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This paper deals with the problem of selecting good
binomial populations compared with a standard or a
control through the empirical Bayes approach. Two cases
have been studied: one with the prior distribution
completely unknown and the other with the prior
distribution symmetrical about p

 β
 1/2, but otherwise

unknown. In each case, empirical Bayes rules are
derived and their rates of convergence are shown to be
of order 0(exp(-cn)) for some c > 0, where n is the
number of accumulated post experiences at hand.

1. Introduction.

The empirical Bayes approach in statistical decision theory is

appropriate when one is confronted repeatedly and independently with the same

decision problem. In such instances, it is reasonable to formulate the

component problem in the sequence as a Bayes decision problem with respect to an

unknown prior distribution on the parameter space and then use the accumulated

observations to improve the decision rule at each stage. This approach is due

to Robbins (1956, 1964, 1983). Many such empirical Bayes rules have been shown
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to be asymptotically optimal in the sense that the risk for the n-th decision

problem converges to the optimal Bayes risk which would have been obtained if

the prior distribution was known and the Bayes rule with respect to this prior

distribution was used

Empirical Bayes rules have been derived for multiple decision problems

by Deely (1965) for selecting a subset containing the best population. Van

Ryzin (1970), Huang (1975), Van Ryzin and Susarla (1977) and Singh (1977) also

studied other multiple decision problems by using the empirical Bayes

approach. Recently, Gupta and Hsiao (1983) and Gupta and Leu (1983) studied

empirical Bayes rules for selecting good populations with respect to a standard

or a control with the underlying populations being uniformly distributed.

In this paper, we are concerned with the problem of selecting good

binomial populations with respect to a control through the empirical Bayes

approach. Two cases have been studied: one with the prior distribution

completely unknown and the other with the prior distribution symmetrical about

p = 1/2, but otherwise unknown. In each case, empirical Bayes rules are derived

and their rates of convergence are shown to be of order 0(exρ(-c.n)) for some

c. > 0, i=l,2. For the case of the symmetrical prior distribution two smoothing

methods are studied in order to improve the performance of the sequence of

empirical Bayes rules

2. Formulation of the Empirical Bayes Approach.

Let π , TΓ ,...,π denote k + 1 populations and let X
i
 be a random

observation from π . Assume that X. ^ B(N ,p ), where p ε (0,1) and N. is

fixed and known. Let π be the control population. For each i=l,.. ,k,

population π is said to be good if p > p^ and bad if p. < p~, where the

control parameter PQ is either known or unknown. Our goal is to derive some

empirical Bayes rules to select all the good populations and exclude all the bad

populations

When the control parameter PQ is known, the empirical Bayes framework

can be formulated as follows:
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(1) Let Ω = { p|p - (p
χ
,...,P

k
), P

±
 ε (0,1) for i = 1,2,...,k}. For each

5 ε Ω,cdefine A(p) = {i|p
i
 > p

Q
}, B(p) - {±|p

±
 < p

Q
} . That is,

A(ρ)(B(ρ)) is the set of indices of good (bad) populations.

(2) Let A = {a|a C {l,2,.. ,k}} be the action space. When action a is taken, it

means that population π is selected as a good population if i ε a, and

excluded as a bad population if i φ a.

(3) The loss function L(p,a) is defined as follows:

(2.1) L(£,a) = Σ (PJ^-PQ)
 + Σ

 ^θ"
V
±
)

where the first summation is the loss due to not selecting some good

populations and the second summation is the loss due to selecting some bad

populations
k

(4) Let dG(j>) = Π dG (p ) be the prior distribution over the parameter space

i=l
 X 1

Ω, where G.(.) are unknown for all i=l,2,.. ,k.

