CHAPTER 4

Differential Forms on Manifolds

4.1. Grassmann algebra. It may be helpful to precede the formal definition by a short informal discussion. We shall keep a given differentiable manifold M and an arbitrary point $p \in M$ fixed throughout this section. Let f be a C^{1} function $M \rightarrow R$ and $d f$ its differential. It was seen in Chapter 3 that one of the two possible interpretations of the value of $d f$ at p is a linear functional on the tangent space M_{p}. That is, $d f$ at p is a member of the space M_{p}^{*} dual to M_{p}. In differential geometry there is a need for functions whose arguments consist of more than one element of M_{p}. The case of two elements is especially prevalent, for instance in the notions of curvature and torsion transformations (see Bishop and Crittenden, 1964). In this monograph the most important case will be d arguments, where $d=\operatorname{dim} M$, since that will be used to construct a measure on M (Section 6.6). In general, then, we are going to define, for every $1 \leq k \leq d$, a differential form ω of degree k, or, simply, a k-form. Its value at p is denoted ω_{p} and will be defined as a real valued function of a certain kind on the k-fold product $M_{p} \times \cdots \times M_{p}$. (The extension to ω_{p} being vector valued is important in differential geometry, but not for the purpose of this monograph.)

In order to simplify the notation put $W^{k}=M_{p}^{\times k}=k$-fold product of M_{p} with itself ($k \geq 1$). A real valued function u on W^{k} is said to be k-linear if u is linear in each of its k arguments separately. The function u is called alternating if u changes sign whenever two arguments are interchanged. Equivalently, this can be expressed in
terms of arbitrary permutations of the arguments, as follows. Let G_{k} be the group of permutations π of the integers $1, \ldots, k$ and let $\operatorname{sgn}(\pi)$ be +1 or -1 according as π is even or odd. Then u is alternating if

$$
\begin{equation*}
u\left(t_{\pi 1}, \ldots, t_{\pi k}\right)=\operatorname{sgn}(\pi) u\left(t_{1}, \ldots, t_{k}\right) \tag{4.1.1}
\end{equation*}
$$

for $t_{1}, \ldots, t_{k} \in M_{p}, \pi \in G_{k}$.
Consider all u on W^{k} that are k-linear and alternating. This is a finite dimensional vector space, say V_{k}. As an example take $k=2$. Relative to a chosen basis in M_{p} let $t^{i}, i=1, \ldots, d$, be the components of $t \in M_{p}$. Then a 2 -linear alternating function u on W^{2} must be of the form $u\left(t_{1}, t_{2}\right)=\sum_{i j} a_{i j} t_{1}^{i} t_{2}^{j}$ (sum over all $i, j=1, \ldots, d$), with $a_{j i}=-a_{i j}$. Thus, u can be written as

$$
\begin{equation*}
u\left(t_{1}, t_{2}\right)=\sum_{i<j} b_{i j}\left(t_{1}^{i} t_{2}^{j}-t_{2}^{i} t_{1}^{j}\right) \tag{4.1.2}
\end{equation*}
$$

with arbitrary $b_{i j}(1 \leq i<j \leq d)$. Therefore, the 2-linear alternating functions $t_{1}^{i} t_{2}^{j}-t_{2}^{i} t_{1}^{j}, 1 \leq i<j \leq d$, span V_{2}. Since they are linearly independent, they form a basis of V_{2} and it follows that $\operatorname{dim} V_{2}=$ $d(d-1) / 2$. For arbitrary $1 \leq k \leq d$ it will be proved that $\operatorname{dim} V_{k}=\binom{d}{k}$. For us of particular interest is the case $k=d$, when V_{d} is spanned by the single function $\sum_{\pi} \operatorname{sgn}(\pi) t_{\pi 1}^{1} \ldots t_{\pi d}^{d}$. Note that for $k=1, V_{1}$ is the space of linear functionals on M_{p}, i.e., $V_{1}=M_{p}^{*}$. It is also convenient to define V_{k} for $k=0: V_{0}=R$; then $\operatorname{dim} V_{0}=1$.

Next, define

$$
\begin{equation*}
V=V_{0} \oplus \cdots \oplus V_{d} \tag{4.1.3}
\end{equation*}
$$

