
CHAPTER 13

Density Ratio of a Maximal Invariant

13.1. Density ratio as a ratio of integrals over the group.
There are statistical problems, especially testing problems, where the
object of interest is the density ratio of two distributions of a maximal
invariant Γ = ί(X), say P2

T and P^\ rather than the individual dis-
tributions P? themselves. If Theorem 8.6 applies, and if for i = 1,2,
Pi is a distribution on X with density p{ with respect to a χ-relatively
invariant measure λ as in (8.11), then (8.12) shows that

=
> JPl(gs(t))χ(g)μG(dgy

It is seen that the measure μ7 in (8.12) drops out, so that it is un-
necessary to deal with the factorization (8.10). We can go a step
further. In (13.1.1) replace g by ggx with any fixed gλ G G, and ob-
serve χ(ggx) = χ{g)χ(gλ) and μG(dggi) = /\r{gλ)μG{dg), in which Δ r

is the right-hand modulus of G (Section 7.1). Since χ(g1)ΔΓ(gf1) can
be taken outside the integrals in (13.1.1), it drops out of the ratio.
The result is that on the right-hand side of (13.1.1) s(t) is replaced
by gιs{t). Since gx 6 G is arbitrary, gιs(t) is an arbitrary point on
the G-orbit of s(t). Replacing this point by x, (13.1.1) can be written

J Pl(gx)χ(g)μG(dg)

for any x G X. Thus, it is not necessary to construct a function s
with range a global cross section Z. The right-hand side of (13.1.2)
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does not even contain the maximal invariant function t and may be
regarded as the density ratio at x £ X of the two distributions Pλ and
P 2 restricted to the measurable subsets of the abstract space X/G.
However, in practice a statistician will usually want to represent X/G
by a more concrete space 0", which does entail explicit construction
of a maximal invariant function t. In such cases it is necessary to
ascertain that 7 is a homeomorphic image of X/G. We shall say then
that t : X —> J is a topological maximal invariant. On the other
hand, there are problems in which the group G is not completely
specified but only known to belong to a certain family. In that case
one does not have an explicit maximal invariant, and the possibility
of writing the density ratio in the form (13.1.2) is the only handle one
has on the problem. For an application see Wijsman (1967a).

The simplicity of (13.1.2) suggests that it is valid under weaker
assumptions than those of Assumption 8.2. This is indeed the case
and will be treated in some detail in Sections 13.2 and 13.3. The idea
of obtaining a density ratio of a maximal invariant T as a ratio of
two integrals over the group was first proposed by Stein (1956a,b).
An early application was made by Giri (1964). More recent applica-
tions include Andersson and Perlman (1984), Sinha and Sarkar (1984),
Kariya and Sinha (1985), and Szkutnik (1988). A proof of (13.1.2)
was first given by Wijsman (1967b) for X a linear Cartan G-space and
using as tool a local cross section (these concepts will be defined in Sec-
tion 13.2). Extension to affine transformations of a certain kind was
made in Wijsman (1972, Section 7). Andersson (1982) proved (13.1.2)
under the condition that the action of G on X be proper. Proofs
of (13.1.2) have also been given under weaker conditions, by assum-
ing only measurability rather than continuity, by Bondar (1976) and
by Farrell (1976, 1985). There is also a proof by Chang, Galvin, and
Rukhin (1989) assuming measurability and finiteness of the denom-
inator in (13.1.2). Since in typical applications there tends to be a
great amount of regularity, in particular continuity, we shall present
below only the method of local cross section (Section 7.2) and the
method of proper action (Section 7.3).
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13.2. Method of local cross section. Cartan G-space.
Let T = t(X) be the maximal invariant of Chapter 8, with values
in T, and let t be an arbitrary point of 7 (as before, we use the sym-
bol t both for a function and for a point). For the value of dP!f /dP^
at t one only needs to know the distributions Pf (i = 1,2) restricted
to an open neighborhood of t. This corresponds to an open invariant
neighborhood of a single G-orbit in X. Even if there is a global cross
section Z (e.g., if Assumption 8.2 is satisfied), one only uses a small
piece of £, namely any open neighborhood of z = s(t) in Z. This is
called a local cross section. More precisely, one defines first a (local)
slice, and then a local cross section is a special kind of slice.

