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1. INTRODUCTION

In an early paper (Rao, 1945), the author introduced a Riemannian

(quadratic differential) metric over the space of a parametric family of prob-

ability distributions and proposed the geodesic distance induced by the metric

as a measure of dissimilarity between probability distributions. The metric

was based on the Fisher information matrix and it arose in a natural way

through the concepts of statistical discrimination feee also Rao, 1949, 1954, 1973

pp. 329-332, 1982a). Such a choice of the quadratic differential metric, which

we will refer to as the information metric, has indeed some attractive proper-

ties such as invariance for transformation of the variables as well as the para-

meters. It also seems to provide an appropriate (informative) geometry on the

probability space for studying large sample properties of estimators of para-

meters in terms of simple loss functions as demonstrated by Amari (1982, 1983),

Cencov (1982), Efron (1975, 1982), Eguchi (1983, 1984), Kass (1981) and others.

Kass (1980, Ph.D. thesis) explores the possibility of using differential geo-

metric ideas in statistical inference.

The geodesic distances based on the information metric have been

computed for a number of parametric family of distributions in recent papers by

Atkinson and Mitchell (1981), Burbea (1986), Kass (1981), Mitchell and

Krzanowski (1985), and Oiler and Cuadras (1985).

In two papers, Burbea and Rao (1982a, 1982b) gave some general

methods for constructing quadratic differential metrics on probability spaces,

of which the Fisher information metric belonged to a special class. In view of

the rich variety of possible metrics, it would be useful to lay down some
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220 C. R. Rao

criteria for the choice of an appropriate metric for a given problem. Amari has

stated that a metric should reflect the stochastic and statistical properties

of the family of probability distributions. In particular he emphasized the

invariance of the metric under transformations of the variables as well as the
v

parameters. Cencov (1972) shows that the Fisher information metric is unique

under some conditions including invariance. Burbea and Rao (1982a) showed that

the Fisher information metric is the only metric associated with invariant

divergence measures of the type introduced by Ciszar (1967). However, there

exist other types of invariant metrics as shown in Section 3 of this paper.

The choice of a metric naturally depends on a particular problem

under investigation, and invariance may or may not be relevant. For instance,

consider the space of multinomial distributions, Δ = {(p,,...,p ): p. > 0,

Σp. = 1}, which is a submanifold of the positive orthant, X = {(x-.,...,x ):

x. > 0} of the Euclidean space R
n
. A Riemannian metric on X automatically pro-

vides a metric on the submanifold Δ. In a study of linkage and selection of

gametes in a biological population, Shahshahani (1979) considered the metric

9
 n ΣX.

 9

ds
2
 = I^dx

2
 (1.1)

1
 X
i

 Ί

which induces the information metric on Δ. This metric provided a convenient

framework for a discussion of certain biological problems. However, Nei (1978)

considered a distance measure associated with the Euclidean metric

ds
2
 = Σdx

2
 (1.2)

which he found to be more appropriate for evolutionary studies in biology. The

metric induced on Δ by (1.2) is not the Fisher information metric. Rao (1982a,

1982b) has shown that a more general type of metric

ΣΣa .dx.dx, (1.3)

called the quadratic entropy is more meaningful in certain sociometric

and biometric studies.

The object of the present paper is to provide some general methods

of constructing Riemannian metrics on probability spaces, and discuss in
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particular the metric generated by the quadratic entropy which is an ideal

measure of diversity (see Lau, 1985 and Rao, 1982b), and has properties similar

to the information metric, like invariance. We also give a list of geodesic

distances based on the information metric computed by various authors (Atkinson

and Mitchell, 1981; Burbea, 1986; Mitchell and Krzanowski, 1985; Oiler and

Cuadras, 1985 and Rao, 1945).

The basic approach adopted in the paper is first to define a measure

of divergence or dissimilarity between two probability measures, and then to use

it to derive a metric on M, the manifold of parameters, by considering two

distributions defined by two contiguous points in M. We thus provide a method

for the construction of an appropriate geometry or geometries on the parameter

space for discussion of practical problems. Some divergence measures may be

more appropriate for discussing properties of estimators using simple loss

functions while others may be appropriate in the study of population dynamics in

biology. It is not unusual in practice to study a problem under different

models for observed data to examine consistency and robustness of results. The

variety of metrics reported in the paper would be of some use in this direction.



