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6. APPROXIMATE CONFIDENCE INTERVALS
IN MULTIPARAMETER PROBLEMS

β.l. I N T R O D U C T I O N

As has been noted in the previous chapters, a limiting aspect of the saddlepoint approx-
imation has been the computational complexity in higher dimensions. In a problem with p
parameters, we are often interested in approximating the marginal density of the estimate
of one of the parameters or the density of some test statistics. We could in principle use
the approximation to obtain the density on a grid in p-dimensions and then integrate over
appropriate regions of p-dimensional space. However, at each grid point, we have to solve
a non-linear system of p equations to obtain α. If p is three or more this is not really a
feasible method numerically.

In this chapter, we introduce a technique developed by Tingley and Field (1990) de-
signed to overcome this problem. In fact the approach to be presented will be based on a
nonparametric bootstrap and will allow us to obtain correct one or two-sided second order
confidence intervals without specifying an underlying density. One of the tools that is essen-
tial is the tail area approximation due to Lugannani and Rice (1980). This approximation
eliminates the integration of the approximate density in calculating tail areas.

The next section discusses the tail area approximation while the third section demon-
strates how to compute confidence intervals which are both robust and nonparametric.

6.2 TAIL A R E A APPROXIMATION

Up to this point, we have developed approximations for densities of estimates. However
in many situations, there is more interest in approximating the cumulative distribution. In
particular, for confidence intervals and testing procedures, it is the tail area of the distribu-
tion which is of interest. In this section we will develop a tail area approximation for the
case of the univariate mean. This approximation will then be used in the next section to
construct confidence intervals in the multiparameter situation. The tail area approximation
is based on uniform asymptotic expansions and was developed for tail areas by Lugannani
and Rice (1980). Both Daniels (1987) and Tingley (1987) have placed the result in the
context of small sample or saddlepoint approximations. Our development is similar to that
of Daniels and Tingley but with some notational changes.

Consider the situation where we have n independent, identically distributed random
variables, Xi, X2, ,X n and we want to approximate P(X > xo) for some point x 0 . Based
on our previous approximation for the density of X we could approximate the upper tail

oo

area by / kc~n(x)/σ(x)dx where Jfc is the normalizing constant. In order to evaluate this

integral, we have to evaluate c(x) and σ(x) (and hence α(x)) over a grid of points from
xo to oo. As noted by Daniels (1987), the integration can be made simpler by a change of

oo

variables. The upper tail area can be written as / kc~n(a(x))/σ(a(x))dx. The monotone

oo
transformation y = α(x), gives the integral f kc~n(y)σ(y)dy which avoids the necessity

α(*0)

of computing the saddlepoint α(x) for every ordinate. Related work by Robinson (1982)
gives a tail area approximation based on the Laplace approximation to the integral above.
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The Lugannani-Rice tail area approximation will be based on the values of c(x0) and σ(x0)
so we only require one evaluation of α, namely αr(xo). This is a considerable simplication in
computation and, as we shall see, gives remarkable accuracy.

We assume X{ has a density /, a mean of 0 and a cumulant generating function K(t)
defined by

€*«) = E{eiX*).

The Fourier inversion formula gives the density of X as

00

/„(*) = ± J «»<*(««>-«">*,.
—oo

Reversing the order of integration gives

P(X >*o) = j£
—00

00

= JL ί
— 00

•00

= JL J e»W)—*dz/z. (6.1)

We denote the solution of the equation, K'(z) = xo by α. Note that α is the saddlepoint
and in the notation of the previous chapters would be denoted by α(a?o) The next step is
to make a change of variables from z to t where

7 and p are chosen so that t = 7 is the image of the saddlepoint z = a and the origin is
preserved. This implies that p = K(0) = log / f(x)dx = 0 and - γ 2 = 2(A'(α) - ax0). η
takes the same sign as α i.e. 7 = sgn(xo)y/—2(K(a) — OXQ)

As we will show later on in the section, the choice of this transformation implies that
a local normal approximation is being used. Under this transformation, (6.1) becomes