13.2.1. DEFINITION. A slice at x G X is a set S c X such that
(i) x G S; (ii) GS is open in X; and (in) there exists a continuous
equivariant function f : GS —> G/Gx such that /~1(GX) = S.

If a slice S has the further property that GS = X, then S is called
a global slice. This was already defined in Remark 11.5.

13.2.2. DEFINITION. A local cross section S at x is a slice at
x such that if both s G S and gs G S for some g G G, then gs = s.

Thus, if S is a local cross section, it has at most one point in
common with each orbit. (Compare this with a global cross section,
which has exactly one point in common with each orbit.) A special
case of a local cross section was defined in Section 5.8, with a Lie
group G and a closed Lie subgroup H there taking the place of X and
G here.

It is proved in Wijsman (1966) Lemma 3, that if 5 is a local cross
section at x, then G3 = Gx for every s G S. Thus, a local cross section
S shares with the global cross section Z of Chapter 8 the property
that the isotropy subgroup is the same at every point of 5. One of
the consequences is that G/Gxx S and GS are in 1-1 correspondence
through the bijection (gGx,s) —> gs, and this correspondence is a
homeomorphism (Wijsman, 1966). One can conclude from this that
there is a 1-1 correspondence between the open invariant subsets of
GS and the subsets of S that are open in 5, and that 5 is I.e. in this
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relative topology if X is I.e. This leads on GS to a factorization (8.10),
provided Gx is compact, with μ τ replaced by a measure on 5, say μ5;
then to (8.12) with μs instead of μτ; and finally to (13.1.2), still only
on a neighborhood of a single G-orbit. If there is a local cross section
for each orbit, then (13.1.2) has been established everywhere. Since
the existence of a local cross section with compact isotropy subgroup
at one point of an orbit implies the same at every point of that orbit,
we may equivalently require that there be a local cross section with
compact isotropy subgroup at every x £ X.

The existence of a local cross section with compact isotropy sub-
group at each a; 6 X is by no means guaranteed. For instance, if
X = Rn with n > 2, and G = GL(n) acting on X by linear transfor-
mations, then Gx is noncompact at every x £ X. A second example
is furnished by the irrational flow on the torus (Chapter 1) where
Gx = {e} (therefore compact) at every x, but there is no local cross
section at any x. The reason for this is that the action of G on X is
unpleasant. However, even if the action of the group on the space is
nice, there will often be points at which there is no local cross section.
An example of this is given in Wijsman (1966), with X = R2 — {0} and
G consisting of all matrices diag(c, c) and diag(c, — c), c > 0. Then
points of the form x = (a^, 0) have no local cross section but all other
points do. In general, if the set of points x at which there is no local
cross section with compact Gx has λ-measure 0, then we can remove
this set from X and on the remainder the formula (13.1.2) is valid.
(Note that the exceptional set is always invariant.) This serves the
purpose equally well since the density ratio is defined only up to λ-null
sets anyway. In the third example above the exceptional set is indeed
of λ-measure (= 2-dimensional Lebesgue measure) 0, but in the first
two examples it is not.

In order to arrive at a useful sufficient condition for the exis-
tence of a local cross section with compact Gx at every x we shall
restrict ourselves to X an invariant subset of Rn under the action of
translations and linear transformations. More precisely, we make the
following assumption:
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13.2.3. ASSUMPTION. Let F be a linear subspace of Rn with 0 <
diτnF < n and let the group H be F under vector addition, acting on
Rn by x —» x + b, b £ F. Let G be a closed Lie subgroup of GL{n)
acting on Rn by linear transformations such that G transforms F into
itself Let X be an open subset of Rn, invariant under G and under
H.

It will be shown first that under Assumption 13.2.3 the transla-
tions can be dealt with immediately and that the only problem resides
in the linear transformations.

13.2.4. LEMMA. Under Assumption 13.2.3, K = GH (= EG)
is a group and H is normal in K. Furthermore, if E is any linear
complement of F in Rn, then the action of G onX induces an action
ofGonXΠE.

