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3. SADDLEPOINT APPROXIMATIONS FOR THE MEAN

3.1. INTRODUCTION

The goal of this chapter is to introduce saddlepoint techniques for a simple problem,
namely the approximation to the distribution of the mean of n iid random variables.

Although this case does not have much relevance from a practical point of view, the
same basic idea is used in more complex models to derive saddlepoint approximations for
very general statistics; cf. chapters 4 and 5. Thus, a good understanding of the technique in
this simple case will allow a direct application to more complex and important situations.
Historically, this was the first explicit statistical application of this method. It was developed
by H.E. Daniels in a fundamental paper in 1954.

Basically, there are two ways to derive a saddlepoint approximation. The first one is
presented in section 3.3 and is an application of the method of steepest descent (section
3.2). The second one is based on the idea of recentering by means of a conjugate or as-
sociate distribution (section 3.4) and shows the connection between saddlepoint techniques
and Edgeworth expansions. Both ways lead to the same approximation and from a method-
ological point of view they both have their own merits. Finally, the examples in section 3.5
show the great accuracy of these approximations for very small sample sizes and far out in
the tails.

3.2. THE METHOD OF STEEPEST DESCENT

We discuss here a general technique which allows us to compute asymptotic expansions
of integrals of the form

β ( l )£(*)<fc (3.1)I
when the real parameter v is large and positive. Here w and ξ are analytic functions of z in
a domain of the complex plane which contains the path of integration V. This technique is
called the method of steepest descent and will be used to derive saddlepoint approximations
to the density of a mean (section 3.3) and later of a general statistic (chapter 4). In
our exposition we follow Copson (1965). Other basic references are DeBruijn (1970), and
BarndorfF-Neilsen and Cox (1989).

Consider first the integral (3.1). In order to compute it we can deform arbitrarily the
path of integration V provided we remain in the domain where w and ξ are analytic. We
deform V such that
(i) the new path of integration passes through a zero of the derivative w'{z) of w;

(ii) the imaginary part of w, $tw(z) is constant on the new path.
Let us now look at the implications of (i) and (ii). If we write

z = x + iy, z0 = xQ + ty0,

w(z) = tι(x, y) + iv(x, y), w'(z0) = 0,

and denote by 5 the surface (x,y) H* ti(x,y), then by the Cauchy-Riemann differential
equations

t l r = Vy, Uy = - V Γ ,
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it follows that the point (xo,yo) cannot be a maximum or a minimum but must be a
saddlepoint on the surface 5. Moreover, the orthogonal trajectories to the level curves
u(xyy) = constant are given (again by the Cauchy-Riemann differential equations) by the
curves ξ>tϋ(z) = v(x,y) = constant. Since the paths on 5 corresponding to the orthogonal
trajectories of the level curves are paths of steepest (ascent) descent, condition (ii) above
means that the integration along a path where Qw(z) is constant implies that we are moving
along the paths of steepest descent from the saddlepoint (xo,yo) on the surface 5.

Therefore, on a steepest path through the saddlepoint we have

w(z) = t/(x, y) + iv(xo, y0)

- (ti(a?o, yo) - u(x, y)) = w(zΌ) - *r(x, y),

where 7 is the real function

7(x, y) = ti(x0, yo) - tι(x, y).

(3.2)

(3.3)

It follows directly that dy/ds = ilu/^z)!, where β is the arc length of the path (on the
plane). Thus, 7 is monotonic on the steepest path from the saddlepoint and either increases
to -foo or decreases to —00. Since by (3.1) and (3.2) 7 —• —00 leads to a divergent integral,
we choose the path where 7 increases to +00. This is the path of steepest descent from the
saddlepoint. Exhibit 3.1 shows this path for the function w(z) - z1 and Exhibit 3.2 shows
the surface u = ti(x,y) about the saddlepoint (xo>yo) = (0.25,0) and the path of steepest
descent for the function w(z) = K(z) - z t, where K(z) = -/?log(l - z/θ); t > 0, θ > 0,
β > 0 fixed. With this second choice of w(z) and v = n, ζ(z) Ξ n(2πi)~1, the integral (3.1)
is just the density (evaluated at t) of the mean of n iid random variables from a Gamma
distribution; cf. (3.6).
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Exhibit 3.1

