
Chapter 5. Examples of Data on Permutations and
Homogeneous Spaces

To fix ideas, as well as to make contact with reality, it is useful to have a
collection of real data sets on hand.

A. PERMUTATION DATA.

(1) Large sets of rankings are sometimes generated in psychophysical experiments
(rank these sounds for loudness), taste testing experiments (rank these 5
types of coffee ice cream), or surveys. To give an example, in 1972, the
National Opinion Research Center included the following question in one of
their surveys: Where do you want to live? Rank the following 3 options: in
a big city; near a big city (< 50 miles); far from a big city (> 50 miles). The
data from 1439 respondents was

city
1
1
2
3
2
3

suburbs
2
3
1
1
3
2

country
3
2
3
2
1
1

#
242

28
170
628

12
359

Let us briefly discuss this data. The modal rank is 3 \ \ — people prefer
the suburbs, then country, then city. This is born out by simple averages: 270
people ranked city first, 798 ranked suburb first, 371 ranked country first.

The 2 small counts lead to an interesting interpretation. Both violate the
unfolding hypothesis of Coombs (1964). To spell this out a bit, suppose people's
rankings are chosen in accordance with the ideal distance from the city, different
people having different preferences. Thus, one chooses the rank one location and
then "unfolds" around it. In this model (\ 3 f) is impossible since if one most
prefers being in the city, one must prefer being close to the city to being far away.
The number of permutations of the set l ,2 , . . . ,n consistent with unfolding is
about 2n~1, so many arrangements are ruled out. Unfolding is a nice idea, but
distance to the city might not determine things for someone who works in the sub-
urbs and doesn't want to live where they work. If you ask people to rank order
temperature for tea (hot, medium, cold), you don't expect the unfolding restric-
tion to hold, but if you ask people to rank order sugar teaspoons (0, j , 1, f, 2)
you do expect the data to be consistent with unfolding.

Further analysis of the distance to cities data is in Chapter 8. Duncan and
Brody (1982) discuss these data in some detail.
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Examples of Data, on Permutations and Homogeneous Spaces 93

Ranked data often comes with other variables — rankings for men and
women, or by income being examples. In the data on distance to cities, the
actual dwelling place of the respondent is available. Methods for dealing with
covariates are developed in Chapter 9.

It is worth pointing to a common problem not represented in the cities data.
Because n! grows so rapidly, one can have a fairly large data set of rankings and
still only have a small proportion of the possible orders represented. For example,
I am considering a data set in which 129 black students and 98 white students
were asked to rank "score, instrument, solo, benediction, suite" from the least
related to "song" to the most strongly related to "song." Here, there cannot
be very many repeats in each ranking. In another data set, quoted in Feigin and
Cohen (1978), 148 people ranked 10 occupations for desirability. Clearly, the ratio
of the sample size to n! has a limiting effect on what kind of models can be fit to
the data.
(2) Pairs of permutations often arise as in "rank order the class on the midterm

and final." Similarly, small sets of rankings arise as in a panel of judges rank-
ing a set of contestants. A large collection of examples appears in Chapter
7A.

(3) The Draft Lottery. In 1970, a single "random" permutation in 5*355 w a s

chosen. This permutation was used to fix the order of induction into the
army. The actual permutation is shown in Table 1. For discussion of this
data set, see the article by S. E. Fienberg (1971).
As Fienberg reports, it was widely claimed that the permutation tended to

have lower order months Jan., Feb., . . . having higher numbers. The Spearman
rank correlation coefficient is -.226, significant at the .001 level. Figure 2, based
on Figure 1, shows the average lottery number by month. The evidence seems
strong until we reflect on the problems of pattern finding in a single data source
after agressive data analysis.

Further analysis of this data is given in example 1 of Chapter 7A.

B. PARTIALLY RANKED DATA.

There are numerous examples in which people rank a long list only partially.
For example, people might be asked to rank their favorite 10 out of 40 movies,
a typical ranking yielding (αi, α2,...,αio) with a\ the name of the movie ranked
first, etc. Alternatively people might be asked to choose a committee of 10 out of
40, not ranking within. Then a typical selection yields the set {αi, α2,...,αio}

In each case the symmetric group £40 acts transitively on the partial rankings
which may thus be represented as homogeneous spaces for £40 (see Chapter 3-F
for definitions). For ranked 10 out of 40 the homogeneous space is S40/S30. For
unranked 10 out of 40, the homogeneous space is S40/S10 X S30.