PROOF. Let h G -fiΓ, g G G, with actions x —> x + b and x —» ί{x),
respectively, where b £ F and ί is a linear function. Then the action
of ghg-1 is x -> x + £(b). Since £(b) G F by Assumption 13.2.3,
ghg~x G H. This shows that K is a group and that H is normal in K
(Sections 5.9, 7.6). Let x = xt + x2 with xλ G E and x2 G F be the
unique decomposition of x G Rn and define π : Rn —> Eby π(x) = xτ.
Then π is a maximal invariant under if, with range E. If Hx is an
arbitrary if-orbit (x G X) and if g G (5, then gHx = Hgx (since H is
normal) so that g transforms the if-orbit of x into the iϊ-orbit of gx.
Hence, G acts on X/if, therefore on X Π E. D

As a result of Assumption 13.2.3 and Lemma 13.2.4, a maximal
invariant under K, and its distribution, can be obtained in steps by
applying H first, then G. If p is a probability density on X with respect
•to Lebesgue measure, then the distribution on X/H is represented by
a density onXίΊE (with respect to Lebesgue measure) proportional to
p*(x) = J p(x + b)db, x G X ΓΊ J5, where the integration is over b G F.
Then in the second stage we have G acting o n l Π E with probability
density p*(x). Thus, the conditions for the validity of (13.1.2) need
to be investigated only for linear transformations.

13.2.5. REMARK. It may be possible to replace G by a smaller
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group (i.e., a proper subgroup) that produces the same transforma-
tions of X Π E as G does. Let Go be the subgroup of G that leaves
every point of X Π E fixed. It is a normal subgroup of G, and G/Go

is a group under which XΠ E undergoes the same transformations as
under G. (The new group G/Go also acts effectively, meaning that
for every member of the group other than e there is at least one point
that does not remain fixed). Unless GQ = {e}, G/Go is smaller than
G. As an example, suppose that X = i2n, dim £7 = n l 5 diτnF = n2

with n1,n2 > 0 and n1 + n2 = n. Choose a basis of Rn with the first
n1 basis vectors spanning E, the last n2 spanning F. If C is an n x n
matrix, partition it as C = ((C^ )), i, j = 1,2, with C{i : ni x n,-. Then
the elements of G are represented by matrices C for which C 1 2 = 0
in order that G leave F invariant. Let the matrices C of G satisfy
the further requirement that C n G 0{nλ) (but C22 € GL(n) and
C21 £ M^^^n^ are unrestricted). Then G is a proper subgroup of
GL(n). Identify Rn/F with E, then the action of G on E is repre-
sented by the matrices C n , i.e., the action of (^{n^ on Rni. This has
a local cross section at every point x except at x = 0. However, the
isotropy subgroup at such x, say Go, is not compact since it consists
of all C with C n = In but C21 and C22 unrestricted. Thus, we seem
to have failed in our attempt to obtain a local cross section with com-
pact isotropy subgroup. The situation is remedied by observing that
GQ leaves every x £ E fixed. Then G/GQ is a smaller group (in fact,
isomorphic to 0(7^)) that produces the same transformations of £7,
and the isotropy subgroup at x φ 0 is now trivial, therefore compact.
D

If G is a group that acts by linear transformatioίis of X C -Rn,
then we shall say that X is a linear G-space. The additional con-
dition guaranteeing the existence everywhere of a local cross section
with compact isotropy subgroup is that the space be a Cartan G-
space. This notion, defined below, was introduced by Palais (1961).
An explanation for the name can be found in that paper. In the defini-
tion X may be any I.e. space on which a I.e. group G acts continuously.
Recall the definition, equation (2.3.2), of the symbol ((A,B)) for any
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two subsets A, B of X.

13.2.6. DEFINITION. A subset AofX is called thin if ((A, A))
has compact closure.

13.2.7. DEFINITION. X is called a Cartan G-space if every
x £ X has a thin neighborhood.

It is an immediate consequence of Definitions 13.2.6 and 13.2.7
that in a Cartan G-space every isotropy subgroup Gx is necessarily
compact. Palais (1961) showed for Lie groups G that in a G-space
where every Gx is compact the existence of a slice at each x is equiv-
alent to X being a Cartan G-space. Using this result the following
theorem was proved by Wijsman (1966):

13.2.8. THEOREM. Let X be an open subset of Rn and G a closed
Lie subgroup of GL(n) acting on X by linear transformations. IfXis
a Cartan G-space (so that Gx is compact at each x £ *£), then there
is an invariant set Xo C X, open in Rn, with λ(X — Xo) = 0 (X = n-
dimensional Lebesgue measure) such that at each point o/X0 there is
a local cross section. Hence, (13.1.2) is valid.

