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A central limit theorem for a class of stationary
sequences is given. The proof is based on the spectral
analysis of an associated Perron-Frobenius type operator.

1. Introduction.

The central limit problem for sums of stationary sequences has such a

long history (dating back to Markov and Bernstein, at least) that one might have

hoped the final chapter had by now been written. Alas, this is not the case.

It is now known that the central limit theorem will generally hold for

a stationary sequence when there is a certain degree of "mixing" present A

variety of general results specifying sufficient conditions for the validity of

the central limit theorem are presented in the treatise by Ibragimov and Linnik

(1971), and further references to the literature are made there. So far as I

have been able to discern, there are four methods for obtaining such results:

(i) Markov's method of moments; (ii) Bernstein's method of approximation by

i.i.d sequences; (iii) Doeblin's method of finding "regeneration times"; and

(iv) a martingale method which is apparently due to Gordin (1969). Although

these methods are very powerful, enabling one to work with very general
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processes, all suffer form the disadvantage of being ill-suited to making more

precise asymptotic estimates than those in the central limit theorem.

The purpose of this paper is to present another approach to the

central limit theorem which gives refined estimates of a local character

(including estimates of large deviation probabilities). This method is based on

spectral analysis, the main tools being an infinite-dimensional Perron-Frobenius

type theorem of Ruelle and an extension due to Pollicott. Unfortunately it is

much more limited in scope than the Markov and Bernstein methods; but it does

include under its aegis functionals on many of the concrete dynamical systems of

interest in ergodic theory. Examples are sequences of the form {f(T x)} _,

n>0

where f: M + R is a "smooth" function on a compact space M and T: M •>• M is a

transformation which admits a "Markov partition", such as an ergodic endo-

morphism of a compact abelian group, an expanding map of the unit interval, and

certain Axiom A diffeomorphisms. The reduction of such systems to the study of

one-dimensional Gibbs states is carried out in Bowen (1974). (The simplest such

system is the sequence {f(2 x)} , where f is a smooth periodic function on R

of period 1. This system alone has received a lot of attention: cf. Kac (1949).

The basic idea in the approach is very simple (although some of the

technical details of the Fourier analysis are rather-technical). It is Kac's

idea that additive functionals of a process may be studied by means of an

associated "Feynman-Kac" semigroup It is quite likely that this approach may

yield similar results in other contexts, such as stationary random fields in

dimensions higher than one.

The main results of the paper are in section 3 Sections 1 and 2 are

devoted to the necessary operator theory and some basic properties of one-

dimensional Gibbs states I have attempted to follow the hotational conventions

of Pollicott (1983) and Bowen (1974). Many of the proofs are omitted, but may

be found in Lalley (1985).

Important note: After writing this paper I learned that a similar

idea was used by Rousseau-Egele (1983) in his study of expansive transformations

of the unit interval
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2 Ruelle
τ
s Perron-Frobenius Theorem and Gibbs Measures.

Let A be an irreducible aperiodic kxk matrix of zeros and ones, and

let

Σ
A

 =
 *

X € Π
 ί

1
*

2
*--'*

1
^^

 A
(

χ

n
>

x

n
+i)

 = ι f o r e v e r
y n > 0} .

The space Σ is compact and metrizable in the product topology (in the special

case k = 2 and A(i,j) = 1 for i,j = 1,2, Σ is homeomorphic to the Cantor set),

Let σ: Σ + Σ
A
 be the forward shift operator:

A A

( σ x )
n "

 X
n

+
1>

 n >
 °

The fact that A is irreducible and aperiodic implies that σ is topologically

mixing.

For f,g € C(Σ ) (here C(Σ ) denotes the Banach space of continuous
** A

complex-valued functions on Σ ) defined L^g € C(Σ ) by
A t A

(1.1) L
f
g(x) = Σ e

f ( y )
f(y);

y: σy=x

L
f
 will be called an RPF operator (for Ruelle, Perron, and Frobenius). Clearly

L.: C(Σ ) •> C(Σ ) is a bounded linear operator which is positive when f is

real. Notice that

(1.2) L
f
g = L

Q
(e

f
g)

and

S f S f(y)
(1.3) l£ g(x) = L^(e

 n
 g)(x) = Σ

n
 e

Π
 g(y),

y: σ y=x

where
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(1.4) S
Q
f Ξ 0,

S
n

f = f + f o
σ

+
 • "

 + f o
σ

n
"

1
'

 f
^ ( Σ ) .

