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5 RELATED TECHNIQUES

5-1 INTRODUCTION

In this chapter, a number of related techniques will be presented emphasizing their
relationship to small sample asymptotics. Section 2 looks at an approach developed by
Frank H amp el which has a number of desirable properties.

Next the relationship of small sample asymptotics to saddlepoint and large deviations
is presented. We then turn to the work of Durbin and BarndorfF-Nielsen and attempt to
relate their work in the case of sufficiency and/or exponential families to the techniques of
small sample asymptotics. To conclude the chapter, computations are done in the case of
logistic regression to contrast the various approaches.

5.2. HAMPEL'S TECHNIQUE

In the paper, Hampel (1973), many of the motivating ideas for small sample asymptotics
are laid down. Both authors were introduced to the topic via the paper and it is important to
acknowledge its influence. Although the results turn out to be closely related to saddlepoint
results, they were developed independently of the saddlepoint work of Daniels (1954). The
approach proposed by Hampel is very interesting and probably has yet to be fully exploited.
Our purpose here is to present the ideas and suggest some possible future directions. The
initial development follows Hampel (1973) very closely, especially p. I l l , 112.

HampeΓs approach differs in several ways from typical classical approaches. The first is
that the density of the estimate, rather than a standardized version of it, is approximated.
A second feature is that we use low-order expansion in each point separately and then
integrate the results rather than use a high-order expansion around a single point. It is this
feature which really distinguishes small sample asymptotics (and saddlepoint techniques)
from classical asymptotic expansions. The local accuracy from the first one or two terms
is effectively transferred to a selected grid of points yielding the same accuracy globally. It
is the availability of cheap computing which makes feasible this use of local techniques. A
fairly simple approximation requiring non-trivial computation is carried out at a number of
grid points. This is of course exactly the type of problem which is ideally suited to computer
computations.

The third difference concerns the question of what to expand. Hampel argues effectively
that the most natural and simple quantity to study is the derivative of the logarithm of the
density, namely fή/fn- There are at least four reasons why this seems reasonable,
(i) The form of the expansion of /„//*» is such that the first term is proportional to n and

the first two terms are linear in n. This contrasts with more complicated relationships
coming from fn or the cumulative,

(ii) Since our expansions are local in nature, it makes sense to focus on a feature of a
distribution which is not affected by shifts or addition or deletion of mass elsewhere.
Neither fn or the cumulative satisfy these properties, fή/fn is the first and simplest
quantity with these local properties.

(iii) We can view the normal distribution as playing a very special and basic role in prob-
ability, in many ways analogous to the role of the straight line in geometry. For the
normal, it is / ' // which has a particularly simple form, namely a linear function of x.
By expanding fή/fn locally, we are, in a sense, linearizing a function locally.
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(iv) An expansion of fή/fn will not give the constant of integration for fn but forces us to
determine it numerically. As has been noted in Remark 3.2, in approximating the den-
sity of mean, the order of the error is improved from n"1 to n~3/2 by renormalization.
Using the fή/fn scale emphasizes the renormalization in a natural way.
To contrast this approach to the techniques developed so far, namely, it is useful to

consider a specific problem. Consider the situation of approximating fή/fn for the mean of
n independent observations. The presentation is similar to that found in Field (1985). The
development for the more important case of M-estimates of location is given in Field and
Hampel (1982).

Assume that fή/fn l8 to be approximated at a point t. The conjugate density is
Λ«(x) = c(t)exp{a(t)(x - t)}f(x) and a(t) is the solution of

ί(x - t)ht{x)dx = 0 or J(x -1) exp{α(*)(* - t)}f{*)dx = 0.

In order to guarantee the existence of a(t) and its derivatives up to order 4, assume that
/ xrca*f(x)dx exists for r up to 5.

Now we obtain a centering results (cf 4.4, 4.23) as follows:

Mt) = nj J f(nt - f > ) Π '(*•)<*
n-l n-1

... j

where htn(t) is the density of X with underlying density ht. Now we use a normal approx-
imation to X under ht. Recall EhχX = t and varΛ|X = f(x - t)7ht(x)dx/n = σ2(t)/n.
Hence Λt,Λ(<) can be approximated by nιlΊ/y/2rσ(t) and h'tn/htin(t) by σΊσ(i) each with
errors of order 1/n, The term of order n"1 '2 disappears since we are evaluating the density
at the mean.

From this

fή/fn(t) = -nc'/c(t) - σ'/σ(

= -nα(t) - <//σ(t) + 0(l/n). (5.1)

To illustrate the behavior of /i//n(t), we examine its behavior for the case of the
uniform density on [—1,1] and for the extreme value density, f(x) = exp{x-exp(-x)}. For
the uniform case, it is possible to compute the exact value of f'Jfn The following Exhibit
5.1 compares the exact and approximate values. See Exhibit 3.7 and 3.8 for results on the
density and distribution function.
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n ss 5 n = 20
Exact Approximate Exact Approximate

0.00
0.05
0.10
0.20
0.30
0.40
0.50
0.70
0.90

0.0000
-0.6608
-1.3270
-2.6950
-4.1520
-5.7700
-7.6610

-13.5200
-40.0000

0.0000
-0.6546
-1.3230
-2.7270
-4.1680
-5.7890
-7.7420

-13.3300
-40.0000

0.0000
-3.9140
-5.8540

•11.9200
-18.4500
-25.8200
-34.6100
-63.0700

-190.0000

0.0000
-3.9150
-5.8560

-11.5200
-18.4500
-25.8200
-34.6200
-63.0500

-190.0000

Exhibit 5.1
Exact and approximate results for fή/fn(t)

uniform observations.