H- 'oo

-'o) = Sϊ J
*—too

where GQ(t) = (t/z){dz/dt).
The effect of the transformation is to take the term which must be approximated out

of the exponent where errors can grow very rapidly into the main part of the integrand.
In order to obtain the terms in the expansion that we need, Go(t) is replaced by a linear
approximation as follows. To begin, write

From this representation, α 0 = GQ(O) and a\ = (Go(0)-Go(τ))/7 We now have to evaluate
Go(0) and £0(7). Go has removable singularities at both these points.
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Starting with K(z) - zx0 = t2/2 - 7*, we obtain

£ 7 7 s o that lim — exists.
dt K'(z) -

Hence

limGo(*) = lim - lim — = lim , IΛx lim — = 1

so that QQ = 1. Also

,. * ,. dz

since

and

lim Go(<) = lim - lim — = . . , . , ,
t—7 «-»7 z «—7 Λ α ( # " ( α r ) ) 1 ' 3

, (dz\ .. (<-7) .. -1
iimI -77 I = lim ..,. . — = hm r^ .
-7 V Λ y/ «-τ K'(z) - xo «-7 A-"(z)4^

limΈ =

so that

_ _ 1 1
O l " Ί

Approximating Go(t) by α0 + αxί, we obtain

t-too

*+t

2τ*Λ 7 + c4K"{*))W) J
b-ioo

» 1 -

The next step is to rewrite the formula in more familiar terms.

7* = -2(K(a) - αx0) = -2Πog ί e°(*-*o)f(z)dx) = 21ogc(x0)

and 7 = sgn(x0)y/2logc(xo). Similarly ^"(α) = σ2(α). The approximation for the tail
area becomes

P(X > xo) = 1 - Φ(sffn(i0)λ/2nlogc(i0))

, c-(«) f 1

for xo > F(Λ"). (6.3)
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Daniels (1987) shows that the formula is exact if we add an error term 0(n~ 3 ' 2 ) in the
curly brackets of the second term in (6.3) (cf. Daniels formula (4.9)).

To demonstrate the accuracy of the approximation, we can consider situations in which
the small sample approximation for the mean is exact. Then the error in the tail area when
computed with (6.3) can be attributed to the error of the tail area approximation. The
following numerical results in Exhibit 6.1 are taken from Daniels (1987) and Field and Wu
(1988).
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Exhibit 6.1a
Tail area for mean under exponential

/(*) = e—, x > 0, K(z) = - log(l - z)
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Exhibit 6.1b
Tail area for mean under inverse normal

f(x;μ) = μexp{—(x — μ)2/2x}/(2π)1/2x3/2

As can be seen the relative error introduced by (6.3) is small with the maximum being
just above 10% in the tables above. This demonstrates that the tail area approximation
works remarkably well for small sample sizes and in the extreme tails. The following example
for chi square random variables uses (6.3) iteratively to compute the upper percentiles for
x\/df. We used the tail area routine from 5 to check our results in this case. 5 uses an
algorithm developed by Goldstein (1973) to approximate the tail area. In that paper there
are estimates of the maximum relative error up to an upper tail area of .0005. For the
situation with n = 5, the following results in Exhibit 6.2 were obtained.

Upper tail area .05 10~2 10~3 10~4 10~5 10" 6 10~7

Computed from 5 2.2141 3.0173 4.1030 5.1490 6.1697 7.1616 8.1056
Computed from (6.3) 2.2150 3.0186 4.1049 5.1514 6.1740 7.1807 8.1760

Exhibit 6.2
Percentiles for χ\Jdf
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The maximum relative errors for the algorithm used by S are 10~3 for 5 degrees of
freedom for tail areas up to 5 x 10~4. For the tail areas in this range, we observe relative
errors less than 4 x 10~4, implying that approximation (6.3) again works very well.