2. JENSEN DIFFERENCE AND ENTROPY DIFFERENTIAL METRIC

Let v be a σ-finite additive measure defined on a σ-algebra of

subsets of a measurable space X̂ , and P̂  be the usual Lebesgue space of v measur-

able density functions,

P_= ίp(x): P(x) > 0, xeX,, |
χ
p(x)dv(x) = 1} . (2.1)

We call H: P+R an entropy (functional) on P̂  if

(i) H(p) = 0 when p is degenerate,

(ii) H(p) is concave on P_.

In such a case, with λ > 0 , μ > 0, λ + μ = 1, Rao (1982a) defined the Jensen

difference between p and qεP̂  as

J(λ,μ; p,q) = H(λp + μq) - λH(p) - μH(q) . (2.2)

The function J: P̂  * P+R is non-negative and vanishes if p = q (iff p = q when

H is strictly concave). If the entropy function H is regarded as a measure of

diversity within a population, then the Jensen difference J can be interpreted

as a measure of diversity (or dissimilarity) between two populations. For the

use of Jensen difference in the measurement, apportionment and analysis of di-

versity between populations, the reader is referred to Rao (1982a, 1982b).

Let us now consider a subset of probability densities characterized

by a vector parameter θ

P
Ω
 = {p(x,θ): p(x,θ)εP, θεM, a manifold in R

n
}

—D —

and assume that p(x,θ) is a smooth function admitting derivatives of a certain

order with respect to θ and differention under the integral sign. For conven-

ience of notation, we write
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P( ,θ) = p
fi
, H(θ) = H(p ), H(θ,φ) = H(λp + vp.)

J(θ,φ) = H(θ,φ) - λH(θ) - yH(φ) (2.3)

where θ,ψεM. Putting ψ = θ + dθ and denoting the i-th component of a vector

with a subscript i, we consider the formal expansion of J(θ,θ+dθ),

Ί
 nn ^2,/^ ,_

Λλ Ί
 nnn ,,3,/ ,_

Λ
%

= 2T ΣΣ g"j(θ)dθ
1
dθ

J
. + 37 ΣΣΣ c".

jk
(θ)dθ

i
dθ..dθ

k
+... (2.4)

In (2.4), the coefficients of the first order differentials vanish since J(θ,ψ)

has a minimum at ψ = θ, and the notation such as 3 J(θ,φ=θ)/3φ.3ψ. is used for

replacing ψ by Θ after carrying out the indicated differentiations.

From the definition of the J function, it follows that the (g..) is

a non-negative definite matrix and obeys the tensorial law under transformation

of parameters. We define the matrix and the associated differential metric

|_j II

(g..) and ΣΣ gϊ.dθ dθ. (2.5)

as the H-entropy information matrix and H-entropy differential metric respec-

tively. We prove the following theorem which provides an alternative computa-

tion of the H-information matrix directly from a given entropy H.

Theorem 2.1

(2.6)
1J
 ^

r Ψ j φ = θ

Proof: By definition

g
H.(θ)

 =
 9

2
J(θ,Φ=θ)

=
 3

2
H(θ,φ=θ) _ ^ 3

2
H(φ=θ) ^2 7)

3φ 3φ 3φ 3φ

Since J(θ,ψ) attains a minimum at ψ = θ

3H(θ,φ=θ) _ 3H(θ) ,
9 ft

x

3φ^
 μ

^ θ T -
 ( 2 8

^

J J
Differentiating both sides of (2.8) with respect to θ. we have

3
2
H(θ,φ=θ) 3

2
H(θ,φ=θ) _ 3

2
H(θ)

 (9 Q
x

3θ.3φ. 3φ.3φ. 3Θ.3Θ.
 K }

1 J i J 1 J
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which gives (2.6), and the desired result is proved.

Let us consider a general entropy function of the type

H(P
Θ
) = - j h(p

θ
)dv(x) (2.10)

where h"
5
 the second derivative of h, is a non-negative function. Then using

(2-6) H , * _ h , » _ 3
2
H(θ,φ=θ)

g t θ J
 "

 9 ( θ )
 TT—

3
2
h(λp +μp )

Ό σ

3θ.3φ.
' J

i \j

dv(x)

= λu [h"(pj ^ ^ p *
J θ 3Θ. 3

θ j

If h(x) = x log x, leading to Shannon's entropy, then

(2 12)

become the elements of Fisher's information matrix. If h(x) = (α-l)~ (x
α
-x),

α j 1, we have the α-order entropy of Havrda and Charvat (1967) and

3 loq p 3 loq p

(2.13)

which provide the elements of α-order entropy information matrix, and the

corresponding differential metric given in Burbea and Rao (1982a, 1982b).