From Exhibit 5.1, it is clear that even for n = 5, the approximation is very accurate
over the whole range. The following plots (Exhibit 5.2, 5.3) demonstrate the approach to
normality as n increases. As π increases, fή/fn becomes smoother, on the one hand, and
only a smaller increasingly steep central part contains most of the mass of the distribution.
To calculate the curves the graphs are plotted for values oft corresponding to middle 99.8%
of the density (i.e. tails of .001). In order to compute these percentiles, it is convenient to
use the tail area approximation of Lugannani and Rice (1980) given by (3.27). It is worth
noting that although the exact tail area requires an integration over the range (ΐ,oo), we
can obtain a very accurate approximation with the values only at the point t. This results
in considerable saving of computational effort.

The graph for the uniform (Exhibit 5.2) only shows the upper part of the graph since
fn is symmetric. It is clear that at n = 40, the graph shows very little deviation from a
straight line indicating close agreement with the normal. We can argue that such a diagram
makes it very easy to see how quickly a density is approaching its normal approximation.
The second graph (Exhibit 5.3) for the extreme value density shows a density for the mean
which is decidedly asymmetric at least for values of n = 5 and 10. However for n = 40, we
have good agreement with the normal.
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/n-40

10

-10

0.6 0.8

Exhibit 5.2
fn/fn for mean of uniform observations

-20
-3 -1

Exhibit 5.3
fn/fn for mean of extreme observations
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In order to assess the quality of the approximation, we begin by considering the density
of nχ/2(X — t)/σ{t) where we now assume that the X, 's are distributed according to the
conjugate density, ht(x). Denote this density of nι/2(X — t)/σ(t) by sn(x;t). Now sn(0;<) =
n~ι/2cn(t)<?(t)fn(t) But this implies that

f«) = -»„,«)-£«) if
In <r M M ;

Recalling that sn(0;t) is the density of a normalized sum at its expected value, we have an
Edgeworth expansion as follows:

The quality of the approximation will be determined by how closely the density of nχ

t)/σ(t) matches that of a standard normal in a neighborhood of*. Recent work by Field and
Massam (1987) develops a diagnostic function based on this observation. The diagnostic
function has some similarity to the diagnostic function for normality proposed by Efron
(1981). As will be demonstrated in chapter 6, we can think of the small sample approxima-
tion being based on a local transformation to normality. Efron uses a similiar , but a less
general transformation, as a means of constructing confidence intervals (cf. Efron (1987)).
Section 6.3 gives a construction based on small sample approximations.

We now turn to a brief discussion of a(t). Recall that for the mean a(t) solves
f(x-t)exp{a(t)(x-t)}f(x)dx = 0. We note that a(t) uniquely determines /. For if/i and

t

/a both give rise to the same α(ί), then α(ί) = J(t)/c(t) which implies logc(t) = / a(s)ds
β

so that c(t) is the same for both f\ and Λ The relationship between a(t) and c(t) can be
obtained by differentiating the equation for α(i). From this

|exp(α(<)(* - t))fι(x)dx = Jexp(α(<)(* -

Since these expressions are Laplace transforms, this implies the equality of /i and fo.
To see the central limit theorem from this perspective, note that a(t) = t for the

standard normal. Hence the central limit theorem requires

where α*(t) corresponds to y/n(X — μ)/<τo, EjX% = μ, σ<> = υarjX{. The first step is to
express α£(i) in terms of α(<) corresponding to /. α*(t) must satisfy

or

But we can make the first term in the product equal to 0 by setting α* (l)/σo v/n = o(μ +
/n). Therefore α*(ί) st σo */na(μ + σot/y/n). Expanding a about μ, we obtain

a'n(t) = σOy/na(μ) + <α'(μ)σ§ + σg<2o"(/ί/2Vn) for μ < μ < μ +
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We assume that a"(μ) is well behaved near μ. Using the fact that α(/i) = 0, a'(μ) = l/σ^,
we have lim,ι_»oo <*„(*) = t as required for the central limit theorem.

Although we have chosen to focus on a(t) as the transform, it is also possible to view
I

logc(*)(= fa(s)d8) as a transform. If we let K(a) = log Ef exp(αX) denote the cumulant
μ

generating function, then the Legendre transform K*(t) of K(a) is defined as

Km(t)=8\ip{at-K(a)}.
a

The maximizing value of α is obtained by solving

K\a) = t or

J(x-t)ex?(a)f(x)dx = 0.