(direct sum), then V is a vector space of dimension $\sum_{i=0}^{d}\binom{d}{i}=2^{d}$. A multiplication in V will now be defined that makes V into an algebra, called the Grassmann algebra over V_{1}. If $u, v \in V$ we shall write $u \wedge v$ for their product, and call it the wedge product. The multiplication is required to be distributive so that it suffices to define $u \wedge v$ if $u \in V_{k}, v \in V_{\ell}$, for all $0 \leq k, \ell \leq d$. If k or ℓ equals 0 , the multiplication is ordinary multiplication by a real number. Suppose
therefore that $1 \leq k, \ell \leq d$. Then $u \wedge v$ is defined as the function on $W^{k+\ell}$ such that for $t_{i} \in M_{p}, i=1, \ldots, k+\ell$, we have
(4.1.4) $u \wedge v\left(t_{1}, \ldots, t_{k+\ell}\right)$

$$
=(k!\ell!)^{-1} \sum_{\pi \in G_{k+\ell}} \operatorname{sgn}(\pi) u\left(t_{\pi 1}, \ldots, t_{\pi k}\right) v\left(t_{\pi(k+1)}, \ldots, t_{\pi(k+\ell)}\right) .
$$

When the sum on the right-hand side of (4.1.4) is written out it is seen that several terms have the same value as a result of the alternating character of u and v. For instance, if $k=1, \ell=2$, then the righthand side of (4.1.4) has $3!=6$ terms. But, for instance, two of the terms are $u\left(t_{1}\right) v\left(t_{2}, t_{3}\right)$ and $-u\left(t_{1}\right) v\left(t_{3}, t_{2}\right)$, and those are equal since $-v\left(t_{3}, t_{2}\right)=v\left(t_{2}, t_{3}\right)$. Thus, for $k=1, \ell=2$, (4.1.4) simplifies to
(4.1.5) $u \wedge v\left(t_{1}, t_{2}, t_{3}\right)=u\left(t_{1}\right) v\left(t_{2}, t_{3}\right)-u\left(t_{2}\right) v\left(t_{1}, t_{3}\right)+u\left(t_{3}\right) v\left(t_{1}, t_{2}\right)$,
in which the arguments $\left(t_{i}, t_{j}\right)$ of v have been written so that $i<j$. In general, for any k, ℓ, (4.1.4) can be written as
(4.1.6) $\quad u \wedge v\left(t_{1}, \ldots, t_{k+\ell}\right)$

$$
=\sum_{\pi} \operatorname{sgn}(\pi) u\left(t_{\pi 1}, \ldots, t_{\pi k}\right) v\left(t_{\pi(k+1)}, \ldots, t_{\pi(k+\ell)}\right)
$$

summed over all π for which $\pi 1<\cdots<\pi k$ and $\pi(k+1)<\cdots<$ $\pi(k+\ell)$. For instance, if $k=\ell=2$, then

$$
\begin{align*}
u \wedge v\left(t_{1}, \ldots, t_{4}\right)= & u\left(t_{1}, t_{2}\right) v\left(t_{3}, t_{4}\right)-u\left(t_{1}, t_{3}\right) v\left(t_{2}, t_{4}\right) \\
& +u\left(t_{1}, t_{4}\right) v\left(t_{2}, t_{3}\right)+u\left(t_{2}, t_{3}\right) v\left(t_{1}, t_{4}\right) \tag{4.1.7}\\
& -u\left(t_{2}, t_{4}\right) v\left(t_{1}, t_{3}\right)+u\left(t_{3}, t_{4}\right) v\left(t_{1}, t_{2}\right) .
\end{align*}
$$

The function $u \wedge v$ defined by (4.1.4) is easily seen to be ($k+\ell$)-linear and can be verified to be alternating (see, e.g., the examples (4.1.5) and (4.1.7)). Thus, $u \wedge v \in V_{k+\ell}$ provided $k+\ell \leq d$. If $k+\ell>d$, then one of the arguments t_{i} of $u \wedge v$ must be a linear combination of the remaining arguments and then linearity and alternation of $u \wedge v$ forces its value to be 0 . It follows that $u, v \in V$ implies $u \wedge v \in V$. The
multiplication is easily checked to be associative so that we can freely write $u \wedge v \wedge w$, etc. In particular, if $u_{1}, \ldots, u_{k} \in V_{1}$, then repeated application of (4.1.4) or (4.1.6) yields

$$
\begin{gather*}
\left(u_{1} \wedge \cdots \wedge u_{k}\right)\left(t_{1}, \ldots, t_{k}\right)=\sum_{\pi \in G_{k}} \operatorname{sgn}(\pi) u_{1}\left(t_{\pi 1}\right) \cdots u_{k}\left(t_{\pi k}\right), \tag{4.1.8}\\
u_{1}, \ldots, u_{k} \in V_{1} .
\end{gather*}
$$

For $k=2$ this reads $u_{1} \wedge u_{2}\left(t_{1}, t_{2}\right)=u_{1}\left(t_{1}\right) u_{2}\left(t_{2}\right)-u_{1}\left(t_{2}\right) u_{2}\left(t_{1}\right)$, from which follows

$$
\begin{equation*}
u \wedge v=-v \wedge u, \quad u, v \in V_{1} . \tag{4.1.9}
\end{equation*}
$$