We prove Theorem 2.2 which gives alternative expressions for the

coefficients of the third order differentials in the expansion of J(θ,ψ).

Theorem 2.2.

C
H r 3

3
H(θ,φ=θ)

 +
 3

3
H(θ,φ=θ)

 +
 3

3
H(θ,φ=θ)j (^

Proof: By definition

c
H
 ( θ ) =

 3
3
J(θ,φ=θ)

=
 3

3
H(θ,φ=θ) _ 3

3
H(θ)

 (2

From (2.9), writing i = j and j = k we have
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3 2 H(θ,φ=θ) + 9 2 H(θ,φ=θ) = 3 2 H(θ)
9 θ 3 φ 3φ3Φ μ 9 θ 8 θ

Differentiating with respect to Θ.

3
3
H(θ,φ=θ)

 +
 3

3
H(θ,φ=θ)

 +
 3

3
H(θ,φ=θ)

 +
 3

3
H(θ,φ=θ)

 =
 3

3
H(θ)

3θ.3θ 3φ. 3φ. 3Θ -3φ. 3θ.3φ.3φ^ 3φ.3φ 3φ.
 μ

 3Θ.3Θ-3Θ.

which gives (2.14) as equivalent to (2.15). This proves Theorem 2.2.

Let H be Shannon's entropy. Then, an easy computation gives

c
i j k
 - x

μί
[r{]j[

 +
 (l-x)T ]

 +
 iτ\l\

 +
 (l.

μ
)T

1 j k
]
 +
 [r{J]

 +
 d-.)T

1 j k
]}

(2.16)

where
 2

m
 a log p

fl
 3 log p 3 log p 3 log p 3 log p

ijk
 V

 3Θ.3Θ. 3Θ.
 J
 * ijk

 CV
 3Θ. 3Θ. 3Θ,

 ;
 '

1 J K I J K

(2.17)

Adopting the notation of Amari for α-connexion

Γ (α) = Γ ( D + I Z £ T

1 i j k S'jk 2 ' i j k

the expression (2.16) can be w r i t t e n

When λ = μ = 2*, (2.18) becomes

. 1 r (0) + (0) + (0)-. f 2 Ί 9

C i j k 4 L Γ i j k + Γ j k i + Γ i k j J ^ 1 9

Remark 1. In the definition of the Jensen difference (2.2), we

used apriori probabilities λ and μ for the two probability distributions p and

q which have some relevance in population studies. But in problems of statis-

t ical inference, a symmetric version may be used by taking λ = μ = ^



3. THE QUADRATIC ENTROPY

The quadratic entropy was introduced in Rao (1982a) as a general

measure of diversity of a probability distribution over any measurable space.

It is defined as a function Q: P+R

Q(p) = ί K(x,y)p(x)p(y)dv(x)dv(y) (3.1)

where K(x,y) is symmetric, non-negative and conditionally negative definite,

i.e.,
nn
II K(x x )a a < 0
11

 Ί
 J

 Ί
 J

for any choice of (x, ,...,x ) and of (a-,,...,a ) such that a-.+...+a = 0, with

the further condition K(x,y) = 0 if x = y. It was shown in Rao (1982b, 1984)

that the quadratic entropy is concave over P̂  and its Jensen difference has

nice convexity properties which makes it an ideal measure of diversity. In

view of its usefulness in statistical applications, we give explicit expressions

for the quadratic differential metric and the connection coefficients associated

with the quadratic entropy, in the case of the parametric family P_.
—u

From Theorem 2.1, the (i,j)-th element of the Q-information matrix

(3.2)

is
 ?

n
 3 Q(λp

o
 + μp

y
i j ^ ' 3θ

i
3φ

J
.

Observing that

Q(λp + μ p j = I K(x,y)[λp(x,θ)+μp(x,φ)][λp(y,θ)+
μ
p(y,φ)]dv(x)dv(y),

Ό Ό j

we find the explicit expression for (3.2) as

226
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= -2λμ J K(x,y) M dv(x)8v(y) (3.3)

3Θ • O Ό «

Using the expression (2.14), we find on carrying out the necessary computations

where

Γ
 =

 K
(x y)

 8 p ( x > θ ]
Γ
ijk I

 M X
'

y ;
 3θ, (3.4)

J
k
 σ D

i
σ σ
j

It is of interest to note that the expressions (3.3) and (3.4) are invariant for

transformations of both the parameters and variables.