Hence

α = o(ί) and K'(t) = a(t)t -\og J exp(a(t)x)f(x)

= log Jexp(a(t)(x-t))f(x)dx

= - logc(ί ) ,

and the saddlepoint approximation can be written as

A nice development of saddlepoint approximations using the Legendre transformation can
be found in McCullagh (1987, Chapter 6).

Although fn/fn seems in many ways to be the most natural quantity to approximate,
the arguments become awkward if we move from the mean, either to M-estimates or multi-
dimensional problems (cf. Field and Hampel 1982). In these cases we end up approximating
both fn and f'n and then taking the quotient of the results. Given the approximation to fn,
there seems to be no practical argument to do all the work to approximate / £ / / n . The fact
that fn/fn gives us the correct integrating factor can be carried over to approximating fn

by a renormalization of the approximation.
It is quite possible that f'n/fn can be approximated directly in which case this would

be an attractive alternative. This may involve a more geometric approach than the one
we have been using. Insight in this direction could be very helpful in obtaining a deeper
understanding of the mechanics of the approximation and could lead to new proofs and
deeper understandings of the central limit theorems.

5.3. RELATIONSHIP TO EDGEWORTH E X P A N S I O N A N D LARGE

DEVIATIONS

In this section, our formula for fή/fn and the saddlepoint method are compared to the
classical methods of Edgeworth expansion (Cramer, 1946, pp. 229, 223, 133 etc.; Daniels,
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1954) and large deviations (Richter, 1957; Feller, 1971; Cramer, 1938). In addition, from
the formula for fή/fn a new variant of the classical methods is derived. Using this variant
the connections between the methods is made very clear. The development follows closely
that of Field and Hampel (1982, section 10).

To make comparisons easy, we consider the case of the arithmetic mean i.e. φ(x) = x.
Let XΪ9 ,Xn be independent observations from a density / satisfying regularity conditions
required for the classical expansions; for example, conditions 1 and 2 of Richter (1957) p.
208, which require that the moment generating function of / exists in an interval and that
n

Σ Xi has a bounded density. Assume that EX% = 0 and put varX, = σ2, EXf/σ3 = λ3,

EX?/σA - 3 = λ4. Write Tn = X with density fn(t). Now ETn = 0, varΓn = <τ2/π,
λs(Γ n) = λZ/y/Z, λ 4 (Γ n ) =

Before proceeding, it is helpful to look at the situations to which these methods are
directed. Both the Edgeworth and large deviation expansions approximate the density of
y/nX/σ, which at a point x equals fn{xσfy/n)σ/<>/n. In the Edgeworth expansion x = 0(1)
while in large deviations x = 0(y/n). Writing t = σx/y/n, the methods can be compared as
follows:

f'Jfn and saddlepoint: * = 0(1)

Large deviations up to order Jb — 2 : t = Oίn""1'*), Jb > 2

Edgeworth : t - 0(n~
1'2).

In deriving fή/fn said the saddlepoint approximation at t, the underlying density is
recentered around t using a conjugate (or associated) distribution, ht(x) = c(t)exp{α(£)(x —
*)}/(*) w ^ k / ( x — t)ht(x)dx = 0. This centering is equivalent to a shift in the / '// space:

Λ;(X)/A,(Z) = / '

The Edgeworth expansion is used locally at 0 for each centered density, ht, in both
fή/fn and the saddlepoint approximation. In fact, the saddlepoint approximation, which
is, except for a constant, the integrated version of fή/fny only uses the first term of the
Edgeworth expansion, the normal approximation, at each t. It is remarkable that this
simple device yields the very good accuracy even in the extreme tails that has been shown
in the previous sections. On the other hand, the Edgeworth or large deviation expansion
are not recentered. To take our comparisons a step further, only the local behavior of f'n/fn

and the saddlepoint approximation at t = 0 is considered.
Starting from formula (5.1), we have, for the arithmetic mean, fή/fn(t) = -na(t) -

/?(*) — y(t)/n- where α(ί), β(t) = σ'/σ(t), f(t) corresponds to terms of order 1/π which we

will not need explicitly. Put a(t) = α(0) + £ α( v>(0)t v/υ!, β(*) = 0(0) + £ flυ)(0)tυ/v\
vsl vsl

and y(t) = 7(0) + £ ^υ\θ)tv/v\. Recall that in both Edgeworth and large deviations

i - t O a β n — * o o , so that these expansions make sense. By integrating, we obtain

n = logΛ(0) - πα(0)ί - £α' £
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Write log/„(()) = ]og(y/n/2τσ*)(l + tι/i/n + •••)• Observing that o(0) = 0, since EX = 0,
we have

/„(*) =

β(o)t - \β'(o)t2 - \β"

(5.2)

