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Robbins (1968) considered the problem of estimating
the total probability of the unobserved outcomes of an
experiment. In this paper we suggest an estimator,
based on n trials, and show that under some regularity
conditions one can construct asymptotic confidence
intervals for the random quantity we look for

Consider an experiment with positive outcomes E^,E2» with unknown

probabilities π ,π , ...,π. > 0, Σ.π = 1. In n independent trials suppose that

E^ occurs N^ times 1=1,2,3,... with Σ.N = n. Let ψ = 1 or 0 accordingly as

N^ = 0 or NJL > 0. Then the random variable U = W^i
 i s t l i e s u m o f t h e

probabilities of the unobserved outcomes. How to estimate U? Robbins (1968)

asked this question and suggested the following answer:

Suppose we make one more independent trial of the same experiment and

t 1

that in the total of n + 1 trials, E
±
 occurs N., 1=1,2,... with I N = n + 1.

» 1
Let V = — y Σ. 1,

 !
 _ ,, where 1^ is the indicator function of A In

contrast to U, V
1
 is observable, with n + 1 trials, and can be used to predict U

(we use the word predict instead of estimate since U is r.v. and not a

parameter) .

For W - U - V
1
 Robbins showed:
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E[W
f
] = 0 and E[W'

2
] < -^ .

n+1

2
Robbins was also interested in the behavior of E[W ] for n large.

Robbins showed that in the special case in which some k of the π. are equal to

1/k and all the others are 0, letting λ = ̂  and letting n -• «, (n+l)E[W
f
 ] •

(l+λ)e"
λ
-e"

2λ
 < (1 + λ*)e"

λ
* -e"

2 λ
* - .6080, where λ* = .8526 is the root of

λ * 2e What can we say if we cannot take another observation? We will

suggest a predictor depending on the first n trials, and we will construct

asymptotic confidence intervals under regularity conditions .

Note first that there is no unbiased predictor for U as a function of

the first n trials. However,

E[U]

If V
 " ϊ

E[V] = Σ
±
π

1
(l-π

1
)

n l

Now,

(1) (Σ.π.d-π.)
11
"

1
)

11711
"

1
 < Σ ^ U - π . )

1 1
 < Σ. π.Cl-π.)

We may conclude that (V) tends to underpredict U while V overpredicts. V

was suggested by Good (1953) as an estimator of E[U] .

If W - V - U,

(2) E[W]
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To see this we write,

e"
1

A little algebra shows,

(3) E[W
2
]

h
+ ( π

i
+
 V

2

Assume t h a t i f k •*• °° as n ••• °°

A: (i)

(ii) lim
χ + 0
 G

Q
(x) = 0 and lim

χ+Λι
 G

Q
(x) = 1

(iii) sup / x dG (x) < °°.
n
 0

We note that under A, -̂ = r Σ.niΓ. + / xdG (x)
K. K. i ϊ π

We get

(4) /n E[W] •• 0

and

(5)

o
1
 = nE[W

2
] -• (/ xdG

n
(x))~

2
{/ xe"

X
dG

π
(x) . / xdG

n
(x)

n
 o

 υ
 o

 υ
 o

 υ

OO 00 OO

/ x e
 X
dG

0
(x) / xdG

Q
(x) - (/ xe"

x
dG

0
(x))

2
}
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The limiting variance can be estimated consistently by,

ϊ h

2
We note that σ < 1.

n
2

As for the limiting variance σ , we can show that

(7) .6080 < sup
G
 σ

2
 < .6179,

To see that we note,

σ
2
 = (A/BX1-A/B) + C/B,

where A = / xe
 2
dG

Q
(x), B = / xdG

Q
(x), and C = / χ

2
e

 2
dG

Q
(x),

For the special case x = α we get Robbin's result, namely

σ = e
 α
(l-e

 α
) + αe and sup [(l+α)e

 α
-e

 α
] s .6080. On the other hand we

note that x(l-x) < .25 and that sup — = sup αe = e ^ .3679 and (7) follows,

We conjecture that

(8)
σ
n

Unfortunately W is not of the form studied by Steck (1957), although we believe

an extension of Steck
!
s result will prove the conjecture. Under A, Steck

f
s

theory yields

(9)

where
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And,

(10)

nτ
2
 -• (/ xdG

n
(x))

 2
{J xe

 X
dG

n
(x)J xdG

n
(x)

n
 0

 U
 0

 υ
 0

 U

/ (xe
 X
- χ

2
e

 X
)dG

0
(x))

2
}.

For a detailed application of Steck
f
s theory to this case, see the appendix in

Bickel and Yahav (1985).

The limiting variance can be estimated consistently by

2

.
2

 Σ
i

 I
{N

i
=l}

 ( Σ I
{N -1} "

 2 Σ I
{N

i
=2}

)

(11) nτ =
n n 2

n

Hence,

(12) /n(V - E[U]) ^

n

Using (12) one can construct approximate confidence intervals for E[U] . For U

itself, use (4) and (6) and the Chebychev inequality to construct conservative

intervals, using Chebychev
T
s inequality pending verification of conjecture (8).
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