
CHAPTER 5

Lie Groups and Lie Algebras

5.1. Definition of a Lie group and examples. A Lie
group is a group G that is at the same time an analytic manifold such
that the group multiplication G x G —> G defined by (fl^,^) ~~* 9\9Ί
is analytic. It can be shown that then the mapping g —> g"1 of
G —• G is also analytic (Cohn, 1957, Theorem 2.6.1). Equivalently,
the multiplication (g1-,g2) —* Q\92λ c a n ^ e required to be analytic.
(Some authors replace "analytic" by " C 0 0 " in the above definition.)

Left and right translation. For fixed g 6 (?, the transforma-
tion h —> gr/i, /ι G G, is a 1-1 transformation of G onto itself which is
an analytic diffeomorphism. It is called a left translation with g and
denoted Lg. Similarly, right translation with g, denoted R , is the
transformation h —* hg, h E G. Any chart at the identity element e of
G can serve also as a chart at an arbitrary element g £ G by transport-
ing it with help of the left translation L (or by the right translation
Rg). It is therefore usually sufficient to consider only charts at e.

An obvious example of a Lie group is Rd with group multiplica-
tion defined as vector addition. Here the whole group can be covered
by one chart (the usual coordinate system) and analyticity of the
group multiplication is immediate. Other examples that are very im-
portant for statistical applications are provided by matrix groups, i.e.,
the general linear group GL{n) of all n x n real nonsingular matri-
ces, and its Lie subgroups. Among the latter especially important are
orthogonal, triangular, diagonal, and block diagonal matrices.
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68 LIE GROUPS AND ALGEBRAS 5

Denote by 0{n) all n x n orthogonal matrices, by UT(n) all n x n
upper triangular matrices with positive diagonal elements, and simi-
larly LT(n) for lower triangular matrices. In every n x n real matrix
group the identity element e of the group is the n xn identity matrix

The above listed groups are not defined as analytic manifolds
until an analytic structure on them has been defined. For G = GL(n)
this can be done simply by regarding it as an open submanifold of

2

Rn . The group can be covered by a single chart with coordinates
Qij-> hj — 1? >n where g- is the (z, j)-element of g £ G. It follows
that dimCτL(n) = n2. Group multiplication in this chart, defined by
(gh)ik = Σj9ijhjk, is obviously analytic. A basis for the tangent
space Gg at g G G is {d/dg- : z,j = 1,... , n} so that an arbitrary
analytic vector field on G has the form ]Γ\. aij(g)d/dgij^ where the
a- are analytic real valued functions on G.

The triangular groups UT{n) and LT{n) can be handled in the
same way as GL(n) above. A single chart covers each of them, with
coordinates </• (z < j for £7T, i > j for LT), where g- > 0. We have
dim?7T(n) = dim LT{n) = \n(n + 1).

The orthogonal group 0{n) cannot be covered by a single chart.
A possible choice of local coordinates x- for a chart at e is x- = g-
for i < j , provided the |x | are sufficiently small, and all g- with
i > j are analytic functions of the x-. It follows that dim O(n) =
| n ( n — 1). This chart can be used to show the analyticity of the group
multiplication. In Section 5.7 we shall introduce a different kind of
chart, called canonical In that chart each element in a neighborhood
of e in O(n) corresponds to an n x n skew symmetric matrix.

The Lie groups that often occur in statistical applications are
usually built up from a subgroup of an additive matrix group and the
above mentioned subgroups of the general linear group.

5.2. Invariant vector fields. Lie algebras. All vector fields
considered in this chapter will be understood to be analytic without
special mention. If X is a vector field on (7, then it is called left
invariant if dLgX = X for every g E G, and right invariant if
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dRgX = X for every g £ G. We shall mostly consider left invariant
vector fields and they will often be called simply invariant. We have
seen in Section 3.6 that any invariant X has the form X(g) = dL t
for some t 6 Ge. Conversely, for every t £ Ge, X(g) = dL t is
invariant. We can express this by saying that X is invariant if and
only if X(g) = dLgX(e). Thus, there is a natural 1-1 correspondence
between the invariant vector fields and the elements of the tangent
space Ge of G at e. Furthermore, if X and Y are both invariant then
so is [X, y], by (3.6.2). Therefore, the space of all invariant vector
fields on G is a d-dimensional vector space closed under the bracket
operation, where d = dim G. This is called the Lie algebra of G and
denoted g. It is a special case of an abstract Lie algebra, which
is any finite dimensional vector space, say α (the elements of which
will be denoted x, y, etc.), on which there is a function α x α —> α,
denoted [ , ] and called bracket, that is required to be bilinear and
to satisfy, for all x,y,z £ α, (i) [x,x] = 0; (ii) the Jacobi identity
[[s>y]>*] + [[y>*]>&] + [[*>*]>y] = 0. By replacing x by x + y in (i)
and using bilinearity it follows immediately that [x,y] + [y,x] = 0.
An example of a Lie algebra other than g above is furnished by all
n x n real matrices and bracket defined by [x,y] = xy — yx. Here (i)
is of course obvious, and the verification of (ii) is straightforward. We
shall return to this Lie algebra presently.

5.2.1. EXAMPLE. G = GL(n). Let tiά = d/dg^ at g = e
so that {t-, i,j = 1,... ,n} is a basis of Ge. Define X- E g by
X{j(g) = dL ίf , then the X- form a basis of g. An explicit expression
for Xij(g) in the chart (g^) can easily be obtained as follows. For fixed
g G G write the left translation Lg as h —> gh = fc, say, where h ranges
over G. Compute dL d/dh^ by expressing d/dh- in terms of the
d/dkrs : d/dhij = Σrs(dkrs/dhij)d/dKs- τ h e partial derivatives
dkrs/dhij f θ l l θ W frθm krs = Σm9rmhms' T h e r e S u l t i s d/dhij =

Σr9rβ/dkrj- Now evaluate this at h = e so that d/dh- becomes t-
and d/dkrj becomes d/dgrj. Hence, dLgi- — Y^rgridjdgr^ i.e.,

(5.2.1) X^
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is an explicit expression for the invariant vector field dLg(d/dgij | e ) .

Taking the bracket of X of (5.2.1) with a similar expression for Xrs

(1 < hjiris < n) yields

(5.2.2) [Xij,Xrs] = δjrXi9-δisXrj

in which δ- = 1 or 0 according as i = or ̂  j (Kronecker delta).

Equation (5.2.2) shows once more that g is closed under the formation

of brackets. D

An arbitrary element X £ g can be expressed in terms of the

basis elements X- : X = £ ^ a-X- with any matrix A = ((a-)) of

coefficients. Since A depends on X we shall sometimes write A(X).

In particular, A(X-) = JE7€ , where

(5.2.3) E^ = matrix with 1 in position (i,j), 0 elsewhere.

For two such matrices, say E- and Er3, one easily computes their
bracket Ei Ers — ErsE- (matrix multiplication):

(5.2.4) [Ei3,Ers] = δjrEi3-δi3EΓj.

The left-hand side is the bracket of the coefficient matrices of X- and

X r s , while the right-hand side is the coefficient matrix of the bracket

of X and Xrs, by (5.2.2). Hence, for the basis elements X^ , A

preserves the bracket operation (A of bracket equals bracket of A's).

Using the bilinearity of the bracket, it is easily seen that the same

holds true for any elements of g:

(5.2.5) A([X, Y]) = [A(X), A(Y% X,Yeg.

