of r ∈ N such that u(r) → 0 as r→ +∞ and for
any r ≥ 1,

(3.2) sup
j≥1

∑
i:|j−i|≥r

cov(Xi, Xj) ≤ u(r).

Then
Sn/sn  N(0, 1) as n→ +∞.

where throughout the text, the symbol stands for the weak convergence .

Oliveira (2012) has proved general CLT ’s, still using the Newman ap-
proach.

First, they obtained

Theorem 49 (see Oliveira (2012), page 105, Theorem 4.4). LetXn, n ∈ N,
be centered, square-integrable and associated random variables. For each
n ∈ N, let `n ∈ N and mn =

[
n
`n

]
. Define, for j = 1, ...,mn, Yj,`n =

∑j`n
i=(j−1)`n+1 Xi

and Ymn+1,`n =
∑n

i=mn`n+1Xi. Assume that mn → +∞, and that
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(3.3)
1

s2
n

mn∑
j=1

Var (Yj,`n)→ 1,

(3.4)

∣∣∣∣∣E exp

(
it

sn
Sn

)
−

mn∏
j=1

E exp

(
it

sn
Yj,`n

)∣∣∣∣∣→ 0, t ∈ R,

and

(3.5) ∀ ε > 0,
1

s2
n

mn∑
j=1

∫
{|Yj,`n|≥εsn}

Yj,`ndP→ 0.

Then
1

sn
Sn  N (0, 1),

Next, he obtained the following result using a Feller-Levy condition.

Theorem 50 (see Oliveira (2012), page 108, Theorem 4.8). LetXn, n ∈ N,
be centered, square-integrable and associated random variables. Assume
that

(3.6) u (n)→ 0, u (1) < +∞,

(3.7) inf
n∈N

1

n
s2
n > 0,

(3.8) ∀ ε > 0,
1

s2
n

mn∑
j=1

∫
{|Xj |≥εsn}

X2
j dP→ 0.

Then
1

sn
Sn  N (0, 1).

Remark on whether the assumptions of the theorem are enough to
get the CLT . It seems to us that the conditions given by this theorem are
not enough, as we tried to show it in Subsection 4.2 below. We think that
the following assumption, denoted (Hab) below,

1

s2
n

Var

 r(n)∑
j=m(n)`(n)+1

Xj

→ 0 as n→ +∞.
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should be added. This assumption is implied by this simpler one, denoted
(HNab) below :

1

s2
n

un∑
i=tn

var(Xi)→ 0 as n→∞,

for 0 ≤ tn ≤ un ≤ n, un − tn ≤ `(n), (un − tn)/n→ 0 as n→∞.

For a stationary case, this assumption is immediate. The foundation of
our remark is given in Point (1) in Subsubsection 4.2.3 of Subsection 4.2
in Section 4.

Our objective in this paper is to express CLT’s in the most general setting,
still using the Newman approach and to derive the former results as partic-
ular cases. With respect to the former results described above, we simplify
the approach and get the best we can do by formulating a Lyapounov-
Feller-Levy type of CLT. The general conditions are next expressed on mo-
ment conditions stated also in a general setting. Existing versions are all
included in our statements. And we conclude that more general CLT ’s
cannot be obtained without getting out the Newman approach.

Let us begin by introduce the following assumptions

There exists a sequence `(n) of positive integers such that n = m(n)`(n) +
r(n), with 0 ≤ r(n) < `(n), 0 ≤ m(n)→ +∞ and

(L) (`(n)/n, r(n)/n)→ (0, 0) as n→ +∞.

We want to stress that the integers m = m(n), ` = `(n) and r = r(n) depend
of n throughout the text even though we may and do drop the label n in
many situations for simplicity’s sake.

On top of this general assumption, we may require the following ones.

(H0)
`(n)

sn2

→ 0 as n→ +∞.

(Ha)
`(n)

s2
n

m(n)∑
j=1

Var

(
Sj`(n) − S(j−1)`(n)√

`(n)

)
→ 1 as n→ +∞.
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(Hab)
1

s2
n

Var

 r(n)∑
i=m(n)`(n)+1

Xj

→ 0 as n→ +∞.