(5) For each i, let (X H J P H ) * j
=
l>2,..., be pairs of random variables

associated with population π , where X^. is observable but Pj. is not

observable. P^. has distribution G^ Conditional on P^. = p̂ .̂, X^-SIP-M is

binomially distributed with parameters N. and p^. For the case where the

prior distributions G^
f
s are completely unknown, some additional

observations Y. . = (Y. ., , . ,Y. . ) from each population if. i=l,2,...,k,
"ij ijl ijn

i
 i

are assumed to be at hand, where Y H Π J P - H J m=l,...,n
i
, are i.i.d.,

independent of Xij|p^j and follow BζljPj*) distribution. Thus, in this

case, the j-th stage observations are Z = ((X ,Y ), .. ,(X, . Y, .)). For

the second case where G^
f
s are assumed to be symmetric about P - 1/2, no

additional data are needed for the construction of our empirical Bayes rule«

(6) Let X = (X , . ,X.) be the present observation. Conditional on

k
β - (P

1
» iP

k
)t X has joint probability function f(

x
|

?
) - Π f (x |p )

N N -x " i=l
 i i i

N N x

where f
±
(x|p) = ( ) p

X
(l-p) for each i-l,...,k.
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Finally, since we are interested in Bayes rules, we can restrict our

attention to the nonrandomized rules,

(7) Let D = {d|d : χ •> A, being measurable} be the set of nonrandomized rules,

k
where χ = Π {0,1,...,N }, For each d ε D, let r(G,d) denote the associated

i=l
Bayes risk. Then r(G) = inf r(G,d) is the minimum Bayes risk. When the

dεD
control parameter pQ is unknown, for the related framework, the indices in

the associated notations should begin at 0 instead of at 1. In the sequel,

(0) will be used to show this additional fact.

We now consider empirical Bayes decision rule d (x, Z.,...,Z ) whose

n **• ""1 ^n
form depends on x and Z., j=l,...,n Let r(G,d

n
) be the Bayes risk associated

with decision rule d (x, Z.,...,Z ). That is,
n ** ^l "̂ n

r(G,d
n
) = Σ E / L(g,d (x,Z ,...,Z )) f(x|g) dG(ϋ)

xεχ Ω

where the expectation E is taken with respect to (Z ,...,Z ). For simplicity,

d (x, Z.,..., Z ) will be denoted by d^Cx).

Definition 2.1. A sequence of decision rules {d (x)} , is said to be
n •*• n=l

asymptotically optimal (a.o.) relative to the prior distribution G if

r(G,d ) + r(G) as n > «.
n

For constructing a sequence of a.o. rules, we first need to find the

minimum Bayes risk and the associated Bayes rule, say d^ From (2.1), the Bayes

risk associated with decision rule d is

(2.2) r(G,d) - Σ Σ Δ (x) Π f (x ) + C,

xεχ iεd(x) ^ j-1
 J J

where

p
Q
f

i
(x

i
) - W

i
(x

±
) if p

Q
 is known;

(2.3) Δ
4 n
(x) - W

0
(x

0
)f

±
(x

1
) - W

1
(x

1
)f

()
(x

0
) if p

Q
 is unknown;

1

f (x) = / f (x|p) dG (p);



114 GUPTA AND LIANG

1
W (x) - / pf (x|p)dG (p);

1
 0

 1 1

and

k

xεχ i=l Ω
 P

0 '

Hence, the Bayes rule dg can be obtained as follows:

(2.4) d
G
(x) = ίi|Δ

iG
(x) < 0}.

Now, for each i - (0), l, ,k, and for each n=l,2,.. , let

W. (x.) = W. (x.; (X..,Y,.),...,(X, ,Y. )) be an estimator of W.(x^) and
in i in i* il'^il ' ' in'^in i i

t
Λ
 (x.) = f (x (x

 1
,Y

J1
),...,(X

J
 ,Ŷ  )) be an estimator of f^(x^). Define

in l in i il ^il in ^in i i

W (x )f (x ) - W (x )f (x ) if p is unknown;
,« c\ A / \ _ U n U i n i i n i U n U U

ί̂ f. (x,) - W. (x.) if p
Λ
 is known;

0 in i in i
 F

0

and

(2.6) d
n
(x) - U|Δ

i n
(x) < 0}.

If W, (x) ? W,(x) and f. (x) ? f.(x) for all x=0,l,...,N, where
in i in i •*•

? means convergence in probability, then Δ (x) ^ \ Q ( &
 f o r a 1 1 x ε

X

Therefore, from Corollary 2 of Robbins (1964), it follows that r(G,d ) •> r(G)

as n •> °°. So, the sequence of decision rules {d (x)} defined in (2.6) is

asymptotically optimal for our selection problem. Hence, in the following, we

have only to find sequences of estimators {W. (x)} and {f (x)} possessing the

above mentioned convergence property.