Note that the various terms can all be expressed in terms of σ,λ3,λ4 . This can be
done directly by differentiating or from (5) and (6) in Richter (1957). However this re-
expression of terms is easiest to see by means of comparison with the Edgeworth series
which we do later in the section. Note that the infinite series (2.6) in Daniels (1954) has
effectively t = 0 (after recentering) so that only the expansion of / n(0) remains in (5.2),
i.e.y/n/2πσ2eWι/"+'". In 2.6 the exponential is expanded to give 1 + w\/n H , so that
for a finite piece of the series, negative approximated densities can result. However, the
saddlepoint approximation, which ignores w\/n etc., is always positive and has been seen
to be very accurate even in the extreme tails . With regards to the constant of integration,
log/n(0), numerical results indicate that accuracy can be improved over the expansion used

oo

above by evaluating this numerically as [2 / fn(t)dt]~ .
o

Key pages for the connection between large deviation and saddlepoint approximations
are Richter (1957), p. 212 and 214. Note that in Richter's formulas, there are several
misprints. On the bottom of p. 213, the formula for /, should have been φ\t^/2(Z\)2 (the 2
is missing) and top of p.214, y?4(z<>)/8 - ^^3(^0) instead of ^4(zo)/9 - bφl(z0)/12.

A key formula for the connection between saddlepoint and Edgeworth approximations
is (4.3) in Daniels (1954) where the Hermite polynomials differ from those in Cramer (1946)
by a factor of ( - l ) n .

Consider now the Edgeworth expansion which is an expansion for n1'2* = constant > 0
(i.e. at each fixed multiple of the standard deviation of Γn). We proceed by expanding the
exponents in (5.2). Remembering nt2 = constant, groups of terms of equal order are:

Constant, nt (together with y/n, the normal approximation)

nt3,t (skewness only in addition)

ntA, t2,1/π (skewness and excess).

The expansion of the exponentials in (5.2) up to this order yields

1/2

tz-β(O)t

« 'W(0) π f 4 . P2(0)t2
6 2
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To match with the Edgeworth expansion, make the substitution x = y/nt/σ. The
Edgeworth expansion is an expression for fixed x in powers of n"1/2. From (2.9) we obtain
the expansion for the standardized density

where φ(x) is the standard normal density.
Since Xz(Tn) = Xz/σn etc., we obtain by matching terms α(0) = 0, α'(0) = l/σ2,

α»(0) = -λa/σ 3 , α'»(0) = -A4/<r4 + 3A2/σ4, β(0) = A3/2σ, /?'(0) = A4/2σ2 - A3/σ2,

From Theorem 2 and (7) of Richter (1957), the first two terms of the large deviation
expansion yield

& ' " {^^ £ 4 <5 3)

This expansion corresponds to an extreme case of asymptotic direction in which n —• oo
first and then t —• 0 or the limiting case of net = const for c —• 0. This corresponds to
keeping only the leading constant term and the expansion of a(t) and leads precisely to
formula (5.3) above.

Hence the large deviation approximation for the density is nothing but the expansion
of α(t) totalling ignoring the other terms in (5.2). Its value at t = 0 coincides with that
of the saddlepoint approximation, but since for t φ 0, it does not readjust σ as the latter
does (which amounts to keeping β(t) in the local expression), even the full infinite large
deviation series would (apart from a constant) correspond to using only the first order
term in the integrated fή/fn approximation or the equivalent saddlepoint approximation.
Results in Hampel (1973) show that this will give a poor numerical fit; the finite pieces of
the series such as (5.3) above are only an approximation to this poor fit. The versions of
large deviations for the cumulative, instead of the density, such as (6.23) in Feller (1971),
probably contain the additional approximating error of the normal tail area by a function
of the normal density and are likely to be still worse.

If we keep all terms of order n1/2f = constant, then the full version of (5.2) up to this
order is

< 5 <>
The new formula (5.4) is what large deviations ought to be to give any hope of decent

numerical results. It compares closely to Edgeworth, as the only difference is in the finite
expansion of the exponent in Edgeworth. However the new formula can never be negative
while the Edgeworth can. On the other hand, if λ 4 — 3λ | > 0, and not λ 3 = λ4 = 0, formula
(5.4) will eventually explode for large |t|, as will large deviations. Also the strict norming of
the total probability, which Edgeworth expansions often pay for with negative densities, will
be lost. But all this hardly matters if one cuts off for large \t\ when all these approximations,
based on expansions at 0, will be bad anyway. Of greater interest is the behavior for small
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|ί | and then it can be hoped that (5.4) is slightly better than Edgeworth. This has been
supported by a numerical example with X, exponential, n = 4 when for |x| = \y/nt/σ\ < 1.5,
the error was rougly halved and outside |x| = 2, both approximations were bad as is to be
expected.

t

-0.25
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
2.5
3
3.5
4
5

Exact

0
0

0.24525

.72179

.89617
.78147
.56150
.35694
.20852
.11451
.03027

.00708

.00152

.00031

.00001

"Edgeworth
exponent

(5.4)