Here are some real examples of such data.
Example 1. American Psychological Association data. The American Psycholog-
ical Association is a large professional group (about 50,000 members). To vote for
a president, members rank order five candidates. A winner is chosen by the Hare
system: Look at the first place votes for all five candidates. If there is no majority
candidate (> 50%) delete the candidate with the fewest first place votes. Ballots
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Figure 1
The 1970 Random Selection Sequence by Month and Day

Day

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Jan.

305

159

251

215

101

224

306

199

194

325

329

221

318

238

017

121

235

140

058

280

186

337

118

059

052

092

355

077

349

164

211

Feb.

086

144

297

210

214

347

091

181

338

216

150

068

152

004

039

212

189

292

025

302

363

290

057

236

179

365

205

299

285

Mar.

108

029

267

225

293

139

122

213

317

323

136

300

259

254

169

166

033

332

200

239

334

265

256

258

343

170

268

223

362

217

030

Apr.

032

271

083

081

269

253

147

312

219

218

014

346

124

231

273

148

260

090

236

346

062

316

252

002

351

340

074

262

191

208

May

330

298

040

276

364

155

035

321

197

065

037

133

295

178

130

055

112

278

075

123

250

326

319

031

361

357

296

308

226

108

313

June

249

228

301

020

028

110

085

366

335

206

134

272

069

356

180

274

073

341

104

360

060
247

109

358

137

022

064

222

353

209

July

093

350

115

279

188

327

050

013

277

284

248

015

042

331

322

120

058

190

227

187

027

153

172

023

067

303

289

088

270

287

193

Aug.

Ill

045

261

145

054

114

168

048

106

021

324

142
307

198

102

044

154

141

311

344

291

339

116

036

286

245

352
167

061

333

Oil

Sept.

225

161

049

232

082

006

008

184

263

071

158

242
175

001

113

207

255

246

177
063

204

160

119

195

149

018

233

257

151

315

Oct.

359

125

244

202

024

087

234

283

342

220

237

072

138

294

171

254

288

005

241

192

243

117

201

196

176

007

264

094

229

038

079

Nov.

019

034

348

266

310

076

051

097

080

282

046

066

126

127

131

107

143

146

203

185

156

009

182

230

132

309

047

281

099

174

Dec.

129

328

157

165

056

010

012

105

043

041

039

314

163

026

320

096

304

128

240

135

070

053

162

095

084

173

078

123

016

003

100

Figure 2
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Fig. 2. Average lottery numbers by month.
The line is the least squares regression
line, treating the months as being equally
spaced.
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with this candidate are relabelled to have the remaining candidates in the same
relative order. The procedure is now continued with the four remaining candi-
dates. Fishburn (1973), Doran (1979), or Brams and Fishburn (1983) discuss the
system and relevant literature.

A considerable number of voters do not rank all five candidates. For example,
in the year being considered the number of voters ranking q of the candidates was

g #

1 5141 ϊ
2 2462 \ 9711
3 2108 J

5 5738

15,449

Thus there were 5,738 complete rankings, but 5,141 only voted for their first
choice. In all, more than half of the ballots were incomplete. It is assumed that
people who rank 4 candidates meant to rank the 5th candidate last.

It is natural to inquire whether the partially ranked ballots are different from
the restriction of the complete ballots (or vary with q). Such considerations should
play a role in deciding on a final voting rule, and on deciding on ballot design and
election publicity in following years.

Table 1 gives the complete data. The data are arranged as (rank, # ) where
rank is a five-digit number, whose ith digit represents the rank given to candidate
i (a zero or blank means that this is a partial ranking, in which candidate i has not
been ranked). For example, the first entry (1,1022) indicates that candidate 5 was
ranked first by 1022 people who didn't rank anyone else. The second entry (10,
1145) indicates that candidate 4 was ranked first by 1145 people (who didn't rank
anyone else). The first 5 entries give the totals for singly ranked items. The next
20 entries give totals for people ranking 2 of the 5 candidates. For example 143
people ranked candidate 5 first and candidate 4 second (and didn't rank anyone
else). These data are analyzed by Diaconis (1989).