(Hb) sup
1≤j≤m(n)+1

`(n)

s2
n

Var

(
Sj`(n) − S(j−1)`(n)√

`(n)

)
= C1(n)→ 0 as j → +∞.

We have for some δ > 0, E |Xj|2+δ < +∞, j ≥ 1 and the Lyapounov Condition
holds

(Hc)
`3/2(n)

s2+δ
n

m∑
j=1

E

∣∣∣∣∣Sj`(n) − S(j−1)`(n)√
`(n)

∣∣∣∣∣
2+δ

= C2(n)→ 0 as j→ +∞.

In the sequel, it may be handy to use the notation

(3.9) Yj,` =
Sj`(n) − S(j−1)`(n)√

`(n)
, 1 ≤ j ≤ m = m(n).

In the next section, we will state two CLT ’s based on these hypotheses and
next. A third one will be a refinement of Theorem 50. Next, the results are
particularized into more specific versions.

4. Results and Commentaries
In this section, we present general CLT ’s for associated rv’s and next give
different forms in specific types of independent and dependent data and
finally make a comparison with available results.

4.1. General CLT ’s. We have following results.

Theorem 51. Let X1, X2, · · · , Xn be an associated sequence of mean-zero
random variables defined on the same probability space (Ω,A,P). If the se-
quence is stationary, then

Sn√
n

=
X1 +X2 + · · ·+Xn√

n
 N (0, σ2) as n→ +∞,

In the general setting, if (L), (H0), (Ha), (Hb) and (Hc) hold, then
Sn
sn

=
X1 +X2 + · · ·+Xn

sn
 N (0, 1) as n→ +∞.
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Remark. The first statement of the Theorem is the classical CLT of New-
man and Wright (1981). Th second statement corresponds to our effort
to get the maximal result from the Newman’s approach for non-stationary
data.

Next, we state a Lynderberg-Feller-Levy type theorem given some assump-
tions.

Theorem 52. Let X1, X2, · · · , Xn be an associated sequence of mean-zero
random variables defined on the same probability space (Ω,A,P). Denote for
each j ∈ {1, ...,m}, τ 2

j = V ar
(
Sj` − S(j−1)`

)
= E

(
Sj` − S(j−1)`

)2 and

ν2
m(n) = τ1 + ...+ τm(n), n ≥ 1.

Assume that the assumptions (L) and (Ha) hold and either (Hab) or (Hb) is
true. The we have the following equivalence result :

max
1≤k≤m(n)

E
(
Sj` − S(j−1)`

)2
/s2

n → 0 as n→ +∞

and

Sn/sn  N (0, 1) as n→ +∞,

if and only if for any ε > 0,

(4.1)
1

s2
n

E
((
Sj` − S(j−1)`

)2
1(|Sj`−S(j−1)`|≥ενm(n))

)
→ 0 as n→ +∞.

Moreover the sequence (νm(n))n≥1 may be replaced by the sequence of (sn)n≥1

in Condition (4.1) to give

(4.2)
1

s2
n

E
((
Sj` − S(j−1)`

)2
1|Sj`−S(j−1)`|≥εsn

)
→ 0 as n→ 0.

Theorem 53. Let X1, X2, · · · , Xn be an associated sequence of mean-zero
random variables defined on the same probability space (Ω,A,P). If∣∣∣∣∣ΨSm`

sn

(t)−
m∏
j=1

ΨYj,n

(√
`

sn
t

)∣∣∣∣∣→ 0 as n→ +∞,

then we have the following equivalence result :
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max
1≤k≤m(n)

E
(
Sj` − S(j−1)`

)2
/s2

n → 0 as n→ +∞

and
Sn/sn  N (0, 1) as n→ +∞,

if and only if for any ε > 0, Formula 4.1 holds.

Remark 15. Let us make the following remarks.