The path of steepest descent for the function

w(z) = z2 s tι(x,y) + it/(x,y)

u(x,y) = x 2 - y 2 ; t/(x,y) = 2xy

7(x,y) = 0 - tι(x,y) = y2 - x2

Saddlepoint : (xo,yό) = (0,0)

: tι(xfy) = constant (level curves)

: v(x,y) = constant (orthogonal trajectories)
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Exhibit 3.2a
Surface u = ti(x,y) for the function

w(z) = ti(x,y) + tV(x,y) = -/?log(l - f) - z t,
ί = 2, 0 = 0.5, /? = 0.5.

9 . 2 $

Exhibit 3.2b
Level curves and paths of steepest descent from the

saddlepoint (xo,yo) = (0.25,0) for the function of Exhibit 3.2a.
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To summarize: if it is possible to deform the path of integration and express the integral
as a sum of integrals along paths of steepest descent from saddlepoints, it follows from (3.1)
and (3.2) that we have to consider only integrals of the form

oo

I eυw^ξ(z)dz = evw<*°> /e~υ">ξ(z)^.d-γ. (3.4)

φ 0

It can be seen from (3.4) that instead of approximating w(z) in the exponential (where the
error would be blown up), we approximate dz/dy which has been moved down from the
exponent. This approximation can be obtained by expanding this expression into a series
near the saddlepoint z0. A typical example is the application of this technique in statistics
(see section 3.3). Further applications are given in chapter 7.

Remark S.I
Historically, the method of steepest descent can be traced back to Riemann (1892) who
found an asymptotic approximation to the hypergeometric function, that is a multiple of
the integral (3.1) with w(z) = log[z(l - z)(l - sz)"1] and ξ(z) = z β(l - z)*(l - sz)c, where
α, 6, c, s are real parameters and V is any curve which joins 0 and 1. Debye (1909) generalized
the work of Riemann and obtained a complete asymptotic expansion for integrals of the form
(3.1) by means of the idea presented in this section.

3.3. SADDLEPOINT APPROXIMATIONS FOR THE MEAN

This section serves two purposes. First, it is an application of the method of steepest
descent. In particular, we will construct explicitly (i) and (ii) of section 3.2. Secondly,
it shows a simple but conceptually important application of this technique in statistics,
namely the approximation to the distribution of the mean of n iid random variables. In our
exposition in this section we will follow the outline of Daniels' (1954) fundamental paper.
Given n iid observations xi, ,xn with common known distribution F(x) and density /(x),

n

we want to approximate the density fn(t) of the arithmetic mean Tn(xx, , xn) = n~ι £ xf .

Denote by Λί(α) = / ea*f(x)dx the moment generating function, by K(a) = logΛf(α)
—oo

the cumulant generating function and suppose they exist for real values of α in some interval
(ci,c2) containing the origin. Then, by Fourier inversion the density fn(t) can be written
as

+oo

fn(t) = (n/2π) J Mn(ir)c-inrtdr

—oo

= (n/2πi)fMn(z)e~nUdz, (3.5)

where 9 is the imaginary axis in the complex plane. Since the contributions of the integral
over the paths V and V" go to 0 as a -* oo (see Exhibit 3.3), one can alternatively integrate
over any straight line parallel to the imaginary axis. Therefore, (3.5) can be rewritten as
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r-H'oo

*(n/2τi) J
r-ιoo

r+ oo

= (n/2τi) J txp{n[K(z)-zt))dz,

for any real number r in the interval (cχ,C2).

I

(3.6)

Exhibit 3.3
Shift of path of integration from ΐitoV

At this point the integral in (3.6) is of the form (3.1) where υ — n, w(z) — K(z) — z t with
t fixed, ξ(z) = n/2τ», and the path V is a straight line parallel to the imaginary axis going
through the real point r. Let us look at conditions (i) and (ii) of section 3.2. From (i) we
see that the new path will have to go through a zero of w'(z), that is

w'(z) = K'(z) -1 = 0.

