
CHAPTER 10

Application to Type II Problems:

No Special Group Structure,

But Global Cross Section Exists

10.1. Characteristic roots of a positive definite matrix.
Let S 6 PD(p) be a random matrix with distinct characteristic roots
λj > > λp > 0 and distribution p(S)(dS) as in Examples 8.1
and 8.7. The results of Example 8.7 can be copied by changing n
to p, with the results

(10.1.1) (dS) = 2-P]l(Xi-λj)μy(dy)(dA) at 5 = Λ,
i<j

(10.1.2) P(dλ) = 2-» Π(λ, - Xj)(dλ) ίP(TAΓ')μo(p)(dT).
i<j J

Equation (10.1.2) can also be found in Muirhead (1982), Theorem 3.2.
17, (but note that Muirhead's Haar measure on O(p) is normalized).
If in (10.1.2) p(S) depends on 5 only through Λ, then formula (2) of
Theorem 13.2.1 in Anderson (1984) is reproduced. In particular, if
S ~ W(n, Ip) (take formula (9.2.8) with Σ = Ip), then the result is

K-'- 1 ^-* tΐA (dλ)
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(cf. Anderson, 1984, Section 13.3, (11)). Formula (10.1.2) will also
be applied to the singular values in Section 10.2 and indirectly to the
characteristic roots of Q in Section 10.3.

10.2. Singular values. Let X be a random q X p matrix of
rank s = min(p, q) and distribution p(X)(dX). Its singular values
ίλ > > ί3 > 0 (strict inequalities with probability one) are the
square roots of the characteristic roots X1 > > λ s > 0 of X1 X if
q > p, or of XX1 if q < p. Let L : qxpbe & matrix with tλ,... ,ίs on,
and zeros off, the diagonal. The distribution of L may be obtained by
putting S = X'X or XX' according as q > or < p; then apply (9.2.7)
(with p and q interchanged if q < p), followed by an application
of (10.1.2). This actually produces the joint distribution of the £?.
Then use dβ = 2ίM . The result is

(10.2.1) i=l « ;

- Jp(ΓLΔ')μo(q)(dΓ)μo(p)(dΔ),

in which s = min(p, q) and cn is defined in (7.7.9). Distribution of
singular values is also treated in Farrell (1985) with group methods.

10.3. Characteristic roots of Q = US'W. Let U and S be
as in Section 9.4. If q < p, then the distribution of the characteristic
roots of Q could be written down by using (9.4.3) followed by (10.1.2).
When q > p this procedure fails since Q is then singular and (10.1.2)
does not apply. However, it is possible to avoid this difficulty by taking
a different route. Take X of (9.3.3) and observe that the squares of the
singular values £i of X are the nonzero characteristic roots Xi of Q =
XX1. Thus, apply (10.2.1) to X having distribution (9.3.6). This
involves three integrals, in which the integration over Y[^ tJ^dT) =
μLTίp)(dT) and over μo,p\(dA) can be contracted to one integration
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over μGL(p)(dC) = \C\-*(dC), by (7.7.10) and (7.7.1). The result is

(10.3.1) i = 1 *<i

• j P(ΓLC',CC')\C\i+1(dC)μo{q)(dΓ),

in which p(ϊ7, S) is the density of (U,S) and 5 = min(p, q). For-
mula (10.3.1) gives the joint distribution of the ίi (i = 1,... , s). The
joint distribution of the characteristic roots λ̂  follows easily from
λz = if. If the rows of U are iid JV(0,1^) and S is an independent
W(n,I ) matrix, then the integration in (10.3.1) can easily be carried
out and reproduces the well-known distribution of the characteristic
roots in the central MANOVA problem (Anderson, 1984, Section 13.2;
Muirhead, 1982, Section 10.4). Note that our formula (10.3.1) takes
care of all p, q so that it is not necessary (as is done in the conven-
tional derivation, see, e.g., Anderson 1984, Section 13.2.4) to first
demonstrate how the case q > p can be reduced to q < p.

10.4. Characteristic roots of Sf λS2. Let S1,S2 6 PD{p)
with joint density p ^ , ^ ) . ^ ^ e distribution of the characteristic
roots of 5{"152 was treated by Koehn (1970) as a type II problem,
starting from scratch. However, we may obtain the result also by
combining the results of Section 9.5 and 10.1. Let Sλ = T5Γ5,
Ts G PD(p), be the Cholesky decomposition of 5^ and put U =
Tg1 S2T2~ . The characteristic roots Xi of S^'1S2 are the same as
those of U'. The distribution of the latter follows from (9.5.1) with
k = 1 and the present U is Uλ in (9.5.1). Then apply (10.1.2). The
resulting double integral over LT(p) and O(p) can be contracted, as
in Section 10.3, to one over GL(p), by (7.7.10). The result is

(10.4.1) P(dA) = Y[(\i - XjXdA) Ip(CC',CkC')\C\p+2(dC).