Take $u=v$ in (4.1.9), then one obtains

$$
\begin{equation*}
u \wedge u=0, \quad u \in V_{1} . \tag{4.1.10}
\end{equation*}
$$

Formula (4.1.8) will be used in particular when the u_{i} are elements of a basis e_{1}, \ldots, e_{d} of V_{1}. Then for any $1 \leq i_{1}, \ldots i_{k} \leq d$ the function $e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$ is an element of V_{k}. It follows from (4.1.8) that this function changes sign if any two subscripts on the e 's are interchanged (in particular, the function is 0 if two subscripts are equal) so that we only have to consider $i_{1}<\cdots<i_{k}$. It will be shown now that

$$
\begin{equation*}
\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq d\right\} \tag{4.1.11}
\end{equation*}
$$

is a basis of V_{k}. In order to shorten the notation define $S=$ all sequences $s=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leq i_{1}<\cdots<i_{k} \leq d$. Put

$$
\begin{equation*}
\varepsilon_{s}=e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}, \quad\left(i_{1}, \ldots, i_{k}\right)=s \in S \tag{4.1.12}
\end{equation*}
$$

Let $\left(t_{1}, \ldots, t_{d}\right)$ be the basis of M_{p} dual to $\left(e_{1}, \ldots, e_{d}\right)$ and define

$$
\begin{equation*}
\tau_{s}=\left(t_{i_{1}}, \ldots, t_{i_{k}}\right), \quad\left(i_{1}, \ldots, i_{k}\right)=s \in S \tag{4.1.13}
\end{equation*}
$$

If in (4.1.8) on the left-hand side $u_{1} \wedge \cdots \wedge u_{k}$ is replaced by ε_{s} and $\left(t_{1}, \ldots, t_{k}\right)$ by τ_{s}, defined by (4.1.12) and (4.1.13), then on the righthand side of (4.1.8) only the term with π the identity permutation survives and yields 1 :

$$
\begin{equation*}
\varepsilon_{s}\left(\tau_{s}\right)=1, \quad s \in S \tag{4.1.14}
\end{equation*}
$$

On the other hand, again by (4.1.8),

$$
\begin{equation*}
\varepsilon_{s}\left(\tau_{s^{\prime}}\right)=0 \quad \text { if } s^{\prime} \neq s \tag{4.1.15}
\end{equation*}
$$

in which s^{\prime} is an arbitrary sequence $\left(i_{1}, \ldots, i_{k}\right)$. Now if u is an arbitrary element of V_{k}, then the properties of linearity and alternation imply that u is determined by its values on the τ_{s} of (4.1.13). I.e., if two elements of V_{k} coincide on each τ_{s}, then they must be the same function. It follows then from (4.1.14) and (4.1.15) that

$$
\begin{equation*}
u=\sum_{s \in S} u\left(\tau_{s}\right) \varepsilon_{s} \tag{4.1.16}
\end{equation*}
$$

since the right-hand side is also an element of V_{k} and both sides agree on each $\tau_{s}, s \in S$. Moreover, again by (4.1.14) and (4.1.15), the ε_{s} are linearly independent. Hence, (4.1.16) shows that (4.1.11) is a basis of V_{k}. It also follows that $\operatorname{dim} V_{k}=$ number of elements of $S=\binom{d}{k}$.

We have seen above that every element of $V_{k}(1 \leq k \leq d)$ is a linear combination of wedge products of the from (4.1.12). The factors in such a product are elements of V_{1} and the coefficients are in R, i.e., are elements of V_{0}. Therefore, V defined in (4.1.3) is generated by V_{0} and V_{1} (i.e., is a sum of products of elements of V_{0} and V_{1}). One can also define a Grassmann algebra V over V_{1} abstractly, where now V_{1} is a given d-dimensional vector space over a field F, by requiring the following properties of V : (i) V is an associative algebra over F with an identity element; (ii) V contains V_{1}; (iii) $u \wedge u=0$ for every $u \in V_{1}$; (iv) V is generated by F and V_{1}; (v) $\operatorname{dim} V=2^{d}$. It can be shown that these conditions determine the algebra uniquely (Cohn, 1957, Theorem 4.1.1; Bishop and Crittenden, 1964, Section 4.3, Remark (2)). Our Grassmann algebra, defined in terms of multilinear alternating functions, is a special case with $F=R$. The identity element is the number 1, and condition (iii) is satisfied in view of (4.1.10).
4.2. Differential forms. In Section 4.1 a Grassmann algebra V has been defined at an arbitrary $p \in M$. In order to show its dependence on p write $V(p)$. It is a sum of elements of the spaces $V_{k}(p)$, by (4.1.3), where $V_{0}(p)=R$, and for $1 \leq k \leq d, V_{k}(p)$ is a $\binom{d}{k}$ dimensional vector space of k-linear alternating functions on $M_{p}^{\times k}$. A member of $V_{k}(p)$ is called homogeneous of degree k. If at p a chart is chosen with local coordinates x_{1}, \ldots, x_{d}, then $d x_{1}, \ldots, d x_{d}$ is a basis of $M_{p}^{*}=V_{1}(p)$. Therefore, after replacing in (4.1.11) the e_{i} by the $d x_{i}$, we have that elements $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ of $V_{k}(p), 1 \leq i_{1}<\cdots<i_{k} \leq d$, form a basis of $V_{k}(p)$ so that an arbitrary element ω_{p} of $V_{k}(p)$ can be written as