Example 2. k sets of an n set. If people are asked to choose their favorite k of n,
without ranking within (as in choosing a committee or set of invitees to a meeting),
then the relevant homogeneous space is Sn/Sk X Sn-k, where Sk x Sn-.k is the
subgroup of Sn allowing arbitrary permutations among {l,...,fc} and among
{k + l , . . . ,n} . Approval voting, recommended by Brams and Fishburn (1983)
yields such data.

Here is an example where large amounts of such data occur. The State of
California has a state lottery game called 6/49 or Lotto. To play, you select a 6
set from {1,2,..., 49}. Then, 6 of 49 numbered balls are chosen at random. The
grand prize is divided between the people choosing this subset.

There are about 14 million subsets, and 11 million players per week in this
game at present. Of course, people do not choose subsets at random — they play
favorate combinations. One can get a distinct advantage in this game by avoiding
popular numbers and subsets. After all, if you are the only person on the subset
you don't have to split with anyone. This can actually overcome the "house take"
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Table 1
American Psychological Association Election Data

Partial
Ranking

1
10
100
1000
10000

21
12
201
210
102
120

2001
2010
2100
1002
1020
1200
20001
20010
20100
21000
10002
10020
10200
12000
30021
30201
32001
20031
20301
23001
3201
2301
3021
2031
321
231

30012
30210
32010
20013
20310
23010
3012
3210
2310
2013
312
213
2130
3120
3102
30102
32100
30120
20130

# of Votes

Cast of
This Type

1022
1145
1198
881
895
143
196
64
48
93
56
70
114
89
80
87
51
117
104
547
72
72
74
302
83
75
32
41
62
37
35
15
14
59
50
20
17
90
13
51
46
15
28
62
18
21
54
46
16
17
26
16
47
57
15
39

Partial
Ranking

23100
20103
132
123
2103
1302
1032
1320
1203
31002
31020
31200
21003
21030
1023
1230
21300
10032
10203
10302
10320
13002
13020
13200
10023
10230
12003
12030
12300
54321
54312
54231
54213
54132
54123
53421
53412
53241
53214
53142
53124
52431
52413
52341
52314
52143
52134
51432
51423
51342
51324
51243
51234
45321
45312
45231

# of Votes
Cast of

This Type

83
74
19
15
16
15
45
17
8
38
45
32
17
31
55
9
31
35
49
41
21
31
22
79
44
30
26
19
27
29
67
37
24
43
28
57
49
22
22
34
26
54
44
26
24
35
50
50
46
25
19
11
29
31
54
34

Partial
Ranking

45213
45132
45123
43521
43512
43251
43215
43152
43125
42531
42513
42351
42315
42153
42135
41532
41523
41352
41325
41253
41235
35421
35412
35241
35214
35142
35124
34521
34512
34251
34215
34152
34125
32541
32514
32451
32415
32154
32145
31542
31524
31452
31425
31254
31245
25431
25413
25341
25314
25143
25134
24531
24513
24351
24315
24153

# of Votes
Cast of

This Type

24
38
30
91
84
30
35
38
35
58
66
24
51
52
40
50
45
31
23
22
16
71
61
41
27
45
36
107
133
62
28
87
35
41
64
34
75
82
74
30
34
40
42
30
34
35
34
40
21
106
79
63
53
44
28
162

Partial
Ranking

24135
23541
23514
23451
23415
23154
23145
21543
21534
21453
21435
21354
21345
15432
15423
15342
15324
15243
15234
14532
14523
14352
14325
14253
14235
13542
13524
13452
13425
13254
13245
12543
12534
12453
12435
12354
12345

# of Votes
Cast of

This Type

96
45
52
53
52
186
172
36
42
24
26
30
40
40
35
36
17
70
50
52
48
51
24
70
45
35
28
37
35
95
102
34
35
29
27
28
30
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and yield a favorable game. Chernoff (1981) gives details for the Massachusetts
lottery. In any case, the data must be analyzed.

While it is not possible to present such data here, the following smaller ex-
ample shows that interesting analyses are possible.

There are various gadgets sold to generate a six-element subset of
{1,2,. . . , 49}. These are used to help players pick combinations for the California
state Lotto game.

