
2. EDGEWORTH EXPANSIONS

2.1. INTRODUCTION

Given a central limit theorem result for a statistic, one may hope to obtain an estimate
for the error involved, that is the difference between the exact distribution Fn(t) of the
standardized statistic and the standard normal distribution Φ(i). Typically, this result for
the distribution of the sum of n iid random variables is known as the Berry-Esseen theorem
and takes the form

s u p | F n ( t ) - Φ ( t ) | < % (2.1)

where the constant Co depends on the statistic and on the underlying distribution of the
observations but not on the sample size n. We will discuss this result for the simplest case
and mention some generalizations in section 2.2.

The inequality (2.1) suggests a way to improve the approximation of Fn by considering
a complete asymptotic expansion of the form

where the error incurred by using the partial sum is of the same order of magnitude as the
first neglected term,

jsO

Of course, in our case A0(t) = Φ(<) the cumulative of the standard normal distribution and
Co(t) = Co is the constant given by the Berry-Esseen theorem. Note that for any fixed n
and t (2.2) may or may not exist and that we are just using the property (2.3) of the partial
sums to approximate Fn. These asymptotic expansions are common in numerical analysis
where they are used to approximate a variety of special functions, including Bessel functions.
For a good discussion of theoretical and numerical aspects, see Henrici (1977), Ch. 11. The
following example presents some typical numerical aspects of these approximations.

Example 2.1

We consider the approximation of the Binet function

J(z) = log Γ(z) - \ log(2*) - (z - i ) log z + z

through the partial sums of the asymptotic expansion

2j(2j-

where Γ(z) is the Gamma function and 5 2 j are the Bernoulli numbers given by

2j 2 4 6 8 10 12
B7j 1/6 -1/30 1/42 -1/30 5/66 -691/2730
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Exhibit 2.1 shows the error curves as functions of z.
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Exhibit 2.1

Error curves cr(z) for r = 4, , 12 in the
approximation of the Binet function.

Exhibit 2.2 shows the error

<-(•)=

as a function of the number of terms used (r) for various values of z.
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Exhibit 2.2

Error eΓ as a function of the number of terms (r) in
the asymptotic expansion for the Binet function J(z).
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Both exhibits show the same story. As we add more terms to the series the error first
decreases. When the number of terms r reaches a certain point, adding more terms increases
the error and an explosion takes place. The explosion point depends on z (which plays in
this example the role of n in (2.2) and (2.3)) and increases as z increases. Thus, in a sense
as z —• oo the series has a "convergent behavior" and represents J(z) asymptotically.

Edgeworth expansions are expansions of the form (2.2) with the property (2.3) holding
uniformly in t (i.e. Cr is independent of t) . They play a basic role in statistical theory
and practice. Since they also form the basis of one approach to saddlepoint expansions (see
sections 3.4, 5.2 and chapter 4), we present in section 2.3 and 2.4 a derivation for a simple
case, namely the mean of n iid random variables. In sections 2.5 and 2.6 we then discuss
briefly the huge amount of literature concerning Edgeworth expansions for general statistics
both in univariate and multivariate situations. We conclude with some numerical examples
in section 2.7.

2.2. CENTRAL LIMIT T H E O R E M A N D BERRY-ESSEEN B O U N D

The central limii theorem is the basic tool which drives asymptotic normality proofs.
The resulting asymptotic distribution (the normal distribution) is used very often as an
approximation to the exact distribution of some statistic Tn of interest. Nowadays, central
limit theorems are available for very general spaces of the observations and for very general
problems. It is not our goal here to review and discuss these results that can be found
in Bhattacharya and Rao (1976) and Serfling (1980). Also Pollard (1985) describes some
techniques (taken from the theory of empirical processes) for proving asymptotic normality
under very general conditions. In particular, the usual heavy assumptions of higher-order
pointwise differentiability of the underlying density function and/or the score function defin-
ing the statistic can be dispensed with for a very broad class of statistics.