$$
\begin{equation*}
\omega_{p}=\sum \alpha_{i_{1}, \ldots, i_{k}}(p) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}, \tag{4.2.1}
\end{equation*}
$$

where the sum is over all $1 \leq i_{1}<\cdots<i_{k} \leq d$, and the $\alpha_{i_{1}, \ldots, i_{k}}(p)$ are any real numbers.

A differential form of degree $k(1 \leq k \leq d)$ is a function ω that assigns to each $p \in M$ an element ω_{p} of $V_{k}(p)$. Then if X_{1}, \ldots, X_{k} are any vector fields on $M, \omega\left(X_{1}, \ldots, X_{k}\right)$ is a real valued function on M whose value at $p \in M$ equals $\omega_{p}\left(X_{1}(p), \ldots, X_{k}(p)\right)$. In order to make the notion of differential form useful more smoothness is needed.
4.2.1. Definition. Let M_{0} be an open subset of the C^{∞} manifold M and ω a differential form of degree k. Then ω is said to be $a C^{\infty}$ differential form of degree k, or simply a k-form, on M_{0} if every point of M_{0} has a neighborhood U such that for any C^{∞} vector fields X_{1}, \ldots, X_{k} on U the function $\omega\left(X_{1}, \ldots, X_{k}\right)$ is C^{∞} on U. $A n$ analytic k-form is similarly defined, with " C " " replaced everywhere by "analytic."

In applications M_{0} is usually all of M. A 1-form is also called a Pfaffian form; a special case of this is the differential $d f$ of a C^{∞} real valued function f. It is also convenient to define a 0 -form as any C^{∞} real valued function on M.

A definition equivalent to Definition 4.2.1 can be given in terms of charts. Let M_{0} be covered by a family of charts and consider
in (4.2.1) the α 's as functions of the local coordinates. Then ω is C^{∞} (resp. analytic) if and only if the α 's are C^{∞} (resp. analytic). This definition does not depend on the choice of admissible charts. It may not always be necessary to require the α 's to be C^{∞}. For instance, in some applications it may be sufficient for the α 's to be continuous, in which case ω is called a continuous differential form.

A k-form is a special case of a covariant tensor of order k. The latter entity is more general in that the alternating property is not imposed; only the k-linearity is retained. In this monograph tensors will not be used.
4.3. Change of variables. If at $p \in M$ a second admissible chart is chosen with local coordinates y_{1}, \ldots, y_{d}, then ω_{p} can also be written in terms of the $d y_{j}$. In order to derive this expression from (4.2.1) first express the $d x_{i}$ in terms of the $d y_{j}$, using (3.3.8) with the roles of the x 's and y 's interchanged:

$$
\begin{equation*}
d x_{i}=\left.\sum_{j=1}^{d} \frac{\partial x_{i}}{\partial y_{j}}\right|_{p} d y_{j}, \quad i=1, \ldots, d \tag{4.3.1}
\end{equation*}
$$

Then substitute the expressions (4.3.1) into the right-hand side of (4.2.1). From (4.1.8) it is seen that a wedge product is linear in each factor, hence the substitution of (4.3.1) into (4.2.1) produces a linear combination of terms of the form $d y_{j_{1}} \wedge \cdots \wedge d y_{j_{k}}$, where we need consider only $1 \leq j_{1}<\cdots<j_{k} \leq d$ by virtue of (4.1.9) and (4.1.10). For us the most important case is $k=d$ and then V_{d} is spanned by the single form $d x_{1} \wedge \cdots \wedge d x_{d}$. Substitution of (4.3.1) and linearity produces

$$
\begin{equation*}
d x_{1} \wedge \cdots \wedge d x_{d}=\left.\sum \frac{\partial x_{1}}{\partial y_{j_{1}}} \cdots \frac{\partial x_{d}}{\partial y_{j_{d}}}\right|_{p} d y_{j_{1}} \wedge \cdots \wedge d y_{j_{d}} \tag{4.3.2}
\end{equation*}
$$

in which the summation is over all $j_{i}=1, \ldots, d, i=1, \ldots, d$. However, $d y_{j_{1}} \wedge \cdots \wedge d y_{j_{d}}=0$ unless j_{1}, \ldots, j_{d} is a permutation, say $\pi \in G_{d}$, of $1, \ldots, d$ and then $d y_{j_{1}} \wedge \cdots \wedge d y_{j_{d}}=\operatorname{sgn}(\pi) d y_{1} \wedge \cdots \wedge d y_{d}$.

