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III. PRELUDE TO CONTINUITY

1. Boundedness and Continuity.

The principle aim of this section is to show that for Gaussian processes
the question of sample path continuity is intimately related to the bound-
edness of the supremum. In one direction this is obvious and, indeed, non-
probabilistic. If the parameter space T is compact, then the a.s. continuity
of X implies the a.s. boundedness of suρ f 6 T \Xt |. Thus the problem is essen-
tially to find conditions under which processes with bounded suprema are
also continuous.

Recall that we treat only centered processes, and measure continuity in
terms of the canonical metric d(s,t) = {E(Xβ — X t )

2 ) 1 / 2 on T.
The first result we need is the following easy lemma, which tells us that

as far as a.s. boundedness is concerned it is irrelevant whether we work with
supXt or sup|X t | .

3.1 LEMMA. For X centered, Gaussian, on T, and toeT

EsnpXt < Esup\Xt\ < E\Xto\+2EsupXt.
tβT teT teT

PROOF: Only the rightmost inequality needs proving. Note the trivial in-
equalities that for any ί,to £ T

Xt-Xto < sup(Xt-Xto), Xto-Xt < -mΐ{Xt-Xto).
teT teT

Furthermore, both sup t 6 Γ (X t — Xto) > 0 and — inf tGT(X t — Xto) > 0.
Applying the relationships max(α, —α) = \α\ and max(α, b) < α + b if α, b > 0,
it follows from the above two inequalities that

|X t | < \Xto\ + \Xt - Xto\

< \Xto\ + sup(Xt -Xto) - inf(Xt -Xto).
teT <er

Taking a supremum over the left hand side leaves the right side unchanged.
Now take expectations, and note that symmetry gives us that Esnpτ Xt =
—Emΐτ Xt to complete the proof. •

The next result is somewhat more interesting and important, and is a
good example of the power of Borell's inequality. The original proof of this
result, which appears as Exercise 1.1, is due to Fernique (1978), and involves
a comparatively long and sophisticated calculation.
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3.2 THEOREM. For X centered, Gaussian,

(3.1) P { s u p X t < o o } = 1 <=* EsupX t < oo

< oo

for sufficiently small α.

REMARK: Theorem 3.2 can be strengthened considerably. For the best
possible results, which tell you exactly how large α can be for something like
(3.1) to hold, see Talagrand (1984). The proof will not use the fact that || ||
is the supremum function, and so the result will hold in the same generality
as Borell's inequality itself.

PROOF OF THEOREM 3.2: The existence of the exponential moments of
||X|| implies the existence of i£||X||, and this in turn implies the a.s. finiteness
of ||X||. Furthermore, since by Theorem 2.1 we already know that the a.s.
finiteness of ||X|| entails that of 2£||X||, all that remains is to prove is that
the a.s. finiteness of ||X|| also implies the existence of exponential moments.

But this is an easy consequence of Borell's inequality, since, with both
||X|| and E\\X\\ now finite,

«l|x||3 = Γ
Jo

= E\\X\\ + Γ P{\\X\\
JE\\X\\E\\X\\

< E\\X\\

+ 2Γ
JB\\X\\

< E\\X\\

- ^ ( u - E\\X\\)2/σ2

τ } exp {αu2} du,

which is clearly finite for small enough α. •

The next theorem is the first to relate continuity to boundedness, and, in
essence, is the result that will enable us to concentrate only on the expected
values of suprema in the future, and derive all other results from results on
these.

3.3 THEOREM. Let X be a.s. bounded on T and let r be a metric on T
such that the canonical metric d is r-uniforπύy continuous. Then X is r-
uniformly continuous with probability one if, and only if, li ()
where φτ is given by

(3.2) φτ{η) = E sup ( X , - X t ) .
τ(s,t)<η
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PROOF: We start with necessity. For each ω we have

lim sup \Xa{ω) - Xt(ω)\ = 0,
f | 4 °

so that the fact that limη_>0 Φτ{χi) = 0 follows from dominated convergence
(c.f. Theorem 3.2).

Conversely, since d is r-uniformly continuous, we can find a sequence ηn

with φT{ηn) < 2~n, such that τ(s,t) < ηn implies d(s,t) < 2~n. Consider
the event

(3.3) An = { sup \X9-Xt\ > 2~nI2}.
τ(s,t)<ηn

Since X is, by assumption, a.s. bounded, we can apply Borell's inequality
(Theorem 2.1) to obtain that, for n > 3,

P{An} <

< Kexp(-2n~1).