Here we want to focus on the quality of the asymptotic normal distribution as an
approximation of the exact distribution. Whereas in many situations this approximation is
accurate even for moderate sample sizes n, there are cases where it is inaccurate in the tails
even for large n. The following example taken from Ritcey (1985) illustrates this point. The
statistic of interest is

where x, and y,» are independent standard normal random variables. This test statistic
is used for instance in signal detection problems where the tail probabilities of interest
P[Tn > to] are in the range 10"" 9 - 10" 1 0 (false alarm probability). Exhibit 2.3 shows the
exact probabilities (calculated from a \χ\n distribution) and the normal approximation for
various values of n and t0. It is clear that in this case the normal approximation is useless
far out in the tails even for large n.
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n to P P Relative error (%)

10 15 6.98 10-2 5.69-10~2 18
20 4.99 lO"3 7.83 10"4 84
25 2.21 10-4 1.05 10-6 99

100 125 9.38-10-3 6.21 10~3 34
150 5.92 10-6 2.87-10-7 95
175 2.78-10-10 3.19-10-14 99

500 550 1.15-10~2 1.27-10*2 10
600 1.23 10-5 3.87 10~6 68
625 1.01 10-7 1.13 10~d 89

Exhibit 2.3

Exact tail probabilities P = P[Tn > *o], the normal
approximation P, and the relative error \P — P\/P for the

n

statistic Tn = \ ]£( x ? + y?)f where x, and y, are

independent standard normal random variables.

A first step in trying to improve the normal approximation is to assess the error involved.
This is basically the Berry-Esseen bound. We first present this result for a simple case,
namely the mean of n iid random variables.

Theorem 2.1 (Berry-Esseen)

Let Xι, ,Xn be n iid random variables with distribution F such that EXi = 0,
EX} = σ2 > 0, E\Xi\3 = p < oo. Denote by Fn the distribution of the standardized

n

statistic n~ι/2 Σ Xi/σ. Then, for all n

(2.4)

Proof: see, for instance, Feller (1971), p. 543 ff.

This result was discovered (with two different proofs) by Berry (1941) and Esseen
(1942). The surprising aspect is that the Berry-Esseen bound (the right hand side of in-
equality (2.4)) depends only on the first three moments of the underlying distribution.

Many generalizations of this result are available today. The best known constant (which
replaces 3 in (2.4)) is 0.7975, see Bhattacharya and Rao (1976), p. 110. The result can be
generalized to underlying distributions F without third moment and to non iid random
variables. A Berry-Esseen theorem for U-statistics has been established under different sets
of conditions and in increasing generality by Bickel (1974), Chan and Wierman (1977),
Callaert and Janssen (1978), and Helmers and van Zwet (1982). Bjerve (1977) and Helmers
(1977) proved the same result for linear combinations of order statistics. Finally, van Zwet
(1984) proved a Berry-Esseen theorem for a broad class of statistics, namely symmetric
functions of n iid random variables.
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2.3. CHARLIER DIFFERENTIAL SERIES AND FORMAL EDGEWORTH

EXPANSIONS

The inequality (2.4) suggests a way to improve the approximation of Fn by considering
a complete asymptotic expansion in power of n " 1 ' 2 . This is in fact the idea of an Edgeworth
expansion. Because of its conceptual simplicity, we choose in our exposition the approach
via Charlier differential series as presented in Wallace (1958).

2.3.a Charlier Differential Series

Consider two distribution functions H(x) and G(x) with characteristic functions χ(u)
and ξ(u) and cumulants βr and 7 r, r = 1,2, . Recall that the r-th cumulant βτ is the r-th
derivative at 0 of the cumulant generating function, i.e.

Suppose that all derivatives of G vanish at the extremes of the range of x. Then, by formal
Taylor expansion we have

log $ $ = logχ(tι) - bgtfu) =

and

χ(u) = ezp j f> r - Tp)^r| *(«)• (2.5)

By integration by parts we can easily see that (iu)rξ(u) is the characteristic function of
(—l)ΓG^r^(x), and by Fourier inversion of (2.5) we obtain

H{x) = « p { f > r - 7 r ) ^ p l G(x), (2.6)

where D denotes the differential operator and eD := £ D3 /j\. We can now choose a

distribution function G which we use to develop an expansion for H. In fact, given a
developing function G and the cumulants βrt one can formally obtain H by expanding the
right hand side of (2.6). Such an expansion is called Charlier differential series from Charlier
(1906).

A natural developing function (but by no means the only one) is the normal distribution.
In this case G{x) = Φ(x) and (-D)rφ(z) = Hr(x) φ{x), where φ{x) is the density of the
standard normal distribution and Hr(x) is the Hermite polynomial of degree r. Chebyshev
(1890) and Charlier (1905) used the normal distribution and developed (2.6) by collecting
terms according to the order of derivatives. A breakthrough came from Edgeworth (1905)
who applied this expansion to the distribution of the sum of n iid random variables and
expanded (2.6) using the normal distribution but by collecting terms according to the powers
of n. In this way he obtained what we call today an Edgeworth expansion.

