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Abstract

The task of statistical model selection is to choose a family of distributions
among a possible set of families, which is the best approximation of reality
manifested in the observed data. In this paper, we survey the model selection
criteria discussed in statistical literature. We are mainly concerned with those
used in regression analysis and time series.
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1 Introduction

Let {M7, 7 E Γ} be candidate models for the observations, where Γ is an index set. It

is possible that the true model is not included in {M7}. Based on the data, we need to

select a model from {M7, 7 E Γ} through a suitable model selection criterion. Many

model selection procedures have been proposed in the literature. Each one is designed

for a particular application.

Model selection problems are encountered almost everywhere. In linear regression

analysis, it is of interest to select the right number of nonzero regression parameters.

With the smallest true model, statistical inferences can be carried out more efficiently.

In the analysis of time series, it is essential to know the true orders of an ARMA model.

In problems of clustering, it is important to find out the number of clusters. In the signal

detection, it is necessary to determine the number of true signals, and so on.

In this paper, we survey the model selection criteria discussed in statistical literature.

Almost all statistical problems can be considered as model selection problems, but in

this paper, we will be mainly concerned with those used in regression analysis and time

series. Some interesting examples can be found in Burnham and Anderson (1998), among

others.

The paper is arranged as follows: In Section 2, model selection based on hypothesis

testing is examined. In Section 3, selection of a model based on the prediction errors

is surveyed. In Section 4, the information theoretic criteria are discussed. In Section

5, the role of cross-validation and bootstrap methods in model selection is covered. In

Section 6, Baysian approaches to model selection are described. In Section 7, studies on

robust model selection are examined. In Section 8, the results on order selection in time

series are presented. In Section 9, model selection criteria in categorical data analysis are

explored. In Section 10, the investigation on model selection in nonparametric regression

is reviewed. In Section 11, data-oriented penalties are discussed. In Section 12, the effect

of prior model selection based on data on the inferential statistical analysis of the same

data is examined.

In the sequel, for an index set κ;, \κ\ denotes the size of «:, c(κ) denotes the sub-vector

containing the components of the vector c that are indexed by the integers in n and A(κ)

denotes the sub-matrix containing the columns of a matrix A that are indexed by the

integers in «, PA is used to denote the projection operator on the linear space generated

by the column vectors of A, and Y ~ (μ, Σ) is used to represent the random vector Y

distributed according to a multivariate distribution with mean vector μ and covariance

matrix Σ. For convenience, ί : m denotes the set of {i, ί + 1,..., m} in this paper, where

£ < m are positive integers.
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2 Selection of a model based on hypothesis testing

A model selection procedure can be constructed based on a sequence of hypothesis tests.

Assume that there is an order in the set of candidate models {Mi, i = 1,2,...} such

that Mi is a preferable to Mi+i. A sequence of hypotheses, Hi0 : Mi holds true versus

Hiα : Mi+ι holds true, i = 1,2,..., can be tested sequentially. Once Hi0 is accepted, the

test procedure stops and the model Mi is selected. Another such procedure is to replace

Hiα by H'iα : One of {Mj : j > i) holds true. It can be seen that if all the tests in

two test procedures have the same thresholds, the acceptance of Mi in the second test

procedure will imply that of Mi in the first test procedure.

Now assume that there is a partial order in a finite index set. Using the partial order

"-<", Γ can be partitioned into equivalent classes Γ;, i = 0,1, We further assume

that some member of a subset Γo has the smallest order. The problem is how to choose

a model from the candidate models consisting of M 7, 7 £ Γ, by hypothesis testing.

Suppose that the model MΊι is preferable to the model M 7 2 if 71 -< 72. In this case,

a model selection procedure can be constructed as follows: First, let i = 0. For each

7 G Γo, test the null hypothesis that MΊ holds true against the alternative hypothesis

that one of the models My, 7 -< 7 holds true. Find the largest p—value and if this value

is less than the prechosen one, stop and select the model with that p—value. Otherwise,

let i = 1, and repeat the above step with ΓQ replaced by IV In general, if the procedure

does not stop at the jth step, let i — j + 1 in the next step and repeat the previous step

with Tj replaced by Γj+ι.

For a better understanding of the procedures, let us consider the following linear

model:

Yi = x[β + ει, 1 = 1,2,..., (2.1)

where Xi are p-vectors, β is a p-vector parameter, and ε2 are random errors. Let K denote

a subset of {1,... ,p). Based on the observations (ŷ , Xi), i — 1,..., n, we would like to

decide whether the model (2.1) should be replaced by the following sub-model with a

fixed K:

Yi = x'i{κ)β{κ)+εt, ί = 1,2 (2.2)

There are 2P — 1 such models.

Denote the model (2.2) by Mκ. If «» = {1,..., z}, for convenience, write Mi for the

model MKi. For simplicity, consider the set of candidate models {Mi, i = l , . . . ,p} .

Hence, Hio is the hypothesis that βj = 0 for j > i, Hiα is the hypothesis that βj = 0

for j > i + 1 and βi+ι φ 0, and H'iα is the hypothesis that at least one of {βj, j > i}

is not zero. Assume that the maximum likelihood estimators of unknown parameters

can be worked out. Hence, the likelihood ratio statistics may be used to perform the
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tests. It is easy to see that the performance of the procedure is affected a great deal

by the critical values of the tests. Since the exact distributions of the likelihood ratio

statistics are usually unknown, their asymptotic distributions are used to compute these

thresholds, whose acceptable accuracy would need a large sample. The advantage for

such procedures is that the probability of overίitting is somewhat under control.

For giving a more clear view of such procedures, we further assume that ε;, i =

1,2,..., are independently and identically iV(0, σ2) distributed and cc;, i = 1,2,..., are

fixed, which can be relaxed to the condition that εn\Xn ~ JV(0,σ2/n), where εn =

(εi,... ,ε n ) ' and Xn — {x\,... ,xn)' For testing Hio against Hia, the likelihood ratio

statistic is equivalent to

F(z) =

 YnlPXn(1:2+1) -PXn(
F =

Yn[In - Pχn(V.i+l)]Yn

where Yn = (Yi,... ,Yn)' Under Hio, F® ~ F l j f ι _( i + 1 ). The critical value is given

by F l j 7 l_( i + 1)(α), where Prob (i^n-μ+i) > F 1 ) n _ ( i + 1 ) (α)) = α, and hence under Mτ the

probability of making a type I error, i.e. choosing Mi+i, is a. It can be seen that

the probability of underfitting, i.e. choosing M{ when it is not a true model, depends

on β(l : i + 1). As commented in Shao and Rao (2000), the underfitting probability

converges to 0 as the sample size n increases to 00.

In practice, forward selection, backward elimination and stepwise regression are pop-

ular model selection methods in linear regression. They are available in almost all of

statistical software packages. In their applications, the candidate models consist of all

2P - 1 submodels. Controlled by one or two thresholds, the model is selected based

on statistical hypothesis testing. The details can be found in Krishnaiah (1982), Miller

(1990) and some textbooks on linear regression. Some authors prefer backward elimina-

tion to forward selection for the economy of effort (see Mantel 1970). But on account

of the simplicity of computation and stopping rules, forward selection is recommended.

For choosing the significance levels required, the most widely used level is 10% or 5%.

But the overall power as well as the type I error rate are unknown unless the order of

entry of the variables into the model is specified explicitly before applying any method.

It is easily seen that the order of entry differs with observations. To avoid such difficul-

ties, Aitkin (1974) and McKay (1977) proposed an application of a simultaneous testing

procedure, but it requires considerable computation to obtain a set of significance levels

as shown by Shibata (1986a). Note that model selection procedures based on R2 (the

square of the multiple correlation), adjusted R2 or its equivalent MSE are also available

in many statistical software packages.

Thall, Russell, and Simon (1997) proposed an algorithm, backward elimination via

repeated data splitting (BERDS), for variable selection in regression. Initially, the data
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are randomly partitioned into two sets E,V, and an exhaustive backward elimination

(BE) is performed in E. For each αstay £ (0, 1) used in BE, the corresponding fitted

model from E is validated in V by computing the sum of squared deviations of observed

from predicted values. This is repeated m times, and the α*, which minimizes the sum of

the m sums of squares, is used as α s^ aγ in a final BE on the entire data set. BERDS is a

modification of the algorithm BECV (BE via cross-validation) proposed by Thall, Simon,

and Grier (1992). Their extensive simulation study showed that, compared to BECV,

BERDS has a smaller model error and higher probabilities of excluding noise variables, of

selecting each of several uncorrelated true predictors, and of selecting exactly one of two

or three highly correlated true predictors. Thall, Russell, and Simon (1997) also showed

that BERDS is superior to standard BE with OLs^y = .05 or .10, and this superiority

increases with the number of noise variables in the data and the degree of correlation

among true predictors.

While the log likelihood ratio tests are fairly good when nested parametric hypotheses

are involved, it is a different story for testing non-nested parametric hypotheses. Cox

(1961, 1962) initiated research on testing separate families of hypotheses and proposed

non-nested test statistics, which, according to Bera (2000), can also be viewed as Rao's

score tests. Later, Williams (1970a,b) gave a different approach by directly simulating

the distribution of the log likelihood ratio on a computer. According to Loh (1985),

both tests are not satisfactory. Loh (1985) proposed an alternative procedure by repeated

application of the parametric bootstrap method over slowly shrinking confidence regions,

which, as justified by the author, is promising. There are other solutions to this kind of

problems in the literature, which are not limited to parametric hypotheses.

Since in practical situations, the assumed null hypotheses are only approximations

and they are almost always different from the reality, the choice of the loss function

in the test theory makes its practical application logically contradictory, as commented

by Akaike (1974). Bera (2000) gives a very inspiring discussion on hypothesis testing

with misspecified models, which includes a historical review as well as possible future

direction of research.

3 Model selection based on prediction errors

Model selection based on statistical hypothesis testing described in the last section in-

volves many restrictions and further the choice of thresholds are open. As commented in

Akaike (1969), the main difficulty in applying this kind of procedures and their relatives

stems from the fact that they are essentially formulated in the form of successive tests of

null hypotheses against multiple alternative hypotheses. Actually one of the alternative
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hypotheses is just the model one is looking for and thus it is very difficult for one to

get the feeling of the possible alternative hypotheses to set reasonable significance levels.

To overcome this difficulty, Akaike (1969) suggested an alternative decision theoretic ap-

proach based on prediction errors. In Akaike (1969), the final prediction error (FPE) was

defined, which is the mean squared prediction error when a model fitted to the present

data is applied to another independent observation, or to make a one step prediction.

Based on the final prediction error, the parameters in each candidate model are esti-

mated so that the minimum final prediction error is attained for this model, and then

a model, which has the minimum final prediction error within the candidate models, is

selected. We call this an FPE procedure. Note that when the purpose of model selection

is for prediction, it may be wiser to choose a model based on the prediction errors than

using the model selection methods discussed in Section 2.

For example, consider the model (2.2). We assume that ε*, i = 1,2,..., are indepen-

dently and identically distributed with mean zero and variance σ2 and a^, i = 1,2,...,

are fixed, which can be relaxed to the condition that εn\Xn ~ (0,σ2In). We also

assume that Xn is of full rank. The least squares estimate of β(κ) for the model

(2.2) is [Xn(κ,yXn(κ)]~ιXn(κ)fYn. Let YQ consist of n new observations and YQ =

Xn{κ)β(κ) + εo with εo ~ (0,σ2/n). Then the FPE, i.e. the mean squared prediction

error, is given by

~E[(Yo - Ϋo)'(Yo - Ϋo)]
n

= -E[(Y0 - Xn(κ)'β{κ))]'[(Yo - Xn{κ)'β(κ))] = σ2{\ + k/n), (3.1)
n

where k = |«|. Let Sκ denote the residual sum of squares under the model Mκ, and

σ2 denote Sκ/(n — k). Using the unbiased estimator σ\ to replace σ2 in (3.1), we get

σ 2 (l + fc/n), which is denoted by FPE(κ). The selected model Mκ* can be obtained by

minimizing FPE(κ), i.e.