(1) The method of proving the above theorem will consist of decomposing the
sums of variables into sums of blocks of variables and treating these as if
they were independent. Naturally, we will need some control on the approx-
imation between the sums of the dependent blocks and their independent
counterparts. This control will be achieved using characteristic functions
and is based on the inequality in Lemma 31 of Newman. Our approach is to
go the farest possible only using the moments conditions.

(2) Theorem 52 is not yet a Lyndeberg-Feller-Levy Theorem (LFLT ). Using
Lemma 31, its only say we have a LFLT provided assumptions that make
the CLT problem into a CLT one concerning independent variables. A full
LFLT can not be achieved as long as the proofs are based on the approxi-
mation of Lemma 31.

Before we proceed to the proofs in Subsection 4.3, we are now going to
derive some consequences and particular cases of the theorem.

4.2. Commentaries and Consequences.
4.2.1. The most general approach leading to a Feller-Levy CLT type. We

begin a general comments of the approach.

Almost all the available CLT results used the Newman’s method based on
Lemma 31. The approach we used is intended to get the sharpest results
we can get in that frame. In earlier versions of our results, we were not
aware of the results of Oliveira (2012). However, with the knowledge of
these results, our works still present a number of significant advantages
we want to highlight here. Actually, Oliveira (2012) attains the best we
can do in the Newman approach : the best and unique way to find out
assumptions under which

Sn/sn  N(0, 1),
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holds, is to reduce it to

(4.3)
m∏
j=1

ΨYj,`

(√
`

sn
t

)
→ exp(−t2/2) as n→ +∞.

after are defined the random variables Yj,` of characteristic functions ΨYj,`

given in Formula (3.9) based on the decomposition (L) (We recall that our
notation of Yj,` are not the same as that of Oliveira (2012)).

This is the justification of Assumption (3.4) above, which corresponds to
the equivalent one we used, which is

(4.4)

∣∣∣∣∣ΨSm`
sn

(t)−
m∏
j=1

ΨYj,`

(√
`

sn
t

)∣∣∣∣∣→ 0 as n→ +∞.

From there, the authors did not, as far as we know, capitalize this fact in
order to have a Feller-Levy final CLT version, as we did in Theorem 53. In
our view, this version is the starting point for new CLT ’s out of the Newman
approach.

4.2.2. General condition. Based on the best the Newman approach can
give, it remains to have the most general conditions to ensure (4.3) and
(4.4). If we wish to directly express (4.4) into the Xi’s, Oliveira (2012)
proved in page 109 that their assumption (3.8) implies Formula (4.2) in
Theorem 52 above. In general, authors usually provide CTL ’s based on
conditions ensuring (4.3) and (4.4).

In that specific case, we proceeded into two directions :

(1) Expressing general conditions based on moments. We will see in the
next subsection, how the available CLT ’s may be derived from Theorem 52.

(2) Keeping the notation of decomposition (L) in the assumptions. This
will allow, in particular cases, to base methods on specific values of m(n)
and `(n)

4.2.3. Comparisons. Let us highlight some comparison results.

(1) With Theorem 50. A possible gap in Theorems 50 of Oliveira
(2012).
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By setting

Y ∗j,`(n) = Yj,`(n) for j = 1, ...,m(n) and Y ∗m+1,` =

r(n)∑
i=m(n)`(n)+1

Xi/
√
`(n),

we have

Sn = `(n)

m(n)+1∑
j=1

Y ∗j,`(n).

It comes that

s2
n = V ar(Sn) = `(n)

m(n)∑
j=1

var(Yj,`(n)) + `2V ar(Y ∗m(n)+1,`(n))

+ 2`(n)
∑

1≤h<k≤m(n)+1

cov(Y ∗h,`(n), Y
∗
k,`(n)).

