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1. INTRODUCTION

This paper gives an account of some of the recent developments in

statistical inference in which concepts and results from integral and differen-

tial geometry have been instrumental.

A great many important contributions to the field of integral and

differential geometry in statistics are not discussed or even referred to here,

but a rather comprehensive overview of the field can be obtained from the mate-

rial compiled in the present volume and from the survey paper by Barndorff-

Nielsen, Cox and Reid (1986).

Section 2 reviews pertinent parts of statistics and of integral

and differential geometry, and introduces some of the terminology and notation

that will be used in the rest of the paper.

A considerable part of the material in sections 3, 4, 5 and 8 and

in the appendices, which are mainly concerned with the systematic theory of

transformation models and exponential transformation models, has not been pub-

lished elsewhere.

Sections 6 and 7 describe a theory of "observed geometries" and its

relation to an asymptotic expansion of the formula c|j| C for the conditional

distribution of the maximum likelihood estimator; the results there are mostly

taken from Barndorff-Nielsen (1986a). Briefly speaking, the observed geome-

tries on the parameter space of a statistical model consist of a Riemannian

metric and an associated one-parameter family of affine connections, construct-

ed from the observed information matrix and from an auxiliary statistic a cho-

sen such that (ω,a), where ω denotes the maximum likelihood estimator of the
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98 0. E. Barndorff-Nielsen

parameter of the model, is minimal sufficient. The observed geometries and the

closely related expansion of c|j|^L form a parallel to the "expected geometries"

and the associated conditional Edgeworth expansions for curved exponential

families studied primarily by Amari (cf., in particular, Amari 1985, 1986), but

with some essential differences. In particular, the developments in sections 6

and 7 are, in a sense, closer to the actual data and they do not require inte-

grations over the sample space; instead they employ "mixed derivatives of the

log model function." Furthermore, whereas the studies of expected geometries

have been largely concerned with curved exponential families the approach taken

here makes it equally natural to consider other parametric models, and in par-

ticular transformation models. The viewpoint of conditional inference has been

instrumental for the constructions in question. However, the observed geometri-

cal calculus, as discussed in section 6, does not require the employment of

exact or approximate ancillaries.

The observed geometries provide examples of the concept of

statistical manifolds discussed by Lauritzen (1986).

Throughout the paper examples are given to illustrate the general

results.



2. REVIEW AND PRELIMINARIES

We shall consider parametrized statistical models M̂  specified by

(X^p(x;ω),Ω) where X. is the sample space, Ω is the parameter space and p(x ω)

is the model function, i.e. p(x ω) = dP /dy for some dominating measure y. The
ω

dimension of the parameter ω will usually be denoted by d and we write ω on

coordinate form as (ω ,...,ω ). Generic coordinates of ω will be indicated as

r s t .
ω , ω , ω , etc.

The present section is organized in a number of subsections and it

serves two purposes: to provide a survey of previous results and to set the

stage for the developments in the following sections.

Combinants. It is useful to have a term for functions which depend

on both the observation x and the parameter ω and we shall call any such func-

tion a combinant.

Jacobians. Our vectors are row vectors and we denote transposi-

tion of a matrix by an asterix *. If f is a differentiate transformation of

a space _Y then the Jacobian af/ay* of f at yεY_ is also denoted by Jr (y), while

we write J
f
(y) for the Jacobian determinant, i.e. J

f
 = |JJ . When appropriate

we interpret J
f
(y) as an absolute value, without explicitly stating this. We

shall repeatedly use the fact that for differentiate transformations f and g

we have

J
f o g

( y ) = Jg(y)J
f
(g(y)) (2.1)

and hence

J
f 0 g

(y) = J
f
(g(y))J

g
(y). (2.2)
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100 0. E. Barndorff-Nielsen

Foliations. A partition of a manifold of dimension k into submani-

folds all of dimension m<k is called a foliation and the submanifolds are said

to be the leaves of the foliation.