Mκ* — argminFPE(κ ).
Mκ

The FPE procedure was originally derived for autoregressive time series models.

A similar procedure was developed by Davisson (1965) for analyzing signal-plus-noise

data. By using FPE, Akaike (1970) suggested a way to decide on the thresholds for the

procedures discussed in Section 2.
Define, for the model (2.2) with p — oo,

SH(κ) = σ2(n + 2fe)(n - k)/n.

Shibata (1980) proposed a model selection criterion based on the expectation of predic-

tion errors, which is given as follows:

Mκ* — argminSH(κ ).
Mκ
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This criterion is equivalent to FPE and was shown to be asymptotically efficient.

In Akaike (1970), the modified version of the FPE procedure was proposed for im-

proving the consistency of the FPE procedure. For the model (2.2), let

where 0 < λ < 1. A model is chosen to be the one which minimizes (FPE)λ(κ;) within

candidate models. We call such a procedure as the (FPE)λ procedure.

Even though the consistency of the (FPE)λ procedure is improved over the FPE

procedure, it is still not consistent and the probability of overfitting is still greater than

zero. Many authors have sought to modify the overfitting property by further adjusting

the second term of the FPE procedure by multiplying it by δ and proposing the following

FPE<* procedure:

minFPE*(AfΛ) = σ\{l + δk/n),

Mκ

where δ may or may not depend on n.

The FPEj procedure or its equivalent was discussed by Akaike (1970, 1974), Atkinson

(1980, 1981), Bhansali and Downham (1977), Shibata (1976, 1980, 1986a,b), Zhang and

Krieger (1993) among others. Based on empirical evidence, some authors have suggested

that the FPE^ procedure with δ between 2 and 6 would do well in most situations, but

such an ad hoc choice of δ seems to be lacking in theoretical justification. In view of the

inconsistency of FPE and (FPE)λ procedures, it is unlikely that any finite δ would lead to

a consistent procedure. To achieve consistency, it may be necessary to make δ dependent

on sample size. Specially, it has been suggested that δ — δn should satisfy δn —> oo and

δn/n -> 0. See Bozdogan (1987), Nishii (1988), Rao and Wu (1987), Shao (1997), Zhao,

Krishnaiah, and Bai (1986a,b) among others. By assuming normality, Venter and Steel

(1992) studied the choice of the quantity δ in the FPE^ procedure for selecting a member

of a class of linear models having orthogonal structure. Two approaches are discussed,

namely fixing the maximal estimation risk at a prescribed level and using minimax regret.

In Zhang (1994) it was argued that a choice of δ G [3,4] would be adequate for most

practical purposes, and by using decision theoretic properties of FPE<j, it was shown that

the incorrect models are sometimes preferable to the true model.

Mallows (1973) took a different approach to model selection criterion in a linear

regression problem. Consider the model (2.2) and assume that the conditions made

previously hold true. The fitted regression subset at the point X{ is given by

where βκ is the least squares estimate of β(κ) under the model (2.2). If E(ΫitK) = μ ί |Λ,

then μijK generally differs from Xi{κ)'βκ because of possible bias in the Mκ. Let E(YJ) =
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θi. Then

E[ΫitK-θi)2] =

= σ2Xi(κ)'(Xn(K)'Xn(κ))-1Xi(κ)

which implies that

= \ fΣ σ2^(κ)'(Xn(κ)'Xn(κ)Γ1xι(κ) + Σ
σ L

f
σ Li=i

Since E(SK) = σ2{n - k) + Σ%-ι(βi,κ — θi)2, Aκ can be estimated by

Cκ = -^- + 2k - n.

However, the quantity Cκ is not an unbiased estimator of Aκ. Mallows (1995) suggested

that any candidate model where Cκ < k should be carefully examined as a potential

best model. This procedure is called Cp criterion.

Shibata (1980) showed that FPE is an asymptotically efficient procedure. Since

FPE and Cp procedures are asymptotically equivalent (see, e.g., Nishii 1984), Cp is also

asymptotically efficient. Note that both procedures are not consistent.

Considering a sequence of models with kth model given by (2.2) for K = 1 : k, Breiman

and Freedman (1983) proposed the following criterion also based on the expectation of

prediction errors:

M,ι = arg min σi fc(l + k/(n - 1 - k)).
M1:kik<n/2

This criterion was shown to be asymptotically efficient.

In a series of papers, Rissanen introduced minimum description length (MDL) prin-

ciple as a process of searching for models and model classes with the shortest code length

(see Rissanen 1989). The application of the MDL principle with predictive code length

is called the predictive MDL (PMDL). Consider the linear model (2.2). Based on his

PMDL principle, Rissanen (1986a,b,c) proposed a new criterion that selects the model

which minimizes

PLS(κ) -
1=771+1

where βκ is the least squares estimate based on {yi,Xi(κ); i < j} and m is the first

integer j so that βκ is uniquely defined. Since (yi - xli(κ)β (κ))2 is the square of
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the prediction error at stage i, this criterion is called the predictive least squares (PLS)

principle, which is strongly consistent. A drawback with PLS is that the data must

be ordered, and the result may depend on the particular order selected. Hence, the

symmetric PLS was proposed. See Rissanen (1989) for more details.

If one first uses a criterion based on data to select a set of regressors and then

estimates the regression coefficients, such a popular strategy is called an s/e procedure.

Foster and George (1994) proposed a measure for the evaluation of variable selection

procedures in multiple regression. This measure, which is called risk inflation, is the

maximum possible increase in risk of the consequent s/e procedure due to selecting

rather than knowing the "correct" predictors. The risk inflation is obtained as the ratio

of risk of a s/e estimator to the risk of the ideal (but unavailable) selection/estimation

estimator which uses only the "correct" predictors. Consider the models (2.2). In the

case of orthogonal predictors, the authors argued that compared to overall inclusion,

AIC, Cp and BIC offer smaller risk inflation and hence they proposed a model selection

procedure (RIC) as follows:

+ fcσ2(21ogp)],
Mκ

which, as they stated in their paper, substantially improves on AIC, Cp and BIC and is

close to optimal. For the general case, it is unfortunate that the model selection proce-

dure based on the risk inflation depends on the correlation structure of the predictors.

See Foster and George (1994) for details.

In a linear regression model, for attenuating possible excessive modelling biases, a

large number of predictors are usually introduced at the initial stage of modelling. To

enhance predictability and to select significant variables, one usually applies stepwise

deletion, subset selection and ridge regression. While these three methods are useful

in practice, they ignore stochastic errors inherited in the previous stages of variable

selections (see, e.g., Fan and Li 2001). Tibshirani (1996) proposed a new approach, called

least absolute shrinkage and selection operator (LASSO), which simultaneously selects

variables and estimates parameters. By using the LASSO, some regression coefficients

are shrinked and others are set to be zero. According to Tibshirani (1996), LASSO

retains good features of both subset selection and ridge regression, and can be applied

to generalized linear models, besides, the LASSO estimate is also a Bayes estimate.

As a matter of fact, the LASSO is closely related to penalized likelihood with the L\

penalty. Fan and Li (2001) generalized the LASSO method by proposing the penalized

likelihood with a smoothly clipped absolute deviation (SCAD) penalty function along

with a unified algorithm backed up by statistical theory, which resulted in an estimator

with good statistical properties. Their approach includes the LASSO as its special

case. Their simulation results showed that their method compared favorably with other
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approaches as an automatic variable selection technique. As shown in their paper, by

the advantage of simultaneous selection of the variables and estimation of parameters,

they were able to give a simple estimated standard error formula, which was tested to

be accurate enough for practical applications.

Recently Breiman (1996) studied how to stabilize an unstable model selection pro-

cedure in linear regression. Such problems are very important and need further investi-

gation.

4 Information theoretic criteria

Let z i , . . . ,z n be n independent observations on a random vector Z with probability

density function g(z). Consider parametric family of density functions is {fβ(z), θ G Θ}

with a vector parameter θ and parameter space Θ C Rm for which the average log-

likelihood is given by

i—\

where log denotes the natural logarithms. As n increases to infinity, this average tends

to

S{g\ fβ) = J g{z) log fθ(z) dz,

with probability 1, where the existence of the integral is assumed. The difference

is known as the Kullback-Leibler distance (information) between g{z) and fβ(z) and

takes positive values, unless fβ(z) = g(z) holds almost everywhere. Hence S(g\fβ) is

reasonable for defining a best fitting model by its maximization or, from the analogy to

the concept of entropy, by minimizing —S{g\fβ). Maximizing (4.1) with respect to θ

leads to the MLE θ.

Consider the case that g(z) = fβQ{z), where θo G Θ. When θ is sufficiently close to

«o,
K(fθoJβ)κ(θ-θo)'J(θ-θo)/2)

where J is the Fisher information matrix. When the MLE θ lies very close to 0o>

K(fβ ,fβ) can be approximately measured by (θ — ΘQ)'J(Θ — θo)/2. Under certain

regularity conditions n(θ — ΘQ)'J{θ - θo) is asymptotically distributed as chi-square

with k degrees of freedom, and E[2nK(fβQ,fg)} « n(θ - θo)rJ{θ - θ0) + k, where k is

the number of independent parameters. By using
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to approximate n(θ — ΘQ)'J(Θ - 0o)> a correction is needed for the downward bias due

to replacing θ by θ. Akaike (1973) added k as the correction and introduced the famous

AIC criterion: Let

AΙC(fl) = -2 log(maximum likelihood) + 2fc, (4.2)

where k is as defined above. The selected model is

Mg* = argminAIC(0).
Mβ

The justification of the correction k can be found in Akaike (1973), Linhart and Zucchini

(1986) and Sakamoto, Ishiguro, and Kitagawa (1986) among others. Note that AIC is, in

final analysis, based on the concept of minimizing the expected Kullback-Leibler distance

(see, e.g., Sawa 1978, Sugiura 1978). It is worth mentioning that information theory (see,

e.g., Guiasu 1977) has been a discipline only since the mid-1940s and covers a variety of

theories and methods that are fundamental to many of the sciences.

For the model (2.2), assuming that the errors are iV(0, σ2) distributed, AIC can be

expressed as

AIC(κ) = nlog{Sκ/n) + 2k,

where Sκ is defined as before and k = \κ\.

Assuming that the errors have a multivariate normal distribution, Fujikoshi and Satoh

(1997) proposed modified AIC and Cp for selecting multivariate linear regression models

by reducing the bias of estimation of Akaike- and Mallows-type risks when the collection

of candidate models includes both underspecified and overspecified models. Their simu-

lation study showed that both modified AIC and Cp provided better approximations to

their risk functions, and better model selection, than AIC and Cp.

For model selection in settings where the observed data are incomplete, Shimodaira

(1994) proposed a natural extension of AIC, called predictive divergence for incomplete

observation model criterion (PDIO). Cavanaugh and Shumway (1998) derived a variant

of AIC based on the motivation provided by Shmodaira (1994), which can be evaluated

using only complete-data tools, readily available through the EM algorithm and the

supplemented EM algorithm. The authors compared their criterion with AIC and PDIO

by simulation. The results showed that Cavanaugh and Shumway's criterion was less

prone to overfitting than AIC and less prone to underfitting than PDIO.

Shibata (1980) has shown that AIC is asymptotically efficient. However, AIC is not

consistent. Note that AIC, FPE and Cp are asymptotically equivalent (see, e.g., Nishii

1984). For small samples, many researchers have shown that AIC leads to overfitting (see,

e.g., Hurvich and Tsai 1989). For improving on AIC, Sugiura (1978) and Hurvich and
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Tsai (1989) derived AICc by estimating the expected Kullback-Leibler distance directly

in regression models, where a second order bias adjustment was made, and the criterion

is given as follows:

AΙCc(fl) - -21og(maximum likelihood) +2k ( ^ λ = AIC(0) + ̂ - ^ , (4.3)

where k denotes the number of free parameters in the candidate model. The model for

which AICc is smallest is chosen. From (4.3), it can be seen that AICc has an additional

bias correction term. If n is large with respect to A;, then the second order correction is

negligible and AIC should perform well, which implies that AICc and AIC are asymptot-

ically equivalent and hence AICc is asymptotically efficient but not consistent. Findley

(1985) noted that the study of the bias correction is of interest in itself; the exact small

sample bias correction term varies by type of models involved.