By definition of the Cox coefficient (as named such that by Bulinski and
Shashkin (2007) ), and since the indices of the Xi’s in cov(Y ∗h,`, Y

∗
k,`) are

distanced by 1, ..., ` points in absolute values, and the Xi’s are therein nor-
malized by

√
`, we have∑

1≤h<k≤m(n)+1

cov(Y ∗h,`(n), Y
∗
k,`(n)) ≤

1

`

`(n)∑
h=1

sup
i≥1

∑
k:|k−i|≥h

cov(Xi, Xk)

≤ 1

`

`(n)∑
i=1

u(i),

and then

s2
n = V ar(Sn) ≤ `

m(n)∑
j=1

var(Yj,`(n)) + `(n)2V ar(Y ∗m(n)+1,`(n)) + 2

`(n)∑
i=1

u(i),

which gives∣∣∣∣∣1− `(n)

s2
n

m∑
j=1

var(Yj,`(n) −
`(n)2

s2
n

V ar(Y ∗m(n)+1,`(n))

∣∣∣∣∣ ≤ 2`(n)

sn2

 1

`(n)

`(n)∑
i=1

u(i)


→ 0 as n→∞,
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by Césaro’s Lemma if

(4.5) lim sup
n→+∞

`(n)

sn2

< +∞.

Here, it seems to us that the authors of Oliveira (2012) might have not
taken into a account the term `Y ∗m+1,` in the line –7 of their page 108. At
line -6 of the same page, their formula Sn = Y1,`n + ...+Ymn,`n also misses to
include the remaining Xi’s corresponding to i ∈ [mn`n + 1,mn`n + rn], where
mn is the integer part of n/`n and rn = n−mn`n. And although it is possible
to get rid of the term `Y ∗m+1,` in line -1 of their page 108 as we explained in
the lines following the remark (R2) in the proof of Theorem 51 below, we
still think it would be handled in the proof of Formula (4.4), as we did at
the stage of Formula (4.8) of the same proof below.

Based on this remark, the hypotheses (3.6) and (3.7) are true and our (Hab)
holds. Then Formula (4.5) holds and Formula (4.4) is true. The Feller-Levy
theorem handles the remaining part. Further

`(n)2

s2
n

V ar
(
Y ∗m(n)+1,`(n)

)
≤ 1

s2
n

r(n)∑
i=m(n)`(n)+1

var(Xi) +
2`(n)

sn2

 1

`(n)

`(n)∑
i=1

u(i)

 .

Then, if Assumption (3.6) and (4.5) hold, then (Hab) is implied by a general
condition of the form

(4.6)
1

s2
n

un∑
i=tn

var(Xi)→ 0 as n→∞,

for 0 ≤ tn ≤ un ≤ n, un − tn ≤ `(n), (un − tn)/n→ 0 as n→∞.

(2) With Cox and Grimmet Theorem 48.

It is immediate that the first part of Assumption (3.1) in that theorem, that
is

V ar(Xj) ≥ c1 > 0,
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implies, by association, that

s2
n ≥

n∑
i=1

var(Xi) ≥ nc1

and (4.5) holds since

lim sup
n→+∞

`(n)

sn2

= lim sup
n→+∞

n

sn2

× `(n)

n
≤ c1 lim sup

n→+∞

`(n)

n
≤ c1.

Next, the second part, that is

E |Xj|3 ≤ c2 < +∞, j ≥ 1,

implies, by the formula |x|p ≤ 1 + |x|q for 1 ≤ p ≤ q (see Loève (1977), page
157), that for c3 = 1 + c2,

E |Xj|3 ≤ c3, j ≥ 1,

and then Formula (4.6) above holds since

1

s2
n

un∑
i=tn

var(Xi) ≤ c3
(un − tn)

s2
n

≤ c3

c1

(un − tn)

n
→ 0.

Next, by re-making the considerations given in Subsubsection 4.2.2, For-
mula (4.2) of Theorem 52 holds if

1

s2
n

m(n)∑
j=1

∫
{|Xj |≥εsn}

X2
j dP→ 0 as n→ +∞,

for any ε > 0. But we have under Condition (3.1) of Theorem 48,

1

s2
n

m(n)∑
j=1

∫
{|Xj |≥εsn}

X2
j dP =

1

s2
n

m(n)∑
j=1

∫
{|Xj |≥εsn}

|Xj|3

|Xj|
dP

≤ 1

εs3
n

m(n)∑
j=1

∫
{|Xj |≥εsn}

|Xj|3

≤ m(n)c2

εs3
n

≤ c2

c
3/2
1

m(n)

n3/2
→ 0.
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Hence, Condition (4.2) is true. Finally Condition (3.2) ensures (4.4) and
the Cox Theorem 48 is obtained.