Since P{An} is an admirably summable series, Borel-Cantelli gives us that
X is a.s. uniformly r-continuous, as required. This completes the proof. •

The proof of Theorem 3.3 actually yields more than what was claimed
in the statement, which is why we departed from our regular policy of stating
everything in terms of the canonical metric only. In fact, if we denote the
r-modulus of (uniform) continuity of X by

(3.4) Wτ(η) = sup \X,-Xt\,
τ(s,t)<η

then the above calculations actually give us substantial information on the
size of Wτ. Thus we have that not only is the comparatively simple question
of sample path continuity inextricably tied up with the question of bound-
edness, but much finer information on moduli of continuity comes for free in
this formulation.

3.4 COROLLARY. Assume that the conditions of Theorem 3.3 hold and
that lim^_0 Φr {v) = 0. Then, for all e > 0 there exists an a.s. finite random
variable 6 = δ(ω) such that, for almost all ω,

(3.5) Wτ(η) < φτ(η)\\ogφτ(η)\%

for all η < 6(ω). That is, φτ(-)\ logφτ(-)\e is a uniform sample modulus for
X in the metric r.

REMARK: The e in (3.5) is, as are all such infinitesimals, exceedingly irri-
tating, and one would like to dispose of it. That this can in fact be done
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will be shown in the following chapter. As you read the following proof, note
that if only (3.6) could be replaced with dτ (η) = o{φτ (η)) for small η, then
virtually the same proof would suffice to establish the stronger result. In
order to obtain such an inequality, however, we have to have sharp tools for
calculating i£| |X| |. But this is precisely what Chapter 4 is about.

PROOF: Set

dτ(η) : = sup d(s,t)
τ(s,t)<η

= sup (E\Xt-X8\
2)\

τ(s,t)<η

and note the trivial inequality

(3.6) dτ(η) = sup (E\Xt-Xa\
2γ

τ{s,t)<η

sup E\Xt - Xβ\
τ(s,t)<η

< 2y/2πE sup (Xt - X9)
τ(s,t)<η

where the second line is a standard Gaussian result and the inequality follows
from Lemma 3.1, applied to the two-parameter process F(s , t) = X(s) — X(t)
with " f o " = (ί,ί) for some t e T.

Since, by assumption, φτ is r-continuous we can define, for each n > 1,

ηn = inf{?7: φr(η) = e~n}.

Define also

Bn = { sup \X, -Xt\ > φτ(ηn)\\ogφτ(ηnψ
2}.

τ(s,t)<ηn

By two (because of the absolute value sign) applications of Borell's inequality,

P{Bn} <

by (3.6) and the definition of ηn.

Since Σn

 PiBn} < °°5

 w e h a v e t h a t for n ^ Niω)

Wτ(ηn) < φτ(ηn)\logφr(ηn)\</2.

Monotonicity of Wτ and rf, along with separability, complete the proof.

Another easy corollary of the proof of Theorem 3.3 is the following.
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3.5 COROLLARY. Let X be as in Theorem 3.3 and fort G Γ set

Φl(η) = E sup (X9-Xt).

Then X is a.s. τ-continuous at t if, and only if, limn_+0 Φliv) — 0

The proof is almost verbatim that of the theorem, so we shall not give it.
Note that a local modulus of r-continuity based on φ\ instead of φr follows
exactly as in Corollary 3.4.

At first sight, Corollary 3.5 seems to be of far less interest than Theo-
rem 3.3, since it deals only with continuity at a specific point, rather than
throughout T. That this is not the case is a consequence of the following
unexpected and important result.

2. Zero-One Laws and Continuity.

3.6 THEOREM. A Gaussian process X on T has continuous sample paths
with probability one if, and only if, it is continuous at each fixed t G T with
probability one; i.e.

(3.7) P{ lim Xs = Xt for all t G T} = 1

P{\imX9 = Xt} = 1, for each t G Γ.

Necessity is obvious. It is the sufficiency of (3.7) that is the big surprise.
There is something very special about Gaussian processes that makes Theo-
rem 3.6 hold. A similar result for, for example, Poisson processes is palpably
false.