One such gadget is pictured in Figure 1. There are 49 numbered holes and
six balls enclosed by a plastic cover. One shakes the balls around and uses the six
set determined by their final resting place.

Figure 1.

PICK 6
1
o
10
o
18
o
26
o
34
o
42
o

2
o
11
o
19
o
27
o
35
o
43
o

3
o
12
o
20
o
28
o
36
o
44
o

LOTTO
4
o
13
o
21
o
29
o
37
o
45
o

5 6
o o

14
o
22
o
30
o
38
o
46
o

7
o
15
o
23
o
31
o
39
o
47
o

&
8
o
16
o
24
o
32
o
40
o
48
o

WIN
9
o
17
o
25
o
33
o
41
o
49
o

This gadget seems at first like other classical devices to generate random out-
comes: if vigorously shaken, it should lead to random results. Further thought
suggests that the outer, or border numbers might be favored over the inner num-
bers.

To test this, 100 trials were performed. The gadget was vigorously shaken
and set down on a flat surface. The results are given in Table 2.

Following each six set is X — the number of balls falling on the outer perime-
ter in that 6-set. For example, the first 6-set {10,11,13,25,36,42} had 3 outside
numbers — 10, 25, 42 — so X = 3. There are 25 outside numbers out of 49.
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Table 2
100 6-setsof {1,2,..., 49}

10,11,13,25,36,42/3
25,27,34,39,45,46/4

3, 5,18,20,33,39/4
3,10,23,26,45,49/5
3, 7,15,19,26,34/4
4,15,32,33,36,49/3

10,11,23,33,43,46/4
1, 6, 7,18,26,34/6
6,11,15,19,26,46/3
1,11,15,18,26,29/3

10,11,19,31,36,42/2
6,15,25,27,42,47/4

17,18,33,36,43,46/5
1, 2,32,36,43,48/4

16,20,30,35,45,46/2
16,20,26,37,42,49/3

3,18,27,30,42,43/4
9,10,27,42,43,45/5
6,23,32,39,42,46/3
5,19,36,39,42,44/3

7,18,20,29,35,43/3
12,14,23,29,41,48/2

4, 6,17,20,33,48/5
4,18,27,30,43,49/4
6,10,18,30,35,45/4

26,27,38,42,43,44/4
6, 8,19,38,43,49/4
1,20,25,42,43,49/5
4,34,27,39,43,46/4
3, 4,11,33,46,49/5

5,10,21,26,42,46/5
16,23,37,41,43,45/3
8,10,13,34,43,49/5
2,10,11,12,13,15/2

10,13,15,22,26,43/3
15,19,22,30,32,39/0

2,15,22,25,29,48/3
6, 7,10,11,17,31/3
6,17,24,29,42,43/4
2, 9,21,36,43,45/4

7,12,18,35,42,44/4
5,16,18,33,36,39/3
2, 6, 7,11,31,47/4

18,22,28,36,42,47/3
4,18,29,35,39,46/3
3, 6,16,25,29,42/4
1,28,31,37,42,43/3
1,18,23,27,42,43/4
4, 5, 7, 8,40,42/5
6, 7, 9,12,39,49/4

12,13,18,19,22,36/1
4, 7, 8,10,33,49/6
7, 9,31,32,41,46/4
9,12,14,37,46,48/3
7, 9,16,29,41,46/4

14,19,21,28,33,42/2
6,14,15,17,31,49/3
8,33,35,41,45,47/5
2, 8,25,29,42,47/5
8,11,24,25,37,48/3

4,17,18,22,32,41/4
6, 9,10,12,16,32/3
2, 5,17,19,36,40/3
2, 6,10,25,33,38/5
3,17,29,40,41,45/4
4, 7,11,23,35,36/2
1,18,31,33,34,46/5

11,13,15,28,34,39/1
4, 7,15,18,31,33/4
1, 3,12,15,20,41/3

4, 9,12,22,39,41/3
3,10,12,28,34,39/3
2, 7,12,27,34,35/3
1, 4, 7,12,20,43/4
5, 7,14,16,18,31/3
6,23,28,34,36,40/2
2, 5, 9,15,23,27/3
2, 3,19,34,39,44/4
6,12,14,16,23,39/1
2,12,15,26,38,43/3