As a final example we consider an example where the small sample approximation is
not exact so that errors arise both from this and the tail area approximation; see Exhibit
6.3.
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Exhibit 6.3
Tail area for mean under uniform

/(x) = 1/2, - 1 < x < 1, K(z) = log(sinh*/z)

For this example, the tail area approximation works very well and the results from (6.3)
are very close to those obtained by numerical integration.

If we consider the situation for robust location with a monotone score function, Daniels
(1983) demonstrates that formula (6.3) remains valid. The following Exhibit 6.4 again
demonstrates that (6.3) gives the same accuracy as numerical integration.

5% Contaminated normal Cauchy
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Exhibit 6.4 (cf. Daniels, 1983)
Tail probability of Huber's M-estimate with it = 1.5
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It is helpful in understanding the mechanism of the approximation to consider the case
where the ΛVs are normal with mean μ and variance σ2. In this case,

and K'(z) = xo gives a = (xo
The transformation from z to t is given by z = t/σ and the function Go(t) = 1. Hence αo = 1,
αi = 0 and #o(O = 0 and the only non-zero term in the approximation is 1 — Φ(y/nj) where
γ = (x 0 - μ)/σ i.e. the approximation (6.3) gives

for normal random variables and is, of course, exact.

In the general case, the function K(z) — ZXQ is not parabolic and the Lugannani-Rice
approximation proceeds by distorting K(z) — ZXQ SO that it is parabolic. The first term
in the approximation, 1 - Φ(y/nηf) comes from the normal approximation. The next terms
arise from the non-linearity of the transformation of K(z) — zxQ to a parabola. It should be
noted that a different normal (or parabolic) approximation is used for each point xo This
approach of a local normal approximation is of course the same as that used in deriving the
small sample approximation for the density. The classic Edgeworth and the Fisher-Cornish
inversion come from approximating K(z) globally by a polynomial which behaves like K{z)
at the origin and matches derivatives at the origin. The local nature of (6.3), ensures the
good accuracy of (6.3) even for very small n.

We now consider the so-called index of large deviations, namely

- lim log P{Tn>t)/n

where Tn is an estimate. If Tn is a M-estimate of location with a monotone score function,
then using a simple Laplacian approximation to the integrated density approximation, we
have

P(Tn > t) = c-n(t)/[σ(t)a(t)(2πnγ^][l + 0(l/n)].

This approximation works as well as (6.3) in the extreme tails. The extra terms in (6.3) are
an adjustment for the situation when t is near the singularity in the integral at the mean.
From this it follows that

- lim logP(Γ n > t)/n = l o g φ )
n—*oo

In addition, ΊίTn converges almost everywhere to T(F), then the Bahadur half slope is
given by

oo

lim - log / fn{v)du = lim ( - log c{Tn))

= - logc(Γ(F) )
(see Bahadur 1971, section 7).
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Remark 6.1
We can now complete the proof of (4.9). Let gn{t) = (n/2π)ι^Cn(t)A(t)/σ(t) denote the

00

approximation to the density. The Laplacian approximation above for / gn{t)dt gives that

r 7 f*M v π1 / 2exp(-nlogc(t))Λ t Jl\\
hm n / gn(t)dt = lim *; **: " 1 1 + 0 1 - ] .

n-*oo J n—oo σ(t)a(t)(2x)1'2 \ \nj J
t

Since logc(ί) > 0 for t > ΘQ, it follows directly that the above limit is 0 as required to give

= 0(l/ιι).

Remark 6.2
It is worth noting that in the tail area approximation (6.3), we get very accurate results
for the tail area beyond / using only the characteristics of the conjugate density at t. This
suggests that the conjugate density is the natural mechanism for centering and accurately
captures the tail area behavior.

To conclude this section we look at some results of Dinges (1986a,b,c) in which he
tries to develop a coherent theory for distributions close to the normal. He obtains an
approximation for the tails of various distributions including Student's t, Beta, Inverse
normal, and Gamma. Moreover, he applies his technique to approximate the tail area of the
distribution of the average of n iid random variables and that of M-estimators of location.
Here we will discuss the connection between this approximation and those discussed so far.

