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Suppose F_ is a class of distributions containing
the discrete distributions and the distribution F for
each real x Suppose φ is a real valued functional on _F
and define θ(x) = φ(F ) so that θ(.) is a parameter of
the family {F }. Fix α A stochastic approximation
procedure for finding the x for which θ(x) = α is
presented. When φ(F) is the mean of F, a form of this
procedure is just the Robbins-Monro process. When φ(F)
is the p-th quantile of F, a form of this procedure is
just the quantile process introduced by the authors in
an earlier paper. Some convergence theorems, examples,
and generalizations are presented.

1. Introduction.

Suppose that for each real x (or for each x in some interval) there is

a distribution F
χ
 from which we can sample at will Suppose F^is a collection

of distribution functions containing all empirical distribution functions (i.e.,

1
 n

all distribution functions of the form F(t) = — Σ I,
 x

(t)) and all of the

\=i
 [
V">

distribution functions F
χ
. Let φ be a real valued functional on F_ and define

θ(x) » φ(F ) so that θ(.) is some parameter of the family {F }. Our objective
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238 HANSON AND RUSSO

is to "find" the x, call it x
Q
, for which θ(x) takes on some specified value α.

We will approximate XQ sequentially as follows:

(1.1) For some n > 1, fixed or random, we observe y^ at x^ (i.e., sample y^

from the distribution F ) for k=l,...,n
n
 where x

1
,...,x

n
 are fixed or

x
k
 υ i n

Q

random and obtained in some arbitrary way.

We let R be a fixed positive real number and for n > n we proceed as follows:

(1.2) We project the points (x
k
,y

k
) for k=l,...,n onto the line x = X

R
 along

lines having slope R to obtain points (
χ

n
»y

n
]

c
) where

(1.2a)

(1.3) Let F
n
 (not to be confused with F

χ
 for x = n) be the "empirical"

distribution function assigning probability 1/n to y
n
^ for k=l,...,n.

Project the point (x ,φ(F )) onto the line y = α along a line having

slope R to obtain (x .,α) so that

(1.3a) x
n + 1

 " x ~ tΦ(F
n
) - α]/R.

(1.4) Observe y
n +
^ at x

n +
j and iterate.

Call this the φ-process

The intuition for this procedure is that if a) the quantile curves for

the family F
χ
 are nondecreasing in x, and b) F(t) < G(t) for all t implies

φ(F) > φ(G), then repeated observations from distributions F
χ
 with x

!
s to the

right of XQ should produce an "empirical" F
R
 which weights large values too

heavily, φ(F ) should be too big (i.e., bigger than α), and x
 +
, should be less

than x
n
 Conversely, lots of sampling from distributions F

χ
 with x

f
s to the

left of XQ should cause x
n + 1

 to be to the right of x
R
.

Suppose φ(F) = /xdF(x) so that θ(x) is just the mean of F
χ
. In the

Robbins-Monro procedure (Robbins and Monro (1951)) we obtain Xj in some

arbitrary fashion, and for n > 1 we observe y at x and define
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a n
x ,, = x (y - α) In the φ-process we have φ(F ) = — Σ [y. - R(χ_ - x )]

n+1 n n n n n
k = 1

 k Ίc n
so that x

n + 1
 - x

n
 - {- Σ [y

k
 - R ^ - x ^ ] - α}/R - - Σ [^ - (y

k
 - α)/R] . This

K — J. κ~ 1

is true for all n so x
 Ll

 = ̂ — x + -[x ~ (y - α)/R] = x - ——(y -
 α
) .

n+1 n n n n n n nn

Thus if we let R = I/a, the φ-process reduces to the Robbins-Monro process.