5, 7,12,17,29,35/3
4, 9,16,23,27,42/3
2,13,15,20,21,48/2
1, 5,34,42,44,46/6

15,16,17,24,27,30/1
8,15,18,21,30,39/2
6,15,21,23,32,47/2
5, 7, 8,19,23,49/4
7, 8, 9,14,20,22/3

10,15,29,34,46,49/4

1,17,22,25,29,31/3
2,13,23,24,26,30/2
2, 6,15,18,32,37/3
2,14,15,17,18,35/3
4,10,20,31,32,37/2
7,13,17,27,31,44/2

19,22,28,32,42,44/2
7,13,19,33,47,48/4
1, 2, 4,15,19,40/3
2, 5,25,26,30,39/4

4
.228
.30

5
.016
.13

6
.010
.03

If the six sets were chosen at random, X would have a hypergeometric distribution
/25w24 v

H{X = j} = ; (4lΓ; These numbers are given in Table 3 which also shows the

empirical counts from Table 2.
Table 3

Hypergeometric and Empirical Probabilities for X.
j 0 1 2 3

H{X = j} .013 .091 .250 .333
Empirical .01 .04 .14 .35

The differences are not overwhelming visually. They do show up in two
straightforward tests.

A first test was based on p = H{X = 4,5,6} = .353 versus the empirical
ratio p = .46. Then (p - p)/y/p(l - p)/100 = 2.23. This difference, more than
two standard deviations, is convincing evidence against uniformity.

Colin Mallows suggested using the average, X, as a statistic. Under the null
distribution, E(X) = 3.06, SD(X) = 0.116. The observed ~X is 3.40. This yields
a standardized (z value) of 2.92.

Remarks.
1) As is well known, the omnibus chi-square test is to be avoided for these

kinds of problems. Because it tries to test for all possible departures from
uniformity, chi-square only works well for large deviations or sample sizes.
Interestingly, here it fails to reject the null (10.23 on six degrees of freedom
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with all 7 categories or 9.01 on five degrees of freedom with the first and last
categories combined).

2) Other questions can be asked of these data. To begin with, the central
numbers

20, 21, 22, 23
28, 29, 30, 31

presumably occur less often. More generally, a test that looks at all numbers, but
takes into account the distance from the edge, could be constructed. A preliminary
graphical analysis was not instructive.

Interesting questions arise about the corners and about individual numbers.
With more data, some second order questions can be entertained.

3) It seems clear that this style of randomization mechanism is badly flawed.
Possible physical explanations can be entertained to explain these flaws. The
balls lose most of their energy on impact with the sides, and then "trickle
back" to the edge. A slight tilt draws the balls toward an edge.

4) One practical application of this kind of testing problem comes in the ac-
tual lottery. A quick test to detect marked departures is needed for a pre-game
screening (someone might have switched for loaded balls during the night).

Example 3. Q sort data. The General Social Survey lists thirteen qualities a child
could possess. From this list, respondents are asked to choose the most desirable
quality, the two next most desirable qualities, the least desirable quality and the
next two least desirable qualities. In an obvious way, this is data on SΊ3/SΊ X
5*2 X SV X S2 X Si. More generally, if λ is a partition of n, so λ = (A1 ?..., λm)
with λi + . . . + λm = n, one can consider data of the form: choose the first λi
objects (but do not order between), choose the next λ2 objects, etc., finishing
with λm objects ranked last. Such a scheme is called Q sort data in psychology
experiments. It is not unusual to ask for a list of 100 items to be ranked for its
degree of concordance or similarity with a fixed object. For example, the object
might be a person (spouse, national leader) and the items might be descriptive
levels of aggression. Suppose 9 categories of similarity are used, ranging from 1 -
"most uncharacteristic," through 5 "neither characteristic nor uncharacteristic,"
up to 9 - "most characteristic." To aid in different rates, a forced distribution is
often imposed. For n = 100, the numbers permitted in each category are often
chosen from binomial considerations as 5, 8, 12, 16, 18, 16, 12, 8, 5. A novel
application and references to the older literature may be found in L. E. Moses et
al (1967). For more recent discussion see Heavlin (1980).