We shall need a number of preliminary results before we can prove The-
orem 3.6. Most of these are of significant interest in their own right and that,
in fact, is the main reason for bringing them at this point. However, they,
are not necessary for the understanding of the main results of these notes,
and so can be skipped at the first reading.

We start with the reproducing kernel Hilbert space (RKHS) of a Gaussian
process with covariance function R.

In essence, this is made up of functions that have about the same
smoothness properties that R(s,t) has, as a function in t for fixed 5, or
vice versa. Start with

S = ĵ / : Γ —> 5R: /(•) = > «t^(5 t ?-), α» real, θt G Γ, n >
t = l
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Define an inner product on S by

(3.8) {f,g)H = ( £ > ( ) Σ > ( , ) )

»=iy=i

The fact that R is non-negative definite implies (/, f)H > 0 for all / G S.
Furthermore, note that the inner product (3.8) has the following unusual
property:

(3.9) f(t) =
t = l * = 1

We refer to (3.9) as the "reproducing kernel" property. From this it follows
that for / β S, t G Γ

(3.10) |/(ί)|2 = \(f,R(t,.))H\2 < (f,f)H(R(t,.),R(t, ))H,

the inequality being merely the Schwartz inequality for semi-inner products,
which holds as long as {fJ)H > 0. Thus, if (/,/) = 0, then (3.10) implies
that f(t) = 0 for all t G Γ. Consequently, (3.8) defines a proper inner

product on 5, and so we thus obtain a norm WfWπ = (/?/)^/2 For {/n}n>i
a sequence in S we have

(3.11) \fn(t)-fm(t)\> = |(/ n -/ m

< | | / . - / m

< \\fn-fm\\2

HR(t,t),

the last line following directly from (3.8). Thus it follows that if {/n} is
Cauchy in || Ĥ  then it is pointwise Cauchy. The closure of S under this
norm is a space of real-valued functions, denoted by H(R), and called the
RKHS of X or of JR, since every f£H(R) satisfies (3.9) by the separability
of H(R). Since T is separable, and R continuous, it follows that H{R) is
also separable. In a moment we shall look at two examples of these spaces,
and more can be found among the exercises. In general, however, the RKHS
is a rather nebulous concept, good more for proving theorems than anything
else. The principle exception is the case T = 3R1, in which case the RKHS
has been exploited as an important tool in the detection and estimation
problems of communication theory. It is also in this case that the RKHS is
comparatively easy to identify. •
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For the first example, however, take T = {l,...,i\Γ}, finite, and X
centered Gaussian with covariance matrix R — (r^-). Let R'1 = (r%3) denote
the inverse of R. Then the RKHS of X is made up of all iV-dimensional
vectors / = (/i,..., fN) with inner product

N N

t = i y = i

To prove this, we need only check that the reproducing kernel property (3.9)
holds. But, with ί(t, j) the Kronecker delta function, and Rk denoting the
A -th row of i2,

t = l 3 = 1

= Λ,

as required. •

For a slightly more interesting example, take X to be standard Brownian
motion on T = [0,1], so that R(s,t) = min(θ,ί). Note that the function
i2(θ, •) is differentiate everywhere except at 5, so that following the heuristics
developed above we expect that H(R) should be made up of a subset of
functions that are differentiable almost everywhere.

To both make this statement more precise, and prove it, we start by
looking at what the space S looks like. Thus let

t = l

be two elements of S. According to (3.8), the 5-inner product between them
is given by

t = l j =

Note that the derivative of R(s,t) with respect to t is given by l [ 0 β ) (ί),
where 1A is the indicator function of A C Γ, and so the derivative of / is
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given by ΣΓ=i α*l[o,«t ] (')• Therefore, we can rewrite the above as follows:

-

i n

Σ

f(t)g(t)dt.
o

We can now go about treating the general case. Set

(3.12) H = {/: /(ί) = f f(s)ds, f (}{s))2 ds < oo},
^ Jo Jo J

and define the following inner product on H:

(3.13) (f,g)H = f f(s)g(s)ds.
Jo

Since it is immediate that i2(θ, •) G H for t G [0,1], and

= Γ f(s)l[Ott](s)ds,
Jo

it now follows that # = H(R). That is, the RKHS is, in this case, determined
by the space (3.12) and the inner product (3.13). •

More examples can be found in the exercises. Now, however, we shall
look at the RKHS from a slightly different viewpoint, and see how to use it
in a very practical fashion.