If 0 < p < 1 and φ(F) is the right endpoint of the interval of p-th

quantiles of F, then Φ(F
n
) is the right endpoint of the interval of p-th

quantiles of F
n
. If y

n k
 > Φ(F

n
> (y

n k
 < φ(F

n
>), then the projection of (x

n
,Y

n k
)

onto the line y = α along a line with slope R has x-coordinate

s

k

 = x

n
 ~ (y

n k
 - α)/R = *

k
 " (v

k
 - <*)/R which is less than (greater than) the

x-coordinate x = x^ - [φCF^) - α]/R of the corresponding projection onto

y = α of (x
n
,φ(F )). It is easily seen that x

n + 1
 is the left endpoint of the

interval of (l-p)-th quantiles of the "empirical" distribution function

1
 n

— Σ I
f
 v . Thus, in this case, the φ-process reduces to the quantile process

n
k=l

 L
V°°

;

presented in Hanson and Russo (1981).

The purpose of this paper is further study of the φ-process. We

restrict our attention to functionals φ which are location parameters, i.e., to

functionals φ which satisfy φ(F(x - C)) = φ(F(x)) + C. (See Lemma 2.1.)

In Section 2 we consider the case (i i.d. errors) where the

distributions differ only by a location parameter. (The location parameter

is φ(F ).) We present an almost sure convergence theorem, a corollary showing

some of the generality of the φ-process, and give an example. In Section 3 we

present an almost sure convergence theorem for the case where the errors are not

i i.d. We present a variation and generalization of the φ-process in Section

4. We give an almost sure convergence theorem for this variation and give an

example showing the versatility of this process. In the authors
1
 opinion, this

is the most interesting section of the paper. The model is fairly complicated,

requiring lots of notation, and for that reason is not given here in the

introduction. Section 5 contains some remarks and queries.

Because of a shortage of space, and because we feel that the

assumptions made in each of the three theorems are stronger than will ultimately
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be necessary, we present only the proof of the second theorem in this paper,

2. The i .i .d . case.

For notational convenience we will use φ(X) to mean φ(F ), and

1
 N

φ(X.,...,X ) or φ({X. : 1 < i < N}) to mean φ(^ Σ I
f
 . ) . By y we shall

1 n l w
k = 1

 lλ
k
,

mean some random variable having distribution F
χ
. We use the notation

"X > Y st." to mean "X is stochastically greater than or equal to Y" which means

that P{X > t} > P{Y > t} for all t.

Let α and R be fixed real numbers with R > 0, and let F_ be the

collection of distribution functions as defined in Section 1 Let C_ be the

class of all real valued functionals φ on F such that

(2.1) there is a unique real number x such that φ(F )
 β
 ot;

Φ
( 2 . 2 ) there i s a 6 in (0,R) such that 0 < [φ(F ) - α ] / [ x - x j < 2R - δ for

x φ
a l l x * x Λ ;

Φ
( 2 . 3 ) inf |φ(F ) - α| > 0 for a l l t > 0;

l l > t : x

(2.4) if X > Y + C st. then φ(F
v
) > φ(F

v
) + C; and

Λ. I

(2.5) if k is a nonnegative integer, M and x are real numbers, {Y.} is an

i.i.d. sequence of random variables all having distribution function F ,

and G (t) = — Σ I. (t) is the "empirical" distribution function of
n n. . I Y. °°)

k=l k '

Y
1
,...,Y

n
, then

( 2 . 5 a ) Φ ( l ^ I [ M β ) + ΐ ϊ n V + Φ<Fχ) a.s.

LEMMA 2 . 1 . If φ i s in Ĉ  and X = Y + C s t . then φ(X) = φ(Y) + C.

Proof. An immediate consequence of ( 2 . 4 ) .

Our n o t a t i o n a l usage a l lows the a l t e r n a t i v e φ(F ) = φ(F ) + C as a
A. I

conclusion to Lemma 2.1. Lemma 2.1 says that φ is a location parameter.
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THEOREM 2.1 If φ is in Cj the random variables y - φ(F ) all have

distribution function G; n^ is a positive integer valued random variable and

x
l '

#
" '

x
n
 a r e a r b i t r a r

y
 r e a l

 valued "random variables"; and x
R
 for n > n

Q
 is

the φ-process as defined by (1.1) - (1.3a), then x •* x. a s.

n φ

LEMMA 2.2. C^ is closed under finite maxima and finite minima.