4.2.4. Conclusion. We conclude in two points.

(A) By combining our results with especially those of Oliveira (2012), we
have proved that the Newman approach already gave the best results in a
Lyndeberg-Feller-Levy type of CLT. It is still possible to find different more
or less sharp expressions of Conditions (4.3) and (4.4), stated in Subsec-
tion 4.2. But no very different results cannot be expected there. Yet, the
CLT problem is widely open since the current results use the Newman ap-
proach. Is it possible to get rid of this approach and to use another one
more general to establish more general CLT’s? This seems to be the direc-
tion to be taken.

(B) In Fall et al. (2018), an associated sequence is studied as a particular
case. Using a direct method based on the characteristic function method,
it has been shown to satisfy the CLT property. Yet, this sequence did not
satisfy the Cox-Grimmet condition infn≥1 EX2

i ≥ c1 > 0. This kind of work
may constitute a lead to more general CLT.

4.3. Proof of Theorem 51. As almost all the proofs of CLT ’s for asso-
ciated or weakly associated rv’s, our proof is based on the three steps of
the original method of Newman and Wright (1981). For compact notation
sake, we simply set `(n) = ` andm(n) = m. Let us define ΨSn

sn

(t) = E
(
eitSn/sn

)
,

t ∈ R.

First, we have for t ∈ R,∣∣∣∣ΨSn
sn

(t)−Ψ
Sm`
sn

(t)

∣∣∣∣ =
∣∣E(eitSn/sn)− E(eitSm`/sn)

∣∣
=
∣∣∣E [eitSm`/√m` (eit[(Sn/sn)−(Sm`/sn)] − 1

)]∣∣∣
(4.7) ≤ E

∣∣∣∣eit(Snsn −Sm`sn

)
− 1

∣∣∣∣ .
But for any x ∈ R,∣∣eix − 1

∣∣ = |(cosx− 1) + i sinx| =
∣∣∣2 sin

x

2

∣∣∣ ≤ |x|.
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Thus the second member of (4.7) is, by the Cauchy-Schwarz’s inequality,
bounded by

|t|E
∣∣∣∣Snsn − Sm`

sn

∣∣∣∣ ≤ |t|Var(Snsn − Sm`
sn

) 1
2

and

δm,` = Var
(
Sn
sn
− Sm`

sn

)
=

1

s2
n

Var (Sn − Sm`) ,

which tends to zero as n→ +∞ by (Hb) since

δm,` =
1

s2
n

Var

(
r∑
i=1

Xm`+i

)
(4.8)

≤ `

s2
n

Var

(
1√
`

∑̀
i=1

Xm`+i

)
(4.9)

≤ C1(n)→ 0.(4.10)

This proves that

(4.11) |ΨSn
sn

(t)−ΨSm`
sn

(t)| → 0 as n→ +∞.

(R1) Remark also for the purpose of Theorem 52 that the same conclusion
holds when (Hab) is true and we do not need (Hb) in addition.

Next, remind that Yj,` = (Sj` − S`(j−1))/
√
`, for 1 ≤ j ≤ m. Observe that

Sm`
sn

=

√
`

sn

m∑
j=1

Yj,`.

According to the Newman’s inequality (see Lemma 31), we have∣∣∣∣∣ΨSm`
sn

(t)−
m∏
j=1

ΨYj,n

(√
`

sn
t

)∣∣∣∣∣ ≤ `t2

2s2
n

∑
1≤j 6=k≤m

Cov(Yj,`, Yk,`).
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But,

`t2

2s2
n

∑
1≤j 6=k≤m

Cov(Yj,`, Yk,`) =
`t2

2s2
n

Var

(
m∑
j=1

Yj,`

)
− `t2

2s2
n

m∑
j=1

Var(Yj,`)