For further properties of quadratic entropies, the reader is refer-

red to Lau (1984) and Rao (1984).



4. METRICS BASED ON DIVERGENCE MEASURES

Burbea and Rao (1982a, 1982b), Burbea (1986) and Eguchi (1984)

have considered metrics arising out of a variety of divergence measures between

probability distributions. A typical divergence measure is of the form

D
F
(p

θ
,p

φ
) = j

χ
 F[p(x,θ),p(x,φ)]dv(x) (4.1)

where F satisfies the following conditions:

(i) F( , ) is a C -function of R
+
 x R

+ ί

(ii) F(x, ) is strictly convex on R
+
 for every xεR

+
,

(iii) F(x,x) = 0 for every x ε R
+ 5

(iv)
 3 F ( x

^
 = x

^ = 0 for every x ε R
+
.

Let us consider the expansion

k i
θ

j
d θ

k +
 ... (4.2)

and obtain explicit expressions for g. and c...

Theorem 4.1. Let

F
 - 9

2
F(x,y)

 F
 _ 3

2
F(x,y)

 F
 _ 3

2
F(x,y)

11 '
 3 χ

2 ' Ί 2 " 3x3y '
 r
22 "

 3 y
2

3y
3

Then

'i
 B

j

228
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9 P Θ 3PΘ 3 P Θ 3PΘ 9 P Θ 3PΘ

F 2 2 [ P θ ' P θ - " - 3 θ . 9 θ J . ϊ θ ^ + 3θ i 8θ | < ϊ θ T + 3 θ j . 3 θ k " 8 θ T ] d v ( x ) *

The results are established by straight forward computations.

Let us consider the directed divergence measure of Csiszar (1967),

which plays an important role in problems of statistical inference,

D(p
θ > P φ

) = j p(x,θ) f(H|^||) dv(x) (4.3)

where f is a convex function. In this case

g
i

Φ i a Φ j

g i j

(4.4)

where g. are the elements of Fisher's information matrix. Thus a wide class

of invariant divergence measures provide the same informative geometry on the

parameter manifold. However, the c. .. coefficients may depend on the particular

convex function f chosen as shown below.

f I r, \ _ 9 D

where v).) and T.., are as defined in (2.17).

The results (4.4) and (4.5) have consequences in estimation theory,

specially in the study of second order efficiency. While a large number of

estimation procedures lead to first order efficient estimates (i.e., having the

same asymptotic variance based on the elements of Fisher information matrix),

they are distinguishable by different second order efficiencies of the derived

estimators (see Rao, 1962).

If f is a convex function, then

f*(u) = ufφ
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is also convex, and the measure (4.3) associated with f+f* is

D*(P
θ
,P

φ
) = { [p

θ
f(j£) + P

φ
f(^)]dv(x) (4.6)

which is symmetric in θ and ψ. However, we may define (4.5) as a symmetric

divergence measure without requiring f to be a convex function but satisfying

the condition that xf(x" ) +f(x) is non-negative on R
+
. In such a case

) = 2f(i)
g i j

(e)

4;Γ(θ) = 2f(υ[r|J
 +
 r ω

 +
 r

j
(;j]

 +
 3f" π)τ.

j k

Remarks on Sections 2, 3 and 4. As pointed out by a referee, a unified treat-

ment of the results in these three sections is possible by considering a general

dissimilarity measure D : p x p -> {0
y
°°} satisfying

(a) D(p
Q
,p.) is a c function of θ,φ,

u φ

(b) D(p,p) = 0 for every p x p,

Then putting

i j k " 3 θ . 3 φ j 9 φ k

 e t c # 9

and differentiating D .I = 0 yields
jj σ-φ

giving expressions for g.. and c... for a general D. However, the approach
I J 1 JK

adopted in the paper enabled a discussion of the construction of the distance

measures D through more basic functions like quadratic entropy, general entropy,

cross entropy, and divergence between probability measures. The results expres-

sed in terms of the basic functions are of some interest.

It is also possible to regard the dissimilarity measures of

Section 3 and 4 as having the common form

D(p,q) =
 χ x χ

 F(p(x),q(x),p(y),q(y))dv(x,y)

where v i s a symmetric measure on X x X_. However, the expressions for g.. and

c... are not simple.