COROLLARY TO THEOREM 2.1. Suppose that I j , . . . , ^ are finite non-empty subsets

of C^ and that φ = max min φ* (or φ = min max φ*) . Then x = min max x
 Λ

Kk<N Φ*εl
k
 Kk<N Φ*εl

k
 * Kk<N Φ*εl,

(or x. = max min x ) and Theorem 2 1 applies to φ.
Φ
 Kk<N φ*εl

k

 Φ

For 0 < p < 1 let m (x) be the midpoint (or left endpoint or ...) of

the interval of p-th quantiles of F
χ
.

Example 2.1. A drug is used to elevate (lower) blood pressure.

Clearly, too great an elevation (lowering) of the blood pressure is potentially

dangerous to the patient In such a situation it is reasonable to assume that

the quantile curves m (x) are strictly increasing over reasonable dosage levels

of the drug, and that the distributions F
χ
 are continuous. Suppose you would

like to find a dosage level XQ such that at least 90% of all patients have a

response of at least α (increase in blood pressure, percentage increase in blood

pressure or ...) to a dosage level XQ but, because it might be hazardous to

their health, you would like no more than 5% of all patients to have a response

of 3 or higher to the dosage. This last condition might be considered to be a

"safety constraint". Let φ.(F ) = m
n
 (x) - α, φ (F ) = m.

 Ql
-(x) - 3, and

1 X U.I Z X U y D

φ = max {φ^Φol. Let a be such that m
n
 .(a) = α and b be such

ί Δ U .1

that m
 QC

-(b) = 3. Let x be such that φ(F ) = 0. The φ-process will
u .y_> Φ x,Φ

sequentially converge to x.
 s
 min{a,b} which will be such that either:

i) x = a, 90% of the population has a response of α or more when given dosage

Φ
level x of the drug, and no more than 5% of the population has a response

Φ
of 3 or more to dosage level x of the drug; or ii) x, = b < a, (only) 5% of the
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population has a response of 3 or more to dosage level x of the drug, less than

90% of the population has response level α or higher to dosage level x , but the

highest dosage possible is being given to patients without violating the safety

constraint

The same logic would apply to fireworks or industrial explosives where

one would want to guarantee, if possible, a high probability of having at least

a certain fixed explosive power, but would want to guarantee that there is only

a very small probability that the explosive power would exceed some danger

threshold.

Proof of Theorem 2.1. Omitted. (See Hanson and Russo (1985)).

Proof of Lemma 2.2. The proof just involves showing that the maximum or minimum

satisfies (2.1) through (2.5) if the individual functions do.

Proof of Corollary to Theorem 2.1. Suppose I is a finite subset of C^. It is

easy to see that if φ = min φ* then x = max x
 Λ
, and if φ = max φ* then

φ*εl
 φ

 φ*εl
 Φ
 φ*εl

x. = min x.. . The corollary follows from these facts, Lemma 2.2, and
Φ
 φ*εl

 φ

Theorem 2.1 .

3 . The non-i .i .d . case .

THEOREM 3.1. Let R and δ be real numbers such that 0 < δ < R. Suppose F_ is a

class of distribution functions containing all empirical distribution

functions . Suppose F ε F_ for each real x and that

(3.1a) F (t) < F (t)

y x

and



ADAPTIVE STATISTICAL PROCEDURES 243

(3.1b) F (t) < F (t + (2R - δ)(y - x))
x y

for all real x, y and t such that x < y.

Suppose φ is a real valued functional on F_ which satisfies (2.1), (2.4) and

(2.5). Let n
n
 be a positive integer valued random variable; let x

1 9
 ,x be

υ 1 n
0

arbitrary real "random variables"; and for n > ΠQ let x be the φ-process as

defined by (1.1) through (1.3a). Then x ->• x. a.s.
n φ

Proof. To facilitate the proof we set up a model of our process on a different

probability space. The space and random variables n ,x, ,y, , u, , and y
a
 for all

O K K K. K,

real a and positive integers k can be constructed so that:

(3.2) for each k the random variable u, is uniformly distributed on (0,1) and

is independent of {n
Q
; x ^ . . . ^ ; u

χ
 , ..