The key point is the concept of Wiener germ which is defined as follows in Dinges
(1986b).

Let U be a neighborhood of *o A Wiener germ of order m on U with center to is a
family of densities {f€(t)\e —• 0} of the following form

Λ(ί) = (2irerr'2exp{-K*(t)/eyD(tyexp{€ S(€,t)}, (6.4)

where
a) K*(t), the entropy function , is (m+ l)-times continuously differentiate with Km(t0) =

0, K*(t) > 0, K*"(t) positive definite;
b) D(t), the modulating density , is positive and m—times continuously differentiate;
c) * S(£,<) = *.5i(<Hc2S2(*)+ * "+*m~ISm-i(0+€mΛ(M), with the correcting functions

Sj(t) (m-j)-times continuously differentiate and the remainder term R(e, t) uniformly
bounded on U\

= 1-0(0, (6-5)

for some t' < t0 < t", [t',t"] C U.
The following interpretation will help to clarify this notion. Consider a diffeomorphism

Vo : G -* U C TV, where G is a neighborhood of the origin. Let Vi( ), •• , Vm( ) be
differentiable mappings on G. For small e consider the mappings

V(€, •) = Vo(.) + ίK:( ) + + (

m Vm(.) (6.6)

and denote by W(ί, •) : U -* Gt its bverse. If the Vj are sufficiently smooth, there exist
W0(t), • • Wm(t) such that
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W(e,t) = WQ(t) + €\Vι(t) + • 4- €mWm(i) + 0(£m+1). (6.7)

Then the distribution restricted to Ge of a normal random variable with expectation 0 and
covariance matrix el is mapped by V(e, •) into a distribution on U with a density of the
form fe(t) given by (6.4). Near the center *o the densities /«(*) are similar to the normal
densities with mean to and covariance matrix e(K*"(to))~ι.

An example of Wiener germ is provided by Daniels' result (3.19) written in terms
of Legendre transform (see section 5.2). In fact, given a sequence of random variables

_ n

Xir tXni the densities of the mean Xn = n~x Σ X, follow a Wiener germ along e =
en = £. In this case the entropy function K* is the Legendre transform of the cumulant
generating function, i.e. K*(t) = sup{αt — K(ά) : α} = aK'(a) — K{ά) with α = a(t)
determined by K'{a) = t, and the modulating density is D(t) = (K*"(t))ιf2.

Dinges gives then the following expansion for the tail area of a Wiener germ of order m

oo

J tWx{t) + ••• + 0 ( t m ) ] } , (6-8)

uniformly in the interval [*o — Cy/e^t'^ where c is an arbitrary but fixed positive number and
Φ is the cumulative of the standard normal distribution. The coefficients of the expansion
(6.8) WQ, W\, have a direct interpretation as the coefficients in the expansion (6.7) of the
inverse W of the mapping V(e, •••). They can be computed iteratively from the entropy
function K*, the modulating density D> and the correcting functions. For instance,

When (6.8) is applied to the distribution of the mean Xn of n iid random variables one
obtains the following expansion (e = e n = ί/n)

P[Xn >t) = φ|-v^[W 0(0 + lw.it) + • • o(n-m)}

or

l i { } ±t)+ •• o(n- m ) ) (6.9)

where

W0(t) = (2iΓ(i ) ) 1 / 2 = a K\a) -

w(t) = /r

and a(t) is determined by the saddlepoint equation K'(a) = ί or equivalently Λ"'(ί) = α.
In other words, one obtains up to the term of order 1/n in (6.9).

P[Xn > t] ~ φ|-VnWo(<) - ^ o ( < ) logMO/tVo(0]} (6-10)
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A similar result can be obtained for M-estimators of location.
The expansion (6.9) should be compared with large deviations types of results where

the quantity £ \og{P[Xn > t]} is expanded. Since

Dinges argues from (6.9) that —Φ" ι{P[X n- > t]}/y/n is the quantity that ought to be
expanded. Finally, note that a term expansion of formula (6.10) is similar to Lugannani
and Rice (1980) expansion (see 6.3) given by (in this notation)

P[Xn > ί] ~ Φ ( -

where φ is the standard normal density.