For f € C(Σ^) define var
R
 f = sup{|f(x)-f(y)|: x

i
=y

i
; for every i,

0 < i < n} and for 0 < θ < 1 define the Holder norm | . | by

If L
 β
 βup .

Λ
 var f/Θ

n
. Let A~ - {f € C(Σ^): If I < »}

;
 then A

Λ
 is a Banach

1
 'Θ n>U n Ό A • 1

Ό ϋ

algebra when endowed with the norm | | f | |
 Θ
 - | f |

Θ

+
 I I ̂  I I <» For

 an
Y

0 < Θ < 1 A is dense in C(Σ*). Also, for f € A0, Lf
(A

θ
> ̂  A

0
.

THEOREM A (Ruelle): For each real f € A
π
 there exists a real λ_ € (0,») which

is a simple eigenvalue of Lf: A^ •»• A-., with strictly positive eigenfunction

h f. Moreover, spectrum (Lf) {λ } is contained in a disc of radius strictly less

than λ
f
.

Proofs may be found in Bowen (1974), Ruelle (1978) and Pollicott (1984). Bowen

and Ruelle also prove

THEOREM B: For each real f ξ k
Q
 there is a positive Borel measure v_ € C(Σ )*

such that (L
f
)v-. = ^f

v
f
 anc

*
 s u c n

 that

lim ||l£ g/λ° - (/ gdv
f
)h

f
||

β
 = 0

for all g € C(Σ ) . Furthermore, support v = Σ .

A. t A

(Bowen does not prove explicitly that support v̂ . = Σ. but this follows easily

from the fact that σ is topologically mixing.)

The spectrum of L
f
 for complex f € AQ was described by Pollicott

(1984).
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THEOREM C (Pollicott): Suppose f - u + iv € A 0.

(i)If for some a € [-ττ,π] ,(v-a)/2π is homologous to an integer-valued

function then e
 a
λ is a simple eigenvalue of L

f
 and the rest of the

spectrum is contained in a disc of radius strictly less than

λ .
u

(ii)Otherwise the spectral radius of L
f
 is strictly less than λ .

(Two functions f,g € C(Σ ) are said to be homologous if there

A

exists ψ € C(Σ ) such that f-g = ψ - ψoσ).

A

The mapping f •* log λ is usually called the pressure; it plays the

same role in the study of Gibbs states as does the cumulant generating function

in the study of sums of i i d random variables. This analogy will be exploited

in section 3.

It will be convenient to normalize the eigenfunction and eigenmeasure

in a different manner than is customary. Thus, assume that for f 6 A. real

J
 +
 1 dv « 1,

Σ
A

and

/ h
f
dv

f
 = 1.

This normalization will be used (implicitly) in the perturbation arguments of

the next section,

Bowen and Ruelle used Theorems 1 and 2 to prove the existence of

"equilibrium states" (Gibbs measures) for σ The Gibbs measure μ
f
 is defined

for real f € AQ by

dUf
(1.5) ^ = h f .
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It is easily verified that μ is a σ-invariant probability measure on Σ (cf.

I A

Bowen, Lemma 1.13) and in fact that (Σ ,σ,μ ) is strongly mixing (it is even

Bernoulli: cf Bowen, Theorem 1.25 for the easy argument). It is easily

verified that if f is constant then under μ. the coordinate variables x
n
 are

i.i.d. Bernoulli (1/2); if f(x) =
 f
(

χ
(p

 t h e n u n d e r
 H

f

 t n e
 coordinate variables

are i.i.d. Bernoulli (p) for suitable p; and if f(x) = f(XQ,X^, .. ,x^_^) then

under μ
f
 the coordinate variables are k-step Markov dependent

The following result is helpful in understanding the structure

of μ
f
. (However, it will not be used in obtaining the results of sections 2-3.)

Proposition 1. For any sequence x = (x~,x.,...) ξ Σ , any real f 6 A^, and any

m > 1

S f(x)

h
f
(x)

(1.6) μ
f
(x

()
,x

1
,...,x

m
_

1
|x

m
,x

m
_

1
,...) = — _ — _ —

λ
f
 h

f
(σ x)

Here the LHS is the conditional probability of X Q »
X
1 , >

x

m
-i appearing in the

first m slots given that
 x

m
>

x

m
+i> appear in the slots m,m+l,... .

(Technically

μ
f
(x

o >
x

1
,...,x

m
_

1
|x

m
x

m + 1
,...) - lim μ

f
 (x

Q
,x

1
 > .. ,x

m - 1
 |x

m>
>

^
f
ίy: y^=x , 0<j<m+n}

the limit exists with μ--measure one, by the martingale convergence theorem.)