 >
u

f c - 1
}

(3.3) y* = F
a

X
(u

k
) = min{t:F

a
(t) > u

k
> for all k, a, and ω;

X
k

(3.4) y = y, for all k and ω; and
K. K.

(3.5) for all n > n and all ω we have x
n+
i defined by (1.1) through (1.3a),

The actual construction of our probability space is standard and omitted.

We will prove that

(3.6) Pίlim sup |x - x.| = +~} = 0,
n φ

and then that

(3.7) Pίlim sup x > x
±
 or lim inf x < x

x
} = 0.

n φ n φ

We assume that x. = α = 0.

Φ

Proof of (3.6) . Let a > 0 be fixed and let A be the set of ω's such that

Φ({yf(ω):l < k < n}) + φ(F ) and such that φ({y"
a
(ω):l < k < n}) -• φ(F_ ). From

K. a K. a

(2.5) we see that P(A) = 1.

Suppose ω ε A. From (2.1), (2.4) and (3.1a) we have
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φ(F__ ) < α = 0 < φ(F ). Choose n = n (ω) > n (ω) such that if n > n^ then

(3.8) Φ({y^:l < k < n}) > 0 and φ({y^
a
: 1 < k < n}) < 0.

Let M - M(ω) - maxίlx.|,...,|x |,a(2R - δ)/δ} . Clearly |x | < M for
i n . K

k=l,. .,n, Suppose |x, | < M for k=l,...,n. Because of (3.1b), if α < 3 we

have for all ω, k and a

(3.9) y£(ω) < y£ < y£ + (2R - δ)(β - o).

Thus

X
n+1 "

 X
n "

 R l φ ( { y
n k

:
 1 <

 k
 <

 n
>> = "

 R

-R Φ(ίy£ - (2R - δ ) ( a - * ) - K ^ 1 < k < n and x^ < a}

|j{y, - Rx^ίl < k < n and a < x, } )

< - R ~ S ( i y , a - (R - δ)M - a(2R - δ ) : l < k < n and x. < a}

yί - RM:1 < k < n and a < x })

-M - R"
1
φ(ίy^+ Mδ - a(2R - δ):l < k < n and x

fc
 < a}U{y^:l < k < n and a <

< M - R %({y£:l < k < n}) < M.

A similar argument gives x > -M and an application of mathematical

induction completes the proof of (3.6).

Proof of (3.7) . Let a > 0 be arbitrary, let L = L(ω) = lim sup |x (ω)|, and

let
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D = {ω:a(2R - δ)/δ < L(ω) < «} . Let ε - inf |φ(F )|. It follows from (2.1),

a<|x|
 X

(2.4) and (3.1a) that (2.3) holds. Thus ε > 0 and ε = min{φ(F ),-φ(F_ )}•
a a

Choose ε
1
 so that 0 < ε

1
 < ε/(2R) . For ω ε D let

v(ω) = min{v > 1: |χ | < L + ε
1
 for all k > v} .

Let

1^ - D^ Π {|y I + R(|x
k
| + L + ε

1
) < M for k-1 v};

note that K
M
 is increasing in M and that \j % = D

a
 Define

M

00 00

J = n n [{ω:φ({-M,..,,-M, y* ...,y* }) + Φ(F )}
M=l k=0 k times

φ(F_
a
)}]W !

J
y

1
^ _

a
)

k. times

and, as before, note that (2.5a) implies P(J) = 1 . We will show that J D
a
 is

oo

empty so that P(D
a
) = 0. Since {ω:0 < L(ω) < »} = D , , the proof that

n=l
P(D ) = 0 will complete the proof of the theorem.