2.3.b Edgeworth Expansions

We now formally derive the Edgeworth expansion by applying (2.5) and (2.6) to the
distribution of a standardized sum of n iid random variables. Let ΛΊ, ,Xn be n iid
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random varibles with distribution F(x) and EX* = 0, varXi = σ2 > 0, and cumulants
κr(Xi) = λ r σ

r , r > 3. Denote by Fn(t) the distribution function of Tn = n-l'2J2?=i χi/σ

and by φn(u) its characteristic function. We choose the standard normal distribution as
developing function, that is G(t) =*(<)? £(u) = βxp(—ti2/2), and 71 = 0, 72 = 1, j r = 0,
r > 3. Finally, if βr denotes the r-th cumulant of Tn we have

βι = 0 , β2 = 1,

for r > 3. By applying (2.5) we obtain

{ oo
^-^ λ r (iu)r I _ u 3 / 2

r3 jr=3

+ +
3! + n 4! +r>3/2 5!

and by expanding exp{ •} we get

Finally, the Fourier inversion of (2.7) leads to the following expansion

where P r( ) is a polynomial of degree 3(r - 2) with coefficients depending only on λ3, λ4, ,
λΓ. (The powers of these polynomials in (2.8) should be interpreted as derivatives.) For
instance,

= *3

For the density fn(t) one obtains the expansion

(2.9)

where
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H4(t) = *4 - 6t2 + 3,

are the Hermite polynomials of order 3,4, and 6. (2.9) is called Edgeworth expansion for
the density of Tn.

Remark 2.1
(2.9) is an expansion in powers of n" 1 ' 2. Note however that for t = 0 (the expectation of
the underlying distribution) all coefficients corresponding to odd powers disappear because
Hr(0) = 0 when r is odd. In this case the Edgeworth expansion becomes a series in power
ofn- 1 :

{ I + : [ τ - 5 ϊ 1 j ] + 0 ( 1 > " > ) } <210>

This fact will play a key role in the derivation of the saddlepoint approximation; cf. section
3.4.

Remark 2.2
A similar expansion can be obtained for the (1 — α) quantile of the distribution. This is
called Fisher-Cornish expansion (see Kendall and Stuart, 1977, p. 177-179 and Cox and
Hinkley, 1974, p. 464-465) and takes the form

-jf ( » » & . - « - ) ] + - . (2.11)

where q[_a is the (1 - α) quantile of the standard normal distribution, Φ(ίJ. α ) = 1 - α.
The l/y/n and 1/π terms of this expansion can be interpreted as corrections to the normal
quantiles taking into account skewness and kurtosis. Another method for inverting a general
Edgeworth expansion is given by Hall (1983).

2.4. PROOF A N D DISCUSSION

We present the basic idea of the proof for the density as given in Feller (1971), Ch.
XVI; see also Cramer (1962).

Theorem 2.2

Let X\, , Xn be n iid random variables with common distribution F and character-
istic function ψ. Let

i = μ\ = 0, varXi = σ2 < oo,

n

and Fn(t) = P[n~χl2 Σ Xi/σ < t] with density /n(*) Suppose that the moments /13, , μ
1=1

exist and that |V>|V is integrable for some υ > 1. Then, fn exists for π > υ and as n — 00
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fn(t) - φ(t) - (2.12)
r = 3

uniformly in t. Here Pr is a real polynomial of degree 3(r — 2) depending only on μχf , μr

but not on π and k (or otherwise on F).

Proof: We give an outline of the proof with the basic idea for k =5 3. In this case we have
to show that

(2.13)

uniformly in t.

Since ψn( /y/nσ) is the characteristic function of / n ( ), we obtain by Fourier inversion
of the left hand side of (2.13)

[left hand side of (2.13)|

- 2 7
— OO

=:Nn.