Thus, the right-hand side of (4.3.2) reduces to $d y_{1} \wedge \cdots \wedge d y_{d}$ multiplied by the coefficient

$$
\begin{equation*}
\left.\sum_{\pi \in G_{d}} \operatorname{sgn}(\pi) \frac{\partial x_{1}}{\partial y_{\pi 1}} \cdots \frac{\partial x_{d}}{\partial y_{\pi d}}\right|_{p}=\left.\frac{\partial(x)}{\partial(y)}\right|_{p} \tag{4.3.3}
\end{equation*}
$$

in which

$$
\begin{equation*}
\frac{\partial(x)}{\partial(y)}=\operatorname{det}\left(\left(\frac{\partial x_{i}}{\partial y_{j}}\right)\right) \tag{4.3.4}
\end{equation*}
$$

(There is a slight conflict of notation with (3.1.1) in that in (4.3.4) we do not take the absolute value of the right-hand side. It will usually be clear from the context which of the two definitions of Jacobian is intended.) From (4.3.2) and (4.3.3) we get

$$
\begin{equation*}
d x_{1} \wedge \cdots \wedge d x_{d}=\frac{\partial(x)}{\partial(y)} d y_{1} \wedge \cdots \wedge d y_{d} \tag{4.3.5}
\end{equation*}
$$

in which we now consider both sides as a d-form by letting p vary over a neighborhood in which the local coordinates x_{1}, \ldots, x_{d} as well as y_{1}, \ldots, y_{d} are defined. This shows that on such a neighborhood the d-form $d x_{1} \wedge \cdots \wedge d x_{d}$ can be used for integration as a volume element since (4.3.5) is the usual formula for the transformation of a volume element under a change of variables.

The result of the computation that led from (4.3.1) to (4.3.5) is restated below as a lemma in a form useful for later applications. Note that the roles of x and y are interchanged.
4.3.1 Lemma. Let $d x_{1}, \ldots, d x_{d}$ and $d y_{1}, \ldots, d y_{d}$ be 1 -forms related by $d y=A d x$, in which $d x$ and dy are $d \times 1$ column vectors with elements $d x_{i}, d y_{i}, i=1, \ldots, d$, respectively, and A is $d \times d$. Then

$$
\begin{equation*}
d y_{1} \wedge \cdots \wedge d y_{d}=(\operatorname{det} A) d x_{1} \wedge \cdots \wedge d x_{d} \tag{4.3.6}
\end{equation*}
$$

This result is used to determine how the Lebesgue measure of a subset of R^{d} transforms under a linear transformation of R^{d}. On R^{d}

Lebesgue measure λ is $\lambda(d x)=d x_{1} \wedge \cdots \wedge d x_{d}$, except that we discard any negative sign (this will be made more precise in Section 6.6). Define $(d x)$ to be the absolute value of the wedge product $d x_{1} \wedge \cdots \wedge$ $d x_{d}=\wedge_{i} d x_{i}$, say. I.e., $(d x)=\left|\wedge_{i} d x_{i}\right|$, and similarly $(d y)=\left|\wedge_{i} d y_{i}\right|$. Then (4.3.6) reads

$$
\begin{equation*}
(d y)=|\operatorname{det} A|(d x) . \tag{4.3.7}
\end{equation*}
$$

4.4. Orientation. A C^{∞} manifold M of dimension d is called orientable if it admits a continuous d-form that does not vanish anywhere on M. (See Chevalley, 1946, Chap. V, §VI. For a different definition that is equivalent for paracompact spaces (defined in Section 13.3) see Bishop and Crittenden, 1964, Section 4.5, Lemma 3.) In terms of coordinates, if M is covered by a family of charts, then on each chart with local coordinates x_{1}, \ldots, x_{d}, the d-form ω is represented by an expression of the form

$$
\begin{equation*}
\omega_{p(x)}=\alpha(x) d x_{1} \wedge \cdots \wedge d x_{d} \tag{4.4.1}
\end{equation*}
$$

where $p(x) \in M$ is the point corresponding to the coordinates $x=$ $\left(x_{1}, \ldots, x_{d}\right)$. Then M is orientable if and only if on every chart α is continuous and never 0 . This clearly does not depend on the choice of charts since under a change of variables from x to y the new function α is the old one multiplied by (4.3.4) which is continuous and $\neq 0$.