Furthermore, A is obviously linear in its argument. Thus, there is a

1-1 correspondence between elements of g and nxn real matrices that

preserves linear operations and brackets. The Lie algebra o f n x n real

matrices is denoted gί(n). Thus, there is an isomorphism between g

and gί(n) as Lie algebras.
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With help of the coefficient matrix A(X) of X £ 0 it is also
possible to get a simple explicit expression for the value of X at any
g € G. Let A(X g) with elements a-{X\g) be defined by

(5.2.6)

and call this the coefficient matrix of X(g). (Thus, A(X\ e) = A(X)
defined earlier.) From (5.2.1) the coefficient matrix of Xij(g) is seen
to be A(Xij]g) = gE-, with E{ defined in (5.2.3). Furthermore,
A(Xij) = Eφ so that A(Xi-g) = gA{Xij). By the linearity of A(-)
and of A( ; #), this equation holds for every X £ g:

(5.2.7) A(X;g) = gA(X), X € fl.

Consider now the elements gf of g as n2 real valued functions,
and differentiation of g is to be carried out elementwise on each of
these g-. From (5.2.6) and (5.2.7) we compute

(5.2.8) X(g)g = gA(X)

and repeating this process with g replaced by X(g)g = gA(X), etc.,
we have

(5.2.9) X\g)g = g(A(X))k, fc = 0 , l , . . . .

In particular, at g = e = In this becomes

(5.2.10) Xk(e)g = (A(X))k.

This may be expressed in words: the kth. order derivative of g at g = e
with the vector field X may be obtained by raising the coefficient
matrix of X(e) to the kth. power.
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5.3. Invariant differential forms of maximum degree.
Together with left and right invariance of vector fields we consider the

analagous invariance of differential forms. For notational convenience

we shall often write ω(g) instead of ωg for the differential form ω at

g G G. The differentials dLg and dRg of the left and right translations

Lg and Rg have adjoints δLg and δRg, respectively (Section 4.5). A

differential form ω on G will be called left invariant if δL ω = ω for

every j f G , and right invariant if 8Rgω — ω. More explicitly, for

δL we have

(5.3.1) δLgω(g1)=ω(g-1g1), g,9l G G,

and a similar equation for δRg (remember that in general for any

f : M -> N, δf "pulls back" from N to M). Apply (5.3.1) with

gλ = e and g replaced by g"1:

(5.3.2) ω(g) = δLg.xω{e)

for a left invariant differential form ω, which shows that such an ω

is defined on the whole of G by its value at e. Similarly, a right

invariant ω satisfies (5.3.2) with δL i replaced by δR lm It follows

immediately from (4.5.4) (applied to M = N = G and / = L _i)

that the wedge product of two differential forms of the form (5.3.2) is

again left invariant. This extends to any number of such differential

forms and is especially useful for building a left invariant fc-form from

the wedge product of k linearly independent left invariant 1-forms.

We are interested mainly in invariant d-forms u>, where d =

d i m C Since Vd at e has dimension 1 (Section 4.1), ω(e) is unique ex-

cept for a multiplicative constant, and the same is then true for a left

invariant d-form ω, by (5.3.2). Similarly for a right invariant c/-form.

In order to obtain a more explicit expression for a left invariant c/-form

let x = ( # ! , . . . ,xd) be local coordinates at #, and y = ( J / J , . . . ,yd)

at e, then the function L i (that maps g to e) causes y locally to

be an analytic function of x.. Take ω(e) = dy1 Λ Λ dyd at e and

apply (5.3.2) and (4.5.3) with / = Lg-i, then

(5.3.3) ω(g) = ^r\dxλ Λ Λ dxd
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in which y(x) is the function x —» y that parametrically represents the
transformation h —* g~~1h^ / ι £ G , and the right-hand side of (5.3.3)
is to be evaluated at x corresponding to g. An arbitrary left invariant
d-form is any constant multiple of (5.3.3). For a right invariant c?-form
the only change in the above is that x —> y corresponds to h —> /iflf"1,
heG.

5.3.1. EXAMPLE. G = GL{τi) with elements g = ((fl^ )) :nxn.
The <7 serve as coordinates on all of G, but it is sometimes convenient
to replace them temporarily by x- and/or yt , as in (5.3.3), and
consider or = ((a?t̂ )) and y = ((y^ )) also as n x n matrices. Then the
function y(x) in (5.3.3) is y = g~*x. In order to obtain its Jacobian
note that this function can be written y^ = g~λx^y j = 1,... , ra,
where x, \ is the jth column of #, and similarly y^y Since for each
j the Jacobian is (det g)" 1 , the Jacobian of y = g~~λx is d(y)/d(x) =

n . Substitute this into (5.3.3):

n

(5.3.4) ω(g) = (det g)~n /\ dg
φ

then an arbitrary left invariant <i-form (d = n2) is a constant mul-
tiple of (5.3.4). Note that the order of writing down the factors in
the wedge product on the right-hand side of (5.3.4) has been left un-
specified, in spite of the fact that changing the order may result in
changing the sign. However, this does not matter for two reasons.
First, a change in sign is absorbed by the undetermined constant fac-
tor. Second, we shall use a left invariant d-form ω to determine a
left Haar measure (Section 7.7) and that only uses the absolute value
of ω.

A right invariant cί-form ω on GL(n) is derived in the same way
and involves the Jacobian of y = xfif"1. This also equals (det #)~ n so
that the same formula (5.3.4) is obtained. D

5.3.2 EXAMPLE. G = LT(n) with elements g = ( ( ^ ) ) , 1 <
j < i < n. Again, the Jacobian of y = g~ιx has to be evaluated.
Temporarily denote g~ι by A = ((α^)), 1 < j < i < n Put Ax = A,
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and for j — 2,... , n, A3- = A with its first (j — 1) columns deleted.
Then because of the lower triangular nature of the matrices, j// \ =
Ax(j) is the same as y^ = AjX^y This has Jacobian detA^ =
a - ann. Taking the product over j = 1,... ,n and replacing a
by (ff"1)^ = ̂ ϊϊ1 y i e l d s d(y)/d(χ) = ΠΓ^7 τ h u s ' a n a r b i t r a r y l e f t

invariant d-form (d = n(n + l)/2) on LT{n) is a constant multiple of

(5.3.5) ω(g) = grfgrf - g^ [\ d9ij.

A similar computation shows that an arbitrary right invariant
cf-form on LT(n) is a constant multiple of

(5.3.6) »(9) = 9nng;2n+1 9nϊ Λ d^r D

5.3.3 EXAMPLE. G = UT{n) with elements g = ((flfy))> 1 <
i < j < n- The left invariant d-form ω is now given by (5.3.6), the
right invariant ω by (5.3.5), except that the wedge product is now
over 1 < i < j < n. (The Jacobian of y = g~1x in UT(n) is of course
the same as that of y = xg~λ in LT(n).) Ώ

We shall exhibit now a different method of obtaining an explicit
expression for an invariant d-form on a subgroup of GL(n), which is
more convenient in the case of the orthogonal group O(n). Take first
G = GL(n) itself. Let g 6 G and together with the tangent space
G at g consider its dual G* whose elements are the 1-forms at g
(Sections 3.3, 4.1). A basis of G* is the set of all dg-, 1 < i, j < n.
In particular, take g = e, but it is now notationally more convenient
to denote the matrix in a neighborhood of e by y = ((y2J)). For fixed
g G G let y = g~1xy so that x denotes a matrix in a neighborhood
of g. In (5.3.2), for fixed i,j take cj-(e) = dy- at y = e, and denote
the left-hand side by ω •(#). In order to compute the right-hand side
we have to express j/ as a function of x, take the differential, and
evaluate at x = g. Let a{ = (ail5... ,α i n ) be the ith row of g"1,
then y{j = £ £ = 1 aikxkj, so ω ^ ) = δLg-1dyij \e= £ £ = 1 α i j b ώ f c i | y =
Σ*=i aik^9kj' The result can be put conveniently in the form