.00168
.04596
.29544

.70413

.89126

.78143

.56358

.36151

.20305

.08952

.00340

1.10~
6

7.10-
14

2.10-
17

4.10
087

%
error

20.5
-2.4
-.5
-.005
.4
1.3
-2.6
-21.8
-88.7

-100
-100

-100
-100

Edgeworth

-.03920

.02175

.02175

.69231

.88857

.78126

.56584

.36968

.20052

.09373

.04026

.00889

.00045

6.10-
6

3.10~
u

%
error

21.4
-4.1
-.8
-.02
.8
3.6
-3.8
-18.1
33.0
25.6
-70.4

-98.1
-100

Normal

.0350

.1080

.2590

.4840

.7042

.7979

.7042

.4840

.2590

.1080

.0088

.0003
3.10-

6

1.10-8
2.10-

11

%
error

5.6
-11.9
-21.4

2.1
25.4
35.6
24.2
-5.7
-70.9
-95.8
-100
-100
-100

Large
deviations

(5.3) .

.0002

.0105

.0105

.3848

.6869

.7979
.7162
.5371
.3313
.1507
.0051
1.10"

6

4.10-
14

3.10"
28

8.10-
89

%
erroi

-56.1
-46.7
-23.4
2.1
27.6
50.5
58.9
31.6
-83.2

-100
-100
-100

-100

Exhibit 5.4
Density of the mean of 4 exponential for various approximations

EXA a 1, varX4 = 1/4, A3(X4) = 1, A4(X4) = 3/2.

The approximation of this using fή/fn is exact everywhere while the saddlepoint ap-
proximation has a constant relative error of +2.1% everywhere.

5.4. APPROXIMATING THE DENSITY OF SUFFICIENT ESTIMATORS

AND MAXIMUM LIKELIHOOD ESTIMATORS IN EXPONENTIAL

FAMILIES

We consider the problem of approximating the density of sufficient estimators with the
aim of relating the results to those of small sample asymptotics. The development is based
closely on the important work by Durbin (1980a) and we will use his notation. Durbin
assumes that we have a matrix of observations y = (yi, ,yn)

τ (not necessarily iid) where
each yi a of dimension t and has density

) = G(t,θ)H(γ)

where t is m-dimensional and is the value of an estimate T n of θ.
Durbin assumes that a transformation y\, , y n —>h, ,tm,

that the density of Tn, g(t, 9) = G(t, θ)Hχ(t).
The basic equation for the first step comes from rewriting

u m + i , exists so

= 9(t,9)h(y) where Λ(v) = H(y)/Hχ(t).
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Since this result holds for any θ, we obtain

^ M ) (5 5)

The approximation results by making an appropriate choice of θ and then approximating
the last term on the right hand side using an appropriate Edgeworth expansion.

Although Durbin considers 4 cases, we will focus on case 4, the most general, in order to
facilitate comparisons. In this development, we assume T n satisfies the conditions required
for the expansion (28) of Durbin to hold. This general Edgeworth expansion requires that
certain regularity conditions hold and that the cumulants are of the correct order. Condi-
tions given in sections 4.2 or 4.5 are typical of what is required. The first step is to choose
the value of θ on the right hand side of (5.5). This is done by using the value θ such that

/((u - t)G(u, ηH^ujdu = 0.

When we use an Edgeworth expansion for $(u,0), the odd order terms disappear since we
are expanding at the mean of T n . Substituting the expansion gives (21) of Durbin (1980a)
i.e.

g(t,θ0) = ( n / 2 , r r / 2 | l / 2 ^

r lr/2]

\ * + Σ
where Dn(θ) = nE{Tn - E(Ίn)}{Tn - E(Ύn)}τ and Pnj(x,θ) is a generalized Edgeworth
polynomial defined by

~1/2

(see Durbin 1980a for details).
Using only the first term we have

(5.6)

If we compare this approximation to (4.25) we can see similarities. The expression for c~ n(t)
has been replaced by f(y,θo)/f(y,θ) and \detA\\detΣ\-1'7 has been replaced by |A,(t) | .
To explore this further, recall that in small sample asymptotics, there are two steps; the
recentering, followed by the use of the first term in an Edgeworth expansion, namely a
normal approximation, Equation (5.5) corresponds to (4.23) relating the density under /
with the density under the conjugate distribution.

Using the notation of this section, the centering formula from chapter 4 would require
(equations are written in univariate form for ease of notation)

(u - 0 exp{α(*)(t* - t)}G(u, θQ)Hχ(u)du = 0.
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Because of the sufficiency, Durbin uses

J(u-t)G(uj)Hχ(u)du = O

to recenter where θ is analagous to α(ί). As can be seen, the expression exp{a(t)(u -
t)}G(u,θ) has been replaced by G(u,θ) so that we are in effect using a different conjugate
density. In each case, the recentering requires a rescaling of the new density. In chapter 4,
this is done with c~n(*)> while in (5.5) this is achieved with /(y,0o)//(y,0). In summary,
the existence of a sufficient statistic enables us to recenter the density without the necessity
of knowing the cumulant generating function. The approximation step is essentially the
same in both the small sample asymptotics and Durbin's approach.