This result will also find application in the next section.
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10.5 Canonical correlations. Let S € PD(p + q) be par-
titioned S = ((5-)), i,j = 1,2, with Sn : p x p\ assume p < q. Let
the distribution of S be P(dS) = p(Su,S12,S22)(dSn)(dS12)(dS22).
The canonical correlations rx > > rp > 0 (strict inequalities
with probability one) are the square roots of the characteristic roots
X1 > - > \p > 0 of S^S12S22S21 and constitute a maximal invari-
ant under the group G = GL(p) x GL(q) with action Sn —> BS11B

t,
S12 -> BS12C\ S22 -> CS22C\ B e GL{p\ C e GL{q). It is again
possible to avoid deriving the joint distribution of the rt from scratch
as a Type II problem by combining the results from Sections 9.4
and 10.4. Let Λ = diag(Λ1,... , λ ) and let R — ((rf )) be a p x q

matrix with r- = 0 for i ^ j , and r- = ri = λ/ . Then i2Λ; = Λ.
Rename Su by 5X and put S12S22S21 = 5 2, so that the λt are the
characteristic roots of 5^~152. The joint density of Sx and S2 follows
from (9.4.3) applied to Q = 5 2. Then apply (10.4.1) (with C replaced
by another symbol, say B). This produces the distribution of Λ, and
that of R follows from Λ = RR1. In the first integration (9.4.3) the in-
tegrand contains the function p(Sλ,XC, CC), where X is any matrix
such that XX1 = 5 2 . Then in the second integration (10.4.1), Sλ is
replaced by BB1 and X by any matrix such that XX1 = BAB* (since
in (10.4.1) the second argument of p is to be replaced by BAB'). We
may take X = BR. Thus, in the double integral the arguments of p
are p(BB',BRC', CC). The final result is

P{dR) = ; p

(10.5.1) i=l

f p(BB', BRC, CC!)\B\q+1 \C\p+\dB)(dC)f
in which the integration may be taken over all B : p x p and C : qx q.
The constant cn is defined in (7.7.9). IF S is a Wishart matrix and the
two sets of variates are independent, then (10.5.1) easily reproduces
the null distribution of canonical correlations, as given, for instance,
in Anderson (1984), Section 13.4; Kshirsager (1972), Section 7.5;
Giri (1977), Section 10.3.2; Muirhead (1982), Corollary 11.3.3.
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10.6. Simultaneous orthogonal reduction of several posi-
tive definite matrices. We shall only treat here the simplest case
of two matrices; the extension to more than two matrices is straight-
forward. Let X consist of all (Sr

1?52)> Ί̂" ̂  PD{p\ i = 1,2, and let
G = O(p) with action S{ -> ΓS Γ, i = 1,2, Γ G G. In order to con-
struct a maximal invariant, via a cross section £, we may, for instance,
reduce S2 to diagonal form Λ = diag(A1?... , λ ) by a transformation
with Γ G G , and let S be the resulting transformed Sx. That is, sup-
pose Γ 5 G G is such that ΓS52Γ'5 = Λ = diag(A l9... , λp), then let
S = ΓsSiΓ'ς. By removing from X a set of Lebesgue measure 0 we
may assume Xχ > > Xp > 0. The resulting cross section Z consists
of all pairs of matrices of the form z — (5, Λ). The only members of G
that leave Λ invariant are matrices of the form E = diag(±l,... , ±1).
Then the isotropy subgroup of G at z G Z consists of all those E that
also leave S invariant. For most z there are no such E except the
identity I . In order to guarantee that Gz be the same group Go

for all z G Z we have to require that for every z G Z no E leaves S
invariant except E = Ip. Define PD*(p) to be those S G PD(p) that
do not commute with any E but E = I . Then remove from X the
set of Lebesgue measure 0 consisting of all orbits of points z = (5, Λ)
with S ^ PD*(p). Equivalently, remove all (S^, S2) f°r which the two
matrices have a common invariant subspace in their spectral decom-
position of Rp. We end up with X such that Gz = GQ = {e} for every
z eZ.