Choose ω ε JD , M so that ω ε K , and, N so that n > N implies

(3.10) φ({
;:
M

i
_

liΛi
-M

J
 y*

+
i> >yv+n

}) > 3 ε M

v times

and

(3.11) φ({M^.
A
,jl, y

v
+

r
 »y

v
+

n
>) < "3ε/4.

v times

Then for n > N, using (3.9) and the definitions of v and D ,

\
+ n + 1

 -- ̂Φ({y
k
 - * v

 ι

- Rx :Uk<v}LJ{y a + (R-6)x -(2R-δ)a: Kk<n and x <

k k v-k v+k v+k
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U {y
a
 -Rx , : M k < n a n d x , > a})J

 v+k v—k v+k

< -R S ( i y k - Rxk:l< k < v} Uίy* + k - R(L + ε 1 ) : 1 < k < n})

< L + e - R
v times

< L + ε
1
 - R

 l
{3ε/U) < L - ε/(4R)

Similarly *
v + n + 1

 > ~L + ε/(4R) so that 0 < L(ω) < L(ω) - ε/(4R) giving a

contradiction. Thus JD is empty.

REMARKS. The same corollary applies to this theorem that applied to

Therorem 2.1. Condition (3.1b) need only hold for x < x. < y, but we stated the

Φ
theorem as we did because x. is unknown and because weakening the condition

Φ
complicates the proof slightly.

4 A generalization.

Suppose that for each real x (or for each x in some interval) there is

a multivariate distribution F (t,,...,tj from which we can sample at will. We

will denote the marginals of F
χ
 by F ,. .,F . For each i=l,...,M let F' *

be a class of one-dimensional distribution functions containing the

distributions F for all x and containing all "empirical distribution

functions", and suppose φ is a real valued functional on J j _ Suppose

(4.1) f(ap...,a
M
) is a real valued function of M real variables such that

(4 la) f is nondecreasing in each variable and

(4.1b) f(a^ + c,...^^ + c) = f(a^,...,aw) + c for all real a,,...,aw,c.

Suppose α is a fixed real number and that

(4.2) there is a unique x (call it XQ) such that

f[φ (F ), ..,φ (F ) ] = α when x = x
π
 *
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Suppose A is a fixed real number and we "know" that

(4.3) A < x
0
.

As before, we wish to estimate XQ sequentially. We do so as follows:

(4.4) For some n^ > 1, fixed or random, we observe y = (yj" ,...,y£ ) at x*

(i.e., we sample y^ from the distribution F
χ
 ) for k=l,...,nQ where

x,,...,x are fixed or random and obtained in some arbitrary way.

Let R be a fixed real number. For n > n we proceed as follows:

(4.5) For each i=l,...,M we project the points (
χ

k
>y^ ) f°

r
 k=l,...,n onto the

line x = x
n
 along lines having slope R to obtain points (x ,y ) where

(A.5a)

(
±
) i

 n

(4.6) Let F
v
 ' be the "empirical" distribution function - Σ I

r
 (i)

n
k=l

 [
?nk •

(4.7) Project the point (x
n
,f[φ

( 1 )
(F^

X )
),...,φ

( M )
(F^

M )
)]) onto the

line y = α along a line having slope R to obtain (x*
+1
>°0 and then define

(4.8) x
n + 1

 = max{A,x*
+1
} - max{A,x

n
 - R

 X
[f(φ

( 1 )
(F^

υ
),...,φ

( M )
(F^

M )
)) - α]}.

(4.9) Observe y
 +
, at x

n +
i and iterate.

Call this the (φ,f)-process .

THEOREM 4.1 Assume the model of this section and assume that:

(4.10) F (t) > F ^ ( t ) for all real x, y and t such that x < y and all

x y

i=l,...,M;

(4.11) there is a δ > 0 (we assume 0 < δ < R) such that

[φ
( i )

(F
( i )

) - φ
( i )

(F
( i )

)]/[y - x] < 2R - δ for all real x and y such that
y x

x < y and all i=l,...,M;
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(4.12) for each i-l,...,M, if φ
( l )

(F) < φ
( i )

(G) and 0 < α < 1, then

(4.12a) φ
( i )

(F) < φ
( i )

(αF + (1 - α)G) < φ
( i )

(G);

(4.13) X > Y + C st. implies Φ
( 1 )