The major advance brought about by Durbin*s approach is that approximation (5.6)
does not require that the observations be independent. This makes the results very useful in
time series settings. It is the existence of the sufficient statistic which provides the essential
simplication to make the technique feasible for the case of dependent observations. In several
of the cases Durbin considers, he assumes £[T r e |0] = θ up to order 1/n, so that θ = t and
the approximation becomes

We now turn to the special case of the exponential family with n independent observa-
tions xιt , xn. The density is given by

The argument here is for a one-dimensional θ but it carries through routinely for the p-
dimensional case. Although there are several approaches which all lead to the same result,
we will use Theorem 4.1 to illustrate the connection of the small sample asymptotic approach
to that of Durbin and of Barndorff-Nielsen.

We want to approximate the density of the maximum likelihood estimate Tn (or θ )
at a point t (or θ) with an underlying density /(r;0o). We will develop the formula in
terms of Tn and t in order to remain consistent with the notation to date. The score
function is ψ(x,t) = tι(x) - K'{t) and E$u(x) = K'(θ). The conjugate density is ht(x) =
c(t) exp{αr(<)(ΐi(x) - K'(t)) + θou(x) - K(ΘQ) + d(x)}. The centering condition requires that
Ek% (u(x) - K'(t)) = 0. If we chooβe a(t) = t - θOi then ht is exponential with parameter t
and EH%U(X) = K'(t) as required . Now

c~ι(t) 8 exp{K(t) - tK'(t)}/*xp{K{h) -

α(ί) = Et.lW*) - K'(t))/dt] = -*"(*)

From this, approximation (4.8) becomes

To compare with formula (13) of Reid (1988), we replace t by θ and note that in L(θ) =
exp{ΘΣu(xi) - nK(θ) + Σd(xi)}, θ satisfies the condition that Σtι(xf ) = nK'(θ) i.e. the
maximum likelihood equation. Hence
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gn(θ) = (n/2τr)ι'2{L(θo)/L(θ)}(Ktf(θ))1'2 (5.7)

with the convention that Σu(x{) = nK'(θ). If we replace (K"(θ))ιf2, the expected infor-
mation by j(θ) = -d2logL(θ)/dθ2\θ_έ, then we obtain formula 13 of Reid (1988). (5.7)
is often referred to as Barndorff- Nielsen's formula and appears in BarndorfΓ-Nielsen (1980,
1983). It is the same as both the small sample approximation and the approximation given
by Durbin for sufficient statistics. In order to put the results in historical perspective, Henry
Daniels had noted this result expressed in (5.7) in a discussion of a paper by Cox (1958). It
is interesting to see how many of the results used today come directly from the pioneering
work of Henry Daniels (1954).

To conclude this section, we show the form of approximation (4.25) for a curved ex-
ponential family. The development is based on work by Hougaard (1985) and we use his
setting and notation. Assume

The parameter θ is a function θ(β) of a p-dimensional parameter /?. We are interested
in approximating the density of /?, the maximum likelihood estimate of β. This setting
includes non-linear regression with normal errors, logistic regression and log-linear models.
β is obtained as the solution of

n(t-τ(θ{β))'dθ/dβ = Q where r(θ) = Eφt(X) = K'(θ).

The equation which α must satisfy is

or equivalently

J ^ { } = 0.J •^•

If we substitute, the left hand side becomes

ΊZ "* [ ( t ( x ) " τ{θ))>Ίβa + t(x)'flo" κ{θo) + Λ ( x ) ] dx

Assuming we can interchange integration and differentiation, it is possible to carry out the
integration to obtain

To have this derivative zero, it suffices to have the derivative of the log equal to 0. i.e.

(r(*° + %«)) - <W))'dθidβr = o.

Since the conjugate is exponential with parameter θ* = θ0 + dθ/dβa, it is straightforward

to compute c" 1 , Σ, A. The resulting approximation is
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fn(β) = j

&Ί ~ M * ) " T[θ)i W\\ dβ dθ*> dβ

[ ] (5.8)

where 0* = 0O + <W/00α with α given by (r(0*) - r(9))'dθ/dβ = 0.
In the last section of this chapter, this formula will be applied to an example. It is important
to recall that (5.8) is the small sample approximation (4.25) applied to a curved exponential
family. The form of the exponential leads to simplification in that the integration in (4.25)
can be carried out explicitly. Result (5.8) is given in Hougaard (1985) as Theorem 1 which
he in turn attributes to Skovgaard (1985).

5-5. C O N D I T I O N A L S A D D L E P O I N T

Consider the situation where we require an approximation to the density of a statistic
T\ given that Tj = t^. In what follows we assume that we can approximate the density of
T s5 (7Ί,7a) as well as the density of 7\. The most direct way to proceed is to use a small
sample approximation 9n(*i>*2) for the joint density, a small sample approximation gn(h)
for the density of Γ2 and then divide the two approximations to give an approximation to
the conditional density. In the literature, this approximation is referred to as the double
saddlepoint approximation. To be specific we would choose (αri(t),α?(t)) in the joint con*
jugate to center (7i,T 2 ) at the point t and α(* 2) in the conjugate for T2 to center T2 at *2.
Note that it may be a non-trivial process to compute α(*2) for the marginal density of T2.
If T\ and T2 are both means, the score functions can be solved independently of each other
making α(t 2) easy to compute. In other cases, this is not usually the case and there is no
clear way to proceed.