13.2.9. REMARK. The local cross section of Theorem 13.2.8
may be chosen flat at each x, i.e., a subset of a translate of a linear
subspace. This fact, however, will not be used. D

13.2.10. REMARK. In some statistical applications X is a prod-
uct of identical copies of a G-space where G consists of translations
and linear transformations. The existence everywhere (after removal
of a set of Lebesgue measure 0) of a local cross section with compact
(even trivial) isotropy subgroup can then be shown more directly,
without using Lemma 5 in Wijsman (1966). This is done in Theo-
rem 7.1 of Wijsman (1972). (But note that the proof of Lemma 7.1
in that paper can be replaced by an appeal to Theorem 1.1.3 in
Palais (1961).) D

Some useful sufficient conditions for a G-space to be a Cartan
G-space will be presented in Section 13.4.
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13.3. Method of proper action. An account of this ap-

proach is given by Andersson (1982). The main assumption under

which (13.1.2) will be derived is that G act properly on X (Defini-

tion 2.3.6). More precisely, the following assumption will be made.

13.3.1. ASSUMPTION. The group G is I.e. and acts properly on

a I.e. and σ-compact space X.

13.3.2. THEOREM. Let Assumption 13.S.I be satisfied and let

PnP2 be two probability densities on X with respect to a measure λ

that is relatively invariant with multiplier χ. Let T = t(X) be a

maximal invariant under the action of G and let μG be any left Haar

measure on G. Then (IS. 1.2) is valid.

The proof of Theorem 13.3.2 will be given informally since for

some of the details the reader will be referred to the literature. The

starting point is Section 7.3, where the group H acts properly on X to

the right and β is left Haar measure on H. We can copy the results of

that section by changing H to G acting on the left of X and changing

β to right Haar measure vG on G. The multiplier χ of Theorem 7.3.3

is now a left multiplier since G acts on the left of X, and Δ ^ in

Theorem 7.3.3 is to be replaced by Δ^% which will simply be written

Δ^. This change should also be incorporated in Definition 7.3.4 of

quotient measure. Then Theorem 7.3.3 says that if μ is a measure on

X that is relatively invariant with multiplier Δ^, then there is a unique

measure μb = μjvG on X/G defined by (7.3.9). If equations (7.3.2)

and (7.3.3) are taken into account, then (7.3.9) reads (from right to

left)

(13.3.1) J fdμ = J μ^dz) J
in which on the right-hand side x is any point in X for which π(x) = z,

where π : X —> X/G is the orbit projection. Equation (13.3.1) is

valid for / 6 3C(X), and therefore for any /i-integrable /. With help

of (7.1.10) and Proposition 7.1.5 we can rewrite (13.3.1) as

(13.3.2) / fdμ = J μ\dz) j f(gx)A£(g)μG(dg), π{x) = z.
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Equation (13.3.2) is valid for any μ that is relatively invariant
with multiplier Δ^. However, what is needed is an equation similar
to (13.3.2) but valid, instead, for the given measure λ that has mul-
tiplier χ The key to the required transition is the following lemma,
which is a special case of Lemme 1 in Appendice I of Bourbaki (1963).

13.3.3. LEMMA. Under Assumption 13.3.1 there exists on X a
real valued and continuous function F > 0 such that (a) F is not
identically 0 on any G-orbit; and (b) for every compact K C %/G,
π"λ(K) Π suppF is compact.

The main elements that go into the proof of Lemma 13.3.3 will be
sketched later in this section. First, however, we show how the lemma
is used. Let p be an arbitrary continuous homomorphism G —* R+
and define the function Fp on X by

(13.3.3) F"(x) = J F{gx)μ{g-χ )ua(dg).