3 Case when the Prior Distribution is Completely Unknown.

Robbins (1964) and Samuel (1963), respectively, pointed out that there
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was no way of approximating W ^ x ) just by using the observations

(X-Q,•• >
X
i

n
)

 I n
 order to remedy this deficiency, we take, at each stage, some

more observations (Y j4 ]_» >^iή
n
 ) ^

n o u r
 model where n^ can be any positive

integer. For simplicity, let n^ - 1 for all i • (0), l,...,k.

Estimation of W^(x) and f^(x) . A usual estimator of f^(x) can be

given as follows:

(3.1) f
ln
(x) ' ^ Π ^ l X y ) for x = 0,1

Then f £
n
(x) is an unbiased estimator of f^(x), and by the strong law of large

numbers, f
i n
(x) * f^(x) with probability 1 for each x=0,1, .. .,1^. Hence,

P
f. (x) + f.(x) for all x-0,1, ...,1L .
in i

 1

For the estimation of W ^ x ) , we consider the following. Define

(3.2)

Under the assumption (5) of Section 2, it is easy to see that

We then define

(3.3)

Since V^.(x), i=l,2, . , are i i d and bounded, it is easy to show that

W
i n
(x) + W

jL
(x) with probability one for all x=0,l, .. .,N

±
. Now, let Δ

i n
(x)

and d (x) be defined as in (2.5) and (2.6), respectively. From the discussion
n "*•

of Section 2 and the construction of the sequence of decision rules {d } .

n n~l

through (2.5), (2.6), (3.1) and (3.3), we get the following result.

THEOREM 3.1. For our decision problem, the sequence of decision rules {d }

is asymptotically optimal relative to the prior distribution G.



116 GUPTA AND LIANG

Rate of Convergence of Empirical Bayes Rules id }

00

Let {d } _, be a sequence of empirical Bayes rules relative to the

prior distribution G Since the Bayes rule dg achieves the minimum Bayes risk

r(G) relative to G, r(G,d
n
) - r(G) > 0 for all n=l,2,... . Thus, the

nonnegative difference r(G,d
n
) - r(G) is used as a measure of the optimality of

the sequence of empirical Bayes rules {d } , .

Definition 3.1. The sequence of empirical Bayes rules {d } , is said to be

asymptotically optimal at least of order α relative to G if r(G,d
n
) - r(G) <

0(α ) as n + °° where lim α = 0 .

For each i=l,...,k, define S = {xεχ|Δ (x) < 0},

T - ίxεχ|Δ (x) > 0}. Let ε = min (-Δ (x)), ε - min (Δ (x)) and
1 l G l

 xεS,
 i G 2

 xεT
 i G

 ^

ε = min(ε ,ε ). Since χ is a finite space, therefore ε > 0. Now, by the fact

that 0 < f.(x.) < 1 and |Δ
 p
(x)| < 1, with straightforward calculations, one can

obtain

0 < r(G,d
n
) - r(G)

K
 ' < Σ ) Σ P{Δ, (x) > 0} + Σ p{Δ. (x) < O H .

.,_, ) o in ^
 m

 in •* (

From (3.4), it suffices to consider the behavior of P{Δ_, (x) > 0} when xεS
J
 and

in "̂  •*• i

that of P{Δ (x) < 0} when xεT as n + « for each i=l,2,...,k.

Note that for each x e S.,

ε}.

Then, by (2.3), (2.5) and the fact that 0 < M
±
(x

±
)
 9
ί
±
(x

±
)
 9
 W

i n
( x

i
) , f^ίxj^) < 1

and pQ ζ (0,1), one can obtain the following inequalities:

(3.5)
 p

<
Δ

i n
(x> > 0> <

 p
t

f

i n
(

χ
i ) - f

±
(*

±
) > f>

 + P { w

i n
(

χ
i> -

 W
i<

x
i) < - f>

when PQ is known; and
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f)P{Δ i n (x) > 0} < HWO n(x o) - W0(X()) > f } + Pίf^Cx,) " f ^ ) > f )

(3.6) + P{W l n ( X i ) - W i ( X l ) < - f } + P ί f O n ( x o ) - f Q ( x 0 ) <- f }

when PQ i s unknown.