(5.3.7)
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in which ω(#) is an n x n matrix whose (i, j) element is the transform
under δL x of dg- L= e, and dg is the n x n matrix ((dg-)). Since
the ϋJij(e) on the right-hand side of (5.3.2) form a basis of G*, the
ωij(d) o n the left-hand side of (5.3.2) form a basis of G* and are
therefore linearly independent. Since all these 1-forms ω-(g) are left
invariant, so is their wedge product, by an earlier remark in connection
with (5.3.2). Hence, the wedge product of the d = n2 elements of the
matrix on the right-hand side of (5.3.7) is a left invariant d-ίoτm on
G. Similarly, the wedge product of the elements of the matrix dg g~λ

is a right invariant c?-form. If G is a Lie subgroup of GL(n) with
dimensions d < n2, then the n2 elements of the matrix (5.3.7) are of
course no longer linearly independent. But the dg- at g = e still span
G* so that the elements of the matrix (5.3.7) span G*. Then choose
from these n2 elements d linearly independent ones, and their wedge
product is a left invariant c?-form on G. A right invariant c?-form is
similarly chosen from the elements of dg g~ι. It is also of interest
to see what happens to the matrix (5.3.7) under a right translation
^9\ : ^ —* ^01' ^ ^ ^? with any fixed gx G G. Put g = hgλ and
express (5.3.7) as a function of /z, then we get

(5.3.8) δRgiω(g) = g-\h-1dh)g1, g = h9l.

5.3.4. EXAMPLE. G = GL(n) revisited. Fix 1 < j < n
and use (5.3.7) and Lemma 4.3.1 to obtain ΛΓ=iα;ύ'(5r) ~ (detgr)"1

ΛΓ=i dgij Then take wedge product over j = 1,... , n to obtain the
previous result (5.3.4). D

5.3.5. EXAMPLE. G = LT(n) revisited. Now the matrix (5.3.7)
is also lower triangular and we have to take the wedge product over
u>ij(g) with 1 < j < i < n. For the jth column on both sides of (5.3.7)
we have U(j)(g) = Ajdg^ with Aj of Example 5.3.2 and dg^ having
elements dίg , i = j , . . . ,d Then by Lemma 4.3.1, l\^_-ω-{g) =
(det Aj) ΛΓ=j dgij, and taking wedge product over j = 1,... , n yields
the previous result (5.3.5). D

5.3.6. EXAMPLE. G = 0(n). Since there is no single chart
that covers all of G, it is not possible to get as explicit an expression
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for an invariant d-form as in the case of GL(n), LT(n), and UT(n).
Since at g = e a chart may be formed by taking as coordinates the
elements of g below (or above) the diagonal, a left invariant cf-form
(d = n(n — l)/2) is obtained by taking the wedge product of the
elements of the matrix (5.3.7) below (or above) the diagonal. We
shall generically write Γ for g G 0(n) and use ' to denote transpose of
a matrix. Let jj be the jth column of Γ and observe that Γ" 1 = Γ'
with rows 7J, i = 1,... , n. If we choose the lower triangular part
of (5.3.7), which is Γ'cflΓ, then a left invariant d-form on G is

(5.3.9) ω(Γ) = /\ Ί[dΊj.

Note that at g — e, i.e., Γ = /n, the right-hand side reduces to

\g=e From ΓT = Jn, after taking the differential and

using (£3.9) one obtains Γ'dΓ + (ΓdΓ)' = 0. This shows that Γ'dΓ is
skew symmetric, so that taking the wedge product of the elements of
Γ'dΓ above the diagonal would have produced the same result (5.3.9)
except, possibly, for a sign change. The right-hand side of (5.3.9)
may be further expressed in terms of local coordinates if desired. As
a simple example where ω(Γ) can be expressed explicitly take n = 2,

so d = 1, and Γ = (c?*θ

θ ~"o" j ) , then the only element on the right-

hand side of (5.3.9) is dθ, the usual element of length on the unit

circle.
A right invariant d-form on 0{n) could be constructed in an

analogous way from the matrix (c/Γ)Γ' but in fact the left invariant
d-form (5.3.9) is also right invariant, at least on the component of the
identity. In order to show this consider first in general for any n x n
skew symmetric matrix A the | n ( n —1) x 1 vector x = x(A) consisting
of the α with 1 < j < i < n, in an arbitrary but fixed order. Let B
be another skew symmetric matrix, then the inner product of the two
vectors x(A) and x(B) can be written as ^tvA'B. This is invariant
under A -> ΓAΓ, B -> ΓJ3Γ, for any Γ G O(n) which shows that to
A —* ΓΆΓ corresponds an orthogonal transformation of x : x(A) —>

), with Δ G 0(^n(n — 1)). If Γ is restricted to the component
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of the identity, then by a continuity argument det Δ = 1. Then apply

this to the skew symmetric matrix h~1dh = h'dh (h 6 O(n)) on the

right-hand side of (5.3.8) and apply Lemma 4.3.1.

Invariant differential forms on a homogeneous space. If
X is a C°° manifold on which a C°°-group G acts differentiably and

transitively to the left, then we also have the concept of (left) invariant

differential form on X: if Lg is the diffeomorphism x —> gx, x G X,

g (Ξ G, then a d-form on X is invariant if 8L ω = ω for every g £ G.

Below is an example where construction of such an invariant ω is easy.

5.3.7. EXAMPLE. Invariant differential form on the space

of positive definite matrices. Let X = PD(n) as in Example 2.1.7

and G = GL(n) with action

(5.3.10) S -> CSC, S G X, C G G,

where the multiplication on the right-hand side of (5.3.10) is matrix

multiplication. Here S may be considered the coset space G/H, where

H = O(n) is the isotropy subgroup of G at S = Jn, and therefore S is

an analytic manifold (see Section 5.8). A chart may be put on all of

5* by taking the coordinates as the d = \n{n + 1) elements 5 with

(say) i > j. We are interested in an invariant d-form ω on X, which

has to be of the form

(5.3.11) ω(S) = a(S) /\ ώ y .

In order to find the function a consider the left translation (5.3.10):

S —> φ(S) and rewrite this as

(5.3.12) R = CSC = φ(S), S eX, C eG.

On order to obtain δφ(ω) at S we have to take ω(R) = OL(R) Λ- dr-

and express this in terms of S and the ds-. For this we need the

Jacobian of the transformation S —> R of (5.3.12), which equals

T+1
(5-3.13) | | | = IC
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in which \C\ = absdet(C). Thus, we get

(5.3.14) (δφ)ω(S) = a(CSC')\C\n+1

In order that (δφ)ω = ω we have to have a(CSC") |C| n + 1 = α(5) for
every 5 6 X, C E G. Setting first 5 = /n and then C C = 5 we find
a(S) = α(/ n ) |5 |~2( n + 1 ). Omitting the arbitrary constant multiplier
θί(In) we have then

(5.3.15) ω(S) = |5-|-*

as an invariant c/-form on X under the transformations (5.3.10).
We could equally well have taken G to be LT(n) or UT(ή) instead

of GL{n), with the same action (5.3.10), for then G is still transitive
over X. For such choice of G the isotropy subgroup at 5 = In is {e}
so that there is a 1-1 correspondence between X and G, given by the
equation S = TT1 (Cholesky decomposition). The cf-form (5.3.15)
is of course still invariant under LT(n) or UT(n). Since there is a dif-
feomorphism between Γ and 5, a left invariant d-form on one space
provides one on the other. Thus, the forms (5.3.5) and (5.3.15) can
be identified, except for a positive factor. It is easy to determine this
factor. Take S = TV and differentiate at T = In : dS = dT + dT1.
Then dsi{ = 2dti{ and for i > j , ds- = dt-. Take the wedge prod-
uct over all ds- : /\i>:j ds- = 2n /\ i > ; dt-. Then comparing (5.3.5)
and (5.3.15) (after replacing g- by t- in (5.3.5)) we find

(5.3.16) | 5 | - i < Λ + 1 > Λ ώ i i = 2 » Π C Λ Λ 0 D

i>j 1 i>j

5.4. Subgroups and subalgebras. Let G be a Lie group
and H a subgroup of G that is both a Lie group and an analytic
submanifold of G. We shall then simply say that H is a Lie subgroup
of G. Let g and ί) be the Lie algebras of G and if, respectively. The
inclusion map (Section 3.4) i : H —> G has the property that at any
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element h G H, di : Hh —> Gh is 1-1, by definition of submanifold.