Denote a model selection criterion by MSC. Model A (with k variables) will be

considered better than Model B (with k + ί variables) if MSC(B) > MSC(A). Define

the signal as E[MSC(i?) — MSC(A)] and the noise as the standard deviation of the

difference denoted by sd(MSC(i?) — MSC(^4)). Then the signal-to-noise ratio is defined

as E[MSC(£) - MSC(,4)]/sd(MSC(£) - MSC(A)). See McQuarrie and Tsai (1998) for

more details. AIC has a weak signal-to-noise ratio (see, e.g., McQuarrie and Tsai 1998)

and hence it tends to overfit. In contrast, AICc's has better signal-to-noise ratio so that

AICc should perform well regarding the overfitting. The performance of model selection

criteria with weak signal-to-noise ratios could be improved if their signal-to-noise ratios

could be strengthened. Unfortunately, there is no single appropriate correction for all

criteria.

For the model (2.2), AICu was proposed by McQuarrie, Shumway, and Tsai (1997),

where Sκ/n of AIC term in (4.3) was replaced by Sκ/{n — k) and the other term remains

the same, which provides better model choices than AICc for moderate to large sample

sizes except when the true model is of infinite order.

For improving on the inconsistency of AIC criterion, Akaike (1978) and Schwarz

(1978) introduced equivalent consistent model selection criteria conceived from a Bayesian

perspective. Schwarz derived SIC for selecting models in the Koopman-Darmois family,

while Akaike derived his model selection criterion BIC for the problem of selecting a

model in linear regression. The two procedures introduced about the same time are

equivalent. See McQuarrie and Tsai (1998) for more details. In Schwarz (1978), it was

assumed that the observations come from a Koopman-Darmois family with density of

the form

where θ G Θ, a convex subset of Rp, and y is a p-dimensional sufficient statistic for θ.
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Since the exact distribution of the prior need not be known for the sake of asymptotic

nature of SIC, it suffices to assume that the prior is of the form ^ 7 j ^ j , where jj is the

prior probability for model Mj, and μj is the conditional prior of θ given Mj. Further,

Schwarz assumed a fixed loss for selecting the wrong model. As stated in Schwarz (1978),

the Bayes solution consists of selecting the model with a high posterior probability. In

large samples, this posterior probability can be approximated by a Taylor expansion.

Schwarz found its first term to be the log of the MLE for the model Mj and its second

term was of the form k log(n) where k is the dimension of the model and n is the sample

size. The remaining terms in the Taylor expansion were shown to be bounded and hence

could be ignored in large samples. The SIC is given as follows: Let

SIC(0) = -2 log(maximum likelihood) + k log(n), (4.4)

and choose the model for which SIC is smallest. It can be seen that the 2k term in AIC is

replaced by A log(n) in SIC, which places a much stronger penalty for overfitting. When

the parameters in SIC are estimated based on MDL principle, the resulting criterion

is called MDL, which was derived in Rissanen (1978, 1983) under the assumption that

there is no prior knowledge about θ.

BIC or SIC is strongly consistent but not asymptotically efficient. For small sample

sizes, the chance of underfitting should not be overlooked. For improving the underfitting,

it is natural to ask if log n can be replaced by a function of n which approaches infinity not

as fast as logn when n tends to infinity. This function can not be constant. In Hannan

and Quinn (1979), they argued, by applying the law of the iterated logarithm, that logn

can be replaced by c log log n with c > 2 in SIC without losing strong consistency. We

call this new criterion HQ. When applying it, the underfitting is improved but does not

vanish. It is unfortunate that a consistent model selection criterion usually tends to

underfit when sample size is not large enough. All one can do is to find a consistent

model selection criterion such that the underfitting is at its lowermost level. HQ meets

such requirement.

For improving the small-sample performance of SIC, McQuarrie (1999) used the

relationship between AIC and AICc to derive its small-sample correction denoted by

SICc. He showed that SICc overfits less frequently than SIC, performs better in small

samples and is asymptotically equivalent to SIC.

Consider the model (2.1). A framework is called prediction with repeated refitting

if it allows model selection at each time, i.e., a model is chosen on the basis of the data

available at time t, and the model selected is used to predict ϊt+i, while a framework is

called prediction without refitting if a model is chosen on the basis of the training sample,

and then the model selected is used to predict. Under the frame of finite-dimensional
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normal regression models, Speed and Yu (1993) compared model selection criteria ac-

cording to prediction errors based upon prediction with refitting, and prediction without

refitting and showed that Rissanen's accumulated prediction error and stochastic com-

plexity criteria, AIC, SIC, and the FPE criteria achieve both low bounds for prediction

with refitting and without refitting.

AIC was derived under the assumptions that (i) the estimation is by maximum

likelihood and (ii) the parametric family of distributions includes the true model. Could

these assumptions be somehow relaxed? Let

b(G) = E G \ Σ l0S /*

where the expectation is taken over the true distribution G and θ is an estimate of θ.

Without assuming that the true distribution belongs to the specified parametric family

of probability distributions, b(G) is asymptotically given by

where J(G) and I(G) are defined by

and
dθ dθ'dθdθ'

Denote the bias corrected log likelihood by

ΊΊC(0) = -21og(maximum likelihood) + 2tr{J(G)~1/(G)},

where J{G) and Ϊ(G) are respectively consistent estimates of J(G) and /(G), and choose

the model for which TIC is smallest. This criterion is called TIC and was originally

introduced by Takeuchi (1976) and also Stone (1977a), and later discussed extensively

by Shibata (1989) and Konishi (1999). When the true model is included in the set of

candidate models, b(G) can be reduced to

b{G) = 1 + O(n-2),
it

where k is the number of free parameters in the model, and TIC becomes AIC. If none

of the candidate models is close to the true model, TIC is an alternative if sample size

is large.

A generalized information criterion (GIC) was introduced in Konishi and Kitagawa

(1996) by estimating the same Kullback-Leibler distance as in AIC while relaxing both

the assumptions (i) and (ii). If the bias b(G) can be estimated by appropriate procedures,

then the bias corrected log likelihood is given by
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where θ may be obtained by maximum likelihood, penalized likelihood or robust pro-

cedures. The estimated bias b(G) is generally given as an asymptotic bias and an ap-

proximation to b(G). A model is selected such that the GIC is smallest. Konishi and

Kitagawa (1996) employed a functional estimator θ = t(G) with Fisher consistency and

approximated b(G) by a function of the empirical influence function of the estimator and

the score function of the parametric model. They obtained the GIC in the form

t\1}Here t^(Zi;G) = (ί^fo;<?),...,tj^Osi G))' and t\1}{Zi;G) is the empirical influence

function defined by

φ{Zι- G) = lim «i(lim

with δi being a point mass at Z{. Note that AIC and TIC are special cases of GIC.

In Bozdogan (1987), CAICF (C denoting "consistent" and F denoting the use of

Fisher information matrix) was proposed. Let

CAICF(Θ) = -21og(maximum likelihood) + fc[log(n) + 2] + log|J|.

CAICF criterion chooses a model for which CAICF is smallest. In Bozdogan (1988),

an information theoretic measure of complexity called ICOMP for model selection for

general multivariate linear and nonlinear structural models was proposed. The author

claimed that ICOMP takes the spirit of AIC, but it is a different procedure than AIC

in the sense that ICOMP is based on the entropic characterization of the measure of

complexity of a model and that such a formulation provides a criterion of goodness of fit

of a model. For a multivariate normal linear and nonlinear structural models, ICOMP

is defined by

ICOMP(Θ) = -2 log (maximum likelihood)

where Σ^ is the estimated covariance matrix and R is the model residuals. A model

with minimum ICOMP is chosen to be the best model among all candidate models. The

author argued that minimization of ICOMP provides a trade-off between the accuracy of

the estimated parameters, as measured by the interactions among the parameters, and

the independent normal errors. The author asserted that ICOMP leads to a parsimonious

description of the fitted model. As commented in Burnham and Anderson (1998), neither

CAICF or ICOMP are invariant to 1-to-l transformations of the parameters, and this

feature would seem to limit their application. From (4.5), it can be seen:
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1. The second term generally has the order of logπ. When the eigenvalues of the es-

timated covariance matrix are asymptotically proportionally identical with certain

rate, it may tend to zero, which may cause serious overfitting. This happens in the

balanced ANOVA.

2. The third term vanishes in case errors are homogeneous or may have order of n

(e.g., Var(ε2i = 2Var(ε2i-i)), which may cause serious underίitting.

In Wei (1992) a model selection criterion FIC was proposed for linear regression based

on Fisher information. Consider the linear model (2.2). Assume that ε, ~ 7V(0, σ2) and

that Xi is σ(εi,... , εi_i) measurable. Then the conditional Fisher information matrix

for β(κ) is or~2γ^=:lXi(κ)xl

i(κ). The quantity | J22=ι χi(κ)xi(κ)\ c a n be interpreted as

the amount of information about β(n). Denote

FIC(«) = nσl + σ2 log | £*,-(«)*;(κ)|.
i=l

A model is selected for which FIC is the smallest. In FIC, the redundant information

by introducing a spurious variable is used to represent its penalty. Compared with PLS

(predictive least squares), the author argued that FIC is permutation invariant, easy to

compute, no initialization problem is involved and is strongly consistent and, further,

FIC seems to have better small sample performance.

A widely used procedure for inference about parameters of interest in the presence of

nuisance parameters is based on the profile log-likelihood function. However, this proce-

dure may give inconsistent or inefficient estimates. Since the profile log-likelihood itself

is not a log-likelihood, Shi and Tsai (1998a) argued that one must consider conditional

log-likelihood, modified profile log-likelihood, or marginal log-likelihood as alternative

approaches. For simplicity, they proposed a model selection criterion based on marginal

log-likelihood for linear regression. They first obtained an unbiased estimator of the ex-

pected Kullback-Leibler information of the marginal log-likelihood function of the fitted

model and then derived the modified information criterion (MIC) based on it. Under

some conditions, MIC is shown to be strongly consistent. Based on their simulation

results, they indicated that MIC not only outperforms the efficient criteria AIC, AICc,

FPE and Cp, but is superior (or comparable) to the consistent criteria BIC and FIC in

both small and large sample sizes.

Consider the model (2.2). First let the set of all candidate models consist of {Mj}

where Mj — M\:j. Denote Sj = S\:j. Define

(1) G{rt\k) = Sk + kCnSp/(n - p), fc = 1,... , p;
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(3) G$\k) = nlogSk + kCn, k = l,... ,p.

Rao and Wu (1989) and Bai, Rao, and Wu (1999) proposed the following selection rules

based on Gn 's; the selected model is defined by Mj. for which

(4.6)

The selection procedures defined above are called the general information criteria for

linear regression (GIC-LR). Note that the equivalent criteria can be found in literature

(e.g., Nishii 1984, Pόtscher 1989, Shao 1997). Assume that Cn is a function of n satisfying

the conditions

^ - X ) , -SJ2—-ΪOO. (4.7)
n log log n

It was shown in Rao and Wu (1989) and Bai, Rao, and Wu (1999) among others that

under mild conditions, these criteria are strongly consistent.

Now consider the general situation where the set of all candidate models consist of

all possible 2P submodels. For each 1 < i < p, denote

and

Consider the model

yn = Xni-iβ-τ + εn. (4.8)

Write the corresponding usual residual sum of squares by S-{. In order to determine if

the ith element of β is zero, we need only compare two models, one is the full model

(2.1) and the other is the reduced model (4.8). Define, for 1 < i < p,

(1) G£H-i) = S-i -Sp- CnSp/(n - p);

(3) Gί?^-*) = nflogSfc - logSp) - Cn.