(3.5) and (3.6) show that it suffices to consider the behavior of

Pί|f
i n
(x

i
) - t

±
(x

±
)\ > «} and Pt|W

jLn
(x

1
) - W

1
(x

1
)| > δ} for some δ > 0.

n
From (3.2) and (3.3), W. (x) - W.(x) - Σ A, .(x)/n where A,.(x)

in i
 J β l

 ij ij

- Yj.Ir -i^i ) " W (x) . It is easy to see that A.j.(x), j=l,...,n, are i .i .d.

with mean 0 and finite variance, say ̂ ( x ) , since |A (x)| < 1. Therefore, for

m > 2,

β
±
(x) <i

Let B
n
(x) = nβ (x). Thus, by Bernstein's inequality (see Ibragimov

and Linnik (1971), page 169), for any δ > 0,

P{|W
in
(x) - W

1
(x)| > δ}

(3.7) < P{| Σ A
± j
(x)| > 2B^

/2
(x) min(|

< 2 exp{-|min(δ
2
3^(x), 3

±
(x))}

Similarly, from (3.1),

f. (x) - f,(x) = Σ C..(x)/n where C (x) = L ,(X..) - f (x).
1
 j=l

 1 J 1 J 1 X
^
 1 J X

Also, (^.(x), j=l,...,n, are i.i.d. with mean 0 and |C (x)| < 1 and hence with

finite variance, say α (x). Applying Bernstein's inequality again, we obtain

(3.8) P{ |f (x) - f
t
(x)| > δ} < 2 exp{- |-min(δ

2
α^(x), α^x))}.
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Thus, we take δ = η if p
Q
 is unknown or take δ = y if p

Q
 is known. Then, from

(3.5) through (3.8), for each x ε S ,

0} < 0(exp {- j

+ O(exp{-|mln(6
z
3

1

1
(x

1
), 3 ^

(3.9)
 ?

 ,

|mln( 6
z
3

1

Following an argument analogous to the above, we also get the

conclusion given below:

For each x ε T., i=l,...,k,

P{Δ
in
(x)<0} < 0(exp{--|mln(6

2
a^

1
(x

i
), *

±
U

(3.10)

1 2—1

Now, let c. = η- min(b. ,b
9
) where b. = min [ min (δ a (x), a (x))],

1 1

2
 __

χ i

b
?
 = min [ min (δ 3. (x), 3.(x))], here m = 1 if pQ is known and m •» 0 if pQ is

m<i<k 0<x<N
 X

unknown. It is clear that c^ > 0 since 3.(x) > 0, α (x) > 0 and χ is finite.

Thus, we have the following theorem:

THEOREM 3.2. Let {d } be the sequence of asymptotically optimal rules

described in Theorem 3.1. Then r(G,d ) - r(G) < 0(exp{-c.n}) for some c. > 0.

n i i

An Alternative Empirical Bayes Rule. With the same framework as

above, define

(3.11) T
±
. - X ^ + Y

±
. .

N -xN N x

Then, T ^ I P ^ - B(N
±
 + 1, p

±
.) . With f

i
(x|p) - (

χ
 )p

X
(l-p) , writing from

(2.3),
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1

f (x) = / f (x|p)dG (p) - f (x,N.).
0

 i i

Then, from (2.3), following Robbins (1956), we see that

V
X )

i

Hence, let

(3 12)

and define

P
O

f
i n

( x
i

)
 "

 W
ΐ n

( x
^

 i f
 Pn

 i s k n o w n
»

(3.13) Δ" (X)

W
0n

( x
0>

f
in(

χ
i> -

 W
iπ(

χ
i>

f
0π

( x
0>

 i f
 ^

 i s

and

(3.14)
 d

°(x) - U|Δj
n
(x) < 0}.

Note that W
i n
(x) is also an unbiased consistent estimator of W

±
(x).

Therefore, following an argument analogous to that of (3.7), we can conclude

that r(G,d^) - r(G) < 0(exp(-c
2
n)) for some c

2
 > 0.

4. Case when G^x) are Symmetrical about p • 1/2.

In this section, we suppose that there is sufficient information to

tell us that G^x) are symmetrical about p - 1/2 for all i = (0), l,...,k.

Further, we also assume that N
±
 are even integers for all i • (0), l,...,k.