(F
χ
) > φ

( i )
(F

γ
) + C for each i-l,...,M; and

(4.14) if k and i are fixed nonnegative integers such that 1 < i < M, d and x

are real numbers, {Y.} is an i i.d. sequence of random variables having

distribution function F , and G is the empirical distribution function

x » n
of Y

i
,•• >Y

n
> then

(4.14a)

Then x -• x_ a.s . as n -> «.
n 0

REMARK 4.1. The class of φ
!
s which satisfy (4.12a) is very restricted. In

particular, φ(F) = / x dF(x) and φ(F) = m (F) = the α-th quantile of F both

satisfy (4.12a), but not much else does. (See Leurgans (1981) for some comments

on this.) However, if f̂  and f
2
 are in the class of functions available to us,

then so are max{f.,f
2
} and min{f ,f

2
> . If α ε [0,1] then in most

cases αf + (l-ot)f will also be in the class; in particular, this is true if

the quantile curves are strictly increasing (i.e., if x < y implies

F (t) < F (t) for all i and t). Thus we can get quite a few "generalized
x y

functionals" when we look at f[φ
( 1 )

(F
n

( 1 )
),...,φ

( M )
(F

N

( M )
)].

Example 4.1. Suppose an experimental drug is being tested to reduce

blood pressure. Suppose it has two bad side effects and that if one gives a

patient dose x (or x per unit body weight) of the drug then one can observe

y - (y
( 1 )

,y
( 2 )

,y
( 3 )

,y
( 4 )

) where y
( 1 )

 = y
( 2 )

 is either blood pressure reduction

or percentage blood pressure reduction, and where y ^ and y ' ^
 a r e

(nondecreasing) measurements of (or measurements related to ) the bad side

effects It might be desirable to have a reduction of at least α% in the blood

pressure of 50% of all patients, and a reduction of at least 3% in the blood
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pressure readings of 90% of all patients; it might be desirable - or even

mandatory - that y^ ' be greater than γ in at most 1% of all patients, and y'^'

be greater than δ in at most 1% of all patients. Let F be the distribution

of y ^ under dosage x for i-1,2,3,4. Let φ ^ ( F ) - m (F) - α,

φ
( 2 )

(F) = m
Q β l

(F) - β, φ
( 3 )

(F) = m
Q β 9 9

(F) - γ, and φ
( 4 )

(F) = m
Q
 ^(F) - δ.

Suppose we let f(a,b,c,d) = max{min{a,b},c,d} and let XQ be the x for which

0.

Then, assuming that the quantiles of F are nondecreasing in x, and assuming

that x
( i )

 is the unique zero of φ
( i )

( F
( i )

) , x = min{max{x
( 1 )

,x
( 2 )

},x
( 3 )

,x
( 4 )

}.

X U

Either 1) x = max{x x } so that both conditions and both constraints are

satisfied and either la) m
n
 ,-(F^) = α and m

Λ
 , ( F ^ ) > β or lb)

0 . 5 x Q 0 . 1 x Q

mn Λ F ί 2 ) > = β a n d mn s ( F ί ° ) > α» o r 2 ) x n = min{x ( 3 ) ,x ( 4 ) } < max{x(1) ,x ( 2 ) }
Ό L X_̂  U •-> Xp. U

so that

are giving the maximum dosage allowable without violating one of the

constraints .

Proof of Theorem 4.1. Omitted. (See Hanson and Russo (1985)).

5. Remarks.

It should be noted that a general theorem - - - where a vector of

observations is observed at each x, a vector of "empirical" distribution

functions is obtained, (possibly) a different functional is applied to each
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component of the vector of empiricals, and one is interested in

f[φ (F ) , . . . , φ ( F ) ] could have been proved assuming i.i.d. errors

x x

and (basically) the technical assumptions used for Theorem 2.1, or proved

assuming non-i.i.d. errors and the technical assumptions used for Theorem 3.1.

We feel that the assumption of "i.i.d. errors" is not reasonable, but find it

interesting that under the assumptions of Theorem 2.1 we can deal with φ's of

the form φ = max min φ* as an immediate corrolary to our main theorem.