Since H(R) is a separable Hubert space, it must have a countable or-
thonormal basis. This will be extremely important for us. Sometimes this
basis is easy to find, particularly in the case T — [0, l] f c, in which case it
leads us to the Karhunen-Loeve expansion of X, a topic we shall cover in the
following section. Sometimes, we have to be content with merely knowing it
exists. In an abstract setting, however, even this is useful, as we shall soon
see.

Define Mι (X), the so-called "linear part" of the ϋ 2 space of the process
X, as the closure in £2{P) = £ 2(Ω, J , P ) of

(3.14) { 22 aiχ(ti)^ ai real> U eT, n>
=1
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thinned out by identifying all elements indistinguishable in £ 2 (P) . (i.e. el-
ements U,V for which E{U - V)2 = 0.) This contains all distinguishable
random variables, with finite variance, obtainable as linear combinations of
values of the process. There is a linear, one-one mapping between the space
S of real-valued functions on Γ to this L2 space, defined by

t = l t = l

Note that Θ is clearly norm preserving, and so extends to all of H{R) with
range equal to all of Mι(X). The extension is called the canonical isomor-
phism between these spaces.

Since H(R) is separable, we now also know that M1(X) is. We can
use this to build an orthonormal basis for )/1(X), for if {φn}n>i is an or-
thonormal basis for H(R), then setting £n = Q(φn) gives {fn}n>i as an
orthonormal basis for Mι(X). In particular, we must have Eξn = 0 for all
n > 1, and

(3-15) Xt =
n = l

where the series converges in £ 2 (P) . Since Θ was an isometry, it follows
from (3.15) that

(3.16) EXtζn = (R(t,-),φn)H

= Φn(t)

the last equality coming from the reproducing kernel property of H(R).
Putting (3.16) together with (3.15) is almost enough to give the following
central result.

3.7 THEOREM. If{φn}n>i is an orthonormal basis for H(R), then X has
the C2-representation

(3.17) Xt =
n = l

where {£n}n>i is the orthonormal sequence of centered Gaussian variables
given by ξn =Θ(φn).

PROOF: We have proven everything other than the fact that the £n are
Gaussian. But this follows from standard properties of Gaussian random
variables since a countable, Jβ2 convergent sum of Gaussian random variables
will itself always be Gaussian. •

The equivalence in (3.17) is only in ϋ 2 ; i.e. whereas Xt is defined with
probability one, the sum is, in general, convergent only in mean square. The
following result is indicative of how much we get for free once we have an
a.s. continuous process.
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3.8 THEOREM. If X has continuous sample paths with probability one,
then the sum in (3.17) converges uniformly on T with probability one.

There is also a converse result, that the a.s. uniform convergence of a
sum like (3.17) implies the continuity of X. But since we shall soon have
better ways of establishing sample function continuity, we have no need of the
converse. We shall require one non-standard result from probability theory
in order to prove Theorem 3.8. It is due to Itό and Nisio (1968).

3.9 LEMMA. Let {Zn }n>i be a sequence of symmetric independent random
variables, taking values in a separable, real Banach space B, equipped with
the norm topology. Let Xn = ΣΓ=i ^* Then Xn converges with probability
one if, and only if, there exists a B-valued random variable X such that
(x* ,Xn) —> (x*, X) in probability for every x* G B*, the topological dual of
B.

We also require another preliminary result, of considerable intrinsic in-
terest.

3.10 LEMMA. If{φn}n>i is an orthonormal basis for H(R), then

converges uniformly int £T to R{t,t).

PROOF: By the orthonormal expansion and the reproducing kernel prop-
erty,

(3.18) R(t, ) =
n-1

n = l

convergence of the sum being in the || \\H norm. Hence, Σ^°= 1 Φ^{t) con-
verges to iϋ(f,ί) for every t £ T. Furthermore, the convergence is monotone,
and so it follows that it is also uniform (= Dini's theorem). •

We can now turn to the

PROOF OF THEOREM 3.8: We know that, for each t e Γ, ΣΓ=i LΦn{t)
is a sum of independent variables converging in £ 2 ( P ) . Thus, by Lemma
3.9, applied to real-valued random variables, it converges with probability
one to a limit we denote by Xt. Since the limit process is, by assumption,
continuous, this defines the same process as that appearing in the jβ2 sense
in Theorem 3.7.
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Now, consider both X and each function £nφn{') as elements of the
Banach space C(Γ), with sup-norm topology, and define

t = l t = l

By Lemma 3.9, it suffices to show that for every x* G C*(Γ) the random
variables (x*,Xn) converge in probability to (x* 9X).