Estimation of W^(x) and f
t
(x) . Under the above assumptions

f^(x) - fj[(
N
i "

 χ
)

 f o r a
ll x-0,1,. ..JNJ^. Therefore, it is reasonable to use
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(4.1)

for x

to estimate f^(x).

For W^(x), x=0,1, ,N^ we will construct a sequence of consistent

estimators {W (x)}, in terms of f (y), y«0,1,.. ,N
i
, by using the observations

^
X
i1 » J-IJ J

11
) only. The following lemma is very helpful for the above

purpose.

4.1. Suppose that the prior distribution G^(.) is symmetric about

p * 1/2. Then

(a) W.(x) - Ϊ Γ S W.<N. for each x=0,1, .., N,-1,

(b) W
i
(x) + W

i
(N

jL
-x) = f

±
(x) - f

1
(N

±
-x) for each x=0,1, .. .,JH

±
 .

N
i 1

 N
i

(c) Furthermore, if N^ is an even integer, then, ^("y) " "T
 f
i^"T^

Proof. Direct computation.

THEOREM 4.1. Suppose that G ^ .) is symmetric about p - 1/2 and Nj, is an even

integer. Then, for each x=0,1, .. ,N
if
 W^^Cx) can be represented as a linear

function of f^y), y=0,l, .. .jN^

Proof. It follows from Lemma 4.1 that for each x=0,1, .. .,

N
i

z - x - - j + 1,

-1 and

N
(4.2) W

i (
- - z)

N +2-2z N4 ^ N +2-2z N

f
 t
 (^ - z
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Then, by (4 2), Lemma 4.1 (b), (c) and by induction, the result follows.

By Theorem 4.1, for each x«0,1,.. ,N
i
,

N
i

(4.3) W
i
(x) = Σ

1
 G(N ,x,y) f (y),

y=*0

where the coefficients β(N.,x,y) depend on N., x and y. Also, the values of

3(N.,x,y) can be obtained from Lemma 4.1 (c) and the iterative relation (4.2)

We then define

(4.4) W
1
 (x) = Σ

1
3(N ,x,y) f

1
 (y)

ln

 y
«o

 X ln

where fj
n
(y) is defined in (4.1).

Now, define

W
J n

( x
O

) f
L

( x
i

)
 ~

 W
ίn

( x
i

) f
0n

( x
0

) lf p
0
 is

(4.5) Δ;
iiΓ

'
 W
i n

( x
i

)
 "

 P
0

 1 S

and

(4.6) d
X
(x) = U | Δ ! (x) < 0}.

n *** in

From (4.1), it is clear that f., (x) •• f. (x) with probability 1 as

in I

n •* » for each x-0,1,..
 t
m
±
. Therefore, from (4.3) and (4.4), W

i n
(x) •• W

±
(x)

with probability 1 as n -• °° for each x-0,1, .. .jN^. Thus we have the following

theorem:

THEOREM 4 2. Suppose that the prior distributions G^(.) are symmetrical about

p = 1/2 and N^ are even integers for all i - (0), l,...,k. Then, the sequence

of decision rules {d }°° , is asymptotically optimal relative to the prior
n n—1

distribution G.
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Rate of Convergence of Empirical Bayes Rules {d }. We now consider

the rate of convergence of the empirical Bayes rules {d } . Following the same

discussion as given in (3.4) through (3.6), and using the fact that

f_, (x) -• f. (x) with probability 1, it suffices to consider the behavior of
in I

P{W* (x) - W^(x) > δ} and PίW.
1
 (x) - W, (x) < -δ} as n > « for some 6 > 0, for

in i in l

each x-0,1, • *,N
1
, i = (0), l,...,k.

From (4.3) and (4.4), for each x^Ojl,...jN^,

1
 N

i 1
P { W

i n
( x )
 "

 W
i

( x )
 >

 δ
>
 = p

 t
 Σ
 3(N

i > X
,y) [fj

n
(y)-f

±
(y)] > δ}

N i 1
< Σ 1 P { 3 ( N , χ , y ) [ f j n ( y > - f ( y ) l > «L>
y0

where δ, = xτ LΊ . If β(N., ,x,y) » 0 for some 0 < y < N̂  , then
1 W.+l 1 1

P{3(N,,x,y)[fj (y) - f.(y)] > δ.} = 0. So, we assume β(N.,x,y) * 0. When
l in l 1 i

3(N
±
,x,y) > 0, then

P{3(N
i
,x,y)[fJ

n
(y)-f

i
(y)] > δ

χ
} = PίfJ

n
(y) - f

±
(y) > ̂ /PίN^x.y)} .