Example 4- Other actions of Sn. The symmetric group acts on many other
combinatorial objects, such as the set of partitions or labelled binary trees. It
follows that there is a wide variety of objects to which the analysis of this and
succeeding chapters may be applied.

C. THE rf-sPHERE Sd.

Sometimes data are collected on the circle - which way do birds leave their
nests. Data are also collected on the sphere - for example, in investigating the
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theory of continental drift, geologists looked at magnetization direction of rock
samples on two "sides" of a purported boundary. Roughly, small pieces of certain
kinds of rocks have a given magnetic orientation giving points on the sphere in R3.
This leads to two-sample and other data analytic problems. Such considerations
led Fisher (1953) to invent his famous family of distributions on the sphere.

Here is an example of data on higher dimensional spheres: consider testing
whether measurement errors are normal. Samples of size p are available from a
variety of different sources. Say sample i is normal with parameters μ2 , σ\\

(X n , . . . ,Xi p ) i.i.d. n{μuσ\)

(Xnl,...,Xnp) i.i.d. n(μp,σ
2

p).

Think of p small (say 10) and n large (say 50). All samples are assumed indepen-
dent. Let X{ and S{ be the ith. sample mean and standard deviation.

ri = ( % , N ^ - 1 ^ — ' - ) •

The spherical symmetry of the normal distribution implies that Y; are randomly
distributed over a p - 2 dimensional sphere. Standard tests for uniformity thus
provide tests for normality.

The group of nx n orthogonal matrices O(n) acts transitively on the n sphere.
The subgroup fixing a point (say the north pole (1,0,.. .,0)) is clearly O(n - 1).
Thus the sphere can be thought of as 0(n)/0(n— 1) and the rich tools of harmonic
analysis become available.

Further introductory discussion is in Chapter 9B. Mardia (1972) and Watson
(1983) give motivated, extensive treatments of data on the sphere.

D. OTHER GROUPS.

Many other groups occur. For example binary test results (e.g. right/wrong
on the ith question 1 < i < k) lead to data on Z$. Here, for x G Z*, f(x) is the
number of people answering with pattern x. In panel studies a subject is followed
over time. For example, 5,000 people may be followed for a year, each month a
one or zero is recorded as the person is employed or not. This leads to data on

There is a curious data set for Z365 X Z^βs connected to the birthday-deathday
question. Some researchers claim famous people tend to die close to the date of
their birth. See Diaconis (1985) for a review of this literature.

Data on yet other groups arises in testing Monte Carlo algorithms for gen-
erating from the uniform distribution. Such group valued random variables are
useful in doing integrals over groups. Testing a generator leads to a sample on the
group in question. I have looked at data for the orthogonal and unitary groups
in this regard.

It seems inevitable that data on other groups and homogeneous spaces will
arise naturally in applications. One final example: with many scatterplots, one
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has many covariance matrices. The set of positive definite 2 x 2 matrices is
usefully represented as GLijOi. Several other examples are given in the following
chapters.

E. STATISTICS ON GROUPS.

The examples described above suggest a wealth of statistical problems. In
classical language, there is

• Testing for uniformity (is the sample really random?)
• Two sample tests (is there a difference between men and women's rankings?)
• Assessing association (is husband's ranking close to wife's?)
• Model building (can this huge list of data be summarized by a few param-
eters?)
• Model testing

More inclusively, there is the general problem of data analysis: how to make sense
of this type of data; how to discover structure and find patterns.

The next four chapters offer three different approaches to these problems.
Chapter 6 develops measures of distance on groups and homogeneous spaces.
These are used to carry all sorts of familiar procedures into group valued examples.

Chapter 8 develops an analog of the spectral analysis of time series for group
valued data. This is explored in the examples of partially ranked data. These ex-
amples make full use of the representation theory of the symmetric group. Chapter
7 is devoted to a self-contained development of this theory.

Chapter 9 uses representation theory to develop a natural family of models.
In familiar cases, these reduce to models introduced by applied workers. The
theory shows how to go further, and gives a unified development for all groups at
once.

Of course, there is no substitute for trying things out in real examples, where
special knowledge and insight can be brought to bear. There has not been much
Bayesian work on these problems that I know of. The problems of developing
natural prior distributions with respect to invariance seem fascinating. Consonni
and Dawid (1985) or Fligner and Verducci (1988) offer steps in this direction.