It should be shown first that the right-hand side of (13.3.3) is well
defined. We shall show that for each x the integrand as a function of
g is in %(G). Also, the continuity of the integral as a function of x will
be needed. Both properties will follow by allowing x to be variable
within a compact neighborhood V of a fixed point, say x0 £ X. Then
π(y) = K is a compact subset oίX/G and π~1(UΓ)Πsupp F = W, say,
is compact by (b) of Lemma 13.3.3. Thus, if x £ V, then F(gx) = 0
unless gx £ W. Using the notation (2.3.2), we have that with x £ V
the integrand in (13.3.3) is 0 unless g £ ((F, W)) = C, say. Then
C is compact by Proposition 2.3.8. The continuity of the integrand
as a function of g is immediate by the continuity of F and p. The
continuity of the integral as a function of x follows, as in the proof of
Lemma 6.5.6(i), by observing that with g in (13.3.3) restricted to C
the convergence F(gx) —» F(gxQ) as x —> xQ is uniform in g.

A simple computation, using the right-invariance of z/G, shows
that

(13.3.4) F>(gx) = p(g)F»(x), g e G.
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Also, Fp > 0 everywhere by virtue of (a) of Lemma 13.3.3. Define
now the measure λp by

(13.3.5) Xp(dx) = (1/F'(x))μ(dx).

A direct computation, using (13.3.4) and the modulus Δ^ of μ, shows
that \p is relatively invariant with multiplier A£/p. Therefore, since
λ has multiplier χ, we can make λ = λ by choosing

(13.3.6) p = A£/χ.

Now write (13.3.2) with / replaced by f/Fp. On the left-hand side
we get J fd\. On the right-hand side the inner integral becomes

(13.3.7) J JteΞLAt(g)μa(dg) = j ^ J f(gx)χ(g)μG(dg),

using (13.3.5) and (13.3.6). Next, replace / by /p, where / is bounded,
measurable, and invariant, and p is a probability density with respect
to λ. The result is

(13.3.8) Jfpdλ = Jf(z)μ\dz){F<>{x))-1 J p{gx)χ{g)μG{dg)

and it follows that the density of the maximal invariant T with respect
to the quotient measure μb is

(13.3.9) pτ(z) = (Fr(x))-1 J p(gχ)χ(g)μG(dg), z = π(x),

where the right-hand side depends on x only through π(x) (i.e., the
right-hand side is invariant under x —> gλx, gλ e G). If (13.3.9) is
written down for two such p's, then in the ratio the factor in front of
the integrals cancels and (13.1.2) is obtained.

The proof of Lemma 13.3.3 involves several new concepts that
rightfully belong in Section 2.2 but were not needed until now. A
cover ίF (Section 2.2) of a topological space is called locally finite
if every point has a neighborhood that meets only a finite number of
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members of 7. A cover 3 has a locally finite refinement if there
is a locally finite cover 3r

1 every member of which is contained in a
member of JF. Now suppose there is given on a topological space X
a family {/• : i G /} of real valued nonnegative functions, where / is
an arbitrary (not necessarily countable) index set. For x £ X define
f(x) = Σiel fi(x)- Then f(x) need not be finite for there may be an
infinite number of terms in the sum (even uncountably so). However,
this cannot happen if the family of supports of the fi is locally finite
for then there can only be a finite number of positive terms in the
sum. A continuous partition of unity on a topological space X
is a family {fi : i: £ /} with each fi continuous and > 0, the family
{supp/^ : i £ /} is a locally finite cover of X, and Σiei fi(x) = ^
for every x £ X. A partition of unity {/;} is said to be subordinate
to a given cover S* if {supp/^} is a locally finite refinement of 3\ A
topological space is called paracompact if it is Hausdorff and every
open cover has a locally finite open refinement.

It is proved as part of Theorem 5 in Bourbaki (1966b), I, §9.10,
that a space that is both I.e. and σ-compact is paracompact. Under
our Assumption 13.3.1 the space X/G is I.e. by Theorem 2.3.13(a).
The σ-compactness of X implies that X/G is σ-compact since if X C

j (countable union) with Ki compact, then X/G C Uπ(ΛΓί ), and
is compact by the continuity of π. Hence, by Theorem 5

of Bourbaki (1966b) quoted above, X/G is paracompact. Further-
more, it is shown as a combination of Propositions 3 and 4 in Bour-
baki (1966b), IX, §4, that for a given locally finite open cover 7 of a
paracompact space there is a continuous partition of unity subordi-
nate to ίF.