Denote λ = (λ 1 ? . . . , Xp) G Rp and define 7 = {t = (5, λ) : S G
PD*(p),λ1 > > λp > 0}. Then define the function s of (8.6) by
s(t) = (5, Λ) G X (these are of course the points of Z). Since GQ = {e}
we have ^ = G. Equation (8.7), which can be written # = gs(t), reads
here

(10.6.1) Sλ - ΓSΓ', 5 2 - ΓΛΓ;, Γ G G .

Differentiate (10.6.1) at Γ = / and take the wedge product (dS^XdS^).
The computation of (dS2) was done already in Example 8.7, with the
result (dS2) = ΓL<j(λi ~ λ j )( r f Λ )(^ Γ ) T h e wedge product (dSλ)
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also has factors that contain terms with dj-. However, every such
term is multiplied by a corresponding dj- of (c?Γ) in (dS2)i and since
djij Λ dΊ- = 0, all such terms drop out. The result is the same as if
we had (dSx) = (dS). Therefore,

(10.6.2) (dS1)(dS2) = Y[(\i-\jXdS)(dA)(dT) at y = [e].

The left-hand side of (10.6.2) is X(dx) of (8.15), and (dΓ) of the right-
hand side is μy(dy) of (8.15). By comparison of (8.15) and (10.6.2)
we have therefore

(10.6.3) μΊ(dt) = ΠCλi - *j){dS)(dA)

and the factorization (8.14) becomes (note that χ = 1 since G is
orthogonal)

(10.6.4) {dSx){dS2) = Π(λ, - Xj)(dS)(dA)μo(p)(dΓ)

in which the various matrices are related by (10.6.1). If the distri-
bution of (5 1 ? 5 2 ) is p(5f

1,52)(d51)((i52), then by the general for-
mula (8.12) the distribution of the maximal invariant T = (5, λ) is

(10.6.5) P(dS, <fΛ) = [[(λi - Xj)(dS)(dA)

p(TST',TAV')μo{p)(dT).J
This problem occurs, for instance, as a final invariance reduction in
GMANOVA, and also in Example 11.6.

10.7. Covariance matrix of complex structure. This sec-
tion deals with the distributional aspects of a problem treated in An-
dersson, Br0ns, and Jensen (1983), Section 2, and also in Andersson
and Perlman (1984). The problem itself is to test the hypothesis that a
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covariance matrix has complex structure. There is a related problem,
also treated in the above mentioned references, to test the hypothe-
sis that a covariance matrix of complex structure has real structure.
We shall only consider the first problem here and refer the reader to
Wijsman (1986), Section 7.7(b), for an application of the method of
cross sections to the second problem. Distributions of maximal in-
variants were derived by Andersson, Br0ns, and Jensen (1983) and by
Andersson and Perlman (1984) under the assumption that the covari-
ance matrix S has a Wishart distribution. Here we shall derive an
integral expression for the distribution of a maximal invariant using
a global cross section, assuming about the distribution of S only that
it is absolutely continuous with respect to Lebesgue measure.

A matrix C E GL(2p) is said to have complex structure if it
is of the form

< 1 ( m > c=[cl ~Cc
with some p x p matrices C 1 ? C 2 . Let X = PD(2p) and let S G X
be partitioned as ((5^)) with 5 - : p x p , z,j = 1,2. The statistical
problem that motivates the choice of the group G that acts on X
is as follows. It is given that S ~ W(n,Σ), with some unknown
Σ G PD(2p). The problem is to test that Σ has complex structure.
This problem is invariant under the group G of nonsingular matrices
C of the form (10.7.1), with action

(10.7.2) S -> CSC1, C eG.

Now we shall drop the assumption that S has a Wishart distribution
and only assume that S has a distribution of the form p(S)(dS).

A chart on the whole of G may be taken as the elements of Cλ and
C2. Left Haar measure on G follows from a left invariant differential
form of maximum degree (== 2p2). According to Section 5.3 this can be
chosen as the wedge product of any 2p2 linearly independent elements
of the (2p) x (2p) matrix of (5.3.7), which in the present notation is
C~1dC. It is obvious that

(10.7.3) C- \%A
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constitutes such a set of linearly independent differentials. Take the
wedge product of the elements of (10.7.3) and use (9.1.2), then we
obtain

(10.7.4) μG(dg) = ffl

The multiplier χ of the action (10.7.2) is, by (9.1.4),

(10.7.5) χ(g) =

It follows from Andersson, Br0ns, and Jensen (1983) or from An-
dersson and Perlman (1984) that in Assumption 8.2 we may take
7 = {t = (lx,... ,£p) : 1 > ίλ > > ίp > 0} (after removing from
X a set of Lebesgue measure 0) and s(t) = diag(7^ + L, / — L) G X,
where L = diag(^1 ?... ,ίp). Then {s(t) : t G 7} = Z, where Z C X is
the global cross section corresponding to 7. The isotropy subgroup Go

consists of all matrices C = diag(.E, E), with E = diag(±l, . . . , ±1) :
p x p. Then Go is a finite group with 2P elements, and by Proposi-
tion 7.7.6 we have

(10.7.6) μ^dy)=2'μa(dg).