If M is orientable and ω is a continuous nonvanishing d-form on M, then C^{∞} vector fields X_{1}, \ldots, X_{d} on M exist such that $\omega\left(X_{1}, \ldots\right.$, $\left.X_{d}\right)>0$ everywhere on M. It amounts to the same by saying that for every $p \in M$ there is an ordered basis of M_{p} such that ω_{p} evaluated at this basis is positive. One says that M is positively oriented by this choice of basis. In contrast, M is negatively oriented by vector fields Y_{1}, \ldots, Y_{d} if $\omega\left(Y_{1}, \ldots, Y_{d}\right)<0$ everywhere on M (take, e.g., the Y 's an odd permutation of the X 's).

The geometric meaning of orientability can best be understood by some examples. In the Euclidean plane R^{2} with coordinates x, y, the 2 -form $\omega=d x \wedge d y$ is continuous and defined on all of R^{2}. For the vector fields $\partial / \partial x, \partial / \partial y$, we have $\omega(\partial / \partial x, \partial / \partial y)=d x(\partial / \partial x) d y(\partial / \partial y)-$
$d x(\partial / \partial y) d y(\partial / \partial x)=1-0=1$. Thus, $(\partial / \partial x, \partial / \partial y)$ orients R^{2} positively. On the other hand, $(\partial / \partial y, \partial / \partial x)$ orients R^{2} negatively. Similar considerations show that R^{n} is orientable for every $n \geq 1$. For $n=3$ and $\omega=d x \wedge d y \wedge d z$, the three even permutations of $(\partial / \partial x, \partial / \partial y, \partial / \partial z)$ orient R^{3} positively, the odd permutations negatively.

We shall show now that the unit circle C is also orientable. Let C analytically be defined by the unit interval $0 \leq x \leq 1$ with $x=0$ and $x=1$ identified as the same point, say p_{0}. We cover C by two charts; one is $(0,1)$ with x as its coordinate; the other is the union of $0 \leq x<\frac{1}{2}$ and $\frac{1}{2}<x \leq 1$ with coordinate $u=x$ if $0 \leq x<\frac{1}{2}$ and $u=x-1$ if $\frac{1}{2}<x \leq 1$, so that $-\frac{1}{2}<u<\frac{1}{2}$. Let ω be defined as $d x$ on the first chart and as $d u$ on the second. Wherever the charts overlap it is seen that $d x=d u$; thus, ω is well defined. Also, ω is continuous and nowhere 0 . The vector field X that equals $\partial / \partial x$ on the first, $\partial / \partial u$ on the second chart, orients C positively, whereas $-X$ orients it negatively. This corresponds to the two distinct ways of going around the circle. Similarly, the 2 -sphere $x^{2}+y^{2}+x^{2}=1$ is orientable.

The circle example can be extended by crossing C with the real line R, obtaining a cylinder $C \times R$. Since both C and R are orientable, so is $C \times R$. Analytically a cylinder can be represented by $\{(x, y)$: $0 \leq x \leq 1,-\infty<y<\infty,(0, y)=(1, y)$ for every $y\}$. That is, the cylinder is a vertical strip in the plane with the left and right edges identified. Now change this example by identifying those edges in opposite direction:

$$
\begin{align*}
& M=\{(x, y): 0 \leq x \leq 1,-\infty<y<\infty \tag{4.4.2}\\
& \\
& (0, y)=(1,-y) \text { for every } y\} .
\end{align*}
$$

Then M is a Moebius strip and is not orientable, as will be shown now. Cover M by two charts. The first covers all points with $0<x<$ 1 , and we may take (x, y) as the coordinates in this chart. The second covers the points with $0 \leq x<\frac{1}{2}$, and $\frac{1}{2}<x \leq 1$. On this chart the coordinates are chosen (u, v), with $u=x, v=y$ when $0 \leq x<\frac{1}{2}$
and $u=x-1, v=-y$ when $\frac{1}{2}<x \leq 1$. Suppose there were a continuous and nowhere vanishing 2 -form ω on M, represented on the first chart by $\alpha(x, y) d x \wedge d y$ and on the second by $\beta(u, v) d u \wedge d v$, with α, β continuous in their arguments. These two expressions are to be equated at all points where the charts overlap. For the points with $0<x<\frac{1}{2}$, therefore $0<u<\frac{1}{2}$, this gives $\beta(u, v)=\alpha(u, v)$, and for the points with $-\frac{1}{2}<u<0$ we get $\beta(u, v)=-\alpha(u+1,-v)$ (using $d u \wedge d v=-d x \wedge d y$ on this set). Since α is continuous on the strip $0<x<1$ and nowhere 0 , it must be of one sign. WLOG suppose $\alpha>0$ on $0<x<1$. Then the equations $\beta(u, v)=\alpha(u, v)$ for $u>0$ and $\beta(u, v)=-\alpha(u+1,-v)$ for $u<0$ show that $\beta(u, v)>0$ for $u>0$ and <0 for $u<0$. If β is to be continuous at $u=0$ we must have $\beta(0, v)=0$ for every v. But then $\omega=0$ in the points $(0, y)$, contradicting the assumption that ω does not vanish anywhere.
4.5. Adjoint of a differential. Let M and N be C^{∞} manifolds, with $\operatorname{dim} M=d, \operatorname{dim} N=e$, and let $f: M \rightarrow N$ be a C^{∞} mapping. We have seen in Chapter 3 that $d f$ is a linear transformation $M_{p} \rightarrow N_{q}$, for $p \in M$ and $q=f(p)$. This linear transformation also transforms differential forms, but in the opposite direction. Let θ be a k-form on N, then it determines a k-form ω on M by the formula