6.3. C O N F I D E N C E INTERVALS

In many estimation situations, it is of substantial interest to compute confidence inter-
vals for parameters of interest. We have developed techniques for approximating densities
in the previous chapters and our aim here is to use those approximations to construct con-
fidence intervals. Consider the setting of section 4.5, namely that of an independent iden-
tically distributed sample X\,-,Xn drawn from a population Fη involving an unknown
p-dimensional parameter η. η is estimated by an M-estimate ή as the solution of

,*?) = 0, j = l, ,p.

We want to construct an interval for a real-valued parameter θ = θ(η). θ will be estimated
by θ = θ(ή). In a linear regression problem η = (/?o,/?i,^) where βo is the intercept and
βι the slope and we are often interested in θ(η) =s β\ as a parameter of interest. In a
testing context θ may be the value of a test statistic. In this case, we are more interested in
computing tail areas for θ. The confidence intervals will be constructed via test statistics
and tail areas so that if the interest is in P-values, they can easily be obtained.

If we start with approximation (4.25) for / n ( t ) , the density of ή9 there are several
problems arising in the construction of confidence intervals. The first is the choice of an
appropriate test procedure to see whether a trial value 00 belongs to the interval or not.
Given an appropriate test statistic, we need to compute a P-value on which to base our
decision about θ0. Although we have an approximation for the density of r), to compute the
marginal density of 0 requires evaluation of fn over a p-dimensional space and then effectively
integrating out (p — 1) dimensions. Each evaluation of /„ requires the solution of a system
of p nonlinear equations. This procedure is feasible for p = 2 but becomes computationally
infeasible for larger p's . We need to find a technique to reduce the computational complexity.
Even without the computational difficulties, there still remains the problem of how to handle
the nuisance parameters in constructing the interval for θ. As a final difficulty we may not
want to specify Fη. The more natural way to overcome this is to replace Fη by an appropriate
empirical density. This means that we are using a philosophy similar to that of the bootstrap
but as we shall show, we avoid the resampling associated with the bootstrap. The procedure
outlined here is based on Tingley and Field (1990).
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To begin, we assume the assumptions in section 4.5 are met. Then from (4.24) we can
write

p

M /) (6.11)

where £ *,(*,,ιjd)/fi and £ = (6r;) = -Λ(τfe)-1 and Λfto) = £ , 0 [§£(X, 770)].

We now want to consider testing a point do to see whether it belongs to the interval or
not. 770 is unknown but satisfies θ(ηo) = #o To construct a test statistic we expand θ = θ(η)
in a Taylor series expansion about 770 using (6.11) and obtain

ι = l

where g(Xi,ηo) = Ψτ{Xi,ηo)BTdθ(r)o)/dη. The random variables # = g(Xi,ηo) are re-
ferred to as the configuration.

Since τj0 is assumed unknown, we actually work with the observed configuration y, =
g(Xi,ή). In order to keep the ideas clear we denote the observed ή by τ)o*,. Both ήof,9

and θ = 0(T)O6J) are held fixed in what follows. Note that gob$ = 0. Our test statistic
is g which approximates 0 — ΘQ with error 0 p (l/n). Although this may not appear to be
accurate enough (cf. Hall, 1988), we are able to obtain intervals with good coverage by
carefully approximating the density of g. Since our test statistic is a mean, the small sample
approximation for the density of a mean can be used. Before giving the coverage properties
of our interval, we give the algorithm to construct the interval and illustrate it with an
example.
Step 1:

Compute ήoh$, θ and gi = Ψτ{x%,ήo*$)Bτdθ{η)/dη. B can be computed paramet-

rically as the inverse of Eη^9 \^(Xiήoks)\ or nonparametrically as the inverse of

Step 2:
Obtain an initial estimate of the distribution of the <?,-. At this point either a parametric
or nonparametric estimate can be used.
In this development we use a nonparametric estimate via the cumulant generating
function K(t).