A dimension-reducing statistical hypothesis may often, in a natural

way, be viewed as a leaf of an associated foliation of the parameter space Ω.

Likelihood. We let L = L(ω) = L(ω x) denote an arbitrary version

of the likelihood function for ω and we set 1 = log L. Furthermore, we write

3
r
 = 3/3ω

Γ
, and 1 = a 1, 1 = 3 9 1, etc. The observed information is the

matrix

j(ω) = -[l
r s
] (2.3)

and the expected information is

i(ω) = E
ω
j(ω). (2.4)

The inverse matrices of j and i are referred to as observed and expected forma-

tion, respectively.

Suppose the minimal sufficient statistic t for M̂  is of dimension k.

We then speak of M as a (k,d)-model (d being the dimension of the parameter ω).

Let (ω,a) be a one-to-one transformation of t, where ω is the maximum likeli-

hood estimator of ω and a, of dimension k-d, is an auxiliary statistic.

In most applications it will be essential to choose a so as to be

distribution constant either exactly or to the relevant asymptotic order. Then

a is ancillary and according to the conditionality principle the conditional

model for ω given a is considered the appropriate basis for inference on ω.

However, unless explicitly stated, distribution constancy of a is

not assumed in the following.

There will be no loss of generality in viewing the log likelihood

1 = l(ω) in its dependence on the observation x as being a function of the

minimal sufficient (ω,a) only. Henceforth we shall think of 1 in this manner

and we will indicate this by writing

1=1(ω,ω,a).
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Similarly, in the case of observed information we write

j = j(ω;ώ,a)

etc. It turns out to be of interest to consider the function

«*(<*>) =*(ω;a) = l(ω;ω,a), (2.5)

obtained from l(ω;ώ,a) by substituting ω for ω. Similarly we write

£(ω) = a-(ω a) = j(
ω
;ω,a). (2.6)

For a general parametric model p(x ω) and for a general auxiliary a

a conditional probability function p*(ω;ω|a) for ω given a may be defined by

p*(ω;ω|a) = clJl^C (2.7)

where L is the normed likelihood function, i.e.

C = p(x;ω)/p(x;ω),

and where c = c(ω,a) is a norming constant determined so as to make the integral

of (2.7) with respect to ω equal to 1.

Suppose now that a is approximately or exactly distribution con-

stant. Then the probability function p*(ω;ω|a), given by (2.7), is to be

considered as an approximation to the conditional probability function p(ώ;ω|a)

of the maximum likelihood estimator ω given a, cf. Barndorff-Nielsen (1980,

1983). In general, p*(ώ;ω|a) is simple to calculate since it only requires

knowledge of standard likelihood quantities plus an integration over the sample

space to determine the norming constant c. Moreover, to sufficient accuracy

this norming constant can often be approximated by (2π)~ ' , where d is the

dimension of ω; and a more refined approximation to c solely in terms of mixed

derivatives of the log model function is also available, cf. the next subsection

and section 7. In a great number of cases, including virtually all transforma-

tion models, p*(ω;ω|a) is, in fact, equal to p(ώ;ω|a). Furthermore, outside

these exactness cases one often has an asymptotic relation of the form

p(ω;ω|a) = p*(ω;ω|a){l + 0(n"
3/2
)} (2.8)

uniformly in ω for /ί(ω-ω) bounded, where n denotes sample size. This holds,

in particular, for (k,d) exponential models. For more details and further
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discussion, see Barndorff-Nielsen (1980, 1983, 1984, 1985, 1986a,b) and

Barndorff-Nielsen and Blaesild (1984).

Expansion of c[j| L in the single-parameter case. Suppose ω is

one-dimensional. From formulas (4.2) and (4.5) of Barndorff-Nielsen and Cox

(1984) we have

cj^L = φ(ω-ω; ^ j
 2

(2.9)

.{1 + 0(n"
3 / 2

)}.