Equation (8.7), i.e, x = gs(t), is obtained from (10.7.2) by setting on
the right-hand side of (10.7.2) S = dmg(Ip + L,Ip- L). The result is

(10.7.7) Sn = Cλ{I + L)C[ + C2(I - L)C2

(10.7.8) S22 = 0^1- L)C[ + C2(I + L)C2

(10.7.9) 5 1 2 = CX(I + L)C2 - C2{I - L)C[

in which / is short for I' These equations are to be differentiated
at C = I2 , i.e., Cx — I , C2 = 0, in order to compute the wedge
products of differentials for substitution into equation (8.15). For
this purpose it is convenient to introduce

(10.7.10) Tx = \(Sn + 5 2 2 ), T2 = | ( 5 n - S22).
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Temporarily write these two equations as U = |(Λ+J5), V = ^(A—B)

and compute (dU)(dV). Since A and J3, therefore also U and V, are

symmetric, we only consider their elements on and below the diagonal.

We have, for i > j , du{- Λ dv- = \(da- + db-) Λ (da- — d&^ ) =

^da-Adb- (disregarding the sign). Taking the wedge product over all

i > j gives (dU)(dV) = 2~τP{<P+1\dA)(dB). In the original notation

this becomes

(10.7.11) (dSu)(dS22) =

Now difFerentiate (10.7.7) and (10.7.8) at Cx = Ip, C2 = 0:

(10.7.12)

dSu = dCx(I + L) + dL + (I + L)dC[

(10.7.13)
dS22 = dC^I -L)-dL + (I- L)dC[.

Add and subtract (10.7.12) and (10.7.13), then we get dTλ = dCx +

dC[, dT2 = dC1L + LdC'1 + dLi at g = e. Compute the wedge product

of the elements of dTλ and dT2:

(10.7.14) (dT1)(dT2) = 2*>1[[(ii-£j)(dL)(dC1), at g = e.

This is to be substituted for the right-hand side of (10.7.11) to give an

expression for (dSllL)(dS22) ίn terms of (c?L)(dC1). Next, it has to be

wedge-multiplied by (Λ?^) resulting from differentiation of (10.7.9).

However, any term in the latter arising from dCλ or dL will be annihi-

lated by a differential in (dCΎ) or (dL) in the expression for (dSn )(dS22)

Hence, we may pretend that

(10.7.15) dS12 = (I + L)dC'2-dC2(I-L), at g = e,

and taking the wedge product over all the elements of dS12 produces

(10.7.16) (dS12) = 2^+^f[£il[(£i+ej)(dC2), at g = e.
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Combine (10.7.11), (10.7.14), and (10.7.16):

(10.7.17) (dSn)(dS22)(dS12)

= 2><H-a> J p . Π(^i " t)){dL){dCx){dC2), at g = e.
t=l i<j

With help of (10.7.4) and (10.7.6) this can be written

(10.7.18) (dSn)(dS22)(dS12)

= 2**+2> fli, l[(ή - l)){dL)μy{dy), at y = [e].
i=l i<j

Comparison with (8.15) then shows that

(10.7.19) μ7(dt) = 2'('+1> f[^ JJ^f - ή)(dL).
i=l i<j

Substitution of (10.7.19) into the general formula (8.12), taking into
account (10.7.4) and (10.7.5), produces the distribution of the maxi-
mal invariant L:

(10.7.20) P(dL) = 2 p ( p + 1 ) J j £{ [[(ή - ή)(dL)

f fr\l + L 0 1 ,

Ίp{Cl o I - L \ C

in which C has the form (10.7.1). If one takes S ~ W(n,I2p),
then (10.7.20) reproduces the distribution described in Andersson,
Br0ns, and Jensen (1983), Theorem 1, and by Andersson and Perl-
man (1984), Equation (7.11). If S ~ W(n,Σ) with arbitrary Σ 6
PZ)(2p), then the method we have employed here, using a global cross
section, provides an alternative way compared to Andersson and Perl-
man (1984), Section 7, for deriving the distribution of L.