Recall that every x* in the topological dual of C(T) is a finite, signed,
Borel measure on Γ. Thus,

E\(x*,Xn)-{x*,X)\ = E\ ί (Xn(t)-X(t))x*(dt)\
JT

E\Xn(t)-X(t)\ \x*\(dt)

< ί [E(Xn(t)-X(t))2]>\x*\{dt)
JT

Σ *?(*)) Vi(Λ),

where \x* \(A) is the total variation of x* on A C Γ.
Since ΣΓ=n+i Φ){t) -> ° uniformly in t G Γ by Lemma 3.10, the last

expression above tends to zero as n —» oo. Since this implies the convergence
in probability of (x*9Sn) to (x,X), we are done. •

Theorem 3.8 is nice to have, (especially since it comes for free with a.s.
continuity) but it is really Theorem 3.7 that is the more important. The fact
that X can be written as an infinite sum of independent random variables
implies that any property of X that is a "tail event", in that its occurrence
or non-occurrence does not depend on "the first n among the φ/\ can be
expected to have probability zero or one only. This is in fact the case, as we
shall see in a moment. Firstly, however, we need a definition.

The oscillation function wx of X is defined as

Wx (ί) = lim sup \XU — Xυ |,
e L° u,υeB{t,e)

where J5(ί,e) is the rf-ball of radius epsilon centered on t £ T. Here is a key
result:

3.11 THEOREM. There exists a (iion-random) 5R-valued upper-semicontin-
uous function h(t) on T such that

(3.19) P{wx (ί) = Λ(t), for ail t G Γ} = 1.
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(Recall that / : T —> 5R is called upper semi-continuous if limn_oo f(tn) =
f(t) for every sequence {ίΛ} with lim^oo tn = t.)

Before we give a proof of Theorem 3.11, consider some of the conse-
quences of this result.

PROOF OF THEOREM 3.6: Since h is non-random, the condition of a.s.
continuity of X at each point t G T implies that h(t) = 0. Theorem 3.11
allows us to move the "each point" inside the probability statement. •

3.12 THEOREM.

P{X is continuous for all t G Γ} = 0 or 1.

PROOF: Let h be the function of Theorem 3.11. If h(t) > 0 for some ί, then,
by Theorem 3.11, X is discontinuous at that point, and so P{X is continuous
for all t β T} = 0. If h(t) = 0 for all ί, then Theorem 3.11, following the
lines of the above proof, also shows that X is continuous with probability
one. •

The theory of Gaussian processes is rich in such zero-one laws, the most
famous perhaps being Belyaev's (1961) dichotomy of stationary process as
being either a.s. continuous or a.s. unbounded on every open subset of Γ,
a result which follows from arguments similar to those above. In Exercise
2.3 you can work through a simple proof of a very general zero-one law for
vector valued Gaussian variables, that has an elegant extension to processes.

Here is a very general zero-one law for Gaussian processes, that we shall
not, however, prove, (c.f. Kallianpur (1969, 1970), Jain (1971) and Cambanis
and Rajput, (1973) for details.)

As always, X t, t G T is a centered Gaussian process on a probability
space (Ω, J , P), where 7 is assumed to be P-complete. Now let A be a space
of functions which contains, with probability one, the sample paths of X.
Let B(Λ) be the cylindrical σ-algebra of subsets of A, define Φ: (Ω, J , P ) —>
(A,β(A))as

= (X( ,ω) if I ( ^ ) a ,
[U) lO if X{ ,ω)$A.

Then Φ clearly induces a probability measure μ on (A, β(A)). Let β(A) be
the completion of S(A) with respect to μ.

We assume the following two conditions:
(A) A is a linear function space under addition of functions and multiplica-

tion by scalars.
(B) H{R) C A.

3.13 THEOREM. If (A) and (B) are satisfied, and G is a 8(A)-measurable
subgroup of A, then μ(G) = 0 or 1.

An immediate corollary of this result is the following:
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3.14 COROLLARY. Let λ be a set of functions which contains the paths
of X, P a.s., and satisi&es (A) and (B) above. If F G 7 is such that F =
Φ"1 (G), where G is a B (A)-measurable subgroup of A, then P(F) = 0 or 1.