Then, choose the model as

βi = 0 if 6 # > ( - t ) < 0 and fcψ 0 if G ^ ( - t ) > 0

Assume that Cn is chosen in accordance with the condition (4.7). It was shown in Rao

and Wu (1989) and Bai, Rao, and Wu (1999) that under mild conditions, these criteria

are strongly consistent. The advantage of such selection procedures is that it needs only

the computation of p + 1 residual sums of squares instead of 2P residual sums of squares.
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When p is large, this method can also be applied to the criteria discussed previously.

Its disadvantage is that the underfitting may not be at nominal level. As an alternative

method (Zheng and Loh 1995), the explanatory variables may be ordered using the

t statistic. Using this method may need extra work in computing the t statistics and

sorting. If all important predictors are significantly non-negligible, every method can give

good detection of the smallest true model. The problem arises when some predictors are

very critical. There are cases where a predictor is shown to be important when just

this predictor is examined, and it becomes unimportant when the effect of some other

predictors is eliminated (of course it is not for the limiting case). Therefore, a variable

which is in fact more important than another may be excluded by wrong ordering. Both

methods proposed by Zheng and Loh (1995) and Bai, Rao, and Wu (1999) respectively

may face this problem. It needs deeper investigation to determine which performs better.

It is worth while mentioning that the assumption of normality and the assumption

that the errors are identically distributed are not necessary for the criteria to be strongly

consistent in this example. See Bai, Rao, and Wu (1999) for details.

In the problem of selecting a linear model to approximate the true unknown regres-

sion model, some necessary and/or sufficient conditions were established by Shao (1997)

for the asymptotic validity of various model selection procedures such as AIC, Cp, FPEα,

BIC, SIC, GIC-LR, etc.. It was found that these selection procedures can be classified

into three classes according to their asymptotic behavior. Under some fairly weak condi-

tions, Shao (1997) showed that the selection procedures in one class are asymptotically

valid if there exist fixed-dimension correct models; the selection procedures in another

class are asymptotically valid if no fixed-dimension correct model exists. The procedures

in the third class are compromises of the procedures in the first two classes.

Since the general information criterion for linear regression is consistent, it is of

interest to know its convergence rate. In Shao (1998), some convergence rates for the

error probabilities of the criterion, in terms of Cn and the order of the design matrix,

were established. The author argued that the rates obtained there are sharper than the

existing ones in the literature (e.g., Zhang 1993b) when the distribution of the response

variable is non-normal.

5 Cross-validation, bootstrap and related model selection

methods

Cross-validation is a method for model selection in terms of the predictive ability of the

models. Suppose that n data points are available. A model is to be selected from a

class of models. First, hold one data point and use the rest of n — 1 data points to fit
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a model. Then check the predictive ability of the model in terms of the withheld data
point. Perform this procedure for all data points. Select the model with the best average
predictive ability. This procedure is described as the LOO (leave one out) method. For
details, see Stone (1974, 1977a,b), Geisser (1975), Efron (1983, 1986), Picard and Cook
(1984), Herzberg and Tsukanov (1986) and Li (1987) among others. Note that Allen's
PRESS is equivalent to cross-validation (Allen 1974).

The cross-validation can be generalized as follows. Instead of choosing one data point
for assessing the predictive ability, k data points are reserved for that purpose. The rest
of rifc — n — k data points are used to fit the model. There are nCj^ different ways to
partition the data set. The generalized cross-validation selects the model with the best
average predictive ability among different ways of data splitting. It is easy to see that
the computational complexity of this method increases as k increases.

Herzberg and Tsukanov (1986) did some simulation comparisons between the cross
validation procedures with k = 1 and k = 2. They found that the leave-two-out cross-
validation is sometimes better than the LOO cross-validation, although the two proce-
dures are asymptotically equivalent in theory. When the number of predictors in any
regression model under consideration is fixed, this type of cross-validation is not con-
sistent and it can be shown that it is equivalent to Akaike information criterion. See
also Geisser (1975), Burman (1989), and Zhang (1993a). It will not be the case if k is
chosen to depend on n. For emphasizing this dependence, write k as k(n). Shao (1993)
showed that k(n)/n —» 1 as n —> oo is needed to guarantee that the cross-validation
is asymptotically correct. When k(n) is large, the amount of computation required to
use the cross-validation seems impractical. Shao (1993) suggested several approaches
(e.g., the balanced incomplete CV(A;(n)) and Monte Carlo CV(k(n)) ) to remedy it, and
examined their performances in a simulation study. Wu, Tarn, Li, and Zen (1999) have
used Shao's method to estimate the number of super imposed exponential signals.

When the number of predictors in the regression model under consideration increases
as n increases, the story is different. Li (1987) showed that under some conditions, the
LOO cross-validation is consistent and is asymptotically optimal in some sense.

The bootstrap is a data resampling method for estimating or approximating the
sampling distribution of a statistic and its characteristics. The general application of
bootstrap method to model selection can be found in Linhart and Zucchini (1986).
Recent developments in this area include bootstraping the mean squared prediction error
(Shao 1996 and McQuarrie and Tsai 1998) and constructing bootstrapped estimate for
the Kullback-Leibler discrepancy (Shibata 1997).
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Breiman (1992) introduced a data-driven model selection based on the little boot-

strap. Consider the model (2.2). Define the prediction error as

E||Vo " Xn(κ)'β(κ)\\2 = Nσ2 + \\E(Y) - Xn(K)'β(κ)\\2,

where YQ denotes the vector of n new observations. Write

= \\E(Y)-Xn(κ)'β(κ)\\2,

which is the error in fitting the true model. The following procedure describes how to

get the little bootstrap ME estimate:

1. 1. Fit the full model (2.1), getting Sv and σ2. Do the variable selection, getting the

sequence of subsets of indices «o, «i,..., «p, and the values of SKj, where KQ = 0.

2. Generate {en}, i = 1,... ,n, as i.i.d. N(0,t2σ2) and form the new y data

y = y + εu

where ε\ = (en,.. . ,ein)' and t > 0.

3. Using the data (ŷ , Xi), find the subset sequence {kj} following the same procedure

as in Step 1, and compute the predictors y and y .̂ based on the full model and

the model M*..

4. Calculate

5. Repeat Steps 2, 3, and 4 a number of times and average the quantities computed

in Step 4. Denote the average by Bt(j).

6. The little bootstrap estimate is

ME(κj) = Sκ. -Sp+ pσ2 - 2Bt{j).

Brieman proposed to select M%.+ if

Mk = arg min ME(KJ).

In his paper, he commented on the choice of t and compared his method with Cp and

replicate data method by simulation. His simulation results indicate that his method is

better than Cp and he argued that all selection methods not based on data reuse give

highly biased results and poor subset selection.
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Recently the covariance inflation criterion (CIC) was proposed in Tibshirani and

Knight (1999a), which adjusts the training error by applying the model selection pro-

cedure to permuted versions of the data set, to measure the covariance between the

predicted values and the responses. In doing so, this criterion captures the inherent

variability associated with an adaptive procedure, such as best subset regression. The

CIC can be applied in the prediction problems such as regression and classification, and

to nonlinear, adaptive prediction rules.

Consider the models (2.2) with squared error and fixed a?i,... ,xn. Denote Zi =

(j/ijXi), i = l , . . ,n, and z' = (zu...,zn). Let μι = E(Yί|xi), σ2 = Vax(Yi\xi), and

the conditional distribution of Y{\x{ be Fμi. On the basis of z a model Mκ is chosen

and the corresponding prediction rule ηz{X)Mκ), indexed by a tuning parameter κ;, is

formulated.

The true error of the rule ηz{x,Mκ) is

Err(κ) = i fX(Y 2 * -ηz(xi,Mκ)}\
n i=i

where Yf ~ Fμi with the training set z fixed. This is sampling error and the training

error (or apparent error) is

Note that erf tends to be biased downwards as an estimate of Err because the training

set z is used twice, both to construct the rule and to test it.

let σ2 be an estimate of the noise variance σ2 and let

The covariance inflation criterion (CIC) is defined by

CIC(κ) = err(κ) + ̂ jrCoV

0(Y*,Vz.(Xl,M*K)) +

A model is chosen to be the one which minimizes CIC(κ ). The notation Cov° indicates

covariance under the permutation distribution of x and y: x\ = (y*, X{) with y£, ?2/n

a sample drawn without replacement from τ/χ,... ,yn and the xι fixed. Here M* is the

model, given a tuning parameter K, chosen from the permuted data. Tibshirani and

Knight (1999a) argued that the idea behind this definition is that, the harder the data

are fitted, the more ηz{xi,Mκ) affects its own prediction, and hence the greater the

optimism in eϊf(κ ). Since in practice it is hard to compute all the permutations, the
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authors suggested taking a sample of them. Note that instead of sampling the responses

without replacement, they can be sampled with replacement, and given an independent

bootstrap distribution for the predictors and responses. See Tibshirani and Knight

(1999a) for details. The authors commented that even if the little bootstrap procedure

looks similar to the CIC in the context of linear regression, the uncertainty in the choice

of t makes it difficult to generalize the little bootstrap to other settings. In contrast, the

CIC can be defined for general prediction models for regression and classification, which

was presented in Tibshirani and Knight (1999a). The CIC was also compared with AIC,

BIC and RIC (the risk inflation criterion) in the paper.

Brieman (1996) showed how one can use the bootstrap for the more primary purpose

of producing a better estimator. Breiman's bagging procedure applies a given estimator

θ to each of B bootstrap samples, and then averages the B values to produce a new

estimator θ. In a number of experiments involving trees, subset selection and ridge

regression, Breiman showed that the bagged estimate θ often has smaller mean squared

error than the original θ. The largest gains occurred for unstable estimators 0, like subset

selection and trees, for which small changes in the data can produce large changes in

the estimate. The improvement in mean squared error is mostly due to a reduction in

variance. As commented in Tibshirani and Knight (1999b), unfortunately the averaging

process that produces the bagged estimate θ also destroys any simple structure that

is present in the original estimate θ. A different use of the bootstrap was proposed

in Tibshirani and Knight (1999b). They used bootstrap samples to provide candidate

models for the model search. They argued that this has the advantage that it preserves

the structure of the estimator while still inducing stability. Let z = (z\,... ,zn) be a

training sample i.i.d. from a distribution F. Suppose that there is a model for the data

that depends on a set of parameters θ. From the training sample, it is assumed that θ

is to be estimated by minimizing a target criterion

θ = argmini?(^,0).
θ

Suppose also that there is a (possibly different) working criterion RQ for which minimiza-

tion is convenient. Tibshirani and Knight (1999b) proposed to estimate θ by drawing

bootstrap samples z 1 , . . . , zB, estimating θ via i?o from each sample

and then choosing θ as the value among the θ producing the smallest value of R(z, θ):

ΘB = θ* where 0* = argmini?(z,0 ).
b

As a convention, the original sample z is included among the B bootstrap samples. This

procedure is called "Bumping" for Bootstrap Umbrella of Model Parameters. The value
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θ is the bumping estimate of θ. The authors argued that the bumping provides a con-

venient method for finding better local minima, for resistant fitting, and for optimization

under constraints.

6 Baysian approach to model selection

For the model (2.1), assume that Y\β,σ ~ N(Xβ,σ2I). Let r = (τi, . . . ,τ p ) ' where

7- = 0 or 1 if βi is small or large, respectively. The size of the Tth subset is de-

noted as qr = τ ' l . Since the appropriate value of r is unknown, the uncertainty

underlying variable selection is modelled by a hierarchical mixture prior τr(/3, σ, r ) =

π(/3|σ, τ)π(σ|τ)π(τ). For this hierarchical setup, the marginal posterior distribution

π(τ |F) contains the relevant information for variable selection. Based on the data F,

the posterior π(τ\Y) updates the prior probabilities on each of the 2P possible values of

r . Identifying each r with a submodel via (rz = 1) <=> (X(i) is included), those r with

higher posterior probability π(τ\Y) identify the more "promising" submodels, that is

those supported most by the data and the prior distribution.