The slope condition (3.1b) on quantile curves seems too severe, as

does the combination of the slope condition (4.11) and the semi-convexity

condition (4.12a). We chose to state our general theorem in one of the settings

and not the other. We believe that none of these conditions are necessary, but

they must be replaced by something else, not simply omitted. It is possible,

however, that there is no "nice" set of conditions guaranteeing almost sure

convergence for a fairly general version of the φ-process As mentioned in the

introduction, the φ-process specializes both to the Robbins-Monro process and to

the quantile process of Hanson and Russo (1981); drastically different methods

of proof and sets of assumptions have been used to obtain almost sure

convergence in these two special cases

We could have generalized our first formulation, the one in Sections

1, 2 and 3 where we have only one component to the observation at x, only one

functional φ, and no f We could have modified (1.2) so as to project the

points ( X ^ J Y U ) f °
Γ
 each k=l,...,n onto the line x = x along lines having

slope R
n ι

 > 0 to obtain points (x
k
,y

n k
) where y

n k
 * y

k
 - R

n
 ^x^ - x

n
) . We

could have modified (1.3) so as to let F
n
 be the weighted empirical distribution

n
assigning weight a_i_ to y

nV
 so that F = Σ a . I

Γ λ
 where a . > 0 for all nnκ

-
 n κ

 n . , nk Ly . ,°°; nk
k=l •'nk'

n
and k and j

 a
 - j

#
 Finally, we could have modified (1.3a) so as to project

k-i
 n k

(x ,φ(F )) onto the line y = α along a line having slope R,
 0
 to obtainn n n, z

x

n + 1
 = x

n
 - [φ(F

n
) -

 α
] /

R

n 2
 These modifications allow: i) a different

projection slope in obtaining (x. ,y ,)
f
s from the slope used to obtain x so

K. nk ivr 1
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that, for example, we might use R
n
 ^ = Rj and ^ 2

 = R
2
 w i t h R

i ^
 R
2 (

R
l
 =
^

might be desirable), ii) the projection slopes to become steeper as n -• «> (
s o

that the various slope assumptions made in the theorem statement might be

omitted), and iii) weights a ^ which favor the more recently obtained

observations. In addition, any or all of R
n
 ^, R^ 2>

 an
&
 t n e a

n
k.

f s
 ^ S ^ ^

e

random. In particular, one might want to set
 R

n
 1

 = R

n
 2

 = R
n
 anc

*
 t
^

i e n c n o o s e

the sequence R so as to estimate the slope of the curve y = φ(f ) at x - XQ

Consider a general Robbins-Monro process

(5.1) x*
+ 1
 = x* - c

n
( y

n
- α )

where we add the restrictions

(5.2) 0 < C
R
 < c

χ
 for all n.

Consider also a generalized φ-process as just defined with
 R

n
i
 = R

n
2

s = R : =

1/cĵ  for all n and with the a ^
f
s defined recursively by a = c /c^ for n > 1

and a ^ = (1 - a )
a

n
_i v ^

o r
 ^-l» f

n
~l

 a n
d n=2,3,... . Then, in

our φ-process, for n > 1

X
n

+
1 "

 X
n " [*<V "

 α ] / R
 "

 X
n "

"
 a
nn

)

(1 - a )x - R a (y - α) + a x = x - c (y - α)
nn n nn

 J
n nn n n n n

so more general weights will give a Robbins-Monro process of type (5.1) subject

only to (5.2).
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In cases where x •> XQ, our early observations are "more biased" than

our more recent ones. Our intuition tells us that we might be able to speed up

our initial approach to XQ by weighting more recent observations more heavily

than older observations. This amounts to making a ^ an increasing (or at least

nondecreasing) function of k for each fixed n. One natural way to do this is to

simply "throw out" observations when they become too old. We do this by taking

a nondecreasing sequence k of integers subject to 0 < k < n and k + °° and

defining

(5 13)

0 if 1 < k < k
n

(n - k )~* if k < k < n.
n n

Very simple arguments give examples in which this procedure is beneficial. Note

that we are not talking about asymptotics or rates of convergence, so this does

not contradict the known optimality results for the Robbins-Monro process.
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