Thus, the new path will go through the saddlepoint ZQ defined as a solution to the equation

Daniels (1954) shows in Theorems 6.1 and 6.2 under general conditions that the saddlepoint
ZQ is unique and real on (ci,C2), and that K"(ZQ) > 0. Thus, from now on ZQ = α<j € R»

Condition (ii) requires that dtι (z) = constant on the new path, that is <3w(z) =
3u;(αo) = 0 since tu(αro) is real. This allows us to deform V as shown in Exhibit 3.4.
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First, choose T = a0 and move the integration path on the straight line parallel to
the imaginary axis which goes through the real point αo Secondly, construct a small
circle of radius € around the saddlepoint c*o and follow the path of steepest descent from the
saddlepoint inside this circle (Po). On this path Sw(z) = 0 by condition (ii). Then, continue
on the curves orthogonal to (VQ) at zx and z2- Since (VQ) is a path of steepest descent, (Vx)
and (V2) are level curves defined by $lw(z) = constant. From Z3 (respectively 24) continue
on the straight line (^3,^4). Therefore, the original integral (3.5) can be rewritten as

where
/„(<) = /0 + / 1 ,

Jo = (n/2xθ Jexp{n[K(z) - z . t]}dz

is the contribution to the integral inside the circle and

Ix = (n/2πi) J exp{n[A:(z) - z -t]}dz

(3.7)

(3.8)

(3.9)

is the contribution outside the circle.

r
circle of
radius c
around αQ

- ^ —

^ —

i

\ p .

\

•V
Λ

^ path of steepest
descent

/ path of steepest
/ ascent

Exhibit 3.4
Deformation of the path of integration for the computation

of the integral in (3.5).
Old path : imaginary axis

New path : V = V4 UV2 UVQ UPi UP 3 ( )

VQ : O(z) s Ou (αo) = 0; this is a path of steepest

descent which crosses $ orthogonally at α 0 .

ft : Otι (z) = 0; this is a path of steepest ascent (/C"(α0) > 0)

Vι : $tw(z) = constant = %tw(z3)

V2 : #w(z) = constant = #w(z4)
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We first look at Iχ. On the straight line z = αro + iy we have:

ew^ = M(z)e'It = |exp{(α0 + iy)x)dF{x) - e~xi

= Ifei^eQ^dF(x)/M(ao)\M(ao)e-'t

= Φ(y)M(a0) exp{-(α0 + iy)t], (3.10)
where φ(y) is the characteristic function of a random variable with density ea°sf(x)/M(ao).
Therefore,

\ \ } < p

with p < 1, and the contribution to the integral outside the circle on % , and V\ is of order
0(pn) and can be ignored. On V\ and Pj, 9tw(z) is constant auid ew^ can be bounded as
above. Hence the contribution on V\ and Vi can be ignored.

Let us now look at /<,. By definition, w(z) is real on Vo. Define τ(x,j/) as in (3.3)

7 = w(a0) - tt (z) = AΓ(α0) - α 0 < - [#(*) - z<]

and expand the right hand side in a series around αro

7 = - ( z - ao)[K'(ao) -t)-(z- α o ) 2 tf "(<*o)/2

-(z-a0)
3K'"(a0)/6-(z-a0)*K(iv\a0)/24 (3.11)

Since 7 is real and steadily increasing from the saddlepoint, we rewrite it as 7 = 62/2. With
the change of variable

C = (z

and

and recalling that K (aQ) — titt can rewrite (3.11) as

-δ2/2 = C2/2 + λ3(α0)C3/6 + A4(α0K
4/24 + (3.12)

The series (3.12) can be inverted in the neighborhood of ζ = 0 (z = α 0 ) that is ζ can be
expressed as the following series of 6

ζ = iδ + X3(a0)63/6 + {λ4(αo)/24 - (5/72)A|}tί3 + (3.13)

At this point we are ready to rewrite IQ according to (3.4). We obtain:

/o = (n/2πi) fexp{n[K(z) - zt]}dz

- aot]} I

[e-nS3'^d6,
J (*Ό
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and from (3.13)