When β(N ,x,y) < 0, then

P{3(N
i
,x,y)[fJ

n
(y) - f

±
(y)] > δ

χ
} = PίfJ

n
(y) - £

±
(y)

In either case, the problem can be reduced to considering the convergence rate

of Pil
f
i

n
(y> -

 f

±
( y ) | > δ

2
> as n ̂  « for some δ

2
 > 0. Similarly, for the

convergence rate of P{W
in
(x) - W

±
(x) < -δ} where x»0,l,.. ,N

±
 and δ > 0, we get

a similar result. Therefore, by applying Bernstein's inequality and following

an argument similar to that of (3.7), we conclude the following theorem:
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1 °°
THEOREM 4.3. Let t ^ } ^ be the sequence of decision rules defined in (4.6).

1 °°
Then, {d

n
)

n : = 1
 is asymptotically optimal at least of order expί-c n} relative to

the prior distribution G for some c~ > 0.

5. Smoothed Empirical Bayes Rules.

In this section, we again assume that G^(.) are symmetrical about

p - 1/2 and N
±
 are even integers for all i - (0), l,...,k. In Section 4, the

marginal frequency functions f^x), x=0,1,...,N
±
, i - (0), l,...,k, are

estimated in terms of the empirical frequency functions f * (x), regardless of

the properties associated with the marginal function f
±
(x). In this section, by

considering some properties related to f^x) and W ^ x ) , two methods for

obtaining smooth estimators of f^ζx) and W^ίx) are studied.

We first state the following lemma (without proof), which can be

verified by direct computations.

5.1. Suppose that G
i
(.) is symmetrical about p = 1/2 and ^ is an even

integer. Then,

N
i -1

 N
i 1

(a) f (x)( t) < f,(y)( b for 0 < y < x < N./2.

x x i y 1

N
i -1

 N
i -1

(b) W.(x)( I) < W,(y)( ) for 0 < y < x < N
4
/2 and N./2 < x < y < N

4
 .

i x l y 1 1 JL

(c) W
±
(y) < W

i
(N

i
-y) for 0 < y < N

±
/2.

Procedure 1. Smoothing Based on f (x). For each 0 < y < N./2, let

N x N

(5.1) f (y) « (
 X
) max min { Σ f

1
 (a)(

 1
)"

i
/(x-z+l)},

7
 y<x<N

χ
/2 0<z<x a=z

 a

and let f i
n
(

N
i~y)

 = f
in^

y
^* Then, let

N
i

(5.2) W
i n
(y) - Σ

1
 3(N

i
,y,z)f

in
(z) for y-0,1, ...,N

±
 .
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Define

Vir/VΛntV l f Pθ i S «

ί ϊ 0 n ( x 0 ) ? i n ( x i ) Λ n ( x i ) l 0 n ( x 0 ) i f P0 l s u n k n o W n 'i Π ?

Finally, define the selection rule d as follows:

(5.4) d n (x) = U | Δ i n ( x ) < 0 } .

N
i -1

Asymptotic Optimality of {d }. Note that f (y)( ) , y»0,l,...,N. are

N
i -1 1

 N
i -1

the isotonic estimators of f,(y)( ) , based on f. (x)( ) , x=0,1, . ,N.,

with equal weights. Since f (x) is a strongly consistent estimator of f^(x)

for all x^O,]., ...,N
i
, then, by Theorem 2.2 of Barlow et al (1972), Lemma 4.1(b),

(4.3) and the definition of W (y), it not hard to see that f (y)

and W. (y) are strongly consistent estimators of f^(y) and W^(y), respectively.

Next, we consider the rate of convergence of the difference

r(G,d ) - r(G). For each 0 < y < N and δ > 0, by Theorem 2.1 of Barlow, et al

(1972), we can obtain the following inequality.

(5.5) Pί|f
in
(y) - f

±
(y)| > «} < rp{|fj <x) - f (χ)|

x=0

Then, with a discussion similar to that given in Section 4, we can conclude that

r(G,d ) - r(G) < Oίexpί-c.n}) for some c, > 0.