The equation (1.6) explains why μ. is called a "Gibbs state": note that f(x)

plays the role of an energy function. The proof is given in Lalley (1985).

Proposition 2: For each real f 6 Ag, all
 g >

ψ £ c(Σ
+
),

 a n d
 every integer

 m
 > Q

(1.7) E
μ
 (e

 m
 g) = \^ !

 +
 L^

+φ
(gh

£
)(x)dv

f
(x).

f Σ
A
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(Henceforth E will be used to denote the expectation operator / . dμ
f
)<

Proof. Using (1.3) and (1.5), we have

S ψ S ψ(x)
E

μ
 (e

 m
 g). - / e

 m
 g(x)h

f
(x)v

f
(dx)

s
 Ψ(

χ
> * «•

λ?
1
 / e

 m
 g(x) h

f
(x) ((L

f
)

m
 v

f
)(dx)'f r

L*(e
 m
 gh

f
 )(x)v

f
(dx)

2. Perturbation Theory for RPF Operators.

The results of this section stem from the observation that the

assignment f + L
f
 is analytic, i.e., for each f ,...,f, € Ao, the function

(zl'z2> " Z k )

is an (entire) analytic function of the complex variables Zj,...^^, In fact it

is easily verified from (1.1) that

J Zi fi
(2.1) O/BίjHfc (g)

The following results follow from Theorem A and standard results in

regular perturbation theory (cf. Kato (1980), Ch. 7, #1, Ch. 4, #3, and Ch. 3,

#5). More detail can be found in Lalley (1985).

Proposition 3. Suppose f,ψ € A^ are real-valued. Then λ. . and tu . have
Ό r+zψ r+zψ

analytic extensions to a neighborhood η(f,ψ) of the real line {z: Imz - 0}, such

that
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( 2
'

2 ) L
f+zψ

h
f+zψ

 = λ
f+zψ

h
f+zψ

and

( 2
'

3 )
 /

+

A

hold throughout this neighborhood Furthermore the mapping z + v may be

extended to an M(Σ )-valued function in η(f,ψ) which is weak-* analytic, and

A.
such that

( 2
'

4 ) L
f

+
zψ

V
f+zψ

and

(2.5) / h_ . dv_ . = 1
J
 f+zψ f+zψ

hold throughout the neighborhood. Finally, for each real ZQ there exists an

ε > 0 such that if |z-z
o
l < ε, then

(2 6
>

and

(2.7) (spectrum L
f + z φ

) {λ
f + z ψ

} c {ξ: |ξ| < X
f+χ φ

-2δ}

o

for some δ > 0.

Note: Weak-* analytic means that for each h 6 A
fl
 the function

z -• / h dv. is analytic. It is generally impossible for z •> v to be

analytic in (total variation) norm: in fact, for real
 f
i >

f
2 ^

 A
Θ such that i^ is
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not homologous to fo, v
f
 and v are mutually singular,

Γ
l
 Γ

2

Corollary 1: For all g 6 A
Q
 and real f,ψ € AQ there exists a neighborhood

Ω = Ω of the real line {z: Im z = 0} such that

(2.8) ^
Λ
f+zψ

+ 8
 d v

f
+
z ψ

) h

L

f
+
zψ

) h
f

+
zψ

uniformly for z in any compact subset of Ω In fact Ω may be chosen so that

for each compact K c ί ] there exists an ε > 0 such that

(2.9)

τ
m

L
f+zψ

 g

λ
f+zψ

Γ +

 g d v
f

+
zφ

) h
f

+
zφ

uniformly for z ζ K and {g £ k
Q
: \\g\\

Q
 < 1}

3. Central Limit Theorem and Saddlepoint Approximation.

Throughout this section f,ψ € A
Λ
 are fixed real-valued functions; let

(3.1) β(z) » log(λ
f + z ψ

/λ
f
)

for all z € C where λ_ . is defined,
f+zψ

Let Φ denote the normal distribution with mean zero and variance γ (when

γ « 0, Φ is just the point mass at 0).