/ o = ( n /

B

J €-*'**It + A3(α0)ί/3 + i [A4(α0)/8 - ^ ( α o ) ] ί2 + •}<», (3.14)
-A

where A and B are two positive numbers which correspond to the values of 6 at 22 and
z\. By applying Watson's Lemma (see below) to (3.14), one finally obtains the following
asymptotic expansion

x { l + i [±λ«(α0) - 5jλ2(αo)] + • } (3-15)

where αo is determined by the saddlepoint equation

K'(ao) = t, (3.16)

and

A3(*o) = K'"(ao)/[K"(ao)]3/:ι (3.17)

A4(o0) = K^v\ao)/[K'f(ao)]2 (3.18)

are standardized measures of skewness and kurtosis respectively. The leading term of the

expansion (3.15)

2rK,,{ao)\ exp{n[A:(αo)-αo<]} (3.19)

is called the saddlepoint approximation.
For the sake of completeness we give here a modification of Watson's lemma due to

Jeffreys and Jeffreys (1950) which is used in the final step in the derivation of (3.15).

Lemma (Watson, 1948; Jeffreys and Jeffreys, 1950; Daniels, 1954).

If φ(ζ) is analytic in a neighborhood of C = 0 and bounded for real C = 6 in an interval
-A < δ < B with A > 0 and B > 0, then

B

j(n/2*γ» j e-»*'»φ(6)dδ - *(0) + ^ "

is an asymptotic expansion in powers of n " 1 .

In the following remarks we discuss some aspects of the saddlepoint approximation in
some detail.
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Remark 3.2: Error of the approximation.
From fn(t) = gn(t)[l + 0(1/**)] one can see that gn(t) > 0 and that the relative error is
of order n~x. This is the most important property of this approximation and a major
advantage with respect to Edgeworth expansions. Moreover, Daniels (1954), p. 640 if.
showed that for a wide class of underlying densities, the coefficient of the term of order n"*1

doesn't depend on t. Thus, in such cases the relative error is of order n~x uniformly, cf.
Jensen (1988).

Since gn(t) doesn't necessarily integrate to 1, one can renormalize the approximation
by dividing by Cn = f 9n(t)dt. This operation comes out naturally by using an alternative
derivation of the saddlepoint approximation proposed by Hampel (1973) which is based on
the expansion of f'n(t)/fn(t) rather than /n(*)"> s e e sections 4.2 and 5.2. By renormalization
one actually improves the order of the approximation by getting a relative error of order
0(n~ 3 ' 2) for values t in the range < - / ι s 0(n" 1 / 2 ) , where μ = /xdF(x). To see this write

and

9n(t) =

= /«(*)[! " Kμ)/n - (ί - μ)b'(μ)/n + 0((ί - μf/n)

+ 0(n-2)]

= fa(φ - b(μ)/n - (t - μ)b'(μ)/n + 0(n"2)]. (3.20)

Therefore

Cn = J gn(t)dt = 1 - b{μ)/n + 0(n"2) (3.21)

and from (3.20) and (3.21) by using t - μ = 0(n- χ/ 2)

0(n-3 '2>].

If in addition the relative error is uniform of order n"1, that is b(t) does not depend on t,
the relative error after renormalization is of order 0(n~2).

Remark 3.3: Exact saddlepoint approximations.
It turns out that in some cases the saddlepoint approximation gn(t) is exact or exact up
to normalization. Daniels (1954,1980) proved that there are only three underlying densities
f(x) for which this is the case, namely the normal, the gamma, and the inverse normal
distribution. In the case of the normal the leading term is exact and the higher order terms
are zero. In the other two cases the leading term is exact up to a constant and the higher
order terms are different from zero but independent of t and can therefore be included in
the normalization constant. Moreover, Blaesild and Jensen (1985) showed that /(x) has an
exact saddlepoint approximation if and only if f(x) is a reproductive exponential model.

Remark 3.4: Computational issue.
In order to compute the saddlepoint approximation gn(t), one has to solve the implicit
saddlepoint equation (3.16) for each value t. Since K'(-) has an integral form, this can be
computational intensive in multidimensional problems; see chapter 4. However, if the density
has to be approximated on an interval [<i, f 2] one can find the saddlepoint α ^ corresponding
to t\ and use this as a starting point for the next value t, and so on. Moreover, when α 0 as
a function of t is monotone as in the case of the mean and the density fn(t) does not have
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to be approximated at equally spaced points, one can just take a number of values α 0 and
compute the corresponding values t = AΓ'(αo). cf. section 7.1.