In the case where we have sufficient estimators, Durbin provides a method of approxi-
mating the conditional density (section 4, Durbin 1980a). Assume T is a sufficient estimate
of 0 with bias of order n~ι at most and that T = (Γi,Γ2) and θ = (θu θ2). By sufficiency, the
joint density of (Γi,Γ2) can be written as g(tι,t2\θι,θi) and /(x,0) = g{t\M\θuθ2)h(x).

Durbin considered the case where the conditional density of 7\ given T2 depends only
on 0i. Using arguments as in section 5.4, we have

where Θ\Q is the particular value at which we require the approximation. Similarly, by
sufficiency

02(*2ί 010,^2) = f,J a ' ,92^2] 010 ,*2) -
/(*;0io,*2)

Dividing the equations yields

f(x;tut2)
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Effectively the sufficiency and unbiasedness has enabled us to center the densities at t\
and *2 It remains only to replace g(t\tt2]tiih) a n ( ί 02(*2ί^10,^2) by their normal approx-
imations to obtain an approximation with an error term of order n"1; cf. also Skovgaard
(1987).

Another case of interest is when we have an ancillary statistic. This case has been
studied at length by Barndorff-Nielsen in several papers (cf. Barndorff-Nielsen 1983, 1984,
1986). To be specific, assume TΊ is an estimate of Θx and we have a minimal sufficient statistic
(TiΉ) where T2 is ancillary. Hence /(*,0i) = fK*»*i)M*) - 9ι(iι\i2^ι)92(h)h(x) since
Γ2 is ancillary. We can replace θ\ by t\ in the expression above and then divide expressions
to obtain as Durbin does,

The final step is to approximate g{t\\t2)t\) by its normal approximation. One way to do
this is to use the limiting variance D(θ\) of y/n(Tχ — θ\) under the conditional distribution
of T\ given Tj. This gives us the approximation

fl(«ιl*.. ι) = ( ^ ) | ^ 0 Γ 1 / 2 ^ { l + 0(n-)} (5.9)

where mx is the dimension of β\. This is exactly expression (27) of Durbin (1980a).
To relate this formula to the extensive work of Barndorff-Nielsen, it is useful to rewrite

(5.9) as

| | 1 / a | 5 ^ | | ( i ) } (5.10)

(cf. Reid 1988, formula 15).
Although the notation is different, the two formulas are the same except that in (5.10)
the approximate density has been renormalized. The original work by Barndorff-Nielsen
focussed on exponential families and transformation models and showed that formula (5.10)
is exact in a number of cases.

McCullagh (1984) considers a fairly general situation and shows that formula (5.10)
is generally valid (cf. (37) and the preceeding argument in McCullagh). However it is not
easy to see how to construct the required second-order locally ancillary statistic A which is
needed to carry out computations.

The simplest example where (5.10) is exact is that of the location/scale family. In
this case the ancillary a is given by a = (αi, ,α n ) , α, = (xi - μ)/σ where (/i,σ) is the
maximum likelihood estimate of (μ,σ). Fisher (1934) showed that the density for (μ,<x)
given the ancillary a can be written as

2/(x;/i,*) (5.11)

where the x on the right hand side is expressed as

To see how this is related to formula (5.10), note that L(μ,σ;x) = /(x;μ,σ) so that
L(θ;θ,a) = <τ-n/(a;0,l). Also \j(θ)\ = D(a)σ~4 where

with g(x) = - log/(x) . Hence
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\j(0)\l/2{L(θ J,a)/L(θ;θ,a)} = ^ ( a ) * " " ' / ^ .

where x is expressed as above.
Formula (5.11) can be written as

c(a)σΛ-2/(*;/i, σ) where c(a) = co(a)/(a; 0,1)/D ι'\a)

and we see that for location/scale (5.10) is exact. The reader is referred to Barndorff-Nielsen
for other examples where exactness holds.

It is interesting to consider the relationship between the approximation conditional on
an ancillary statistic and the unconditional approximation. Although this relationship is
not clear the situation of observations from a normal with mean θ and variance b2θ7 with b2

known is one in which computations could be carried out relatively easily. The conditional
formula is given in Reid (1988, cf formula 17) and is known to be exact. The unconditional
formula can be worked out with some effort. a(t) can be computed explicitly so it appears
the approximation can be given explicitly and the two approximations compared.

There is a need for more research to establish connections between the basic small
sample approximations and the work of Barndorff-Nielsen.