Thus, there is a linear isometry between Hh and di(Hh), the latter

being a linear subspace of Gh. Furthermore, the 1-1 correspondence

preserves bracket formation, by (3.6.2) applied to / = i. (One can

characterize the tangent vectors of Gh that correspond to tangent

vectors of Hh as any X G Gh such that X{h)f = 0 for any analytic /

that vanishes on H in a neighborhood of h\ see Cohn, 1957, Sect. 3.4.)

It is convenient to identify elements of Hh and Gh that correspond

under the mapping di, so that we may regard Hh as a linear subspace

of Gh. Since also dLh, for arbitrary h G H, preserves linear and

bracket operations, the above identification can be extended to the

invariant vector fields. That is, we may regard f) as a subset of g.

Since t) is closed under linear and bracket operations it is called a Lie

subalgebra of g.

EXAMPLE. Lie subgroups of G = GL(n). Let H = ?7T(n), then

the coefficient matrix A(X) of an arbitrary element Σi<j aij^/^9ij

of f) is an arbitrary nxn upper triangular matrix. The set of all such

matrices is clearly a Lie algebra under scalar multiplication, addition,

and matrix multiplication and is isomorphic to ί). Similarly, if H =

LT(rι), the set of all n x n lower triangular matrices is isomorphic to I).

Now let H = 0(n), then it turns out that f) is isomorphic to the set of

all n x n skew symmetric matrices, which is easily verified to be a Lie

algebra. We can derive this result as follows. Choose a chart at e with

local coordinates x^ , 1 < i < j < n, where x- = g- and the \x^\ are

sufficiently small. Then for r > s, the grs are analytic functions of the

x{j. We need the derivatives dgrs/dx- evaluated at 0. This follows

from differentiating the defining equations for an orthogonal matrix:

Σk9rk9sk = Ks w i t h respect to x- and then setting grs — 8rs. The

result is

(5.4.1) dgjdx^ + dgsr/dXij = 0 at g = e.

In (5.4.1) first take r = s, then dg^/dx^ = 0 at g = e. Next, take

r > s. If (s,r) φ (i,j), then dg^/dx^ = 0 so that dg^/dx^ = 0 at

g = e. There remains the case (s,r) = (i,j), and then (5.4.1) yields
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dgjjdxi;j = — 1 at g = e. In summary,

(5.4.2) dgij/dxij = l, dgji/dXij = - 1 , (i < j) at g = e,

and all other derivatives are 0. Now write the set of coordinates x-
as x and the dependence of g on x as g = f(x). In terms of the chart
(x) at e a basis of Ge is formed by the d/dx^, i < j . In terms of the
d/dgrs the tangent vector d/dx- becomes

(5.4.3)

where the differentiations have to be performed at g = e. Due
to (5.4.2) only two terms on the right-hand side of (5.4.3) survive:

(5.4.4) df ( J—\ = -£- - J- at y = e.
^ ; \dxj d9ij d9ji

The right-hand side of (5.4.4) shows that the coefficient matrix ((a-))
in Σij' aijd/d9ij corresponding to d/dx^ is the skew symmetric ma-
trix δij — δji. These matrices, for 1 < i < j < n, form a basis of the
set of all n x n skew symmetric matrices, hence the claim has been
proved. A shorter way of establishing this result will appear after the
exponential map has been introduced in Section 5.6. D

5.5. One-dimensional subgroups. Let G be a Lie group
and X 6 g a given and fixed nonzero invariant vector field. Let 7(1*),
—a < u < 6, be an integral curve of X starting at e (Section 3.5),
with 7(0) = e and 0 < α, b < 00. That is, 7 is an analytic curve in G
and

(5.5.1) dΊ (^Λ = X{η{u)\ -a<u<b.

We shall assume that the integral curve is maximal, i.e., neither a nor
b can be increased. It will now be shown that we must have a = b = 00
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and that the points Ύ(U) form a one-dimensional Lie subgroup H of

G. In fact, it will be shown that for any u1,u2 £ i2,

(5.5.2) Ί ( U I + u2) = 7θi)τ(w 2 ),

so that as a group, H is a homomorphic image of the additive group

R. Let uλ be arbitrary, with — a < uλ < b. Since l e g , dL X = X

for any g 6 G; i.e., the transformations Lg leave X unchanged. In

particular, take g = 7(1^) then Lg-X maps 7(1^) on e and dL x maps

X(7(t/1)) on X(e) = ί. Now consider an integral curve of X starting

at 7(^2), i.e., a curve 7(1^ +u) with u in an interval about 0 such that

djj^ | U i + t t = X(j(u + uλ)). Due to the invariance of the vector field

X under the transformation Lg-ι we can solve this problem after the

transformation where it becomes an integral curve of X starting at e,

and then transform back. In the transformed form the solution is as

before 7(u), with — a < u < b. Transform back, and the solution is

Lgliu) = Ί(UI)Ί(U) Therefore

(5.5.3) j(u1 +u) = τ(wi)τ(w), -a <uλ,u <b.

This shows that — a < uλ + u < b. But this can be true for all

—a < uλ,u < b only if a = b = 00. Therefore, j(u) is defined for all

—00 < u < 00 and (5.5.3) holds for all uλ,u £ -R. Moreover, since

at every u £ R the right-hand side of (5.5.1) is ^ 0 (remember that

X was assumed to be a nonzero invariant vector field), dη is 1-1 at

every point. Therefore, at every 7(1^) G H there is a chart by giving

7(u) the coordinate w, for u in some interval about uλ. (It may not

be possible to cover if by a single chart, for instance if 7 maps R

onto the circle group.) Therefore, H is a 1-dimensional Lie group.

Moreover, in this parametrization, at any j(u) G H the tangent space

of H is spanned by j^ and if i : H —> G is the inclusion map, then

di ( ^ ) = X(Ί(U)) ^ 0 so that di is 1-1. It follows that H is a

submanifold of G so that H is a 1-dimensional Lie subgroup of G.