Remark 3.5: Lattice underlying distribution.

A saddlepoint approximation for the mean can be derived when the underlying distribution
is lattice; see Daniels (1983, 1987), Gamkrelidzt (1980).

The numerical examples in section 3.5 show the great accuracy of the saddlepoint
approximation for the mean. The same pattern can be found for more important and
complex situations; cf. chapters 4, 6 and 7.

3.4. RELATIONSHIP WITH THE METHOD OF CONJUGATE

DISTRIBUTIONS

Up to this point, the approximation to the density of the mean fn(t) has been derived
using the method of steepest descent and the saddlepoint approximation. In this section we
develop the approximation using the idea of conjugate densities and the normal approxima-
tion. Although both approaches lead to the same results, we can gain new insight into the
approximation through the conjugate density.

Probably the simplest and most common approximation to the density of the mean
is the normal approximation. This approximation works very well near the center of the
distribution but breaks down in the tail. The idea here is to re-center our density at the
point of interest t by means of a conjugate density and then to use a normal approximation
in the re-centered problem. The approximation in the re-centered problem is then converted
to an approximation for / n (0

To be more specific, we introduce the conjugate density

(3-22)

where c(t) is choβen so that ht is a density and α(f) is chosen so that

1 (x - t)exp{α(t)(x - t)}f(x)dx = 0 i.e. EhiX = t. (3.23)

The variance of X under At is denoted by <r2(t), i.e.

σ2(t) = c(t) j(x -*)2 «p{α(t)(* - *)>/(«)ώ.

Conjugate or associated densities are well known in probability (Khinchin, 1949; Feller,
1971, p. 518) and arise naturally in information theory (Ku 11 back 1960).

To illustrate the way in which the conjugate density operates, it is informative to look
at some graphs. Exhibit 3.5 shows the situation when f(x) is uniform on [—1,1].
The plots give the conjugate densities centered at .3, .5, .7, .9. As we move to the right a(t)
increases in order to put sufficient mass in the interval [t, 1]. The conjugate is plotted only
for the interval [0,1]. On [-1,0] all four conjugates are relatively flat and close together.
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0.0 0.2 0.4 0.6

Exhibit 3.5
Uniform conjugate at t = .3, .5, .7, .9.

As a second example consider the extreme density with /(x) = exp{x — exp(x)}. Con-
jugate densities are plotted in Exhibit 3.6 for t values —7, —3, 0, 0.5, 2 along with / . As
can be seen the shape of the density is changed substantially as the values of t are varied.
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1.2

0.8

Λ - 2

0.4

0.0
-10

Exhibit 3.6
Extreme conjugate at t = - 7 , - 3 , 0, 0.5, 2.

Before proceeding with the development of the approximation, it is important to link
the notation of the conjugate density with that of the cumulant generating functions that
have been used up to now. Recall from section 3.3 that

K(a) = log Jc°*f(x)dx

and the saddlepoint (at a point t) is the solution of ΛT'(αo) = t (see (3.16))

/ xexp(aox)f(x)dx/ I exp(o0x) f(x)dx = t

or

ί(x - t)exp(aox)f(x)dx/ ίexp(αox)/(x)ώ = 0.

Multiplying both numerator and denominator by exp(—aot) we have

J(x - *)exp{αo(* - t))f(x)dx/Jexp{ao(x - t))f{x)dx = 0

or

J(x - t)exp{ao(x - t))f(x)dx = 0.

By comparing this with (3.23), we see that α 0 = a(t), i.e. a(t) is the saddlepoint at t.
Moreover, cβ l(<) = /exp{α(0(x - t)}f(x)dx = exp{ΛΓ(α(0) - <*(t)t}t hence -logc(<) =
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K(α(ί)) - a(t)t = K(a0) - aot. Similarly

*>o) = *>(*))

= fexp{a(i)x}f(x)dxfx*exp{a(t)x}f(x)dx - (J x exp{a(t)x} f(x)dxγ

(ftxp{a(t)x}f(x)dx)2

Multiplying numerator and denominator by (e~β(*)*)2 we have

K"(a(t)) = EhX - {EhtXf = σ2(ί).