$$
\begin{equation*}
\omega\left(X_{1}, \ldots, X_{k}\right)=\theta\left(d f X_{1}, \ldots, d f X_{k}\right), \tag{4.5.1}
\end{equation*}
$$

for arbitrary C^{∞} vector fields X_{1}, \ldots, X_{k} on M. We shall denote this linear map $\theta \rightarrow \omega$ by δf and call δf the adjoint of $d f$. (It is a special case of the general notion of the adjoint of a linear transformation on one linear space into another. See Dunford and Schwartz, 1958, VI 2.1.) Thus, (4.5.1) can also be written $\omega=\delta f(\theta)$. In terms of charts, suppose $p \in M$ has a neighborhood U_{p} with local coordinates $x=\left(x_{1}, \ldots, x_{d}\right)$ and $q=f(p) \in N$ has a neighborhood $V_{q} \supset f\left(U_{p}\right)$ with local coordinates $y=\left(y_{1}, \ldots, y_{e}\right)$, then a k-form on V_{q} has the form

$$
\begin{equation*}
\theta=\sum \beta_{i_{1}, \ldots, i_{k}}(y) d y_{i_{1}} \wedge \cdots \wedge d y_{i_{k}} \tag{4.5.2}
\end{equation*}
$$

where the sum is over all $1 \leq i_{1}<\cdots<i_{k} \leq e$. In order to write $\omega=\delta f(\theta)$ in terms of the x 's, express in (4.5.2) y as a function of x with help of f; the $d y_{i}$ transform as in (3.3.8). With the notation $D_{i j}=\partial y_{i} / \partial x_{j}$ and taking as an example $k=2$, the 2 -form $\theta=d y_{1} \wedge$ $d y_{2}$ becomes $\delta f(\theta)=\left(\sum D_{1 j_{1}} d x_{j_{1}}\right) \wedge\left(\sum D_{2 j_{2}} d x_{j_{2}}\right)=\sum\left(D_{1 j_{1}} D_{2 j_{2}}-\right.$ $\left.D_{1 j_{2}} D_{2 j_{1}}\right) d x_{j_{1}} \wedge d x_{j_{2}}$, where the last sum is over all $1 \leq j_{1}<j_{2} \leq d$.

Now suppose that $\operatorname{dim} M=\operatorname{dim} N=d$ and suppose that f is a diffeomorphism $M \rightarrow N$. At $p \in M$ let there be a chart with local coordinates $x=\left(x_{1}, \ldots, x_{d}\right)$, and similarly at the corresponding point $q=f(p) \in N$ a chart with $y=\left(y_{1}, \ldots, y_{d}\right)$. Then locally y is a C^{∞} function of x. Consider on the y-chart the d-form $\theta=d y_{1} \wedge \cdots \wedge d y_{d}$. Then its image $\delta f(\theta)$ on the x-chart is

$$
\begin{equation*}
\delta f\left(d y_{1} \wedge \cdots \wedge d y_{d}\right)=\frac{\partial(y)}{\partial(x)} d x_{1} \wedge \cdots \wedge d x_{d} \tag{4.5.3}
\end{equation*}
$$

by the same computation that led to (4.3.5) (the Jacobian on the right-hand side of (4.5.3) is defined in (4.3.4)). In particular, suppose $M=N$ and G is a group with C^{∞} action on M. Then (4.5.3) can be applied to each diffeomorphism of M with itself determined by $g \in G$. This will be used in Section 5.3 when M is G itself.