(These results can be established more elegantly by first studying the

relation between an analytic homomorphism of one Lie group into

another one and the induced homomorphism of the Lie algebras. See

Chevalley, 1946, Chap. IV, §VI.)
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EXAMPLES. Let G = GL(n) and let X e 0 have coefficient
matrix A = A(X) (Section 5.2). We seek a solution of the equa-
tion (5.5.1) for 7(1*) £ G. Let / : G —> R be analytic, then (5.5.1) can
be rewritten (see (3.5.1))

(5.5.4) ^/(-y(«)) = *(7(«))/

Take in particular f(g) = g- for any fixed (i, j), then (5.5.4) can be
written j^gij = X(g)gij in which g = g(u) = 7(14). In matrix form

(5.5.5) ^ = x{g)g, g = g(«)

Write X(g) in its form (5.2.6) and observe that for any (i, j),
= E{j (denned in (5.2.3)) so that

(5.5.6) X{g)g = A{X;g),

and use (5.2.7), then (5.5.5) becomes

(5.5.7) •±.g(u) = gA, A = A(X)

with initial condition g(0) = In. The solution can be put in the simple
form

(5.5.8) g{u) = euA, -oo < u < oo

where for any square matrix 5, eB is defined by

(5.5.9) . = Σ

which converges absolutely. Any arbitrary n x n matrix A generates
via (5.5.8) a 1-dimensional subgroup of GL(n). In some cases a closed
expression for the power series can be found easily. For instance, if
A = Elλ (see (5.2.3)), which is the coefficient matrix of d/dg^ at e,
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g(u) = diag(ew,1,... ,1), and if A = E12 (corresponding to d/dg12),

g(u) = In + uE12, which is G UT(n). Other E{j follow from the

above two by interchanging rows and columns. Now take A in the

Lie subalgebra of O(n). For simplicity let n = 2 and take A to have

elements α n = α2 2 = 0, a12 = — α2 1 = 1. Then (5.5.8) yields gu(u) =

(722(u) = cosu, #1 2(u) = — g2\{u) — sinu, i.e., g(u) is a rotation matrix

through angle u. In this last example the homomorphic image of R

under 7 is the unit circle.

5.6. The exponential map. In Section 5.5 the definition

of a 1-dimensional subgroup involved a fixed vector field X and its

corresponding integral curve 7. If X is allowed to be an arbitrary

nonzero element of g write ηx for its integral curve starting at e.

When X = 0 define jχ(u) — e for all u. By definition (5.5.1) of *yx:

(5.6.1) dΊχ (J-^ = X(Ίχ(u)).

We shall now establish

(5.6.2) Ίtx(u) =

To see this, write for simplicity 7 for jx and define r : R —> G

by τ(u) = 7(ίw) (when f / 0, the point set {τ(u) : u £ R} is

the same as the point set {j(u) : u £ i?}, but the parametriza-

tion is different). If / is a real valued differentiate function on G

then by differentiating f(τ(u)) = f(j(tu)) with respect to w one finds
dτ (p = td*ϊ (£)v=tu = (by t5-6 '1)) *^(7(*«)) = **(τ(u)) so that
(again by (5.6.1) applied now to r rather than 7) r is the integral
curve of tX, establishing (5.6.2).

The exponential map, written exp, is the function g —> G

defined by

(5.6.3) exp(Λ') = 7 χ ( l ) , X G g.

It follows then from (5.6.2) that

(5.6.4) exp(tX) = <γx(t), X e 0, t G R.
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The 1-dimensional subgroup of Section 5.5 determined by X can

therefore also be written {exp(ίX) : —oo < t < oo}. By (5.5.2)

we have

(5.6.5) e x p ^ J Q e x p ^ X ) = exp((t1 +t2)X), X G 0, tl9t2 G R.

However, it is not true in general (unless G is abelian) that for any

1 , 7 6 j , exp(X)exp(F) = exp(X + Y). By taking tλ = -t2 = 1

in (5.6.5) one finds

(5.6.6) (exp(X))-1 = exp(-X).

It is of interest to take the left-hand side of (5.6.4) and write formally

oo

(5.6.7) exp(ίX) = ] Γ Tf****, * e R.

This can be interpreted as follows. Let / : G —» R be analytic,

then h(t) = f(jχ(t)) is an analytic function of t and has therefore

an infinite Taylor series expansion about t = 0. By definition of the

integral curve 7 X , h'(0) = Xf{e). Repeating the argument for the

analytic function Xf : G —> i?, etc., we see that /^^(O) = Xkf(e),

k = 0,1, Thus, for |ί| small enough,

(5.6.8) /(exp(tX)) = X; Tft^Vίe).
fc=o '

In particular, let G = GL{n). Take in (5.6.8) ί = 1 and take / to be

the (i,j) element gf̂  of ^ G G, for z,j = 1,... ,n; then express the

result in matrix form. On the left-hand side of (5.6.8) we have the

matrix g corresponding to exp(X), where X is given by (5.2.6); on

the right-hand side we get eA<χ) by (5.2.10) and (5.5.9). This yields

(5.6.9)
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where X- = d/dg^ and A = ((a-)). Thus, for GL(n) the function

exp reduces to ordinary exponentiation. Note that by (5.6.6)

(5.6.10) (e^)" 1 = e~A

and by (5.5.9), written both for B = A and for B = A1,

(5.6.11) (eAy = eΛ\

Let H be a Lie subgroup of G and I) its Lie algebra, which is

a Lie subalgebra of g (Sec. 5.4). If in (5.6.3) X is restricted to f),

then the resulting exp(X) is an element of H. If G = GL(n), then

-X" G f) can be represented by a matrix A = A(X) that is the member

of the Lie subalgebra of gί(n) corresponding to I). For instance, if A

is skew symmetric (A' = —A), then by (5.6.10) and (5.6.11) eΛ is

orthogonal. This shows once more that the Lie subalgebra of all n x n

skew symmetric matrices corresponds to the subgroup H = O(n) of

all n x n orthogonal matrices (see Section 5.4).

5 7. Canonical charts.

5.7.1. LEMMA. The exponential map X —* exp(X) of g —> G is

an analytic diffeomorphism in a neighborhood of X = 0.

PROOF. It will be shown first that exp is analytic in a neigh-

borhood of 0. Let x = ( # 1 ? . . . , xd) be a chart at e G G and let Xi

be the element of g for which Xi = d/dx^ at g = e, i = 1,... ,e/.

Then Xj,. . . , Xd is a basis of g so that any X G fl is expressible as

X = ΣuiXi Regard g as a linear manifold with u = (iί 1 ? . . . ,ud)

a chart covering g. In (5.6.8) replace tX by X — Y^luiXi and take

f = Xj^ with 1 < j < rf fixed:

(5.7.1) ^ (exp ( ^ ^ )

On the right-hand side, in a neighborhood of e each Xi is a linear

combination of d/dx1,... , d/dxd with coefficients that are functions
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of x. Then after differentiation of Xj by the various powers of the Xi

has been performed, the A th term is a polynomial of degree k in the
u^ Thus, the right-hand side of (5.7.1) is a power series in the u^ and
the only question is about its convergence. (The ideas of the following
arguments are taken from the proof of Lemma (9.1.2) in Dieudonne,
1960.) The individual terms in the infinite series on the right-hand
side of (5.7.1) are of the form

in which the coefficients ci i are real numbers, and i^,... , id take
values 0,1, In (5.7.1) first take ux = = ud = t with t > 0
to be chosen shortly, and put X = J^X^ then the right-hand side
of (5.7.1) becomes the right-hand side of (5.6.8) (with / = xΛ and
we know that there is a value of t > 0 for which the latter converges,
say, t = tj > 0. That implies that all terms (5.7.2) are bounded in
absolute value by, say, 0 < A < o o i f u 1 = • = tid = ί .. Now choose
any 0 < p < 1 and put r = p< , then if |ι^| < r ; , i = 1,... ,cί, the
terms (5.7.2) are bounded in absolute value by A/9 l l + '"+ l d. Then every
partial sum of absolute values is bounded by A ]ζ p«i+—+M where the
summation is over i 1 ? . . . ,i^ from 0 to oo. The latter sum equals
(1 — ρ)~d < oo. Hence, the infinite series on the right-hand side
of (5.7.1) is absolutely convergent provided |ut | < r ; , i = 1,... ,d.
Put r = min{rj : j = 1,... , d}, then we have proved that exp has a
power series expansion that converges absolutely in the region |ι/j| < r,
i = 1,... , d. Hence, exp is analytic in a neighborhood of 0.