To summarize, we have

-a0t, σ\t) = K"(a0). (3.24)

The next step is to consider the density of the mean under At, say Λt „ and relate it to /„,
the density of the mean under /. We can write /„ as follows:

n - 1

n—1 \ n—1

= c-n(t)n j ...Jht(nt-ΣXi"j j j Λ.ίx,)^! dxn-

Hence we conclude
/„(*) = c-»(0Λ t > n(f) (3.25)

This centering equation provides the link for relating the approximation to ht,n{t) to the
desired approximation of / n ( 0

The final step is to approximate hitn(t). Now hitn(t) is the density of X under ht where
the XiS have mean t and variance σ 2(ί). Expression (2.10) gives the Edgeworth expansion
at the origin for a standardized variable with

The approximation to the density of y/n(X — t)/σ(t) at 0 is
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From this it follows that

and

This leads to the small sample (or saddlepoint) approximation for the mean

9n(t) = ^ c- Λ WM'). (3.26)

Using (3.24), it can be seen that this is exactly (3.19).
It should be noted that (3.26) is obtained by shifting the underlying density to the

point of interest, using a normal approximation at the mean, and then using the centering
lemma. The process can be likened to using a low order Taylor's expansion at many points
rather than one high order expansion at a single point as in an Edgeworth expansion. The
approximation (3.26) can be thought of as a local normal approximation.

It is worth asking whether the form of the conjugate density is important for the
argument above. If we look at the argument leading to the centering lemma, the exponential
in the conjugate enabled us to go from f to ht. It is hard to see how to obtain the necessary
link between /„ and ht n with any other form. From another point of view, start with
the density / and ask for the density closest to / in Kullback-Liebler distance which is
constrained to have mean t. Kullback (1960) shows that ht(x) is this density. By using
the conjugate density, we have embedded our problem within an exponential family. This
perspective becomes very useful in applying our techniques in multiparameter problems as
we show in chapter 6.

3.5. EXAMPLES

We now consider numerical results from using approximation (3.26) with several under-
lying densities. In each case, the a(t) has been evaluated at a grid suitable for the underlying
density. To solve this non-linear equation, we have used a secant style root finder, such as
C05AJ5 in the NAG library. Given α(i), c(t) and σ(t) can be determined using numerical
integration.

As a first example, let f(x) be uniform on [—1,1] and consider the density of the mean
for n = 5. The exact density is given by

AW-s^hjrB-J1 (:)(• — ?)
where < z > = z for z > 0 and = 0 for z < 0, cf. section 2.7. Exhibit 3.7 gives the exact
and approximate density for some selected points. The error is measured by percent relative
error = 100 (approximate-exact)/exact.

As can be seen the results are very accurate even for the extreme tail. They are clearly
superior to the approximations obtained by Edgeworth expansions (see section 2.7). The
maximum percent relative error is 1.65% for t = .95 and is actually smaller for values
beyond .95. Such accuracy would certainly be more than adequate for all applications. The
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property that the percent relative error stays bounded even in the extreme tail seems to be
quite general with these approximations.

t

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
0.96
0.97
0.98

Exact

ί.4974eθ
1.4731eO
1.4022e0
1.2900e0
1.1458eO
9.8216cl
8.1217e-l
6.4687e-l
4.9479e-l
3.6204*-1
2.5228e-l
1.6673e-l
1.0417e-l
6.1061e-2
3.2959e-2
1.5895e-2
6.5104e-3
2.0599e-3
4.0690e-4
2.5431e-5
1.0417e-5
3.2959e-6
6.5105e-7

Approximate

1.4945eO
1.4700eO
1.3988eO
1.2872eO
1.1446eO
9.8277e-l
8.1361e-l
6.4836e-l
4.9622e-l
3.6369e-l
2.5428e-l
1.6872e-l
1.0548e-l
6.1494e-2
3.2902e-2
1.5736e-2
6.4131e-3
2.0262e-3
4.0085e-4
2.501 le-5
1.0245e-5
3.2422e-6
6.4780β-7

% relative error

-0.19
-0.21
-0.24
-0.22
0.10
0.06
0.18
0.23
0.29
0.46
0.79
1.19
1.26
0.71

-0.17
-1.00
-1.49
-1.64
-1.49
-1.65
-1.65
-1.63
-0.50

Exhibit 3.7
Exact and approximate density for mean with uniform on

[ - l , l ] a n d n = 5.