;

Steps 1 and 2 must be computed once for every sample. Note that the mean of our esti-
n

mated distribution, K'(0) = £ 9*/n = 0. ^ 0 Γ e a c ^ ^0 under test we need to recenter the

distribution at θ0 - θ, which is the approximate expected value of g(Y, ήc^s) under Fηo. This
is accomplished as in previous chapters by solving for α in the equation

= 0. (6.12)
t = l

Now (6.12) is the centering result used before except that the density / has been replaced

by the empirical distribution function.
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Step 3:
For each ΘQ under test, compute <X(ΘQ) as the solution of

< - (*o - *)(1 - e))exp{α(y, - (0O - ί)(l - β))} = 0

where e is of order 1/n.
The correction term e will be discussed later and is effectively a calibration correction.

Step 4:
Approximate Pηo\β > 0] by

A.B > o] = Φ(-^Π^W) ^ t ^

i.e. use the tail area approximation (6.3), where ni = n - p o r n - ( p - 1). Include
ΘQ in the (1 - 2e)100% interval if € < Λ[5 > 0] < 1 - €. Note that (6.3) is used with
cumulant generating function K(t) = K(t + αo) - K(t) where αo = α(0o).

It is more efficient to work backwards and replace steps 3 and 4 by

Step 3' :
Find αi solutions of P\jj > 0] = e and P\β > 0] = 1 - e where

P\9 > 0] = Φ(-V2nilogc(α) - £Zj

We write c and 5 as depending on α in this case, rather than ΘQ. It is still the integrating
constant of the conjugate density.

Step 4; :
Find 0i and θi solutions of

n

Σ<* - ( i - *)(1 - β))«P{«j(Λ " ( i - )(1 ~ 0)} = 0, i s 1,2.
t = l

The estimated (1 - 2e)100% confidence interval is (^l,^)-
We now consider using this algorithm for the location/scale problem. For the sample

X\,->Xn from an unknown distribution, location μ and scale σ are estimated by the
M-estimates μ, σ, solutions of

where η = (μ,σ) and

{ -k iίy<-k{ -k iίy<-k

y if \y\ < k

k if y>k,

oo

= (n-l) J Φl(y)φ(y)dy/n,
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and φ(y), Φ(y) are the density function and cumulative distribution, respectively, of a
standard normal random variable. The estimate η is referred to in the literature as Huber's
Proposal 2 (1981). The constant it is usually between 1 and 2. We have used, exclusively,
k = 1.0.

If the matrix A = E[dψ/dη]\s calculated under the normal model, then

A - σ l O 2«

where 6 = Φ(Jb) - Φ(-Jt) and

k

€

Then B = — -A"1 is estimated by

*

= Jy'φ(t)dy,

l/2<

and

(6.13)

If the matrix A is estimated empirically, then

where the Oij are the elements of A (see step 1).
By looking at numerical results, it can be shown that (6.14) is non-robust in that a

small shift in an observation can lead to a large change in the configuration. On that basis
we recommend the use of (6.13).

The following table taken from Tingley and Field (1990) shows the results which are
obtained using a Monte Carlo swindle and were blocked by generating 2000 samples of size
30 and then using subsets of these for samples of size 5, 10 and 20. The classical samples
are the usual t-intervals while the small sample intervals are as given above with Jb = 1.
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Sample
Size

5

10

15

20

2 sided
coverage

P<R
s.d

log length

2 sided
coverage

P<R
s.d

log length

2 sided
coverage

P<R
s.d

log length

2 sided
coverage

P<R
s.d

log length

Normal

Classical

.95
.975

.98

.95
.975

-
.39

.95
.975

.
-.05

.95
.975

-.34

Small
sample

.903

.950
.07
.91

.929

.960
.05
.41

.937
.97
.04

-.02

.943
.97
.03

-.29

Contaminated normal
.9#(0,1) + ΛN(0,16)