5. OTHER DIVERGENCE MEASURES

In the last section, we considered the f-divergence measure which

led to the Fisher information metric. A special case of this measure is the

city block distance, or the overlap distance (see Rao, 1948, 1982a),

D
Q
(p

θ
,p

φ
) = j |p(x,θ)-p(x,φ)|dv(x) (5.1)

obtained by choosing f(x) = l-min(x,l), which admits a direct interpretation in

terms of errors of classification in discrimination problems. However, this is

not a smooth function and no formula of the type (4.7) is available to deter-

mine the coefficients of the differential metric. But in some cases, it may

turn out that

D
o

( f
V V

 = D
o

( θ
'

φ )

is a smooth function of θ and ψ in which case

)
( 5 2 )

8
2
D

n
(θ,φ=θ)

In the case when p(x,θ) is a p-variate normal density with mean y and fixed

variance covariance matrix Σ, the coefficient (5.2) can be easily computed to be

proportional to σ
1 J
, the (i

s
j)-th element of Σ" , which is indeed the (i,j)-th

element of the Fisher information matrix. The same result holds for any ellip-

tical family, as then D
Q
(θ,φ) is a function of the Mahalanobis distance between

θ and ψ (see Mitchell and Krzanowski, 1985).

Let p(x,θ) be the density of a uniform distribution in the interval

[0,θ]. Then it is seen that

231
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D
Q
(θ,φ) = 2(1 - i) if θ <

= 2(1 - f) if θ > φ. (5.3)

Although this is not a differentiate function, it is seen that

2

is the metric associated with (5.3).

Another general divergence measure which has some practical

applications is

which is indeed a smooth function if ψ is so. In this case

Another measure of interest is the cross entropy introduced in Rao

and Nayak (1985). If H is any entropy function, then the cross entropy of p

with respect to p. was defined as

H[p +λ(p -p )]-H(p )
D(P

θ
,

P φ
) = H(p ) - H(p

β
) - urn — 4 ^ *- . (5.4)

Let

H(p) = - j h(p)dv(x)

as chosen in (2.10). Then (5.4) reduces to

D(p
θ
,p

φ
) = - j h(

Pφ
)dv(x) - J h'(p

φ
)(p

θ
-p

φ
)dv(x) + I h(p

θ
)dv(x) .

Then

which is the same as the h-entropy information matrix derived in (2.10), apart

from a constant. Similarly
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h
 =

 (1) (1)
 +
 (1)

c
ijk

 Γ
ijk

 + Γ
ikj

 Γ
jki 'ijk

where

m 3 log P
A
 9 log p

Ω

2
 3 log p 8 log p 9 log p



6. GEODESIC DISTANCES

In Rao (1945) it was suggested that the information metric could be

used to obtain the geodesic distances between probability distributions. Given

any quadratic differential metric

ds
2
 = ΣΣ g.,(θ)dθ.dθ. (6.1)

' j j

where the matrix (g..) is positive definite, the geodesic curve θ = θ(t) can
• J

in principle be determined from the Euler-Lagrange equations

n .. nn

Σ g
1 d
 θ

η
- + ΣZ Γ

i j k
θ

1
θ

j
 = 0, k = 1 n (6.2)

and from the boundary conditions

θ(t-j) = θ, θ(t
2
) = Φ .

In (6.2), the quantity

Γ i jk = i [aίτ 9 j k

 + air 9k i " a|r gΊ-j] (6 3)
I J K

and is known as the "Christoffel symbol of the first kind."

By definition of the geodesic curve θ = θ(t), its tangent vector

2
θ = θ(t) is of constant length with respect to the metric ds . Thus

nn

Jl g. θ.θ. = constant . (6.4)
11

 ΊJ Ί 3

The constant may be chosen to be of value 1 when the curve parameter t is the

arc length parameter s, 0 < s < S
Q
, with θ(0) = θ, θ(s

Q
) = φ and s

Q
 = g(θ,φ)

is the geodesic distance between θ and ψ.

Aitkinson and Mitchell (1981) describe two other methods of deriving

geodesic distances starting from a given differential metric. The distances

234
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obtained by these authors in various cases are given below. In each case we

give the probability function p(x,θ) and the associated geodesic distance of

(θ,φ) based on the Fisher information metric.

(Ί) Poisson distribution

p(x,θ) = e"
θ
 θ

X
/x!, x = 0,1,..., Θ>0

g(θ,φ) = 2\/Q - /φ" I

(2) Binomial distribution (n fixed)

P(x,θ) = φ θ x ( l - θ ) n ~ \ x = 0,1, . . . ,n, 0<θ<l

g(θ,ψ) = 2/n|sin"/eΓ - sin" /ψ|

= 2/n cos'^/θφ" + / (1-Θ)(1-ΦΓ ] .