In many situations, it is not the density itself which is of interest but rather the tail area. In
order to compute the tail area, it is possible to integrate the approximate density over a grid
of points. However it is much easier and equally accurate to use a tail area approximation
developed by Lugannani and Rice (1980) and discussed by Daniels (1987) and Tingley
(1987). This approximation is discussed in some detail in section 6.1 but for completeness
we give it here.

P[X>t]ssl- Φfβnbgcft))1")

The approximation is very useful since to get the tail beyond t, we need only evaluate
α(t), σ(t) and c(t). The numerical evidence is that the approximation gives an accuracy
comparable to that obtained by numerical integration (cf. Daniels, 1987).

For the uniform case, Exhibit 3.8 gives the exact and approximate tail areas. Because
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of symmetry, only upper tail areas are given.

t Exact Approximate % relative error

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

4.2554e-l
3.5347e-l
2.8601e-l
2.2500e-l
1.7175e-l
1.2689e-l
9.0451e-2
6.1979e-2
4.0648e-2
2.5391e-2
1.5016e-2
8.3333e-3
4.2742e-3
1.9775e-3
7.9473e-4
2.6042e-4
6.1798e-5
8.1380e-6

4.2547e-l
3.5338e-l
2.8593e-l
2.2493e-l
1.7165e-l
1.2675e-l
9.0291e-2
6.1837e-2
4.0537e-2
2.5298e-2
1.4922e-2
8.2371e-3
4.1961e-3
1.9307e-3
7.7478e-4
2.5486e-4
6.0932e-5
8.0784e-6

-0.01
-0.02
-0.03
-0.03
-0.06
-0.11
-0.18
-0.23
-0.27
-0.36
-0.63
-1.15
-1.83
-1.37
-2.51
-2.13
-1.40
-0.73

Exhibit 3.8
Exact and approximate tail areas for mean with uniform on

[-l , l ]andn=:5.

As might be expected from the results with the density, we obtain the same order
of accuracy for the tail areas. Again the relative error is much smaller than that of the
Edgeworth approximation where it can reach 20%; cf section 2.7. These results indicate
that the saddlepoint approximation gives very accurate results for small values of n.

To give some further numerical results, we now turn to the extreme case of n = 1.
Since our expansion is asymptotic, there is no a priori reason to believe the approximation
should work well in this case. For n = 1, the approximation (3.26) simply approximates
the underlying density / . This point is discussed further in section 7.2. The convenient
feature with n s 1 is that we can easily compute the exact results as a comparison. As a
first example, we consider the case of the extreme density, f(x) = exp(x - exp(x)). Since /
is asymmetric, we consider behavior in the upper and lower tails. The results are given in
Exhibit 3.9.



t

-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

Exact

1.2339e-4
3.3535e-4
9.1105e-4
2.4726e-3
6.6927e-3
1.7983e-2
4.7369e-2
7.5616e-2
1.1821e-l
1.7851e-l
2.5465e-l
3.3070e-l
3.6788e-l
3.1704e-l
1.7937e-l
5.0707e-2
4.5663e-3
6.2366e-5

Section 3.5

Approximate ί

1.5693e-4
4.4526e-4
1.2270e-3
3.2752e-3
8.4597e-3
2.1138e-2
5.1054e-2
7.8207e-2
1.1818e-l
1.7451e-l
2.4639e-l
3.1970e-l
3.6091e-l
3.3015e-l
1.6912e-l
4.0221e-2
6.6205e-3
2.8859e-5

% relative error

27.18
32.78
34.68
32.46
26.40
17.54
7.78
3.43

-0.02
-2.24
-3.24
-3.33
-1.89
4.13

-5.71
-20.68
44.99

-53.73
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Exhibit 3.9
Exact and approximate density for the extreme for π = 1.