THEOREM 1 (Central Limit Theorem): For every c € R

(3.2) μ
f
{x: n"

1 / 2
(S

n
Ψ(x) - n3

f
(0)) < c}

as n + °°. Moreover, for every continuous function u: R •»• R with at most

polynomial growth
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oo

(3.3) E u(n~
1/2
(S

n
ψ-n3

t
(0)) + / u(t) dΦ „ ,

Q
Λt)

as n •* <»•

This theorem is apparently due to Ratner (1973), who deduced it from another

central limit theorem for mixing sequences due to Ibragimov. A direct proof

based on the method of moments is outlined in Ruelle (1978). Neither Ratner's

nor Ruelle
f
s approach is suitable for obtaining the more refined estimates given

below.

It is obviously of interest to know when 3"(0) - 0, since in this case

the limit distribution is degenerate.

Proposition 4. The function 3"(z) is strictly positive for z € R unless ψ is

homologous to a constant, in which case 8"(z) = 0.

Ruelle (1978) showed that 3(z) is strictly convex but by a roundabout method

using the variational principle. Ratner (1973) states that 3"(0) > 0 unless

2
there is an η £ L (μ

f
) such that ψ - (const) + η-ηoσ, but this is weaker than

Proposition 4. A direct proof of Proposition 4 is given in the Appendix.

It is worth noting that (3.3) implies

μ
 Ψ

This could also be proved directly.

Proof of Theorem 1. To prove (3.2) it suffices to show that the Laplace

-1/2
transform of n (S ψ-n3

f
(0)) converges to the Laplace transform of the normal

distribution Φ
o
.

f/Λ
v (this is the "continuity theorem", cf. Feller (1971), XIII.

1, Th. 2). By (1.7) and (2.8), for any z € R
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(3.4)

E expίzn
 1/2

(S
n
ψ-n3

!
(0))}

-z3'(0)n -n r
 (
 n , *,

B A. J CL -1/2
 n
f ^

v
f

f+zn ψ

τ
n

L

ex
P
{n(-z3

!
(0)n

 1 / 2
 + 3(zn

 1 / 2
)}

λ
 -1/2
f+zn

 W
 il

exp{z
2
3
f
'(0)/2} /(/ h, dv . )h , dv

f
 f+zn""

1/2
ψ f+zn

 1 / Z
ψ

 t

exp{z
2
B"(0)/2}

since / h
f
dv = 1 and since by Proposition 3 v and h are continuous in

z. This proves (3.2)

The relation (3.4) incidentally proves that if u: R •*- R has polynomial

-1/2
growth then the random variables {u(n (S ψ-n3

f
(0)))} are uniformly

integrable with respect to the probability measure μ . This and (3.2) imply

(3.3).

The essential idea in the foregoing proof of the Central Limit Theorem

is that Proposition 3 and Corollary 1 give an explicit asymptotic representation

for the Laplace transform of S ψ, to wit,

(3-5) E
μ f

Λ ~ e
nf5
<

Z
>(J h

f
dv

f + z ψ
)(/h

f + z ψ
dv

f
)

uniformly for z in any compact subset of R. This formula suggests that sharper

results than (3.2) might be obtained by Fourier inversion.

Assume that ψ is not homologous to a constant. Then by Proposition 4

3"(Θ) > 0 for Θ € R, hence 3?
(Θ) is strictly increasing. Let

(3.6) Γ
ψ
 = {3'(Θ): Θ € R}

then for each a€Γ there is a unique p(a)£R such that
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(3.7) β'(p(a)) - a.

The function p(a) is clearly a strictly increasing, real analytic function of

a € Γ. onto R.

THEOREM 2. Assume that there do not exist scalars a. > 0, a. ί R such that

a-(ψ-a«) is homologous to an integer-valued function. Then for every

b € (0,«), a € Γ.,

(3.8) y
f
{x: 0 < S

n
Ψ(x) - na < b} ~ /j e~

p ( z ) t
dt /^ h

f + p ( a ) ψ
d v

f

-1 /?
. (2πnB"(p(a)))

 L/
 exp{n(8(p(a)) - ap(a))},

as n + °°, and the convergence holds uniformly for a in any compact subset of

Γ . Moreover,

2

(3.9) μ_{x: 0 < S ψ(x) - nβ'(O) - n~
1 / 2

c < b} ~ b(2πn3
M
(0))""

1/2
e"

C / 2 β
"

( 0 )

r n

uniformly for any compact subset of R Finally, if p(a) > 0, then (3.8) also

holds for b = +», uniformly for a in any compact subset of {a 6 £: p(a) > 0}.

Notice that (3.9) implies the Central Limit Theorem.

THEOREM 3. Assume that η ζ L is real-valued, that Ψ ξ- A
Q
 is integer-valued,

and that

(3.10) ψ = Ψ + η - ηoσ.