We shall sketch now the main elements of the proof of Lemma
13.3.3. For every point z £ X/G select a point xz £ ττ~1(z). Since X is
I.e. there exists fz £ 3C+(X) such that fz(xz) = 1 (Lemma 6.3.2). Let
Vz be the open set, with compact support, on which fz>0 and define
Wz = 7r(Vz), so that Wz C X/G is open since π is an open mapping.
Since X/G is paracompact, the open cover {Wz : z £ X/G} has a
locally finite open refinement {Ui : i £ /} and there is a continuous
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partition of unity {gi : i £ /} subordinate to {U^. For each function
gi on X/G there is a corresponding invariant function gi o π on X.
For each i 6 ί choose zi £ X/G such that Vi C W^ and define
Fi = (g{ o π)fz.. Then F{ £ 3C(X) (because this is true for f and
gi o π is continuous) and suppi^ C τr~1(^) (because this is true for
gi o TΓ). From the latter property it follows that {suppi^ : i £ 7}
is locally finite so that we can define F = Σiel Q' Then F > 0,
finite, and continuous. For each z £ X/G, since $ f̂ flft (^) = 1, there
is z £ / (depending on z) such that g^z) > 0. Since z £ U{ C WZ{,
the orbit π~1(<2r) meets V so that there is on this orbit a point, say
y, at which / is positive. Hence, F^y) > 0 so that -F(y) > 0. This
establishes (a) of Lemma 13.3.3. Part (b) can also be verified. For
the details see Bourbaki (1963), proof of Appendice I, Lemme 1.

13.4. Comparison of the two methods. Sufficient con-
ditions for the ratio-of-integrals representation. In Bour-
baki (1966b) III, §4.4, Proposition 7 states that if a I.e. group G acts
continuously on a Hausdorff space X, then the action is proper if and
only if for every x, y £ X there are neighborhoods Vx, Vy such that
((Vx, y )) has compact closure (notation (2.3.2)). Taking x = y, then
by Definitions 13.2.6 and 13.2.7 we see that if G acts properly on X,
then X is a Cartan G-space. It is not known whether the converse is
true. Conceivably, the condition of proper action could be stronger
than the Cartan condition. However, in all examples tried so far ei-
ther both conditions are met or neither is. This is true in particular
for the examples that follow.

In many statistical applications it is possible to obtain a maximal
invariant in steps. If at each step the Cartan condition is satisfied,
then the formula (13.1.2) holds. A special case of this was used in
Section 13.2 with an affine group by applying first the translations,
then the linear transformations. If the method of proper action is
used, then it is again true that only the proper action at each step
has to be verified. This is proved in Wijsman (1985), where several
examples can be found. With either method it may be necessary
to verify at the intermediate stage(s) that the maximal invariant is
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topological.

Below we list a variety of situations where both the Cartan con-

dition and proper action hold. In most cases proofs will be omitted,

but some can be found, e.g., in Wijsman (1985). It is hoped that the

needs of most statistical applications can be met by combining sev-

eral of these general rules and special cases. It is assumed throughout,

without further mention, that X, Xx, etc., are I.e. spaces and G, G 1 ?

etc., I.e. groups. We shall write (X, G) G C to mean that X is a Cartan

G-space; similarly, (X, G) G P means that G acts properly on X; and

(X, G) G CP means that both is true.

13.4.1. If G is compact, then (X, G) G CP. D

13.4.2. (G,G)eCP. Ώ

13.4.3. If (X 1 ? G) G C or P, and G acts continuously on X2,

then (X2 x X2, G) G C or P . D

13.4.4. If X = Xλ x X2 with G = Xx = Rm for some ra > 1, and

G acts on Xx by translations and acts trivially on X2, then (X, G) G

CP. This is a special case of 13.4.3, with the help of 13.4.2. D

13.4.5. Let X = Xx x X2, G = G1 x G 2 , and (X i ? G{) G C or P ,

i = 1,2. Then (X, G) G C or P . D

13.4.6. If (X,G) G C or P and Gx is a closed subgroup of G,

then (X,GX) G C or P . D

13.4.7. Let G = GL(p), X = all p x n matrices X of rank

p and the action X —> CX (matrix multiplication), C e G . Then

(X, G) G C P . For n = p this is a special case of 13.4.2. In order to

show it for n > p consider all sets Ji of p distinct integers taken from

{1,.. . ,n}, i = 1,... , ( n ) , and write X = IJ X;, where X^ consists

of all X G X whose columns x with j G J; are linearly independent.