Certainly the results are not as accurate as with n = 5. However the approximate
density gives fairly reasonable results even as we go out into the tails. We can obtain
another view by examining tail areas for the extreme with n = 1. The values for the
negative t are lower tail areas and are upper tail errors for t > 0 (Exhibit 3.10).

t

-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.5
-2.0
-1.5
-1.0
0.0
0.5
1.0
1.5
2.0
2.5

Exact

1.2338e-4
3.3540e-4
9.1147e-4
2.4757e-3
6.7153e-3
1.8149e-2
4.8568e-2
7.8806e-2
1.2658e-l
1.9999e-l
3.0780e-l
3.6788e-l
1.9230e-l
6.5988e-2
1.1314e-2
6.1798e-4
5.1193e-6

Approximate .

1.2382e-4
3.7148e-4
1.0723e-3
2.9806e-3
7.9918e-3
2.0710e-2
5.2058e-2
8.1733e-2
1.2751e-l
1.9662e-l
2.8111e-l
3.7455e-l
2.0463e-l
5.9525e-2
9.7135e-3
7.7569e-4
2.4462e-6

Vo relative error

-0.35
-9.71

-15.00
-16.94
-15.97
-12.37
-6.70
-3.58
-0.73
1.71
9.49

-1.78
-6.03
10.86
16.48

-20.33
109.28

Exhibit 3.10
Exact and approximate tail area for extreme with n = 1.
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The results here are remarkably good except in the extreme upper tail. To complete, the
section we look at the results with n s 1 for three densities; the uniform on [-1,1] (Exhibit
3.11), a sum of exponentials where the number in the sum is Poisson with parameter 4
(Exhibit 3.12) and a density f(x) = 1 + cos4πx on [0,1] (Exhibit 3.13). These were chosen
to show the varying degrees of accuracy one can get.

t

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
0.96
0.97
0.98

Exact

0.475
0.450
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250
0.225
0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.020
0.015
0.010

Approximate

0.4706
0.4414
0.4124
0.3838
0.3556
0.3281
0.3011
0.2750
0.2496
0.2252
0.2017
0.1791
0.1574
0.1363
0.1156

0.09476
0.07300
0.05002
0.02562
0.02061
0.01555
0.01054

% relative error

-0.92
-1.91
-2.96
-4.05
-5.16
-6.27
-7.34
-8.34
-9.22
-9.91

-10.35
-10.44
-10.07

-9.11
-7.48
-5.24
-2.66
0.05
2.47
3.03
3.65
5.40

Exhibit 3.11
Exact and approximate tail area for uniform with n = 1.

t Exact Approximate % relative error

5 0.3070 0.3079 -0.30
7 0.1425 0.1430 -0.32
9 0.05950 0.05961 -0.33
11 0.02277 0.02284 -0.34
12 0.01373 0.01378 -0.35
13 0.008151 0.008180 -0.36
14 0.004773 0.004790 -0.36
15 0.002759 0.002769 -0.38
16 0.001576 0.001582 -0.39
17 0.000890 0.000894 -0.41

Exhibit 3.12
Exact and approximate tail area for Poisson sum of exponentials with n = 1.



t

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Exact

0.4032
0.3243
0.2743
0.2532
0.2500
0.2468
0.2257
0.1757

Section 3.5

Approximate

0.4443
0.3895
0.3365
0.2860
0.2390
0.1960
0.1581
0.1273

% relative error

10.19
20.10
22.66
12.96
-4.41
-20.57
-29.94
-27.51

41

0.95 0.09677 0.1134 17.15

Exhibit 3.13
Exact and approximate tail area for f(x) = 14- coβ4irx

on [0,1] with π = 1.

From the displays, we can see that the approximation is very accurate for the Poisson
sum of exponentials, quite accurate for the uniform and less accurate for the cosine density.
Since the approximation is based on a local normal approximation, the quality of the ap-
proximation is determined by the degree to which (X — t)/σ(t) under ht is approximated
by a normal. In some recent work, Field and Massam (1987) have developed a diagnostic
function for the accuracy of the approximation.

We conclude from Exhibit 3.13 that even by taking multimodal / and choosing n = 1,
we cannot make the approximation breakdown. Our evidence is that we have an asymptotic
approximation which gives reasonable results for n = 1.