From (5.7.1) it follows that dxjjdui | t t = 0 = - X ^ e ) = (d/dx{)
Xj(e) = 5 so that the Jacobian matrix of the mapping X —> exp(X)
at X = 0 is the d x d identity matrix. Hence, the Jacobian is positive
at 0 so that by Theorem 3.1.1 there is a neighborhood of 0 on which
exp is an analytic diffeomorphism. D

By Lemma 5.7.1 there is a neighborhood U of 0 in g such that
there is a 1-1 bi-analytic correspondence between points X £ U and
exp(X) G exp(?7). This can be used to transfer a chart on U to a chart
on exp(ϊ7). For any choice of basis X1,... , Xd of g and corresponding



§5.7 CANONICAL CHARTS 87

coordinates u = (Ϊ/J , . . . , u d ) as in the proof of Lemma 5.7.1 the chart
on exp(ί7) that assigns coordinates u = (u1,... , ud) to exp(J^ ^ , ^ ) G
exp(£7) (provided ΣuiXi G U) is called a canonical chart. For
instance (taking into account Section 5.6), a chart on a sufficiently
small neighborhood of e in 0{n) can be chosen by assigning to eΛ

the elements of (say) the upper triangular part of the skew symmetric
matrix A.

There are several other slightly different ways of defining a canon-
ical chart. For instance, for integer 1 < m < d define the function

φ : X = Σ,ίuiXi -> e x P ( Σ Γ uiXi)exΐ>(Σdm+i uiXi)- F o r u i n a suf-
ficiently small neighborhood of 0 £ Rd this function is analytic since
the product of two absolutely convergent power series is an absolutely
convergent power series. The invertibility at X = 0 £ 0 follows again
from the Jacobian. Then in a sufficiently small neighborhood of e £ G
assign the coordinates u 1 ? . . . ,u d to Φ(ΣuiXi) This method can be
extended by breaking up ^ 1 uiXi in more than two sums.

Another consequence of Lemma 5.7.1 is that if U is any neigh-
borhood of 0 G 0 on which exp is an analytic diffeomorphism, then
{exp(X) : X G U} is a neighborhood of e £ G, i.e., a nucleus (Sec-
tion 2.3). If U is connected, then so is the above nucleus, and the
latter generates therefore the identity component of G (Section 2.3).
A fortiori, since gjs connected, {exp(X) : X £ g} is a connected nu-
cleus of e G G and generates therefore the identity component. Hence
all important properties of G follow from the elements exp(-Y), X G 0.
The same is of course true for a Lie subgroup H of G and its Lie sub-
algebra f). For instance, the identity component of 0(n) is generated
by all matrices eA with A n x n skew symmetric.

The fact that a Lie group has a connected nucleus has the fol-
lowing consequence.

5.7.2. THEOREM. In a Lie group G the identity component Go

is both closed and open.

PROOF. Closedness was stated in Section 2.2 (for any topolog-
ical space). In order to show that Go is open let gQ be an arbitrary
point of Go and let V be a connected neighborhood of e. Then g0V
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is a connected neighborhood of gQ. If g0V would not entirely be con-
tained in Go, then Go U g0V would be a connected set that properly
contains Go. This contradicts the fact that GQ is the component of
g0. Therefore, gQV C Go so that GQ is open. D

Theorem 5.7.2 and Proposition 2.3.18 together imply that if G is
a Lie group, then G/GQ (which is actually a group) is discrete. An ex-
ample of a topological group that is not a Lie group and for which the
conclusion of Theorem 5.7.2 fails is the set of rational numbers under
addition. Then Go = {0} which is closed but not open (Bourbaki,
1966b, I §11.5, "dangerous curve" remark).

5.8. Coset space as an analytical manifold. Local cross
section. Let H be a Lie subgroup of the Lie group G, and G/H
the space of left cosets (Section 2.1). We would like to be able to put
an analytic structure on G/H in order to make it into an analytic
manifold. A necessary condition for this is that H be closed, by
Proposition 2.3.2 since a manifold is Hausdorff. It turns out that
closedness of H is also sufficient, as will be shown now.

5.8.1. THEOREM. If H is a closed Lie subgroup of the Lie group
Gy then G/H is an analytic manifold.

PROOF. Let f) be the Lie algebra of H. Suppose first that
ϊ) = g. By Section 5.7, H contains the group generated by all exp(X),
X £ ϊ) — g? which is the identity component Go of G. Since Go is
open, by Theorem 5.7.2, gGQ is open for each g £ G since x —> gx is a
homeomorphism. Therefore, H = {hG0 : h £ H} is the union of open
sets, hence H is open. By Proposition 2.3.18 G/H is discrete and is
therefore a 0-dimensional manifold.

Now suppose ί) φ g. Since ί) as a linear space is a subspace of
g we must have dimf) < dimg, say dimf) = d — m, 0 < m < d. Let
Xx,... , Xd be a basis of g, with Xm+ι,... , X^ a basis of ί) (the latter
X's are absent if m = d). By Section 5.7 there is a canonical chart at
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e with local coordinates ι*1?... , wrf, defined by the function

(5.8.1) ( t i 1 ? . . . ,ud)^exp

(the second factor on the right-hand side is absent if m = d), provided

the ί/j are small enough, say \u{\ < uQ for all i and some u0 > 0. Let

U be a neighborhood of e in which those inequalities are satisfied.

If uι = - = um = 0, then X = ]Γ) m + 1 tt, -XΓt is an element of f)

and therefore exp(X) £ H. That is, if g £ J7 and g has coordinates

u with t/j = = u m = 0, then g £ H. Conversely, it can be

shown, by using the closedness of ΐ ί , that g £ H Π U implies that

the coordinates of g satisfy itj = = um — 0 (Cohn, 1957, proof

of Theorem 6.5.1). Choose V C £7, V a neighborhood of e such

that V " 1 ^ C U (use the continuity of (gι,g2) —* gϊ^g^) a n d ^

W = {# £ V : ^ has coordinates um^_1 = = ud = 0}. The coset

projection π : G —> G/ΐί is defined in (2.1.2). We shall show first that

π is 1-1 on W. Suppose g1^g2 £ W and τr(g1) = π(g2). Then g2 =

for some h £ H so that /ι = gγxg2 £ V~1V C Z7. Since gfj and

are in W, they are of the form exp(^] [

n u^X^) and e x p ( ^ ^ ι v f Jί

respectively. Since h £ H Π U it is of the form exp(]Cm+ L ui*

equation g2 = gλh then reads

Σ uiχi
m+l /

and since to each point of U corresponds a unique set of coordinates we

have ( ϋ 1 ? . . . , ϋ m , 0 , . . . ,0) = ( u 1 ? . . . , w m , u m + 1 , . . . ,u d ) from which

follows vi = u^ i = 1,... ,m, i.e., g2 = gλ. Modifying the previous

argument slightly, we see that if gλ £ W, g2 £ V (not necessarily

£ W) and ^(g^ = π(g2), then g2 has the same first m coordinates

as gλ. Therefore, π(W) = τr(V) and the latter is a neighborhood of

[e] £ G/H since π is open (Section 2.3). Let TΓ"1 : π(W) -> W be

the inverse of π restricted to W. Put a chart on π(W) by assigning

to x £ π(W) the first m coordinates of π~ 1(x).
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The transitive action of G on G/H (see (2.1.3)) can be used to

transfer the above chart on π(W) to any point of G/H. That is,

if [g] G G/H (where g is not unique) then to x G gπ(W) we can

assign the coordinates of g~ιx G π(W). However, it remains to be

shown that in the intersection of any two charts the coordinates are

analytic functions of each other. Suppose x G g\π(W) Π g2π(W) w i t

9i->92 £ ^ P u * xi = 97lχ-> z = 1,2, so that xi G τr(W) and # 2

 =

where g0 = g^Qi I* remains to be shown that in the transformation

x2 = gfoχ1 with g0 E G fixed and both α̂  G π(W) the coordinates of x2

are analytic functions of the coordinates of x1. Let g{ = T Γ " 1 ^ G W,

z = 1,2, then ^(gogι) = #oπ(ί7i) = #0^1 = X2 = 7Γ(flf2) s o ^ a * there
exists h G H such that

(5.8.2) g2 =gog1h.