Classical

.960

.980

.010
1.30

.961

.981

.015
.73

.960

.981

.024
.32

.958

.979

.033
.05

Small
sample

.916

.958

.063
1.07

.929

.965

.053
.51

.939

.971

.041
.08

.941

.971

.037
-.20

h

Classical

.963
.98
.02

1.38

.960
.98
.03
.79

.955
.98
.06
.38

.954

.98

.06

.11

Small
sample

.921

.96

.06

.15

.931
.96
.06
.59

.937

.96

.06

.14

.939
.96
.06

-.15

Exhibit 6.5
95% Confidence intervals for location

The results from the table show that the coverage is always slightly less than the
required level of .95. This can be adjusted by fine-tuning the effective degrees of freedom or
adjusting the shift condition. Work is continuing on the geometric interpretation of these
adjustments. The results on the lengths show that for both the contaminated normal and £3,
the length of the classical interval is about 25% longer than that of the small sample interval.
Results for the correlation coefficient and the percentiles of a ^-density (first and tenth)
are reported in Tingley and Field (1990). In both instances, the small sample intervals give
actual coverage very close to the desired level. In particular for the correlation coefficient,
the coverage is always better and the length shorter than that of the Fisher interval.

We now turn to a discussion of the procedure and its coverage. As can be noted from
the algorithm, the interval is constructed by inverting the test Ho : θ(*)o) = #o where 170 is
unknown. Recall that in this argument, ήobi and θ = θ(ήobs) are being held fixed. With 770,
it can be verified that E{g{X,ήo^)) = θo — θob$ with error O p (l/n 3 / 2 ) . The approximation
to the density of g under TJQ is given by the cumulant generating function K(t) defined by

is: I
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However with K(t)> we have that the mean o(g(X, ήo^t) is 0 while in fact the mean should be
ΘQ—Θ . This suggests that K(t) is not a good estimate of the density. The centering conditon
(6.12) modifies our estimate K(t) to Kao(t) = K(ao+t)-K(a0). The calculations involving
g under 770 with θ(ηo) = ΘQ are now done with the approximate density determined by KaQ(t).
Consider the one-dimensional exponential family h*(g;a) = exp(ag — K(a))h(g,η) where
h(^, 17) is the density of g determined by K. Then the hypothesis HQ : θ(ηo) = ΘQ is equivalent
(to order 0 p ( l/n 3 / 2 ) ) to the hypothesis Ho : a = ao in the exponential family ft*. For such
an exponential family, we know that the uniformly most powerful test of HQ : α = α 0 versus
H\ : α > αo is to reject Ho if got,t exceeds a critical value. Our confidence intervals are
now constructed by computing P$0\β > 0] using the approximation in step 4 and inverting
the test. Conditional on the density determined by K(t) and the assumed one-parameter
exponential family h*(g\a), the confidence intervals constructed above are optimal.

The final step is to obtain results on the coverage. A straightforward application of an
Edgeworth expansion gives bounds on the error of the cumulants from using KQo(t) and we
obtain

Λ . & < 0 ] = A o B < 0 ] + M V t i ) if Hηo) = θo. (6.15)

Expression (6.15) guarantees that the constructed intervals are second order correct for
one-sided coverage. See Tingley and Field (1990) for a proof of (6.15) along with further
discussion. Hall (1988) gives an excellent exposition on bootstrap confidence intervals.

The importance of the algorithm is that it resolves two problems with the usefulness
of the small sample approximation in some practical settings. The first is that of the
computational complexity in multiparameter problems. The use of the configuration reduces
the multiparameter problem to a one-dimensional problem. Secondly by using K(i) and
K<*(t)) we avoid the problem of specifying an underlying density and allow the data to
determine the interval directly. In this sense, the procedure is closely analogous to the
bootstrap.

Finally we note that there is no inherent difficulty in handling multiple regression,
logistic regression or any procedure where the estimate is defined via a solution of a system
of equations. Research is currently underway in applying the technique to a variety of
situations.