We have to show that Nn = oί

partβ Nn = Niι) + Λri2), where

du

(2.14)

as n —• oo. For a given ί > 0, we split JVn in two

and

Since |^(ti)| < 1 for |tι| ,έ 0 and 0(ti) -+ 0 as |ti| — oo, it can be shown easily that N^ι)

tends to 0 faster than any power of n^1 as π —* oo. The computation of Nn requires a

little more work. First rewrite ivl2* as

(2.15)

where η(u) = logφ(u) + %σ2u2. Then, expand τ ( ) in a Taylor series in a neighborhood of
u = 0,

(2.16)
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where u* is a point in the interval ]0, δ[. Finally, (2.16) allows us to approximate the right

hand side of (2.15) to get Nn = o(l/y/n) and this completes the proof. •

From the expansion for the density fn given in Theorem 2.2, one can obtain by integra-
tion an expansion for the cumulative distribution function Fn. However, this method is not
available when the integrability condition on \ψ\v fails. In this case the following important
"smoothing technique" can be used.

Lemma (Esseen's smoothing Lemma).

Let H be a distribution with zero expectation and characteristic function χ. Suppose
H — G vanishes at ±oo and that G has a derivative g such that |^| < m. Finally, suppose
that g has a continuously differentiable Fourier transform ξ such that £(0) = 1 and ξ (0) = 0.
Then,

(2.17)

holds for all x and T > 0.

Proof: see Feller (1971), Ch. XVI, section 3.

The following theorem establishes the Edgeworth expansion for the cumulative distri-
bution function.

Theorem 2.3

Let AΊ, ,Xn be n iid random variables with common distribution F. Let

Γ A 1

EXi = 0, varXi=σ2<oo, and Fn(t) = P \n'1'2 J j Xi/σ < t .

If F is not a lattice distribution and if the third moment /13 of F exists, then

Fn(t)~

uniformly in t.

Proof: (Feller, 1971, Ch. XVI) Define G{t) = Φ(t) + l/^/ϊiμ3/6σ3(l - t2)φ{t). Then G
satisfies the conditions of Esseen's Lemma with ξ(u) = [1-f μ${iu)*/{y/n 6σ3)]e~w /2.
We now apply inequality (2.17) with T = α^π, where the constant a is chosen such that

< € - a for all t and a given e. Then

\Fn(t)-G(t)\<

Now we can apply the same arguments as in the proof of Theorem 2.2 to the integral on
the right hand side of (2.18) and the result follows. D

We conclude this section with a discussion of some points on Edgeworth expansions.
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1) If the underlying distribution F has moments of all orders, one is tempted to let
t —* oo in (2.12). Unfortunately, the resulting infinite series need not converge for any
n. In fact Cramer showed that this series converges for all n if and only if tx I* is
integrable with respect to F; see Feller (1971), p. 542. This is in agreement with the
discussion in section 2.1 In particular, adding higher order terms does not necessarily
improve the approximation and can be disastrously bad; cf. Exhibits 2.1 and 2.2.

2) In section 2.3 we derived Edgeworth expansions via Charlier differential series by using
the normal distribution as developing function. When the asymptotic distribution is
not normal, similar expansions may be obtained by using the asymptotic distribution
as developing function.

3) The approximation provided by the Edgeworth expansion is in general reliable in the
center of the distribution for moderate sample sizes; see Remark 2.1, section 2.3.b and
the examples in section 2.7. This makes it a suitable tool for local asymptotic theory.
Unfortunately, the approximation deteriorates in the tails where it can even become
negative; see section 2.7. Moreover, the absolute error is uniformly bounded over the
whole range of the distribution, but the relative error is in general unbounded. This
is in contrast with saddlepoint techniques which give approximations with uniformly
small relative errors; cf. chapters 3, 4, and 6.

2.5. EDGEWORTH E X P A N S I O N S F O R GENERAL STATISTICS

In this section we want to discuss briefly some results on Edgeworth expansions for
more complicated statistics than the arithmetic mean. Given the relative importance of
U-statistics in the literature, we focus our presentation on this class of statistics.

Given a statistic Tn one can in principle still use the approach via Charlier differential
series presented in section 2.3.a and go through the steps (2.5) to (2.8). However, there
are two points which make life hard. The first one is the fact that in general the cumu-
lants of the statistics κr(Tn) cannot be expressed in terms of κr(X\)t the cumulants of the
underlying distribution of the observations. The second point is that the validity of (2.8)
must be proven. These problems can be overcome by replacing the exact cumulants κr by
approximations of order n~(rl2~ι>> and by using Esseen's smoothing Lemma to prove the
validity of the resulting expansion. Most of the work lies in the estimation of the integral
on the right hand side of (2.17) in order to obtain an upper bound of the appropriate order
in n. Let us now see how this idea applies to U-statistics. Let X\,' ,Xn be n iid random
variables with common distribution F. Then a one-sample U-statisiic of degree 2 is defined
by