For identifying "promising" subsets of predictors for the model (2.1), a Bayesian

procedure, called stochastic search variable selection (SSVS), was proposed in George

and McCulloch (1993), which specifies a hierarchical Bayes mixture prior which uses the

data to assign larger posterior probability to the more promising models. To avoid the

overwhelming burden of calculating the posterior probabilities of all 2P models, SSVS

uses the Gibbs sampler to simulate a sample from the posterior distribution. The Gibbs

sampler is effectively used to search for promising models rather than compute the entire

posterior. The key to the potential of SSVS is the fast and efficient simulation of the

Gibbs sampler.

George and McCulloch (1997) described a variety of approaches to Bayesian variable

selection which includes SSVS as a special case. These approaches all use hierarchical

mixture priors to describe the uncertainty present in variable selection problems. In the

paper, hyperparameter settings which base selection on practical significance, and the

implications of using mixtures with point priors were discussed. The authors showed that

conjugate versions of these priors yield expressions for the posterior which can sometimes

be sequentially computed using efficient updating schemes. According to the paper, when

p is moderate (less than about 25), performing such sequential updating in a Gray Code

order yields a feasible approach for exhaustive evaluation of all 2P posterior probabilities,

and for larger values of p, Markov chain Monte Carlo (MCMC) methods, such as the

Gibbs sampler or the Metropolis-Hastings algorithms, can exploit such updating schemes

to rapidly search for high probability models. The authors observed that estimation
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of normalization constants would provide improved posterior estimates of individual

model probabilities and the total visited probability. In their paper, nonconjugate and

conjugate MCMC implementations are compared on three simulated sample problems.

They also illustrated the application of Bayesian variable selection to a real problem

involving p = 200 potential regressors.

As discussed in George and McCulloch (1997), a variety of approaches for Bayesian

model selection can be put into the following categories: 1. Prior specification and 2.

Posterior computation. The prior specification corresponding to the removal of a predic-

tor can be obtained by either a continuous distribution on βi with high concentration at

0, or assigning an atom of probability to the event βi = 0. Another distinguishing charac-

teristic of prior specification is the difference between nonconjugate and conjugate forms

for the coefficient priors. Nonconjugate forms offer the advantage of precise specification

of a nonzero threshold of practical significance, and appear to allow for more efficient

MCMC exploration with approximately uncorrelated predictors. Conjugate forms offer

the advantage of analytical simplification which allows for exhaustive posterior evalua-

tion in moderately sized problems (p less than about 25). In problems with large p where

evaluation of posterior probabilities is not feasible, conjugate forms allow for exact cal-

culation of relative posterior probabilities and estimates of total visited probability by

MCMC posterior exploration. Furthermore, conjugate forms appear to allow for more

efficient MCMC exploration with more correlated designs. For the purpose of posterior

exploration, a large variety of MCMC algorithms can be constructed based on the Gibbs

sampler and Metropolis-Hastings algorithms.

With prediction as the goal, Geisser (1993) considered it more appropriate to aver-

age predictions over the posterior distribution rather than using predictions from any

single model. The potential of prediction averaging in the context of variable selection

uncertainty has been nicely illustrated by Clyde, DeSimone, and Parmigiani (1996) and

Raftery, Madigan, and Hoeting (1997) among others. In practice, there exists a situation

where a single model is needed for prediction (e.g., Wakefield and Bennett 1996).

In Laud and Ibrahim (1995), a predictive Baysian viewpoint was advocated to avoid

the specification of prior probabilities for the candidate models and the detailed interpre-

tation of the parameters in each model. Consider probability models for the observable

y conditioned on each model MΊ with the associated parameter vector

7 e Γ,

where Q(M^ is the parameter space for the model MΊ and Γ is the index set. Suppose

that a prior π(θ^M^\MΊ) has been specified for each Θ^MΊ\ 7 £ Γ. The posterior for

Q(MΊ) under each model M7, given data Y - y, is given by π(θ^M^\y, MΊ). Now

envision replicating the entire experiment and denote by Z the vector of responses that
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might result. The predictive density for Z under model MΊ is

= J
This density was called the predictive density of a replicate experiment (PDRE) in

Laud and Ibrahim (1995). The replicative experiment is an imaginary device that puts

the predictive density to inferential use, adapting the philosophy advocated in Geisser

(1971). The imagined replication makes y and Z comparable, in fact exchangeable a

priori. Moreover, the parameters in the model play a minimal role under replication. It

seems clear that good models, among those under consideration, should make predictions

close to what has been observed for an identical experiment. With this motivation, Laud

and Ibrahim (1995) proposed three criteria. Consider

where the expectation is taken with respect to the PDRE. Good models will have small

values of LM7> which results in the first criterion. Based on PDRE itself, the second

criterion is formulated considering that small values of (PDRE)"1/71 indicate good mod-

els. The third criterion is based on the Kullback-Leibler distance between two predictive

densities. Using these criteria, they implemented their methodology for three common

problems arising in normal linear models: variable subset selection, selection of a trans-

formation of predictor variables and estimation of a parametric variance function.

Suppose that we are considering two models, M\ and M2. Let p(y\Mi) and p(Mi) be

respectively the distribution of the data Y and the prior probability of the model M»,

i = 1,2. The posterior probabilities of M;, i = 1, 2, are given by

p{Mτ\y) = p{y\Mi)p{MMp{y). (6.1)

The posterior odds in favor of model M\ over alternative M2 are

p(Mi\y) f) (
p(M2\y) \p(y\M2))\p(M2)

Let πi(θi) be the prior distributions of the di-dimensional parameter vector θi under the

models Mi, i = 1,2. Expressing p(y\Mi) as the average of the usual likelihood ρ(y\θi)

over the parameter space, we have

p(y\Mi) = f

which, together with (6.1), implies that

p(Mi\y) = JpMθiMθi) dθip{Mi)lp(y).
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Hence, (6.2) can be expressed as

jp{y\θι)πχ{θx) dθp{Mχ\y)

ρ(M2\y)

Since it is often that the prior odds p(Mχ)/p(M2) is 1, the ratio

IP{y\θι)πι{θ{) dθx

—r

J dθ2

is defined as the Bayes factor. B\2 can be viewed as the "weighted" likelihood ratio

of M\ to M2 and hence can be interpreted solely in terms of comparative support of

the data for the two models (see Kass and Raftery 1995). Computing Bu requires

specification of πi(0i), i = 1,2. Often in Bayesian analysis, one can use noninformative

(or default) priors. Commonly used priors are the "uniform" prior, the Jeffreys prior,

and the reference prior (see, e.g., Berger and Bernardo 1992). Since the Bayes factor

compares model Mi to alternative M2, it has been used for model selection.

Akaike (1983) mentioned that model comparisons based on the AIC are asymptot-

ically equivalent to those based on Bayes factors. As commented in Kass and Raftery

(1995), this is true only if the precision of the prior is comparable to that of the likeli-

hood, but not in the more usual situation where prior information is small relative to the

information provided by the data. In the latter more usual situation, the SIC indicates

that the model with the highest posterior probabilities is the one that minimizes SIC(0)

given in (4.4).

It is unfortunate that the Bayes factors typically depend rather strongly on the prior

information and several problems arise using the Bayes factor when prior information is

weak (see, e.g., Berger and Pericchi 1996a,b, De Santis and Spezzaferri 1997, Kass and

Raftery 1995). As commented in De Santis and Spezzaferri (1997), assigning a diffuse

proper prior to the parameters θι is critical because the flatter the prior is, the more

penalized the corresponding model Mi is. Furthermore, when the distribution πi(θi) is

improper and defined only up to arbitrary constants, the Bayes factor itself is a multiple

of these arbitrary constants. In this situation of weak prior information, several authors

have proposed the use of partial Bayes factors (see, among others, Berger and Pericchi

1996a,b, OΉagan 1995). The idea is to use part of the data as a training sample to

update the prior distributions of the models and the remainder of the data to compute

the Bayes factor.

Assume y = (y(ra)',y(n — m)')', where y(m) is a proper training sample of size m,

that is, a subsample such that 0 < Jp{y(m)\θi)πi(θi) dθi < 00, i = 1,2. The training
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sample is minimal if it does not contain subsets that are proper training samples. The

partial Bayes factor for model Mi against model M2 is then defined as

fp{y{n - m)|6!1)π1(θ1 |y(m)) dθλ

Bn(m) = j- , (6.3)
j p(y(n - m)\θ2)π2(θ2\y(m)) dθ2

where ττi(θi\y(m)) is the posterior distribution of the parameter 0 ,̂ i = 1,2. OΉagan

(1995) showed that the partial Bayes factor is less sensitive to the priors than the Bayes

factor. By (6.3), it can be seen that the partial Bayes factor does not depend on absolute

values of prior distributions but on their relative values and on the other hand, the

partial Bayes factor depends on the specific y(m) chosen. As described in De Santis and

Spezzaferri (1997), in finite sample, when the size m of the training sample increases, the

sensitivity of the partial Bayes factor to prior distributions decreases, but at the same

time its discriminatory power decreases. To eliminate the dependence of the partial Bayes

factor on y(m) and to increase its stability, Berger and Pericchi (1996a,b) suggested

averaging the partial Bayes factor corresponding to all the possible training samples

and obtained intrinsic Bayes factor. A simple alternative that avoids averaging is the

fractional Bayes factor proposed in OΉagan (1995), which is given as

/ r ,n \

Bι2\ΊΎl) = B\2 —γ

\J )
The fractional Bayes factor has an asymptotic motivation: if m and n are both large,

the likelihood based on y(m) is approximated by the one based on y, raised to the power

m/n. The comparison of the intrinsic Bayes factor and the fractional Bayes factor can

be found in Berger and Pericchi (1996a,b) and De Santis and Spezzaferri (1997) among

others.

7 Robust model selection

For the methods discussed in previous sections, it can be seen that there is an involvement

of the distribution information of the models, direct, indirect, or as vehicle. How can

we cope with the case when there are departures from the distributional assumptions

or there exist outliers in the data at hand? Robust model selection criteria have been

proposed for this purpose.

According to Qian and Kunsch (1999), the following three issues should be taken into

consideration when proposing a robust criterion. First, it should take into account the

possibility that observations of both response and predictors may contain gross errors.
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Therefore, the criterion should be somewhat robust to small number of outliers or small

change in all of the data. Second, the criterion should be consistent if a finite-dimensional

true model exists. Third, the effect of the signal-to-noise ratio on the empirical perfor-

mance of the criterion needs to be taken care of.

Back to the literature, Ronchetti (1985) proposed a robust version of AIC, called

AICR. In AICR, the first term of (4.2) is replaced by the sum of the discrepancy functions

computed at the Άf-estimate and the second term is replaced by a product of a and the

number of free parameters, where the choice of a follows from the asymptotic equivalence

of the AIC given in Stone (1977a). It is easy to see that robustness of the AICR depends

on the robustness of the M-estimation. Hampel (1983) suggested a modified version of

it. Hardle (1987) investigated the properties of a selection criterion for regression which

is asymptotically equivalent to the AICR and showed that it is asymptotically efficient.

A similar idea was used by Martin (1980) and Behrens (1991) for autoregressive models.

For general parametric models AICR was discussed in Ronchetti (1997).

Antoch (1986, 1987) introduced an algorithm to perform variable selection, where α-

trimmed least squares estimators for parameters are computed for all possible submodels

and then compared to the same estimator obtained in the full model. The submodels

which lead to estimates whcih are "indistinguishable" from that of the full model are

considered acceptable.

In Hurvich and Tsai (1990) a small sample criterion for the selection of least absolute

deviations regression models was developed. Their criterion provides an exactly unbiased

estimator for the expected Kullback-Leibler information when the error distribution is

double exponential and the model is not underfitted. The selection procedure performs

better than both AIC and AICR with the Li-norm discrepancy function.