Here ψ(w γ) denotes the probability density function of the normal distribution

with mean 0 and variance γ" . Furthermore, C,, A,, and A« are given by

C
l = 2 ?

{
-

3 U
4
 + 1 2 U

3,1 "
5 U
3
 + 2 4 U

2,1
U
3 "

 2 4 U
2,1 "

 1 2 U
2 , 2

} (2 10
>

and

^
 1 2 j l

 + P
2
(u)U

3

A
2
(u) = P

3
(u)U

2 > 2 +
 P

4
(u)ϋ|

fl
 + P

5
(u)U

4
 + P

6
(u)U

3 J +
 P

7
(u)U

2

where P (u), i = 1,...,8, are polynomials, the explicit forms of which are

given in Barndorff-Nielsen (1985), and where U = U
 n

 and U
 c

 are defined as
v v, u v, s

/ x v = 1,2,3,...
,, / x _ 9

s
{r

v ;
(ω;ω,a)}

U
v , s

( ω )
 .(v+s)/2

* s = 0,1,2...

r
v
^ denoting the

 v
-th order derivative of 1 = l(

ω
;ώ,a) with respect to

 ω
 and

8
S
 indicating differentiation s times with respect to

 ω
. Note that, in the

repeated sampling situation, U is of order 0(n"^
v + s

" '' ). Hence the
v »s

quantities C^, A-j and Ap are of order 0(n ), Oίn"
32
) and 0(n ), respectively.

Integration of (2.7) yields an approximation to the conditional

distribution of the likelihood ratio statistic

w = 2{l(ω) - l(ω
Q
) (2.11)
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for testing a dimension reducing hypothesis ΩQ of Ω. In particular, i f ςι is

a p(r'nt hypothesis, ΩQ = {ωQ}, we have

p*(w;ωQ|a) = c e " ^ / |j|̂ 2dώ (2.12)

ώ I w , a

as an app^ imation to p(w;ω
Q
|a). (The leading term of (2.9) together with

p

(2.12) yields the usual χ approximation for w. For a connection to Bartlett

adjustment factors see Barndorff-Nielsen and Cox (1984)).

Furthermore, (2.9) may be integrated termwise to obtain expansions

for the conditional distribution function for ω and, by inversion, for confi-
-3/2

dence limits for ω, correct to order 0(n ), conditionally as well as uncon-

ditionally, cf. Barndorff-Nielsen (1985). The resulting expressions allow one

to carry out "conditional inference without conditioning and without integra-

tion."

For extensions to the case of multidimensional parameters see

section 7.

Reparametrization. A basic form of invariance is parametrization

invariance of statistical procedures (though parametrization equivariance might

be a more proper term). If we think of an inference frame as consisting of the

data in conjunction with the model and a particular parametrization of the

model, and of a statistical procedure π as a method which leads from the

inference frame to a conclusion formulated in terms of the parametrization of

the inference frame then parametrization invariance may be formally specified

as commutativity of the diagram
inference ^parametrization

 i n f e r e n c eframe frame

procedure
π

procedure
π

conclusion > conclusion
reparametrization
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In words, the procedure π is parametrization invariant if changing the inference

base by shifting to another parametrization and then applying π yields the same

conclusion as first applying π and then translating the conclusion so as to be

expressed in terms of the new parametrization. (We might describe a parametri-

zation invariant procedure as a 0-th order generalized tensor.) Maximum

likelihood estimation and likelihood ratio testing are instances of parametri-

zation invariant procedures.

Example 2.1. Consider any log-likelihood function l(ω), of a one-

dimensional parameter ω. Define the functions r ^ = r*-
v
^(ω), v = 1,2,...,

recursively by

r
[ i ]

( ω ) = 1
( D

( ω ) / i ( ω )
^

r L v ] = dr ίϋ i l/ i ίω) 3 5 , v = 2 , 3 , . . . ,
uω

and set f^-* = r ^ ( ω ) . The derivatives f^-" are parametrization invariant,

Γvli.e. r
L J
 takes the same value whatever the parametrization employed.