=
t2

2

[
Var

(√
`

sn

m∑
j=1

Yj,`

)
− `

s2
n

m∑
j=1

Var (Yj,`)

]

=
t2

2

[
Var

(
1

sn
Sm`

)
− `

s2
n

m∑
j=1

Var
(
Sj` − S`(j−1)√

`

)]

≤ t2

2

[
1− `

s2
n

m∑
j=1

Var
(
Sj` − S`(j−1)√

`

)]

− t2

2s2
n

Var

(
n∑

j=m`+1

Xj

)
,

which tends to zero as n→ +∞ by (Ha) and (Hb), that is

(4.12)

∣∣∣∣∣ΨSm`
sn

(t)−
m∏
j=1

ΨYj,n

(√
`

sn
t

)∣∣∣∣∣→ 0 as n→ +∞.

The proof will be completed by establishing that

(4.13)
m∏
j=1

ΨYj,n

(√
`

sn
t

)
→ exp(−t2/2) as n→ +∞.

(R2) Here, we make a second remark which is relevant to the Proof of Theo-
rem 52 and next to generalizations of the results. The above computations
led to

0 ≤ `t2

2s2
n

∑
1≤j 6=k≤m

Cov(Yj,`, Yk,`) =
t2

2

[
1− `

s2
n

m∑
j=1

Var
(
Sj` − S`(j−1)√

`

)]

− t2

2s2
n

Var

(
n∑

j=m`+1

Xj

)

≤ t2

2

[
1− `

s2
n

m∑
j=1

Var
(
Sj` − S`(j−1)√

`

)]
.
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Then only (Ha) is needed to ensure (4.13).

Now, we resume to the normal course of our demonstration. From this
step, the conclusion on the weak law of Sn/sn, comes uniquely from For-
mula (4.13) which expresses the weak convergence of sums of the form

(4.14) T ∗m(n) =
1

sn

m(n)∑
j=1

Vj,

where the Vj ’s are independent random variables such that for each j ∈
{1, ...,m}, V ∗j has the same law as Sj` − S(j−1)`. Remind that, for each j ∈
{1, ...,m}, τ 2

j = V ar
(
Sj` − S(j−1)`

)
= E

(
Sj` − S(j−1)`

)2 and

ν2
m(n) = τ1 + ...+ τm(n), n ≥ 1.

By Assumption (Ha), we have νm(n)/sn → 1 as n → +∞ and by Slutsky
theorem (see for example Proposition 15 in Lo (2018), page 60), the weak
convergence, if it holds, would be the same as that of

Tm(n) =
1

vm(n)

m(n)∑
j=1

Vj.

Condition (Hb) is the Lyapounov’s one for this problem (see Loève (1977),
page 287, Point B), where vm(n) is replaced by sn. This completes the proof.

4.4. Proof of Theorem 52. Based of the remarks labelled by (R1) and
(R2) in the body of the proof of Theorem 51, we conclude that if (L), (Ha)
and (Hab) hold, the conclusion on the weak law of Sn/sn, comes uniquely
from Formula (4.13). At this step, the condition on the (2 + δ)th moments,
that E |Xj|2+δ < +∞,j ≥ 1, is not required. And, Formula (4.13) expresses
the weak convergence of the sums defined in (4.14).

From there, the problem becomes the classical Lyndeberg-Levy-Feller The-
orem. And we have the following conclusion :
(a) max1≤k≤m(n){τj/νm(n)} → 0 as n→ +∞ and

1

vm(n)

m(n)∑
j=1

Vj  N (0, 1) as n→ +∞,

if and only if
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(b) for any ε > 0,

gn(ε) =
1

v2
m(n)

∫
(|x|≥εvm(n))

x2dFVj → 0 as n→ +∞.

These two conditions are exactly those given in the statement of the theo-
rem, where the replacement of (|x| ≥ εvm(n)) by (|x| ≥ εsn) in the expression
of g is possible because of νm(n)/sn → 1 as n→ +∞.

This finishes the proof on this theorem.
4.5. Proof of Theorem 53. The proof of Theorem 53 is based on that

of Theorem 51 from Formula (4.12).
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