5.6. NONTRΓVIAL APPLICATION IN THE EXPONENTIAL FAMILY:

LOGISTIC REGRESSION

In this section, we consider the example of logistic regression through the origin. Since
the model falls within the exponential family, we might expect the approximation to be very
straightforward. However, as we shall see, there are some complications in obtaining useful
results. Consider the usual set-up for logistic regression through the origin with

We want to approximate the density of /?, the maximum likelihood estimate of β. In
this example, we consider X to be random with a density /(x). The situation in which
x is considered fixed has no essential differences except for some increased complexity in
notation.

Assume that X has a density f(x). To follow the notation developed to date, φ(y, x,β)
is the derivative of the log likelihood function and is given by

1>{y,*,β) = V* - xexp(*/?)/(l + exp(x/J)).

A direct approach is to evaluate /„(*) using the approximation (4.8) for M-estimates. It
is straightforward to verify that a(t) = t-β and the approximation can easily be computed.

If these computations are done and the results compared to the asymptotic results,
there are some clear discrepancies. For instance if f(x) is normal and β = 0, the variance
for a fixed n can be computed from fn(t) and can be approximated on the basis of the
asymptotic variance. The results are as follows:

n
Variance of 0 5 10 20 40 100

based on fn(t) 19.6 2.2 .32 .12 .04
based on asymptotic
variance .8 .4 .2 .1 .04
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It's clear that in the range of interest, namely 5-20, the approximation is giving results
in which the density is much longer-tailed than is suggested by the asymptotic theory. To
understand this problem, it is necessary to look at the equation for solving β i.e.

ΣyiXi - Σxi exp(βxi)/(l + exp(/?xf ) = 0.

If y, = 1 for all positive a?t 's and 0 for all negative x, 's , then β = oo is the maximum
likelihood estimate. The observed long tail of the approximation for small to moderate n is
due to a positive mass at ±oo. fn(t) is a smooth approximation to a mixture of a continuous
density and point masses at ±oo.

In practice, the density of interest is the density of β conditional on β finite since the
experimenter will only be interested in making inferences about β in the case that β is finite.
We now proceed with adapting our basic approximation to handle this case.

To obtain an approximation, we need to find an appropriate conjugate density and
verify a centering lemma. As a first step, consider the moment generating function β and
Σty(y,x,£) conditional on β finite. The true value of β will be denoted as βo For ease of
discussion, we assume that all the x t 's are greater than or equal to 0. It then follows that

β finite *> 1 < ] Γ yi < n - 1.
jsl

Also

P(β finite) = 1 - ^ e x p ( / ? o x ) / ( l

(say).

The conditional density of (A*, Yί), t = 1, , n given β finite is

if l<X><n-l
t = l

and 0 otherwise.

The conjugate density at a point β in this case will be a joint density in n dimensions given

by:

• n n N n

, y) = cn(0)expj β0 Σ »*« + a Σ ^ » x < > ^ f Π Λ*')

^i=l ^ =1
+ «P(A*0)

where I A is the indicator function for the set A. a must satisfy the condition
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= 0 . (5.12)

Note that to solve (5.12) in its current form requires an n-dimensional summation (over y. 's)
and an n-dimensional integration (over x,*'s) and so is not computationally feasible. We will
show how (5.12) can be simplified to obtain a computationally manageable form.

By using a proof very similar to that given in section 4.5 for the centering result (4.23),
it can be shown that a similar result holds in this case, namely

where fn represents the density of β under joint density of X and Y given by f(x) and
βo and hβtn(-) represents the density of/? under hβ. The densities are all conditional on β
finite.

We now simplify (5.12). To begin let

Now

(
tarl Nsl

To simplify notation, let Σ' denote the sum over all vectors y of 0's and Γs with
1 < £ ? s l y4 < n - 1. Now (5.12) becomes

J ' " J ί=l

Let l{y,β) = fgβ(x,y)dx = fexp{βQy + <xψ(y,x>β)}f(x)/(l + expβox)dx. We can now
write our equation as

Σ'Έj Φ(*ifVi,β)9β(*i,IH)J[ί(Vi,β)d*i = 0

or rearranging the summation, obtain

t = l
Σ U

ssr+l

Simplifying, (5.12) can be written as:

X^(^(l,/?))Γ-ι(/(O,/?))n-r-1f n) \rt(0,β) ίφ(xJl1β)gβ(xyl)dx

+ (n-r)i(l,β) J φ(x,0,fl)gβ(xt0)ι = 0.
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Now instead of having to evaluate an n-dimensional integral, we have to evaluate four one*
dimensional integrals making the computation of a(β) straightforward. The approximation
to the density of β conditional on β finite, fn(β), is then given by

9n(β)=(£:) c-n(β)a(β)/σ(β)

where <τ2(β) has the same form as the left-hand side of (5.12) with φ2 instead of φ and a

division by P(β finite) and a(β) replaces φ by dφ/dβ and similarly includes a division by

P(β finite). Finally

" finite).
rsrl X

The extension of this approximation to higher dimension can be made if we retain the
condition that the a?, 's are positive. If the x,'s can be both positive and negative, the
condition that β be finite involves both x, and y, and it becomes more difficult to simplify
(5.12) to involve only one-dimensional integrals.