While parametrization invariance is clearly a desirable property,

there are a number of useful, and virtually indispensable, statistical methods

which do not have this property. Thus procecures which rely on the asymptotic

normality of the maximum likelihood estimator, such as the Wald test or stan-

dard ways of setting confidence intervals in non-linear regression problems,

are mostly not parametrization invariant. However, in cases of non parametri-

zation invariance particular caution must be exercised, as demonstrated for

instance for the Wald test by Hauck and Donner (1977) and Vaeth (1985).

We shall be interested in how various quantities behave under

reparametrizations of the model M̂. Let ψ, of dimension d, be the parameter of

some parametrization of M, alternative to that indicated by ω. Coordinates of

ψ will be denoted by ψ
p
, ψ

σ
, etc. and we write 3 for a/3ψ

p
 and

r _ r p r 2 r, p σ
/P /per

etc. Furthermore, we write l(ψ) for the log likelihood under the parametriza-
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tion by ψ, though formally this is in conflict with the notation l(ω), and

correspondingly we let 1 = 9 1 = 9 l(ψ), etc.; similarly for other parameter

dependent quantities. Finally, the symbol
 Λ
 over such a quantity indicates that

the maximum likelihood estimate has been substituted for the parameter.

Using this notation and adopting the summation convention that if a

suffix occurs repeatedly in a single expression then summation over that suffix

is understood, we have

1 = 1 ω,
P r /p

1 = 1 J. ω
S
. + 1 J. (2.13)

pσ rs /p /σ r /pσ
 v

 '

1 = 1 ,.4.0)/ ω
7
 ω, + l^.ω, ω, [3] + 1 ω, (2.14)

pστ rst /p /σ /τ rs /pσ /τ
 J

 r /pστ
 x

 '

etc., where [3] signifies a sum of three similar terms determined by permutation

of the indices p,σ,τ. On substituting ω for ω in (2.13) we obtain the well-

known relation

j
"pσ

 = J
V s < 7 p >

which, now by substitution of ω for ω, may be reexpressed as

or, written more explicitly,

j (Φ a) = 3-
rs
(ω;a) ̂ ^ .

9ψ 9ψ

Equation (2.15) shows that j is a metric tensor on M, for any given value of the

auxiliary statistic a. Moreover, in wide generality 3- will be positive definite

on M̂ , and we assume henceforth that this is the case. In fact, for any ωεΩ we

have 3- = j, i.e. observed information at the maximum likelihood point, which is

generally positive definite (though counterexamples do exist).

Let A(ω) = [A
 p

(ω)] be an array, depending on ω and where
s
l '••

 s
q

each of the p + q indices runs from 1 to d. Then A is said to be a (p,q)

tensor, or a tensor of contravariant rank p and covariant rank q, if under



106 0. E. Barndorff-Nielsen

reparametrization from ω to ψ A obeys the transformation law

p .p s-, s p-j p r ,.. .r

Example 2.2. A covariant tensor of rank q is given by

F J
 3i
 ΛL

ω
 K

r
l "• /q

Low dω .

In particular, the expected information i is a (0,2) tensor.

The inverse [i
Γ S
] of i = [i ] is a contravariant second order

tensor.

The (outer) product of two tensors A and B
S
1

S
2 V

2is defined as the array C given by

r
l V
. .

 t l
t

2
...

S S u υ

This product is again a tensor, of rank (p
1
 + p", q' + q") if (p',q

f
) and

(p",q") are the ranks of A and B.

Lower rank tensors may be derived from higher rank tensors by con-

traction, i.e. by pairwise identification of upper and lower indices (which

implies a summation).