You can find a number of applications of this important result in Exercise
2.4. Among them is an alternative proof of Theorem 3.12.

Now, however, we return to a

PROOF OF THEOREM 3.11 : Let B C T be closed, and set

(3.20) wx(B) = sup \Xt-XM\.

Separability ensures that the wx (ί) of the theorem, as well as wx (B), are
well defined random variables. Let

oo

X ( r e ) (ί) =

Since the φ3- are continuous, so must be Y^ι

==1 £jφj9 for any n > 1. It thus
follows that for each it; 6 Ω, n > 1, and any B C Γ,

Wxίn^B,™) = tt;x(J3,tι;).

Since tt>X(»o(S) is measurable with respect to the σ-algebra generated by
fn+1 j £n+2 5 j it follows by Kolmogorov's zero-one law that, for some fixed
number h = h(B),

P{wx{B,w) =

This defines a set indexed version of h. We still need to exhibit a point
indexed version, and to show that it is upper semi-continuous. To this end,
let β be a countable open basis for the topology on T generated by open
balls with respect to rf, and for ί G T set

hit) = inf h(B).
B€B teB

It is immediate from the definition that h is upper-semicontinuous, and not
hard to see that

wx(t) = inf wx(B)
BeB : t€B V '

= inf h{B)
BEB : teB

= h{t),

which is all we need to complete the proof.
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3. The Karhunen-Loeve Expansion.

The Karhunen-Loeve expansion of a continuous Gaussian process is re-
ally just a special case of the expansion (3.17) when the parameter space T
is a compact subset of 5R*. In this case it is possible to choose particularly
convenient orthonormal bases for H(R) and U1(X).

Thus, let T = [0,1]*, and X a centered Gaussian process on T with
continuous covariance function iϋ(s, t). Let λ x, λ 2 , . . . , and ^ J ^ J ? be,
respectively, the eigenvalues and normalised eigenfunctions of the operator
R: £ 2 ( Γ ) -+ £ 2 ( Γ ) defined by Rφ(t) = fτ R{s,t)φ{s) ds. That is, the λn

and φn solve the integral equation

(3.23) I R{s,t)φ(s)ds = \φ{t), foral l ίGΓ,
JT

and
for n = m,

i for n φ m.

Since it involves no loss of generality, we shall assume that X± > λ2 >
The following result can be found, for example, in Riesz and Sz-Nagy

(1955) when k = 1 or Zaanen (1956) for general A:.

3.15 THEOREM (MERCER). Let R, {λ n} n>i and {φn}n>i be as above.
Then

(3.24) R{s,t) =
n = l

where the series converges absolutely and uniformly on [0, l] f c x [0, l ] f c .

The claims made above are best summarised as

3.16 THEOREM. Let R, { λ n } n > i and {VΉ}n>i be as denned above. Then
/ ^ } ^ a complete orthormalsystem in H(R).

PROOF: Set φn = y/Kφn and define

n = l n = l

Give H the inner product

n = l
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where / = Σ<ιnφn and g = Σbnφn.
To check that H has the reproducing kernel property, note that

n = l n = l

oo

n = l

J t remains to be checked that H is in fact a Hubert space, and that
} is both complete and orthonormal. But all this is standard, given

Mercer's theorem, and so is left to you. •

Remaining with the basic notation of Mercer's theorem, we thus have
that the RKHS, H(R), consists of all square integrable functions / on [0, l]k

for which

Σ γ | / ) < oo,

with inner product

~ 1 f f
{f,g)H = Σ τ 3{t)Φn{t)dt g{t)φn{t)dt.

» = 1 Λ n J T J T

!

The Karhunen-Loeve expansion of X is obtained by setting φn = λ£ ψn

in the orthonormal expansion (3.17), so that

(3.25) Xt =
n = l

where the £n are orthonormal Gaussian.
We shall give one, classic, example - that of standard Brownian motion

on [0,1]. Unfortunately, not too many examples are known, since the integral
equation (3.23) is generally not easy to solve. Nevertheless, the fact that it
is always possible to solve (3.23) numerically implies that Karhunen-Loeve
expansions are of substantial practical importance in a variety of applied
settings, most notably communication theory.