Recently, Ronchetti and Staudte (1994) presented a robust version of Mallow's Cp,

denoted RCP, which can be used with a large variety of robust estimators for the param-

eters, including M-estimators, bounded influence estimators, and one-step M-estimators

with a high breakdown starting point. RCP chooses the models that fit the majority of

the data by taking into account the presence of outliers and possible departures from

the normality assumption on the error distribution. Later, Sommer and Staudte (1995)

implemented RCP for Mallows-type estimators so that leverage points as well as out-

liers can be downweighted. Some examples can be found in both the papers to support

the applications of RCp. Another robust version of Cp can be derived from the Wald

test as proposed by Sommer and Huggins (1996). Consider a set of candidate models

{Mβ, θ £ Θ}, where the candidate models are indexed by their parameter vector θ

and Θ is the parameter vector space in TIP. Let θ be an M-estimator of θ. Define

Wκ = Wθ,κ) -p + 2k, where WQM = nθ(κyΣ{θ)-ι(κ)θ{κ), the Wald test statistic for
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testing the null hypothesis that θ(κ) = 0, and K denotes a subset of {1,... ,p}. Then a

model is selected for which Wκ is the smallest. An advantage of such a model selection

criterion is that it is easily adapted to other nonadditive error model structures.

Using Shao's cross-validation methods (Shao 1993) for choice of variables as a start-

ing point, a robust algorithm for model selection was proposed in Ronchetti, Field, and

Blanchard (1997). Since Shao's techniques are based on least squares, they are sensi-

tive to outliers. The authors developed their robust procedure using the same ideas of

cross-validation as Shao but use estimators that are of optimal bounded influence for

prediction. They demonstrated the effectiveness of their robust procedure in providing

protection against outliers both in a simulation study and in a real example and con-

trasted the results with those obtained by Shao's method, demonstrating a substantial

improvement in choosing the correct model in the presence of outliers with little loss of

efficiency at the normal model.

A robust version of the Schwartz criterion was proposed in Machado (1993). It was

shown in his paper that under some assumptions, the smallest true model would be

selected with probability approaching one as n —>• oo. Consider the model (2.2). In

Burman and Nolad (1995), an M-estimation-based Akaike-type criterion was presented,

where the penalty term is the product of the number of free parameters and the estimate

of Cp. The Cp is given by

cp =

where p is a convex discrepancy function with a unique minimum at 0, and twice differ-

entiable in expectation, pi is the derivative of p, i?2 is the second derivative of E[p(ε + ί)],

and βQ is the minimizer of ^22=ι ^P^Xi ~~ xiβ) Many examples were given in the paper

for the applications of the criterion. Based on the newly developed theory of stochastic

complexity (Qian and Kϋnsch 1998) in linear regression, Qian and Kύnsch (1999) pro-

posed a model selection procedure. This criterion is itself a model selection procedure

based on M-estimation, where the discrepancy function for the M-estimation was the

Huber's function defined as

Pc(t) =
\t\

Under some conditions, the criterion was shown to be strongly consistent in the paper.

An extensive simulation study, which compares their method with several robust model
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selection procedures, can also be found there. By approximating the expected discrep-

ancy functions, a criterion was suggested in general in Shi and Tsai (1998b). For linear

regression, the authors proposed three criteria based on M-estimation, called AICR*,

AICcR* and AICcR, respectively, where AICcR* was obtained by following the similar

approaches as in the derivations of AICc. Consider the model (2.2). Define

(7.1)
2 = 1

where βκ is the M-estimator for the model Mκ corresponding to the discrepancy p, i.e.

)i (7.2)

and q(k) is a strictly increasing function of k and Cn is a function of n. It can be seen that

in (7.1), the first term is a generalization of a minimum negative log likelihood function

and the second term is the penalty on the use of models involving more parameters.

Wu and Zen (1999) introduced the selection criterion called Criterion R based on Rn(κ)

under which Mκ* is selected such that

Rn(κ*) = mm Rn{κ), (7.3)

where Cn is such that n~ιCn -> 0 and (loglogn)~ιCn —> oo as n —> oo. This criterion

includes many classical model selection criteria as special cases, and it is shown to be

strongly consistent in their paper.

A general form of M-estimation was proposed in Bai and Wu (1997), where the

discrepancy functions may be convex functions or differences of convex functions. The

model covered all linear and nonlinear regression models, AR time series, EIVR models,

etc. as its special cases. Hence it is worth while to construct a model selection criterion

based on it.

It is also of interest to examine methods to assess influence in model selection prob-

lems. Leger and Altman (1993) examined the use of "leave-one-out" measure of changes

in predicted values to assess influence of individual observations in model building. They

suggested this measure considering multicollinearity among the independent variables.

It seems to us that other measures can also be proposed and studied.

8 Order selection in time series

Consider the following autoregressive model of order p:

Xt - ΦlXt-l ΦpXt-p = ZU (8.1)
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where Φ i , . . . , Φp are real m x m matrices, and {zt} is the error process.

The autoregressive models are the popular models for time series data. In previ-

ous sections, we have discussed many model selection methods and some of them, e.g.,

FPE, (FPE) λ, FPEQ and HQ, were originally derived for autoregressive models. In the

analysis of autoregressive models, it is of interest to know the order of the optimal au-

toregressive model. Hence, a criterion is needed to fulfill this task. Generally speaking,

most model selection methods, which work for linear regression, apply to the selection

of the order of an autoregressive model. In the framework of stationary autoregressive

models, Hannan and Quinn (1979) proved the strong consistency of the order estimators

obtained by HQ for the univariate case, and Quinn (1980) obtained a similar result for

the multivariate case. For the nonstationary autoregressive models with independently

and identically distributed errors, weak consistency of the order estimators was estab-

lished independently by Paulsen (1984) and Tsay (1984). Paulsen (1984) also discussed

the multivariate case. The nonstationarity considered in both papers arises from the fact

that the characteristic polynomial is allowed to have roots not only outside but also on

the unit circle. Paulsen and Tj0stheim (1985) also discussed the case of nonstationarity

where autoregressive scheme is stable but the error process is allowed to have a noncon-

stant variance. Pόtscher (1989) gave strong consistency results for order estimation in

nonstationary autoregressive models under the assumptions weaker than those employed

in Paulsen (1984), Tsay (1984) and Paulsen and Tj0stheim (1985). He assumed the er-

ror process to be a martingale difference with respect to {Ft}, where Tt is the σ-algebra

generated by {xs, s < t} in the model (8.1) with m = 1.

Using asymptotic efficiency as the criterion, Hurvich and Tsai (1989, 1993) studied

the order estimation in the autoregression models without assuming the bound of the

possible orders. They proposed a bias-corrected version of AIC (AICc), which works well

in this case. The correction is of particular use when the sample size is small, or when

the number of fitted parameters constitutes a large fraction of the sample size. The

corrected method is asymptotically efficient if the true model is infinite dimensional.

Furthermore, when the true model is of finite dimension, the method is found to provide

better model order choices than any other asymptotically efficient method. Applications

to nonstationary autoregressive and mixed autoregressive moving average models are

also discussed there. Hurvich, Shumway, and Tsai (1990) suggested another order esti-

mator which provides somewhat better model selection than the previous one if none of

the candidate model dimensions exceeds one-half the sample size and provides a much

better model selection than the previous one if some of the candidate models have large

dimension and the sample size is small, when the autoregression models are estimated

by maximum likelihood.
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An order selection procedure based on the subsampling method can be found in

Fukuchi (1999). He proposed to select a time series model empirically from a set of

possibly nonnested and misspeciίied models by using estimated risk of prediction as a

selection criterion. The author argued that compared with information theoretic criteria,

his procedure was free of the problem of penalty selection. However the choice of sub-

sample size will affect the performance of the procedure. According to Fukuchi (1999),

the method of subset selection of stochastic regressors based on cross validation by Yao

and Tong (1994) seems to be extendable to the model selection problem considered in

the paper.

Suppose the goal is to make long range prediction, e.g., ft-step forecasts, where we

need to predict xn+h from the time series a?χ,... , xn. A simple method can be given

based on the "plug-in" method (see Box and Jenkins 1970), in which an initial A -th

order autoregression is chosen with k itself selected by an order selection criterion, and

the multistep forecasts are obtained from this initial model fitted to the time series by

repeatedly iterating the model and replacing the unknown future values by their own

forecasts. Whittle (1963) observed that the plug-in method is optimal in a least-squares

sense if the fitted model coincides with that generating the time series, or in a somewhat

restricted sense, for prediction only one step ahead. Since all fitted models may be

incorrect in practice, this observation suggests that for multistep prediction the plug-in

method may not work well. A different approach may be desirable.

There has been much interest recently in the question of using lead-time (h) depen-

dent estimates or model for multistep prediction of a time series. It is easy to see that

such study involves solving an order selection problem, which is essential for forecasting.

Earlier references advocating lead-time dependent model selection and/or parameter esti-

mation for multistep forecasting include Findley (1983), Tiao and Xu (1993) and Lin and

Granger (1994). In Bhansali (1996), a direct procedure involving a linear least-squares

regression of Xt+h o n Xu — ->χt-k+ι w a s used for estimating the prediction constants,

with k = fc/j,, say, treated as a random variable whose value is selected anew for each h

by an order selection criterion. He showed that the order selection by suitable /i-step

generalizations of the AIC and FPE criteria or their equivalents are asymptotically effi-

cient for /ι-step prediction as the bound is attained in the limit if k^ is selected by any

of these criteria. The comparison between the plug-in method and the direct procedure

can be found in Bhansali (1997).

In Hurvich and Tsai (1997), a version of the corrected AIC (AICc) was developed

for the selection of an /ι-step-ahead linear predictor for a weakly stationary time series

in discrete time. A motivation for this criterion was provided in terms of a generalized

Kullback-Leibler distance which is minimized at the optimal /i-step predictor, and which
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is equivalent to the ordinary Kullback-Leibler distance when h = 1. In their simulation

study, it was found that if the sample size is small and the predictor coefficients are

estimated by Burg's method (Burg 1978), AICc typically outperforms both the ordinary

AIC and FPE for /ι-step prediction. Note that Chen, Davis, Brockwell, and Bai (1993)

presented simulation results that for a finite order autoregressive process, the Burg esti-

mator can perform very poorly in small samples if the model order used in the estimator

greatly exceeds the true order: they found that the Yule-Walker estimator performs

much better at these high orders. Hurvich and Tsai (1996) argued that the reason for

them to use Burg's estimator is that if the AICc is used it is rare that a large model

order is selected. They presented evidence to indicate that Burg estimation can produce

much better selected predictors than Yule-Walker estimation.

Liu (1996) investigated the simultaneous multistep forecasts. First, a univariate au-

toregressive model is translated into a constrained multivariate regression model. Based

on this transformation, it was shown that the model selection procedures derived from

one-step ahead forecasts also keeps some optimality in the sense of multistep forecasts.

The author obtained the multistep versions of BIC, FIC, and Cp.

Now consider the following autoregressive moving average (ARMA) model:

xt - Φixt-i ΦpZί-p = zt + Φi*t-i + • + yqzt-q, (8.2)

where Φi , . . . , Φp and Φi , . . . , Φ9 are real mx m matrices, and {zt} is the error process.

The orders of this model are p and q.

The monograph by Choi (1992) gives a comprehensive survey and an extensive bib-

liography on the ARMA model identification. As pointed out by Choi, the FPE, AIC,

BIC, SIC, HQ, MDL, and PLS and similar procedures can be used to select the orders of

the ARMA models. Lai and Lee (1997) expanded the list and they extended Rissanen's

accumulated prediction error criterion and Wei's FIC from linear to general stochastic

regression models, which includes ARMA models as its special case. They showed that

these criteria are strongly consistent under certain conditions.