It is easy to see that the new estimators f. (y), 0 < y < N., always

satisfy the constraint of Lemma 5.1(a). However, one would also like to see

whether the estimators W. (y), 0 < y < N , satisfy the corresponding constraint

or not The following lemma is useful for this purpose

LEMMA 5.2 Let U(x), h(x) be nonnegative functions defined on {0,1,...,N},

where N is an even positive integer, which satisfy

(a) U(x) = |~- U(N-x-l) for all x-0,1, .. .,N-1.
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(b) U(x) + U(N-x) = h(x) = h(N-x) for all x=0,l,...,N and

(c) ϋ(x) < U(N-x)for all x=0,l, .. .,N/2.

Then

(d) (x+l)h(x+l) < (N-x)h(x) for all x=0,1, ...,N/2-l.

We note that (a), (b) and (d) of Lemma 5.2 do not imply (c), and the

estimators W. (y), 0 < y < n., do not always satisfy the required constraint.

Lemma 5.2 suggests resmoothing based on W (y)

Procedure 2. Resmoothing Based on W. (y). First, let

Q
i n

( N
i

) =
 \ n

( N
i

) a n d f θ Γ e a c h N
i

/ 2 < y < N
i~*

1> l e t

(5.6)

Step 1. For each K
±
/2 < y < N

±
, let

z

*
(5.7) Q (y) = max min { Σ Q (a)/(z-x+l)} .

N
±
/2<x<y x<z<N a=«x

Step 2. Let W*
n
(N

±
) - Q*

n
(

N
i)

 a n d f o r e a c h N

±
/

2
 < y < N

±
-l, let

Then, let

(5.8) f*
n
(y) = W*

n
(y) + W*

n
(N

±
-y) for y-0,1,...,^

and define

*rs <n A" t Λ
 p

o
£
i n

( x
i

)
^ m

( x
i

) i f p
o
 i s k n o w n

'
(5.9)

 Δ

i n
(?)

 =
 * * * *

W
0n

( x
0

) f
in

( x
i

)
-

W
in

( x
i

) f
0n

( x
0

) i f P
O
 l s u n k n o w n
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*
Finally, define the selection rule d as follows:

(5.10) d*(x) = U|Δ*
n
(x) < 0},

Remark. By Step 1 and Step 2 of Procedure 2, the estimators

W. (y), 0 < y < N., always satisfy the constraint of Lemma 5.1(b) and (c).

Then, by Lemma 5.2, the estimators f (y), 0 < y < N , also satisfy the

corresponding constraint.

Asymptotic Optimality of {d }. By Theorem 2.2 of Barlow et al. (1972)
n

and the fact that W. (y), 0 < y < N., are strongly consistent estimators

of W (y),0 < y < N , we conclude that W (y), 0 < y < N., are strongly consisent

estimators of W (y), 0 < y < N . Then, by Lemma 4.1(b) and (5.8), f* (y),

0 < y < N , are also consistent estimators of f.(y), 0 < y < N . Therefore,

the sequence of empirical Bayes selection rules {d } is asymptotically optimal

By Theorem 2.1 of Barlow, et al. (1972) and (5.8) we obtain,

for δ > 0,

Pί|f
in
(y) - fi

(5.11)

Pί|w*
n
(y)-W

i
(y)| > 6/2} + Pt |w2

n
(N

i
-y)-W

i
(N

i
-y) | > <5/2}

* * ^4 -1 ^4 _1 O ^4 0 0

P{ Σ |W (x)(
 1
)
 1
-W.(x)(

 1
) ψ > (

 i
) V/4}

x =
=o

 y

N ±
 *

 N
i -1

 N
1 1 ?

 N
-f ~

2
 9

P{ Σ |W (x)( h - W (x)( V ψ > (
 ±
 ) δ

2
/4}

x=0 i x JN
±
 y

2 P{ Σ |W (x)( V ^ W . U K *)
 l
\

2
 > (

 ±
)

 2
δ
2
/4}

x=0
 y

N
 ^ N

2 Σ P{|W (x)-W (x)| > (
 X
)(

 1
) δ ( N

χ = 0
 in i x y i
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Then by (4.3), (5.2) and (5.5), with a discussion similar to that given in

Theorem 4.3, we conclude that r(G,dn)-r(G) < 0(exp{-c n}) for some c > 0.
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