(3) Exponential distribution

p(x,θ) = θe~
x θ
, x > 0

g(θ,φ) = I log θ - Ίogφ| .

(4) Gamma distribution (n fixed)

p(x,θ) = θ
n
[ r ( n ) Γ

Ί
x

n
" V

x θ
, x > 0

g(θ,φ) = /n I log θ - log ψ|

(5) Normal distribution (fixed variance)

2 2
p(χ,μ,σ

Q
) = N(μ,σ

Q
;x), σ

Q
 fixed

g(y-,
9
P

2
)
 =
 l

μ
i "

 U
21

/ c r
0

(6) Normal distribution (fixed mean)

2 2
p(x,y

o
»

σ
 )

 =
 N(μ

Q
,σ ;x),y

0
 fixed

2 2
g(σ-j,σ

2
) = /2 I log σ

1
 - log σ^

(7) Normal distribution

2 2

p(x
5
y;σ ) = N(y,σ x), μ and σ both variable.

The information metric in this case is

d s
2
 =
 d y !

+
2 d σ ^ (

6
.

5
)

σ σ

and the geodesic distance is

tanh"
]
ό(l,2) (6.6)



236 C. R. Rao

where σ(l,2) is the positive square root of

/ \C.,r\f \L.

The explicit form (6.6) is given in Burbea and Rao (1982a). From (6.6)

g(y
5
σ

1
;μ,σ

2
) = /2|log σ

1
 - log σ^\

2 2
which agrees with result (6). However, g(μ,,σ ;y

2
,σ ) does not reduce to result

(7) since σ = constant is not a geodesic curve with respect to the metric (6.5)

(8) Multivariate normal distribution

N (μ,Σ;x), Σ fixed

g ( y
r
y

2
) = C(y

1
-y

2
)

l
Σ"

1
(y

]
-y

2
)]

i s

which is Mahalanobis distance.

(9) Multivariate normal distribution

N(μ,Σ;x), μ fixed

g(Σ
r
Σ

?
)-[2"

Ί
 I (log λ.)

2
]^

1

where 0 < λ, <••-< λ are the roots of the determinantal equation |Σ
2
-XΣ,| = 0.

The above explicit form is due to S. T. Jensen as mentioned in Atkinson and

Mitchell (1981).

(10) Negative binomial distribution

p(x,θ) = [x!r(r)]"
1
r(x+r)θ

x
(l-θ)

r
, r fixed

-1 1 - /β(b
g(θ,φ) = 2/r cosh *—

= 2/r log

This computation is due to Oiler and Cuadras (1985).

(11) Multinomial distribution

n!
 n

l
 n

k
p(n

r
...,n

k
; π.,,...,^) = ^ ^ . . n ^ -

λ
 --\ • n fixed.

Let π^ = (π^ ,... ,π^^) and π
2
 = (

π
i2

9
''

#
 '

π
k2^

k

g (
r 2

) COS
 Ί

1

The above computation was originally done by Rao (1945), but an easier method
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of derivation is given by Atkinson and Mitchell (1981).

Recently Burbea (1984) obtained geodesic distances in the case of

independent Poisson and Normal distributions which are given below. These

results (12) and (13) follow directly from (1) and (7) respectively as the

squared geodesic distances behave additively under combination of independent

distributions.

(12) Independent Poisson distributions

P ( X 1 ' > V Θ 1 θr

n - θ Ω χ .
TT ~ 1 O η l

n
g ( θ 1 , . . . , θ n ; φ 1 , . . . , Φ n ) = 2 [ £ ( / θ i -

(13) Independent Normal distributions

N(x;u
Γ
σ

2
)...N(x

n
;μ

n
,σ

2
)

n _ 1+6.(1,2)
 1

= rt [ I log
2
 — ± ]

1

k=l l-δ
k
(l,2)

where 6.(1,2) is the positive square root of

(μ
kΊ
-μ

k2
) +2(σ

k Γ
σ

k 2
)

( μ k Γ μ k 2 } +2(σkl+σk2)

(14) Multivariate elliptic distributions

p(x|y,Σ) = |ΣΓ
1 / 2
h[(

X
-μ)'Σ"

1
(x-μ)],

for some function h, and Σ is fixed

where c. is a constant, which is essentially Mahalanobis distance. This result

is due to Mitchell and Krzanowski (1985).

The use of the c... coefficients defined in (2.4) and (4.2) in the
1J K

discussion of statistical problems will be considered in a future communication.
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