Assume further that there do not exist scalars a ,a« € R with 0 < a < -j such

that a (ψ - a
?
) is homologous to an integer-valued function. Then for every

a € Γ and all 0 ί b ί c i 1,
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-1/2
(3.11) MΛX: b < S ψ(x) - na < c} ~ (2πnβ"(p(a))) exp{n(β(p(a)) - ap(a))}

f n

x // exp{-p(a) < η(x) - η(x') + an > } lib < < η(x)-η(x
!
) + an > < c}

h
f

+ P
(a)ψ

( x ) h
f

( χ f ) d v
f

( x ) d v
f

+ P
( a ) ψ

( χ t )

This relation holds uniformly for a in any compact subset of Γ . Moreover,

2

(3.12) μ
f
{x: b < S

n
Ψ(x) -n3

!
(0) - n

1 / 2
δ<c} ~ (2ime"(0)Γ

1 / 2
e"

δ / 2 | Γ ( 0 )

lib < < η(x) - η(x') + nβ
f
(0) + n

1 / 2
δ > < c}dμ (x)dμ(x')

Σ

uniformly for δ in any bounded subset of R. Finally, if p(a) > 0 then

(3.13) μ
f
{x: a<S

n
Ψ(x)/n} ~ (2πne"(0))"

1/2
exp{n(B(p(a)) - ap(a))} . (l-e

. // exp{-p(a)<η(x) - η(x') + an»

h
f+p(a)ψ

( x ) h
f

( χ f ) d V
f

( χ f ) d V
f

( x ) d V
f

+ P
( a ) ψ

( χ t )

uniformly for a in any compact subset of {a € Γ : p(a) >0}.

Note: <t> denotes the fractional part of t ζ R.

If η Ξ 0 in (3.10) then the expressions in (3 .ll)-(3.13) simplify

somewhat, yielding relations which more closely resemble the corresponding

results for sums of i.i d. integer-valued random variables. Observe that (3.13)

and (3.8) (b = °°) imply that when p(a) > 0,

<
3 14

> n^log μ
f
{x: a<S

n
Ψ(x)/n} > β(p(a))-ap(a) ,

which is the analogue of Chernoff's (1952) theorem for sums of i.i.d random

variables. The relations (3.13) and (3.9) (with b=°°) are themselves the
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analogues of results of Bahadur and Ranga Rao (1960) concerning sums of i.i.d.

random variables. The relations (3.8) and (3.11) are analogous to results of

Daniels (1954) concerning i.i.d. random variables.

Theorems 2 and 3 are proved by Fourier inversion. The details are

similar to those in the proofs of the corresponding theorems for sums of i.i.d.

random variables, but are slightly more difficult because there is no suitable

analogue of the Riemann-Lebesgue Lemma here. The gruesome details may be found

in Lalley (1985).

It is also possible to use standard Fourier techniques to obtain

analogues of the classical renewal theorems. However, better results may be

obtained by coupling methods (cf. Lalley (1984)).

Appendix: Strict Convexity of β(z) .

The proof of Proposition 4 relies on the following fact, which may be

of some interest in its own right

Proposition 5. Suppose f,ψ € A. are real-valued. Then ψ is homologous to 0 if

2
the sequence {S ψ} ^

Λ
 is bounded in L (μ.).

n n>0 f

Proof. If ψ - Ψ - Ψoσ for some Ψ € C(Σ*) then S ψ - Ψ - Ψoσ11
, so {S ψ} .

n
 is

A n n n^U
2

clearly bounded in L (μ
f
).

2
Suppose {S ψ}

 0
 is bounded in L (μ

f
) . Define

W (r) = (1-r) Σ r
k
(S ψ - S ψ) - W (r)oσ

m
;

m i Λ ΉΓΓK. m o

2
then the set {W (r): mθ,l,...; 0 < r < 1} is bounded in L (μ,.). Notice that

m i

lim(W
n
(r)-W

1
(r)) - lim ψ + Σ (S^^)(l-r)(r

k
-r

k l
) = ψ.

τn °
 l

 rtl k-1
 k

2
Now the unit ball of L (μ

f
) is weakly compact so there exist r^l such that
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W0(rn)Sw€L
2(yf)

and

Consequently

W.(r ) ¥ Woσ € L2
(μ

4r
),

In 1

(A.I) ψ - W - Woσ a.s. (μ
f
).

It remains to be shown that there is a continuous W for which this relation

holds.