Σ *(*.*»• (2-19)

where A is a symmetric function of two variables with Eh(X\,X2) = 0 and Eh2(Xι,Xi) <
00.
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Define
g(x)^E[h(XuX2)\X1^x]1

ψ(x, y) = Λ(x, y) - g(x) -

ι = l

Then
Un = Un + An. (2.20)

Note that 2<7(x) = IF(x;U1F)i the influence function ofU, defined by

IF(x; U,F) = lim[ff((l - e)F + e Δ r ) -

where U() is the functional defined by U(F) = Ep(Un) and Ax is the distribution which
puts mass 1 at a point x; see Hampel (1968, 1974), Hampel et al. (1986), and section
7.3.a. Thus, (2.20) is the linear representation of Un based on the influence function and
corresponding von Mises expansion; see von Mises (1947).

U-statistics were introduced by Hoeίfding (1948) who also proved the asymptotic nor-
mality. Note the important special case Λ(x,y) = !{*<?} which defines the Wilcoxon statis-
tic. Subsequently Berry-Esseen bounds for U-statistics were established by several authors;
cf. section 2.2. Finally, an Edgeworth expansion of order o(n~x) was derived by Callaert,
Janssen, and Veraverbeke (1980) and more recently by Bickel, Gδtze, and van Zwet (1986).
We will present the result of the latter paper where the assumptions appear to be very mild.

Define

σ] = E?{XX),

λ3 = σji

λ4 = σJ4^Eg\Xι) - 3σ* + l2E9

2(X1)g{X2)φ(X1,X2)

+ UEg^ )g(X2)φ(X1, X3)ti>(X2,

σ\ = var(Un) = υar(Un) + var(An)

and Fn(t) = P[Un/σn<i\.

Then we have the following theorem.

Theorem 2.4 (Bickel, Gδtze, van Zwet, 1986).

Suppose that there exist a number r > 2 and an integer Jfe such that (r — 2)(Jb — 4) > 8 and
that the following assumptions are satisfied
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E\ψ(XuX2)\r

I <oo,

Iim8up|l? exp{itg(Xι)}\ < 1.

Let |λ i | > IΛ2I > be the eigenvalues of the kernel φ, that is,

j φ(xι1X2)wj{xι)dF(xι) = Xj Wj(x2)J = 1,2,

and suppose that there exist k nonzero eigenvalues.

Then

Fn(t) - Φ(«) + Φ(t)\ A=ir(i2 - 1) + ~(t3 - 3ί)

uniformly in t.

Note that Xs/y/n and A4/n are approximations with error o(n~x) to the standard third
and fourth cumulant of Un/σn. Basically the conditions on g( ) in Theorem 2.4 establish an
Edgeworth expansion for the linearized statistic Un while the moment assumption on ψ(-, •)
allows to correct the expansion for the remainder term Δ n in (2.20).

Results on Edgeworth expansions for other classes of statistics abound. Bickel (1974)
gives a complete account of the literature up to 1974. A basic paper is Albers, Bickel, and
van Zwet (1976). Results on L-statistics are discussed in Helmers (1979, 1980) and van
Zwet (1979) and will be the starting point in section 4.4. More references can be found in
Skovgaard (1986), p. 169-170 and Hall (1983).

2.6. MULTΓVARIATE EDGEWORTH EXPANSIONS

The techniques used to derive Edgeworth expansions for the distribution of one - dimen-
sional statistics can be generalized to the multivariate case. The basic idea, i.e. expansion of
the characteristic function and Fourier inversion, is the same. However, in the multivariate
case the notation becomes more complex. The Edgeworth expansion for the multivariate
mean is discussed, among others, in Barndorff-Nielsen and Cox (1979), Skovgaard (1986),
and McCullagh (1987). Explicit expressions for the multivariate Hermite polynomials ap-
pearing in the terms of the expansion are given in Grad (1949), Barndorff-Nielsen and
Pedersen (1979), and Holly (1986).