Now keep ^ 0 and h fixed but allow gλ to vary in a neighborhood

(restricted to W) and define g2 by (5.8.2) rather than by π~~λx2 (then

<72 is no longer constrained to W). We still have that the coordinates

of xi are the first m coordinates of g^ i = 1,2. Since gλ —> gogχh is

analytic, the coordinates of g2 given by (5.8.2) are analytic functions

of those of #!, i.e., of the first m coordinates of gx since the last d-m

coordinates of gλ are 0. In particular, the first m coordinates of g2

are analytic functions of the first m coordinates of gx. D

The set W together with the function π " 1 : π(W) —> W in the

proof of Theorem 5.8.1 is called a local cross section of G/H. The

choice of a local cross section permits one to choose in each coset x in a

neighborhood of [e] a unique representative π~1(x) in an analytic way.

Furthermore, relative to the analytic structure on G/H constructed

with help of Theorem 5.8.1 we have that π is analytic, and on π(W)

π""1 is analytic and π o π " 1 is the identity.

5.8.2. EXAMPLE. Let G = O(n) and H the subgroup consisting

of all matrices diag(JΓ,Γ22) with Γ2 2 G O(s), where r, s > 0 and

r-\-s = n. We may identify H with O(s). In this example d = |n(n—1)

and d — m = \s(s — 1). Let j- be the (i, j ) element of Γ G O(n).
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Denote by Δ the set of (i, j) with l<j<i<nso that the 7 Γ

with(z, j ) G Δ are the elements of Γ below the diagonal. Likewise
denote by Δ 2 and Δ 2 the (i, j ) in Δ with j < r and j > r, respectively.
Thus, the matrices in H are labeled by the 7 - with (i, j ) G Δ 2 . A
basis of g is formed by the skew symmetric matrices X- = E- — E^
(see (5.2.3)) with (ij) G Δ. The X{j with (ij) G Δ 2 form a basis of
f). These X- are to be substituted for X l 5 . . . ,X d of Theorem 5.8.1.
Write the canonical coordinates ι t 1 ? . . . ,ud of Theorem 5.8.1 as t/ ,
(i, j ) G Δ, and denote the vector formed from the u by u. Then
(5.8.1) reads

(5.8.3) u —* exp j \ . uij^a | e x P
^(t,i)GΔi

in which Xi = E- — E^. The right hand side of (5.8.3) is the matrix
Γ = ((7,-j)) and (5.8.3) defines a bi-analytic relation between the u-
and the 7 .̂, (i,j) G Δ. Note that u = 0 corresponds to Γ = Jn, i.e.,
g = e. By differentiation of the function (5.8.3) it is easily found that
du- •= c?7jj, (hj) G Δ, at g = e. This will be used in Example 7.7.7.
D

5.9. Coset space of a group as a product of coset spaces
of subgroups.

5.9.1. ASSUMPTION. Let G and H be closed Lie subgroups of a
Lie group K such that

(5.9.1) K = GH.

This assumption means that every k G K can be written (not
necessarily uniquely) in the form k = gh, g G (7, h G H. By taking
inverses it follows immediately that (5.9.1) is equivalent to K = HG.
More about this structure of K will be said in Section 7.6 where the
interest lies in obtaining Haar measure on K from Haar measures on
G and H. This section, on the other hand, is concerned with another
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question as a preparation for Theorem 8.12. There K acts transitively

on a space and Go, Ho, KQ are the isotropy subgroups of (2, H, if,

respectively, at an arbitrarily chosen point of the space. The question

is whether K/KQ can be brought into 1-1 bi-analytic correspondence

with G/GQ x H/Ho. Under certain assumptions this will indeed be

possible. The method of proof makes use again of a canonical chart.

Of fundamental importance here, and in Section 7.6, is an in-

genious device of Bourbaki (1963, VII §2.9) in which K appears as

a homogeneous space under the action of G x H. It has not been

assumed that G and H have only e in common (although in most

applications this will be the case). Let

(5.9.2) F = GΠH

as a subset of /ί, and

(5.9.3) F* = {(g,g) : g € F},

considered as a subset of G x H. Now define the left action of G x H

on K by

(5.9.4) (flf, h)k = gkh~\ geG, h e H, ke K.

This action is transitive, and the isotropy subgroup of G X H at e 6 K

is JP*. Therefore, there is a 1-1 correspondence

(5.9.5) (6? x H)/F* <-> K.

5.9.2. ASSUMPTION. The 1-1 correspondence (5.9.5) is a home-
omorphism.

Assumption 5.9.2 will be satisfied if the action (5.9.4) of G x H
on K is proper (Corollary 2.3.15) or if G and H are second count-
able (Lemma 2.3.17). The latter will be true if JC is second countable,
since G and H are subspaces of K.

5.9.3. ASSUMPTION. G0; HO, KQ are closed Lie subgroups of G,
H, K, respectively, such that (i) G Π H = GQ Γ) Ho, and (ii) Ko =

G0H0.
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5.9.4. ASSUMPTION. hG^1 = Go for every h e H.

5.9.5. LEMMA. Assume 5.9.1 and 5.9.3, and let gx,g2 G G}

hχ^h2 G H. Then g-^h^ = g2h2 implies g2 £ gχGQ.

PROOF. g^1g2 = hλh2

λ G GΠH = Go ΠH0 (by 5.9.3(i)) C Go.

D

5.9.6. LEMMA. Assume 5.9.1, 5.9.3, and 5.9.4, an^ ktg1,g2 G

G, hlyh2 G H. Then g2h2 G g1h1K0 implies g2 G gχG0, h2 G h1H0.

PROOF. By 5.9.3(ii) and 5.9.4 we may write g2h2 G g1h1KQ

in the form g2h2 G g1Goh1Ho. Thus, there exists g0 G G o, hQ G

Ho such that #2/i2

 = <7iί7o î̂ o By Lemma 5.9.5, ^ 2 G ^iSΌ^o =

g^Q. Therefore, #2^2 ^ 9i^i^o implies /ι2 G (giG^1 g1h1K0 =

Go^Kt = (by 5.9.4) Λ j G o ^ = (by 5.9.3(ii)) hxG0HQ = hλHQGQ.

Therefore, there exists g'o G Go, h'o G -ff0 such that /ι2 = /ij/iό^ό

Then (ΛiΛό)" 1^ = ^ G G Π i ϊ = (by 5.9.3(i)) Go Π F o G ί ί 0

 s o t h a t

h2 G JI^IIQHQ = H^HQ. D

Consider the coset spaces K/Ko, G/Go, H/HQ. It will be conven-

ient not to distinguish between the points of K/Ko and the cosets

kKQ as subsets of K. Similarly, gGQ and hHQ. Define the function

φ : G/Go x H/Ho -^ K/Ko by

(5.9.6) φ(gG0,hH0) = ghK0.

5.9.7. LEMMA. Assume 5.9Λ, 5.9.3, and 5.9.4. Thenφ of (5.9.6)

is well-defined and bijective.