Define f* € A,, by f* - f + log(h_/λ_h.oσ) then

Ό Γ I I

Lcfcg = (λ h ) L
£
(h.g), so the leading eigenvalue and eigenfunction of

I* t I I Γ

L
f Λ
: A •• A are 1 and 1, respectively. Also, y is an eigenmeasure of the

adjoint operator L* as is easily verified, since L* v - λ v and dy/dv = h .

Γ* Γ Γ Γ Γ Γ

It follows that the operator L
£
.: L (y^) •»- : L (y^) has norm 1, because for any

g € l}(vf)

(A.2) / |L
fΛ
g|dμ

f
 < / L

£Λ
(|g|)dμ

f
 = / |g|dμ

f
.

Now suppose (A.I) holds but that ψ is not homologous to 0. Then there

is a constant a > 0 such that (2πa) ψ is not homologous to an integer-valued

function (otherwise (2πa) S ψ(x) £ Z for every x such that σ
Π
χ = x and all

a > 0, which is clearly impossible unless ψ = 0) Consequently by Theorem 3 the

spectral radius of the operator L..,. .: A
Λ
 •• A

Λ
 is strictly less than 1, and

r
x
+iaψ t/ y

therefore by the spectral radius formula (cf. Yosida (1965), section VII. 2,

Theorem 3 and 4)
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for all g € A Q. But ||.||
β
 < ||.||

θ
 so for g € AQ

(A.3) /l
L
f*

+ i a
ψ
 g
'

d μ
f * °

Consider now the function e~
i a W € L (μ

f
), where W is as in (A.I).

(Note: W may clearly be chosen to be real-valued, because ψ • W + Woσ implies

ψ = (ReW) + (ReW)oσ. Hence |e~
i a W

| = 1 a.s. (y
f
).) Because

L e~
i a W

 - LL
f*+iaψ

e
 "

 L
f*

_ -ia(Woσ)
L

f
*

e

-iaW
τ

e L

f
*

-iaW

it follows that

—iaWie
 l

for all n > 1. But the relations (A.3) and (A.4) are contradictory because A
π

is dense in L (μ
£
) and because (A.2) implies that L

rjp
^. .: L (μ^) -• L (μ,) has

r r^+iaψ r r

norm < 1. Thus the assumption that ψ is not homologous to 0 is incompatible

with (A.I).

Proof of Proposition 4 Without loss of generality we may assume that

3*(0) - 0, since this may always be accomplished by subtracting β
f
(0) from ψ.

By (3.3) it follows that

E
y
 ψ = / ψh

f
dv

f
 = 0

Now by (2.9) there is an e > 0 such that (l+ε)
n
λ"

n
| |L

n
(ψh )|| -• 0. Hence by(l 7)

f f f 0
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(l+ε) n |E ψ(ψoσn)| = |(l+ε)nλ~n/L"(ψ(ψoσn)h f)dv f |
μ f

| ( l+e) n λ n/(L"(th f))φdv I + 0 as n + +«x£ J \ ΛΛ£ \ T " £ / / T1** v £ I

Therefore if F(z) = Σ z
Π
 E Ψ(ψoσ

n
), then F(z) has an analytic extension to an

-00 f

annulus containing the unit circle {e , α € [—π ,π)}

It follows from elementary Fourier analysis that

(A.5) E (S
n
Ψ)

2
 - n / G

n
(Θ) F(e

iΘ
)dθ/2π,

f -π

where G is Fejer's kernel

β ( θ )
.

 Σ ( 1 ) e n {
^

}
.

m: |m| <n sin y Θ

Since G (Θ) is an approximate identity (summability kernel) (A 5) implies

(A.6) lim E (S
n
ψ)

2
/n = F(l).

Π-H» f

Now (3.3) implies that the limit in (A 6) is β"(0). Suppose β"(0) « 0; then

F(l) • 0. It is evident from the definition of F that F(e
i Θ
) is an even

function of Θ, so that if F(l) - 0, then F(e ) is (essentially) quadratic in Θ

near Θ = 0, i e ,

F(e
± Θ
) = 0(Θ

2
) as Θ •• 0.

Thus

^ ) ' ίΩ

E (S ψ) - / { } F(e
lϋ
)dθ/2π

f -π sin j Θ
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is bounded as n-*». It follows from Proposition 2 that ψ is homologous to zero.

This shows that 3"(0) > 0 if ψ is not homologous to a constant. To

show that 3"(z) > 0 for z real, just replace f by f+zψ
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