A basic result on multivariate Edgeworth expansions is that of Bhattacharya and Ghosh
(1978). Given a sequence of n iid m-dimensional random vectors Y\, , Yn and a sequence of
k real functions /1, , Λ on R m , Bhattacharya and Ghosh derive the rates of convergence
to normality and asymptotic expansions of the distribution of statistics of the form Wn =

- H(μ))y where Z{ = (fi{Yί), ' ,fh(Yi)), Z = π"1 £ z , , μ = EZU and
t = l
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H : R* —• R*. An important application of this result yields the asymptotic expansion
of the distribution of maximum likelihood estimators. Since in sections 4.2 and 4.5 this
result will be used critically to derive saddlepoint approximations to the distribution of M-
estimators, we refer the reader to those sections for a detailed discussion of the conditions
on the validity of the expansions.

2.7. EXAMPLES

In this section we discuss two examples which show the numerical aspects of the ap-
proximations based on Edgeworth expansions.

In the first one we consider the approximation of the distribution of the mean of 5
uniform [—1,1] observations. In this case the density of the mean can be computed exactly;
it is given in section 3.5. In order to compare with the Edgeworth approximation, we will
consider here the density of the standardized mean Xn/<7n, where σ* = υarXn = l/3n. For
the density we obtain

ji
and for the cumulative distribution function

where \t\ < V5n, (z) = rnαz(z,0), and m(a,ί) = min(t/y/Zn, 1 —2t/n). The corresponding
approximations based on Edgeworth expansions to terms of order n~ι are given by

/ I 2 ^ } (2-23)
and

= •(*) - ^ ( * - t*)Φ(t) (2.24)

where φ(t) and Φ(t) are the density and the cumulative of the standard normal distribution
respectively.

Exhibit 2.4 shows the error (exact-Edgeworth) in the approximation of the density
whereas Exhibits 2.5 and 2.6 show the percent relative error for the cumulative distribution.
In these exhibits, the horizontal axis is in standardized units.



18 Edgeworth Expansions
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Exhibit 2.4
Error (exact-Edgeworth) in the approximation of the density

of the mean of 5 uniform [—1,1] observations.

o
o
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Exhibit 2.5
Relative error (%) in the Edgeworth approximation of the

cumulative distribution function of the mean
of 5 uniform [—1,1] observations.

0. 0
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2. 2 3 . 0

Exhibit 2.6

T* i . Λ Λ Λ lexact-Edgeworthlλ . 4,
Relative error ί 100 x J i .exact J i n t h e

Edgeworth approximation of the upper tail area of the
distribution of the mean of 5 uniform [-1,1] observations.

While in the range (—2,0) the relative error is small, it is clear from Exhibit 2.6 that it
can get up to 18% in the tail. Moreover, Exhibit 2.4 shows the typical polynomial behavior
of the Edgeworth approximation. This contrasts with the uniformly small (over the whole
range) relative error of the small sample asymptotic approximation, cf. Exhibits 3.7 and
3.8 and Hampel (1973). In particular, in this case the relative error is always smaller than
2.51% even in the extreme tails.

As a second example consider a Gamma distribution with shape parameter α (and scale
parameter θ = 1) as an underlying distribution:

fa(x) = > 0.

The density of the mean of n iid observations with this underlying distribution is again a
Gamma with shape parameter not and scale parameter n. Moreover,

EXn = or, varXn = α/n.

Exhibits 2.7 to 2.10 show the relative errors for π = 4,10 and a = 2. The same comments
as in the first example apply here. Note that in this case the saddlepoint approximation is
exact (after rtnormalization); cf. Remark 3.3.
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3,0
Exhibit 2.7

5. o

τ> i x of /Ίexact-Edgeworthl , Λ Λ . ,
Relative error m % ( J inexact x 100 J in the

Edgeworth approximation of the upper tail area of the
distribution of the mean of 4 observations from a Gamma

distribution with shape parameter a = 2.

3, o
Exhibit 2.8

4 . o 5. 0

log(/y(l - F)) for the exact ( •) and the Edgeworth approximation
(—) for the upper tail area for the mean of 4 observations
from a Gamma distribution with shape parameter α = 2.
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2 . 0 3. 0 4 . 0 S 0

Exhibit 2.9
Relative error in % in the Edgeworth approximation of the

upper tail area for the mean of 10 observations from a Gamma
distribution with shape parameter α = 2.

2. p 4 . 0 5 . 03.0

Exhibit 2.10
log(F/(l - F)) for the exact ( •) and the Edgeworth approximation

(—) for the upper tail area of the distribution of the mean of 10 observations
from a Gamma distribution with shape parameter α = 2.

More examples can be found in sections 4.4 and 5.3.