Then Xi is open and invariant, and (X i? G) G C P by 13.4.2 and 13.4.3.

D

13.4.8. Let positive integers n, p, r be fixed, with n > p + r,

and let L be a fixed r x n matrix of rank r. Let X be all p x n
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matrices X of rank p such that the row spaces of X and L have only
0 in common. Let G consist of matrices C G GL(p) and all matrices
B G M(p, r), with the action on X defined by X -> C(X + BL). Then
(X, G) G CP. This can be shown, after an orthogonal transformation
of the row space of X, by a combination of 13.4.4, 13.4.6, and 13.4.7.

As a special case take r = 1, so n > p+1, and L = [1,. . . , 1], and
write Xj for the jth column of X. Then the action is x —> C(x + δ),
j = 1,... , n, where C runs through GL(p) (or a closed subgroup) and
6 through all p x 1 vectors. For this case the Cartan property was
proved in Wijsman (1972, Theorem 7.1). Another special case is the
canonical form of MANOVA. If L = [/Γ,0] : r x n, then the action is
Xj -> C ( ^ + δj ), j = 1,... , r, and â  -> Ca^ , j = r + 1,... , n. D

13.4.9. Let X = PD(p\ G = G£(p), and the action S -> CSC',
S G X, C G G. Then (X, G) G CP. This is the kind of action that
frequently occurs in problems with covariance matrices. D

13.4.10. EXAMPLE. Let (X, G) be as in Section 9.4 so that
G = GL(p) and X = Xλ x X2 with Xx = PD(p) and X2 - M(q,p).
The action is given by (9.4.1). This is essentially the situation in Sinha
and Sarkar (1984) and is also relevant to MANOVA. Since (X1?C?) G
CP by 13.4.9 and G acts continuously on X2, (X, G) G CP by 13.4.3.
Thus, (13.1.2) applies. The material in Sections 9.3 and 9.4 also shows
that the maximal invariant US~1Ut (= Q of (9.4.2)) is topological.
(The homeomorphism with X/G is even an analytic diffeomorphism.)
D

13.4.11. EXAMPLE (canonical correlations). Partition X : p x n
into two matrices Xi : p{ x n (i = 1,2, pλ + p2 = p < n) with
Xλ the first pλ and X2 the last p2 rows of X. Assume that X is
of rank p. Let X be all such X and let G = G1 x G2 x G3, where
G2 = GL(pj), z = 1,2, G3 = O(n), and the action of G on X is given
by X. -> C X for C2 G G , i = 1,2, and X -> XΓ ; for Γ G G3. For
1 = 1,2, (X i ?G ) G CP by 13.4.7, hence (X2 x X^G^ x G2) G CP
by 13.4.5. Finally, (X, G) G CP by 13.4.1 applied to G = C 3 and X -
(Xx x X2)/(C1 x C2). Hence, (13.1.2) is valid. A maximal invariant
is the set of canonical correlations. That this maximal invariant is
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topological can be seen by first applying G3, producing a maximal
invariant S = XX1 that is topological by Section 9.2, Case 1. The
rest follows from Section 10.5.

The proof of (X, G) G CP given above proceeded by first ap-
plying G1 x G2 = G\ say, and then G3. An explicit expression for
a topological maximal invariant at the first step was not needed be-
cause G3 is compact and therefore 13.4.1 applies at the second step
in any case. We could also have reversed the order: if G3 is applied
first then we obtain at the first step the topological maximal invariant
S = XX1 G PD(p) = X', say. Then at the second stage the action
is S —> CSC, C E G'. Since G1 is a closed subgroup of GL(p), we
may apply 13.4.6 and 13.4.9 to conclude (X',G') G CP. Therefore,
(X, G) G CP as found before. D