Zhang and Wang (1994) proposed the order determination quantity (ODQ) as a new

way to solve order estimation problems for the model (8.2) with m = 1. The ODQ is

defined as

ODQn(p,9) = nσ2

n{p,q) - nσ2

n{p\q*) - αn

where σ2( , ) denotes an estimate of the common variance of the noise sequence; 0 <

P < P*5 0 < Q < 9*5 (P*J Q*) ιs a n upper bound of the unknown true order (po, <7o), which

can be arbitrarily large but fixed and is supposed to be known α priori] n is the sample

size; and αn > 0 is a data-dependent constant such that αn/n —> 0 and αn/(logn)7 —> oo

almost surely, where 7 = 1 for pure autoregressive models and 7 > 1 is a nonrandom
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constant to be specified in the future for general ARMA models. (p, q) is determined to

satisfy

O D Q n ( p - M ) > 0, O D Q n ( p , g - 1) > 0 and ODQn(p,(?) < 0,

instead of by minimizing ODQ(p, g) over (p, q). The authors argued that theoretical

analysis and simulation showed that the ODQ has higher identifiability for unknown

true orders, provides clear separation points and requires less computational effort than

the order estimation criteria such as AIC, BIC, HQ, PLS, etc. Under certain conditions,

it was shown that ODQ is strongly consistent for unstable autoregressive processes.

Note that if an ARMA model is invertible, it can be approximated by an autoregres-

sive model of order m for large m. If the set of candidate models consists of autoregressive

models while the true model is an ARMA model, an efficient order selection criterion is

recommended against a consistent order selection criterion. A simulation study for the

case that the true model is a moving average model while the set of candidate models

consists of autoregressive models can be found in McQuarrie and Tsai (1998).

The following nonlinear time series model was studied in Chen, McCulloch, and Tsay

(1997):

xt — f(xt-ι, , xt-p\ αt-i, • , at-q\ βf) + au

a>t = 9tzu

9t = g(xt-iτ- iZt-tijαt-i,--. ,at-v',gt-ι,... ,gt-w;βg), (8.3)

where xt is a univariate time series, /(•) and g( ) are two known functions with finite di-

mensional parameter vectors βf and βg, respectively, p, q, u, v, and w are non-negative

integers, and {z{} is a sequence of independent and identically distributed random vari-

ables with mean zero and variance one. The function g(-) is assumed to be positive; it

governs the evolution of the volatility of the innovational series at. Examples of the model

so defined were presented there. In that paper, they claimed that there was little discus-

sion of model selection across different classes of nonlinear models and that much work

on model selection in the literature focuses on nested models for which the traditional

maximum likelihood ratio tests or Rao's score tests or information criterion functions

apply. It is easy to see that for non-nested models, model discrimination becomes much

more involved, especially when the competing models are nonlinear. Li (1993) adopted

the idea of separate families of hypotheses of Cox (1962) and proposed a test statistic for

discriminating between bilinear and threshold models. Chen, McCulloch, Tsay (1997)

argued that Li's test was closely related to the method of selecting a model with smaller

residual variance and was not applicable to other nonlinear models. They proposed an

approach that is, as they asserted, widely applicable in univariate time series analysis for

linear or nonlinear models, and can discriminate between non-nested nonlinear models.
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Their approach is based on Gibbs sampling and in particular they treated starting values

of the time series and the innovational series as parameters and considered the condi-

tional likelihood function of a parameter given the others. The approach also requires

some prior specification, which is the probability that an individual observation is gen-

erated by a specified model given that both observations adjacent in time are generated

by the same model. The drawback is that it may take substantial computing time in

some applications.

The order determination criteria can also be used to test the hypotheses of white

noise model against autoregressive models (see Pukkila and Krishinaiah 1988a, b) for

details). Based on this idea, a procedure for identifying ARMA models was proposed in

Pukkila, Koreisha, and Kallinen (1990).

The selection of a model when the candidate models are some general stochastic

models needs some investigation. It is certain that the model selection methods, e.g.,

AIC, BIC and HQ, can be adopted to this case, but their performances may not be

satisfactory. Better selection procedures need to be explored.

9 Model selection in categorical data analysis

Data collected in the social sciences for measuring attitudes and opinions on various

issues and demographic characteristics such as gender, race, and social class and in

biomedical sciences to measure such factors as severity of an injury, degree of recovery

from surgery, and stage of a disease are categorical. Categorical data also arises in other

sciences.

For categorical data, the problems such as checking independence of attributes, se-

lection of optimal explanatory variables, and selection of an optimal categorization are

of special interest. Appropriate procedures to solve these problems by AIC can be found

in Sakamoto (1991) among others. Sakamoto (1991) also proposed ABIC, an extension

of AIC, for evaluating Baysian binary regression models.

Generalized linear models were introduced by Nelder and Wedderburn (1972). This

family contains important models for categorical data such as logit and probit models for

quantal responses, loglinear models and multinomial response models for counts, as well

as linear regression and analysis of variance models for continuous response variables.

A generalized linear model is specified by three components: a random component, a

systematic component, and a link. For such a model, the deviance or Pearson's chi-square

goodness-of-fit statistic may be used to measure the fit.
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When a generalized linear model selection problem is about selecting optimal ex-

planatory variables, it is not hard to see that the model selection methods discussed in

Sections 2-4 can adjust themselves to serve generalized linear model selection problems

(e.g., Agresti 1990, Bai, Krishnaiah, Sambamoorthi, and Zhao 1992, Christensen 1997,

Hosmer, Jovanovic, and Lemeshow 1989, McCullagh and Nelder 1989, Pregibon 1979).

For example, consider a set of loglinear models. In this case, stepwise procedures can be

performed by starting with an initial model and then using rules for adding or deleting

terms to arrive at a final model. Note that a model selection procedure may be im-

proved or modified to adapt to the situation. As an example, the backward elimination

is modified for controlling the experimentwise error rate (Aitkin 1978, 1979).

The generalized linear models usually do not include a dispersion parameter. Mc-

Cullagh and Nelder (1989) suggested that it is often wise to assume that a dispersion

parameter is present in the model unless the data or prior information indicate otherwise.

Hurvich and Tsai (1995) generalized the AICc to an extended quasi-likelihood model,

which includes the generalized linear model with a dispersion parameter as a special

case.

Qian, Gabor, and Gupta (1996) considered the problem of selecting a model with

the best predictive ability in a class of generalized linear models. A predictive least

quasi-deviance criterion was proposed to measure the predictive ability of a model. This

criterion is obtained by applying the idea of the predictive minimum description length

principle and the theory of quasi-likelihood functions. The resulting predictive quasi-

deviance function is an extension of the predictive stochastic complexity of the model.

Under rather weak conditions the authors showed that the predictive least quasi-deviance

method is consistent. Also, the authors showed that the selected model converges to

the optimal model in expectation. The method was then modified for finite sample

applications. Examples and simulation results were presented in the paper. There is

still much work to be done in this direction.

Random effect models are useful for explanations of overdispersion, correlation and

subject-specific inference. Hence generalized linear models with random effects are very

desirable in practice. The choice of a model in such cases needs some study.

10 Model selection in nonparametric regression

In nonparametric regression, local polynomial, kernel and smoothing spline methods

among others have been used to construct nonparametric estimates of smooth regression

functions (see, e.g., Fan and Gijbels 1996 and Simonoff 1996). These estimators use a

smoothing parameter to control the amount of smoothing performed on a given data
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set, where the parameter is chosen using a selection criterion. Many methods have been

proposed for selecting the parameter.

As commented in Loader (1999), the methods for bandwidth selection for procedures

such as kernel density estimation and local regression can be divided into two broad

classes. One of the classes includes classical methods such as cross-validation, Mallows'

Cp, AIC, etc. while the other class contains plug-in methods. In a plug-in method, the

bias of an estimate / is written as a function of the unknown / , and usually approxi-

mated through Taylor series expansions, and a pilot estimate of / is then "plugged in"

to derive an estimate of the bias and hence an estimate of the mean integrated squared

error, and then the optimal bandwidth minimizes this estimated measure of fit. Ac-

cording to Loader (1999), substantial "evidence" has been collected to establish superior

performance of modern plug-in methods in comparison to methods such as cross valida-

tion; this has ranged from detailed analysis of rates of convergence, to simulations, to

superior performance on real datasets. Loader (1999) took a detailed look at some of this

evidence, looking into the sources of differences. He argued that his findings challenge

the claimed superiority of plug-in methods on several fronts. First, plug-in methods

are heavily dependent on arbitrary specification of pilot bandwidths and fail when this

specification is wrong. Second, the often-quoted variability and undersmoothing of cross

validation simply reflects the uncertainty of bandwidth selection; plug-in methods reflect

this uncertainty by oversmoothing and missing important features in complicated situa-

tions. Third, in terms of the asymptotic theory, plug-in methods use available curvature

information in an inefficient manner, resulting in inefficient estimates. Asymptotically,

the plug-in based estimates are beaten by their own pilot estimates.

Recently an interesting approach for selecting the smoothing parameters of nonpara-

metric regression estimators was proposed in Hart and Yi (1998). Their method was

based on one-sided cross-validation instead of ordinary cross-validation. The authors ar-

gued that by using one-sided cross-validation their method retains the nature of ordinary

cross-validation and has much better statistical properties. It was shown that statistical

properties of their method are comparable to those of a plug-in methods.

However, due to great variability and a tendency to under smooth, the "classical"

criteria, such as generalized cross-validation and AIC are not ideal for selecting the

smoothing parameter. Hurvich, Simonoff, and Tsai (1998) addressed these problems by

proposing a nonparametric version of their AICc criterion. The authors argued that

AICc, unlike plug-in methods, can be used to choose smoothing parameters for any

linear smoother, including local quadratic and smoothing spline estimators, and AICc is

competitive with plug-in methods for choosing smoothing parameters, and also performs

well when a plug-in approach fails or is unavailable. Since in some applications neither
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parametric nor nonparametric estimation may give a reasonable fit to the data, Shi and

Tsai (1999) and Simonoff and Tasi (1999) obtained AICc for semiparametric regression

models.

Consider the selection of a hard wavelet threshold for recovery of a signal embedded

in additive Gaussian white noise, a problem closely related to that of selecting a subset

model in orthogonal normal linear regression. The existing approaches, such as AIC,

Donoho and Johnstone's universal method (Donoho and Johnstone 1994), Nason's cross-

validatory method (Nason 1996), etc. were presented in McQuarrie and Tsai (1998). A

computationally efficient algorithm for implementing Nason's method can also be found

there. Hurvich and Tsai (1998) proposed a data-dependent method of hard threshold

selection based on a cross-validatory version of AICc, which, like universal thresholding

and Nason's method, can be implemented in O(nlogn) operations (where n is the sample

size). The simulation results presented in McQuarrie and Tsai (1998) showed that both

of the cross-validatory methods outperform universal thresholding.

As another approach for using wavelet decompositions to select a regression model,

Antoniadis, Gijbels, and Gregoire (1997) suggested the determination of the number

of nonzero coefficients in the vector of wavelet coefficients based on the idea of MDL.

They pointed out that the class of functions tested by their criterion allowed them

to approximate quite efficiently alternatives composed by complicated functions with

inhomogeneous smoothness.

In the theory of linear models, the concept of degrees of freedom plays an important

role. This concept is often used for measurement of model complexity, for obtaining

an unbiased estimate of the error variance, and for comparison of different models. A

concept of generalized degrees of freedom (GDF) that is applicable to complex modelling

procedures was developed in Ye (1998). The definition is based on the sum of the

sensitivities of each fitted value to perturbation in the corresponding observed value.

The concept is nonasymptotic in nature and does not require analytic knowledge of

the modelling procedures. The concept of GDF offers a unified framework under which

complex and highly irregular modelling procedures can be analyzed in the same way as

classical linear models. Besides, there is an interesting connection between the GDF and

the half-normal plot.

Consider a response vector Y = (Yi,..., Y^)',

where σ2 is assumed to be known and μ = (μi , . . . , μ n ) ' is an n x 1 mean vector. Define

a modelling procedure M as a mapping from Rn to Rn that produces a set of fitted

values μ = μ{Y) from Y. Note that μ often depends on some observed covariates,
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and so does the modelling procedure Λ4. The GDF for modelling Λ4 are given by

)1 where

In classical linear models, the GDF reduces to the standard degrees of freedom. If

M is a linear smoother, then D(M) reduces to the trace of the smoothing matrix.