For Brownian motion (3.23) becomes

λφ(t) = / mm(s,t)φ(s) ds
Jo

Γ ί1

= I sφ(s)ds + t I φ(s)ds.
Jo Jt
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Differentiating both sides with respect to t gives

λφ'{t) =

λφ"(t) = -

together with the boundary condition ^>(0) = 0.
The solutions of this pair of differential equations are given by

φn(t) = v/2sin( |(2n + l)7Γ6)5 λn -

as is easily verified by substitution. Thus, the Karhunen-Loeve expansion of
Brownian motion on [0,1] is given by

where (ξn) is an orthonormal Gaussian sequence.

4. Exercises.

SECTION 3 .1 :

1.1 Fernique's (1978) original proof of Theorem 3.2 is of intrinsic interest.
His argument for showing that the finiteness of | |X|| implies the existence of
exponential moments is roughly as follows. You should fill in the details for
yourself.

Let X 1 and X2 be two independent copies of X. Then, for every pair
(α, b) of reals

'W <a}P{\\X2\\ >b}

< y/2a,

from which it follows that

P{\\Xι\\<a}P{\\JP\\>b} <

Choose a > 0 such that q := P{\\X\\ < a} <Ξ ( | , 1), set

b0 = a, bn + 1 = a + bny/2, n > 0,

as well as x0 — (1 — q)/q < 1, and define xn, n > 1 by

6n} = qxn.
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It follows by induction that

P{\\X\\>bn} <
q

Since the recursive definition of the bn implies that

bn =

it follows that

n = 0

which converges for small enough α.

1.2 An interesting side result, that is any easy consequence of the above
calculations, is the following:

If X is centered Gaussian, then there exists a universal constant C such
that

P{| |X|| < λ} > i = > E\\X\\ < Cλ.

Prove this.

SECTION 3.2:

2.1 Let X be an Ornstein-Uhlenbeck process o n Γ = [α, 6], —oo < α, 6 < oo;
i.e. the centered, stationary Gaussian process on Γ with covariance function
R(s,t) = e-e ' '-*l. Show that the RKHS of X is made up of all absolutely
continuous functions with inner product

* = f(a)9(a) + ^jτ (f'{t) + af{t)) (g'(t) + ag(t)) dt

= i{f{a)g[a) + f(b)g(b)) + ̂  jί (f'(t)g'{t) + a2f(t)g(t)) dt.

What happens when T = 3ί?

2.2 Find the RKHS, along with the appropriate inner product, for the
Brownian sheet on [0, l] f c.

2.3 Here is a very basic zero-one law for vector valued Gaussian variables.
Let X be a 9ϊfc-valued, centered, Gaussian variable, and E a subspace

of dtk. Let Xx and X2 be independent copies of X, and for θ G [0, π/2] set

A(0) = {X± cos0 + X2 sin0 G E, Xλ sin0 - X2 cos0 $ E}.
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(i) Show that P{A(Θ)} is independent of θ.
(ii) Show that if θλ φ θ2, but xx, x2 G 5Rfc are such that both xλ cos θx +
x2 sin^i G j£ and xx cos02 + ^2 sin02 £ ^> then both xx G E and x2 G ^5
and so xx s i n ^ — x2 cos^i G E. Conclude that the events A(θ) are thus
disjoint.
(Hi) Show that P{X G E} = 0 or 1.
(iv) Let | |X|| = supi=1_k \X(i)\. Show that P{\\X\\ < 00} = 0 or 1.
(v) Note how easy it is to extend the above to X taking values in any vector
space A on which || || is a pseudo-semi-norm, (i.e. a mapping from A to
(5R,β($R)) for which (|| | |)"1(3i) is a subspace of A on which || || induces a
semi-norm.)

2.4 Apply Corollary 3.14 to show that if X is a Gaussian process on a
bounded T C 3Ϊ then with probability one or zero the paths of X
(i) are bounded on Γ,
(ii) are continuous on T,
(iii) are free of oscillatory discontinuities on T,
(iv) satisfy a Holder condition on T.

2.5 Complete the proof of the sufficiency part of Theorem 1.5.

SECTION 3.3:

3.1 Let Xt be the centered Gaussian process on 3ί with covariance function
R(s, t) = R(t — s) = cos 2τr(έ — s). Find the Karhunen-Loeve expansion of X
and show that it has only two terms.