Consider again arbitrary C^{∞} manifolds M and N and $f: M \rightarrow$ N a C^{∞} mapping. Suppose θ_{1} is a k-form and θ_{2} an ℓ-form on N; let $\theta_{1} \wedge \theta_{2}$ be their wedge product. Then by using (4.1.4) or (4.1.6) it is easily verified that

$$
\begin{equation*}
\delta f\left(\theta_{1} \wedge \theta_{2}\right)=\delta f\left(\theta_{1}\right) \wedge \delta\left(\theta_{2}\right) \tag{4.5.4}
\end{equation*}
$$

This can of course be extended to any number of factors, and is especially useful if each factor is a 1-form. We shall apply it in Section 5.3.
4.6. Exterior differentiation. (This concept will not be used in the sequel but is described here briefly since it fits in naturally with differential forms.) Let ω be a k-form on an open subset of M, $1 \leq k \leq d$. From ω we build a $(k+1)$-form, written $d \omega$ and called the exterior derivative of ω. At any $p \in M$ where ω is defined
and for arbitrary $t_{1}, \ldots, t_{k+1} \in M_{p}$ we have to define the value of $(d \omega)_{p}\left(t_{1}, \ldots, t_{k+1}\right)$. For this purpose let X_{1}, \ldots, X_{k+1} be any C^{∞} vector fields such that $X_{i}(p)=t_{i}, i=1, \ldots, k+1$. Also, in order to shorten the notation, if (a_{1}, \ldots, a_{n}) is a sequence of any n objects, let $a_{(n) \backslash i}$ stand for the sequence $\left(a_{1}, \ldots, a_{n}\right)$ with a_{i} deleted. Similarly, $a_{(n) \backslash i, j}$ is the sequence with both a_{i} and a_{j} deleted. Then define

$$
\begin{align*}
& (d \omega)_{p}\left(t_{1}, \ldots, t_{k+1}\right)=\left\{\sum_{1 \leq i \leq k+1}(-1)^{i-1} X_{i} \omega\left(X_{(k+1) \backslash i}\right)\right. \tag{4.6.1}\\
& \left.+\sum_{1 \leq i<j \leq k+1}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{(k+1) \backslash i, j}\right)\right\}(p)
\end{align*}
$$

(i.e., the function in curly brackets on the right-hand side of (4.6.1) is to be evaluated at p). Note that the i th term of the first sum on the right-hand side of (4.6.1) is the derivative with respect to the tangent vector $X_{i}(p)$ of the function $\omega\left(X_{(k+1) \backslash i}\right)$. It can be shown that the right-hand side of (4.6.1) is independent of the choice of X_{1}, \ldots, X_{k+1} provided $X_{i}(p)=t_{i}$, and that $(d \omega)_{p} \in V_{k+1}(p)$ (see Bishop and Crittenden, 1964, Section 4.6). As an example let $k=1$, so that $d \omega$ is a 2 -form. Then (4.6.1) reads

$$
\begin{equation*}
(d \omega)_{p}\left(t_{1}, t_{2}\right)=\left\{X_{1} \omega\left(X_{2}\right)-X_{2} \omega\left(X_{1}\right)-\omega\left(\left[X_{1}, X_{2}\right]\right)\right\}(p), \tag{4.6.2}
\end{equation*}
$$ with any X_{1}, X_{2} such that $X_{i}(p)=t_{i}$.

With help of a chart it is easy to write down $d \omega$ in terms of ω in a neighborhood of a point. Suppose in terms of local coordinates x_{1}, \ldots, x_{d} at p we have

$$
\begin{equation*}
\omega=\sum \alpha_{i_{1}, \ldots, i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \tag{4.6.3}
\end{equation*}
$$

where the summation is over all $1 \leq i_{1}<\cdots<i_{k} \leq d$, and the $\alpha_{i_{1}, \ldots, i_{k}}$ are C^{∞} functions. Then

$$
\begin{equation*}
d \omega=\sum d \alpha_{i_{1}, \ldots, i_{k}} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} . \tag{4.6.4}
\end{equation*}
$$

This follows from (4.6.1) by taking for $\left(X_{1}, \ldots, X_{k+1}\right)$ the sequence $\left(\partial / \partial x_{j_{1}}, \ldots, \partial / \partial x_{j_{k+1}}\right)$ for every choice of $1 \leq j_{1}<\cdots<j_{k+1} \leq d$, and by observing that these vector fields have zero brackets. The exterior derivative can also be defined with help of (4.6.4) (as is done in Cohn, 1957, Section 4.3) but it has to be shown then that this definition does not depend on the choice of charts.

If ω is a 0 -form, then ω is a C^{∞} function, say f. In that case we define $d \omega$ simply as $d f$. For any $k, 0 \leq k \leq d$, the exterior derivative is linear as a function on the space of k-forms into the space of $(k+1)$ forms. Additionally, the following properties can be shown: (i) if ω is a k-form and θ an ℓ-form on M, then $d(\omega \wedge \theta)=(d \omega) \wedge \theta+(-1)^{k} \omega \wedge(d \theta)$; (ii) $d^{2}=0$, i.e., $d(d \omega)=0$ for any differential form ω.