Efron (1986) obtained the concept of "expected optimism" by using the average of the

covariance form of Y{ and βι. Ye (1998) argued that the covariance form is less intuitive

and more difficult to analyze and estimate. The author pointed out that Eμ[βi(Y)]

is an infinitely differentiate function of μ, which has three implications: 1. GDF is

defined even when βi is highly irregular or even discontinuous. 2. Because hfΛ(μ) is

also infinitely differentiate, it can be estimated with its value hfΛ(Y). 3. Because

Eμ[Aΐ(^)] c a n be viewed as a smoothing of the fitted value βi, what is important is the

global behavior of βi, not the local behavior. For estimating D(A4), an algorithm, which

is based on Monte Carlo method, was provided in Ye (1998). The algorithm is given as

follows:

1. Repeat t = 1,...,T;

2. Generate At = (δti,..., δtn) for the density Y\{l/τn)φ(δtι/τ);

3. Evaluate βi(Y + At) based on the modelling procedure M\

4. Calculate hi as the regression slope from

D(M) is estimated by D(M) = Σihi The parameter T determines the number of

perturbations. It was suggested that T > n in Ye (1998). D{M) depends on a tuning

parameter r, which the author referred to as the perturbation size. According to Ye

(1998), it can be shown that D(M) —> D(M) if T -> 0. This approach is similar to the

little bootstrap of Brieman (1992).

Based on Ye (1998), the concept of GDF allows complex modelling procedures to be

analyzed in a way similar to the analysis of classical linear models, and is independent of

the sample size constraint and the complexity of the modelling procedure. Let {Λ"ί7, 7 G

Γ} be a set of modelling procedures, where Γ is an index set. He proposed two model

selection procedures:

1. Let

Ae(MΊ) - | | r - μ7 | |
2 - nσ2 + 2D(M)σ2,
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and minimize Ae(MΊ) with respect to MΊ. This is called the extended AIC

(EAIC).

2. Let

YGCV(.M7) = \\Y - μΊf/(n - D{M))\

and minimize ΎGCV{MΊ) with respect to MΊ. This is the analog of GCV in

Graven and Wahba (1979). It is referred to as YGCV. The advantage of this

criterion is that it does not assume a known σ2.

When σ2 is unknown, an estimate of it may be obtained by

s2 = \\Y-μ\\2/(n-D(M)).

Based on Ye (1998), EAIC and YGCV can be used to compare the performance of

a nonparametric regression to a linear model as a way of diagnosing the adequacy of

the linear model, or of selecting the most suitable nonparametric regression procedures

among various alternatives, such as classification and regression trees, projection pursuit

regression, and artificial neural networks. The criteria can also be used for selection of

variables in nonparametric regression settings (Bickel and Zhang 1992 and Zhang 1991)

by treating variable selection as a special case of selecting modelling procedures.

11 Data-oriented penalty

Let a model selection criterion be the sum of two components, where the first component

measures the model fit and the other component is used for penalizing the model com-

plexity. Among them, many have a data-independent penalty fixed or as an unbounded

function of the sample size. In the first case, a procedure tends to overfit and yields

less prediction error and in the later case, a procedure is quite stable with the penalty

falling in some interval varied with the sample size. The choice of the penalty will affect

the performance of such a model selection criterion. A theoretical study on the effect

of a penalty of a classical linear model selection criterion can be found in Shao (1997).

Hence, it is needed to find a good data-oriented penalty so that a procedure with its

use will perform well. Such efforts can be found in Rao and Wu (1989), Wei (1992) and

Shao (1998) among others.

Recently, a promising model selection procedure has been proposed by J. S. Rao-

Tibshirani by searching for an optimal penalty in terms of minimizing an objective

function via methods such as the cross-validation (see J. S. Rao 1994). Bai, Rao, and

Wu (1999) proposed a method of constructing a data-oriented penalty. For selecting a
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model from candidate models given in (2.2), consider the model selection criterion Gn

defined in (4.6). A data-oriented procedure to select the penalty Cn proposed in Bai,

Rao, and Wu (1999) is as follows:

1. Compute any consistent estimate βn = (/3in,..., βpn)' of β and the mean squared

error σp. For instance, βn can be chosen to be the least square estimate of β.

2. Compute έn = yn- Xnβn

3. Let βn = (/3 l n,..., βpn)' be defined as follows:

βin, if I βin I > V>
for i = l , . . . , p ,

), if\βin\<η,

where the constant 77 is a suitable chosen threshold value.

4. Let

un(h) = Xn(h)βn(h) + έnt h = l,...,p.

Compute

Dn(q,h) = Sq(h) -Sh{h), q = 0,l,...,p

where Hq(h) = (un(h))'{I - Pq)un(h). It can be shown that ~Sp{h) = Sp \fβn = βn

Define

(}
5. Define

C(R) = average of {Δ^, h = 1,... ,p}

1 + ^LO OlnJ

where [b\ denotes the integer part of b.

Then choose Cn as the penalty Cn in Gn - It was shown in Bai et al. (1992) that

Cn asymptotically satisfies the conditions given in (4.7), while it works well for small

to moderate sample sizes. Similar results are true for the other two criteria Gn \ i = 2,3,

defined in (4.6). Based on the same idea, Wu (2001) proposed a data-oriented penalty

for Criterion R (7.3).

Shao and J. S. Rao (2000) combined hypothesis testing and model selection together

and proposed a particular choice of the penalty parameter Cn for the model selection

criterion Gn defined in (4.6). The authors demonstrated that the new model selec-

tion procedure inherits good properties from both approaches, i.e., its overfitting and
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underfitting probabilities converge to 0 as n -> oo, and when n is fixed, its overfitting

probability is controlled to be approximately under a pre-assigned level of significance.

Consider the candidate models of form (2.2). Let Λ4C denote the set of true models

in {Mκ} — M and MΛ o denote the optimal model, which is the model in Mc with the

smallest dimension. If Mκ* be the model selected by the model selection criterion Gn ,

pi = P{MK* G Mc) is the error probability of overfitting and p2 = P{MK* EM — Mc)

is the error probability of underfitting, which depend on Cn. Let δ be a pre-assigned

level of significance. Shao and J. S. Rao (2000) proposed the choice of Cn so that

pi < min{5, 1/y/n} (approximately) holds and otherwise as small as possible to minimize

P2 Simulation studies were presented in the paper. A real data analysis can also be

found there.

There are still many interesting open problems. For example, how can one find a good

data-oriented penalty if the number of available models is infinite? Another problem is

how to find a good data-oriented penalty when the true model is not included in a given

class of models. Certainly, we can still proceed as if the data were from one of the

available models. Then what is the consequence of such a procedure? Since the data are

also used to choose the penalty, what is its impact on the inferences performed on such

selected model?

12 Statistical analysis after model selection

Once a model is selected, it is usual that statistical analysis is carried out based on

the selected model and often the analysis will be done as if the selected model is the

true model. It is easy to see that any statistical analysis based on the selected model

is affected by the nature of the true model, candidate models and the model selection

procedure.

It is already well known that the model selection procedure can severely affect the

validity of standard regression procedures. Rencher and Pun (1980) demonstrated that

a model selected by the best subset regression method tends to have an inflated value

of R2. Miller (1990) showed that, if one starts with a model selected from the data,

then regression estimators may be biased and standard hypothesis tests may not be

valid. Breiman (1992) has shown that models selected by classical data-driven methods

can produce strongly biased estimates of mean squared prediction error, while both little

bootstrap and cross-validation can produce relatively unbiased estimates of mean squared

prediction error for data-selected submodels. Reviews of some of the difficulties induced

by variable selection can be found in Bankroft and Han (1977), Burnham and Anderson

(1998), Chatfield (1995), Cohen and Sackrowitz (1987) and Miller (1990) among others.
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Cohen and Sackrowitz (1987) studied the problem of inference following a model se-

lection and proposed a decision-theory approach for it, where the loss function includes

components for model selection as well as for inference and allows for flexibility in em-

phasis on one or the other. Assuming that the data are normally distributed, Hurvich

and Tsai (1990) presented Monte Carlo results on the coverage rates of confidence regions

for the regression parameters, conditional on the selected model order. Their findings

showed that conditional coverage rates are much smaller than the nominal coverage rates,

obtained by assuming that the model is known in advance. In a very general context,

Pόtscher (1991) established the asymptotic properties of estimators of parameters based

on a statistical model which has been selected via a model selection procedure. The

asymptotic distributions of the estimators are obtained and the effects of the model se-

lection process are illustrated numerically using the example of a distributed lag model.

An important potential application of such results is to the generation of confidence

regions for the parameters of interest. Kabaila (1995) demonstrated that a great deal

of care must be exercised in any attempt at such an application. The author examined

the effect of model selection procedures on confidence and prediction regions and em-

phasized that consistent estimation of the order of the model need not necessarily lead

to confidence and prediction regions with optimal properties. As Pόtscher (1991) noted,

the asymptotic properties are of little value unless they hold for realized sample sizes.

Pόtscher and Novak (1998), by using simulation, studied the small sample distribution

of estimators of parameters based on a statistical model which has been selected via

a model selection procedure, and, in particular, evaluated the accuracy of the approx-

imation provided by the asymptotic distribution in small samples. Zhang (1992) gave

related results for the linear regression model, mainly concentrating on first and second

moment properties of the estimators. Note that in Pόtscher (1991), model selection pro-

cedures under investigation were testing procedures for variable selection while in Zhang

(1992), FPEQ was used instead. In Pόtscher and Novak (1998), both procedures were

considered.

Based on Ye (1998), EAIC and YGCV can be used to evaluate the effect induced by

various selection procedures, such as variable selection in linear models, and bandwidth

selection in nonparametric regression. The author applied the proposed framework to

measure the effect of variable selection in linear models, leading to corrections of selection

bias in various goodness-of-fit statistics.

It is often that in statistical practice, the same data are used for formulating, fitting

and checking a model, which may lead to inaccurate summaries and overconfident de-

cisions. A Bayesian view of the problem can be found in Draper (1995). By virtue of

recent computational advances, he discussed a Baysian approach to solving this prob-
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lem and examined its implementation in some examples. But the approach introduced

another problem of how to choose a prior, which is associated with Bayesian approaches

in general.

The problem is actually very profound. Whether or not an answer is satisfactory

depends on one's belief. Some people believe in the existence of a true model and others

regard it as a fiction. The related discussion can be found in Chatfield (1995, 1996), and

Draper (1995) among others.

Based on the above investigation, it can be seen that extensive research on the impact

of model selection on statistical analysis is in great demand. Much work needs to be

done on this direction.

13 Conclusions

In this paper, numerous model selection procedures are discussed. They are developed

based on hypothesis testing, prediction errors, information measurement, MDL, resam-

pling methods, Bayesian approach, etc.. Besides, the impact of carrying out statistical

analysis after model selection is surveyed.

As demonstrated in this paper, the research on model selection is of great importance

from both theoretical and practical points of view. It is not hard to see that the area of

model selection is rich in problems, which are waiting to be solved. Some of them are

already mentioned in previous sections.

In the end, we wish to emphasize that the model we use to analyze a data set

depends on the specific questions to be answered. There are instances where different

models may have to be used on the same data to answer different questions. Also, it is

a good statistical practice to analyze the data under different possible models to answer

a specific question to see how different or robust the answers are.

Finally, the model we select by using any of the methods described in the paper will

depend on the sample size. Take for instance a simple regression problem for predicting

a response measurement y using a set of p predictor variables x. We may have a sample

, (yi, xι),..., (yn, xn), of n observations and the use of a selection method may indicate

that a subset of x may be sufficient to predict y. If we have a larger sample, the same

selection method may indicate that a larger subset of x will provide better prediction

(see Rao 1987).
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