PROOF. Since any k G K can be written in the form gr/i,

by (5.9.1), any kK0 G K/KQ is of the form ghK0 and φ maps there-

fore onto. In order to show that φ is 1-1, suppose φ(g1GQ^h1H0) =

Φ(92

Goih2Ho)i w i t h 9i € G, h{ e H for i = 1,2. By (5.9.6) we

have then g1h1K0 = g2h2K0 and it follows from Lemma 5.9.6 that

^ i # o — h2H0. Ώ

The function φ is obviously analytic since group multiplication

in K is analytic. It will be shown now that φ~λ is analytic, so that
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φ establishes an analytic diffeomorphism between G/Go x H/HQ and

K/KQ. Since G and H are submanifolds of K, they inherit their

analytic structures from K. It was shown in Section 5.8 how unique

analytic structures are placed on the coset spaces K/Ko, G/Go, and

H/Ho. Now K acts analytically and transitively on the left of K/KQ

so that a chart at one point of K/KQ can be transferred to any other

point. Similarly, G x H acts analytically and transitively on the left

of G/Go x H/Ho so that a chart can be transferred from any point

to any other point. Therefore, it suffices to prove the bi-analyticity

of φ in a neighborhood of one point. In the proof we shall need the

following lemma.

5.9.8. LEMMA. Assume 5.9.1, 5.9.2, and 5.9.3. Let g, f); I, g0,

f)0, t 0 be the Lie algebras ofG, H, K, GQ) HQ, KQ, respectively. Then

(5.9.7) g + \) = I,

(5.9.8) So + ϊ)o = V

PROOF. Let dimK = d, dimG = d l 9 dimH = d2, and dimF =

dz {F defined in (5.9.2)). Then also dimF* = dz. Furthermore,

dim(<3 x H) = dλ + d2. Then according to Section 5.8 dim((G x

H)/F*) = dλ +d2—d3. This must equal dim K by the homeomorphism

assumption 5.9.2 (manifolds are locally Euclidean, and open subsets

of Euclidean spaces of different dimensions cannot be homeomorphic;

see, e.g., Dugundji, 1966, Chap. XVI, Theorem 6.3). This furnishes

the equation

(5.9.9) dλ + d2 - d3 = d.

Observe that the Lie algebra oΐ F = G ί Ί i ϊ i s g n ί ) , that any Lie

group and its Lie algebra have the same dimension, and that a Lie

algebra is a finite dimensional vector space. Therefore, the left-hand

side of (5.9.9) equals dimg + dim I) — dim(g Π ί)) = dim(g + I)), and

the right-hand side equals άimK so that (5.9.9) can be written as

(5.9.10)
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Furthermore, since both g and f) are contained in t, the same is true

of g + f). Then it follows from (5.9.10) that the linear spaces g +1) and

I must be equal, proving (5.9.7).

Equation (5.9.8) follows from (5.9.7) by applying the latter re-

sult to Go, #0, Ko instead of G, iJ, JΓ, taking into account As-

sumption 5.9.3(ii). Also needed is a 1-1 correspondence that results

from (5.9.5) by replacing (7, if, K by Go, Ho, Ko, respectively,

(5.9.11) (GoxHo)/F*~Ko.

Note that F* in (5.9.11) is the same as in (5.9.5) by virtue of As-

sumption 5.9.3(i). Consequently, (5.9.11) is the restriction of (5.9.5)

to Go, Ho, Ko and therefore the homeomorphism of (5.9.11) follows

from that of (5.9.5). D

5.9.9. THEOREM. Under Assumptions 5.9.1 through 5.9.4 the

function φ of (5.9.6) is an analytic diffeomorphism.

PROOF. As a consequence of Lemma 5.9.7 and the discussion

following its proof the only thing left to prove is that the corre-

spondence furnished by φ between some neighborhood of ([e], [e]) in

G/GQ x H/HQ and some neighborhood of [e] in K/KQ is bi-analytic.

These neighborhoods will be defined by an appropriately chosen canon-

ical chart at e 6 K, whose construction will now be given. Denote by

f the Lie algebra of F = Gf)H = Go ΠH0 (Assumption 5.9.3(i)). The

Lie algebras g, I), etc. were defined in the hypothesis of Lemma 5.9.8.

Then F C Go C G implies f C g0 C g. Choose a basis of f consisting of

vectors (actually, vector fields) W1^... , Wd3, where d3 = dimF. De-

note these vectors generically by Wm (m = 1,... , d3), and, for short,

refer to this basis as W. Extend W to a basis (Ϊ7, W) of g0 by choosing

additional vectors Uk, and then extend (U, W) to a basis (X, Ϊ7, W) of

G by choosing additional vectors X{. Similarly, we have F C Ho C H

and by choosing vectors Vί in f)0 and Yj in ί) appropriately we have a

basis (Ύ, W) of ίj0 and (F, V, W) of t). Then (X, F, U, V, W) is a basis

of Q + i) and therefore of 6, by (5.9.7). Furthermore, (£7, V, W) is a basis

of g0 + ()0 and therefore of £0, by (5.9.8). The various charts that we
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need will be defined in terms of the above vectors via the exponential
map. This involves linear combinations of the vectors, but in order
to avoid bulky notation with sums and subscripts we shall make the
convention that an expression such as, for instance, ΣwmWm (sum
over m from 1 to d3) will be abbreviated wW. Similarly, xX, etc.
With this convention there is on G at e a canonical chart

(5.9.12) (z, u, w) -> exp(xX) exρ(uU + wW).

By the proof of Theorem 5.8.1, x forms a coordinate system of a chart
on a neighborhood, say A, of G/Go at [e]. Similarly,

(5.9.13) (y, w, w) -> exp(yF) exp(vV + wW)

is a chart on H at e, so y is a coordinate system of a chart on a
neighborhood, say 5, of H/Ho at [e]. Finally, as a chart on K at e
choose

(5.9.14) (#, y,u,υ,w) —» exp(xX)exp(yY)exp(uU + vV + wW\

and use the fact that (£7, V, W) is a basis of 60 to conclude that (#,y)
is a coordinate system of a chart on a neighborhood, say C, of K/Ko

at [e]. Thus, there is the same coordinate system (#, y) on A x B as
on C. Restrict </> of (5.9.6) to A x J5, which is possible by taking x,
etc. in (5.9.12)-(5.9.14) small enough. In (5.9.6) let g and h be given
by the right-hand sides of (5.9.12) and (5.9.13), respectively (but not
necessarily with the same value of w). Write this as

(5.9.15) g = exp(xX)g0, h = exρ(yY)h0,

for some gQ G G o , h0 G i ϊ 0 . Then on the right-hand side of (5.9.6) we
have #/ι = exp(#X)#0 exp(yY)hQ = exp(xX)exp(yY)g'oho for some
9o £ ^o ^y Assumption 5.9.4. Furthermore, g'^h^ = fc0 G i^0 ^y
Assumption 5.9.3(ii). Therefore,

(5.9.16) flfΛ = exp(xX) exp(yF)A;0
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for some kQ = Ko. We have now that gGQ and hH0 in (5.9.6) have
coordinates x, y, respectively, and ghKQ has coordinates (#, y) by com-
paring (5.9.16) to the chart (5.9.14). Hence, if φ on A x B is written
as a function, say (/>*, of (#,y), then

(5.9.17) ^"(*,y) = (*,?)•

This is the identity function, therefore trivially an analytic diffeomor-
phism. D

5.9.10. REMARK. In Theorem 5.9.9 the groups G and H are
treated asymmetrically. It is true that Assumptions 5.9.1, 5.9.2,
and 5.9.3 are symmetric in G and if, but Assumption 5.9.4 is not,
and the order of g and h on the right-hand side of (5.9.6) also matters.
The theorem remains of course true if in Assumption 5.9.4 G and H
are interchanged and on the right-hand side of (5.9.6) gh is replaced
by hg. This will be used in Chapter 11. D