The parameter space as a manifold. The parameter space Ω may be

viewed as a (pseudo-) Riemannian manifold with (pseudo-) metric determined by

a metric tensor φ, i.e. ψ is a rank 2 covariant, regular and symmetric tensor.
o

The associated Riemannian connection v is determined by the Christoffel symbols
Of

r where

?* =
Φ

t u
?

rs
 ψ

 rsu

and

If v is any affine connection with connection symbols r then

these symbols satisfy
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Γ
ίs

3
t

and the transformation law

On the other hand, any set of functions [r ] which satisfy the law (2.18)

constitute the connection symbols of an affine connection on Ω. It follows that

all affine connections on Ω are of the form

Γ
L
 = r + s (2 19)

rs rs rs \^-^)

where the S are characterized by the transformation law

S
p

T

σ
(φ) = Sί

s
(ω)

ω /

r

p
ω^ψ;

t
 . (2.20)

If, for a given metric tensor ψ, we define r . and S . by

r s L r s t

Γ
rst

 = Γ
rs

φ
tu

 a n d S
rst

 = S
rs

φ
tu

then (2.18), (2.19) and (2.20) are equivalent to, respectively,

pστ rst /p /σ /τ tu /pσ /τ '

0

rst rst
 ύ

rst \t-")

and

S
 =

 S^^.ω/ ω# ω, . (2.23)

pστ rst /p /σ /τ '

Thus, in particular, [S .] is a tensor.

Suppose ψ:β -> ω is a mapping of full rank from an open subset B of

a Euclidean space of dimension d^ < d into Ω. Then ψ is said to be an immer-

sion of B in Ω. We denote coordinates of 3 by β ,β , etc. If ψ is a metric

tensor on Ω then the metric tensor on B induced from Ω by ψ is defined by

φ
a b

( a ) = φ
rs

( ω ) ω
/a

ω
/b '

 (2
'

24)

If r (ω) is a connection on Ω and if r . = r
u
 ψ. then the induced connection
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on B is defined by r£b(e) = Γ

a b d (3)φ C d (3) and by

Γ
abc

( 3 ) = Γ
rst

( ω ) ω
/a

ω
/b

ω
/c

 + φ
tu

ω
/ab

ω
/c "

 (2
'

25)

Let G be a group acting smoothly on the parameter space. A metric

tensor ψ is said to be (G-) invariant if

r' s'

Φ
Γ S
(ω) = ̂

g ω
^ — Φ

Γ
ι

s
ι ( g ω ) ^ 3 i ύ —

f g ε
G. (2.26)

For a given g let a new parametrization be introduced by ψ = gω. From the

transformation law for tensors it follows that φ is invariant if and only if

Φ
r s
(ψ) = Φ

Γ S
(gω), gεG. (2.27)

(On the left hand side the tensor is expressed in ψ coordinates, on the right

hand side in ω coordinates.) Similarly, a connection r is said to be invariant

1f
 rj

s
(ψ) = rj

$
(gω), gεG. (2.28)

The pseudo-Riemannian connection derived from an invariant metric tensor is

invariant.

In generalization of (2.27) an arbitrary covariant tensor A
Γ
T
 r
q

is said to be (G-) invariant if

V V
ψ ) =

 VV
9 ω )

'
 9εG>

If r is a G-invariant connection and if ψ and S . are G-

invariant tensors, with ψ being a metric tensor, then r defined by

?* = r
1
 +

 Φ

t u
Srs rs

 ψ
 rsu

is a G-invariant connection.

Now, let ψ be the information tensor i on Ω. Then (2.16) takes the

form

?
rst •

 E {
V s V -

Obviously,

= E < y $ l t } (2.29)
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satisfies (2.23) and hence, for any real α an affine connection is defined by

? r s t = E ί l r s V + ¥ E { 1 Λ V <2 3 0 >
These are the α-connections introduced and studied by Chentsov (1972) and

Amari (1982a,b, 1985, 1986).

However, we shall be mainly concerned with another type of connec-

tion, determined from observed information, more specifically from the metric

tensor 3-, see sections 6-8. We refer to i and 3- as expected and observed in-

formation metric on ίi, respectively.

Suppose, as above, that ψ:$ -* ω is an immersion of B in Ω. The

submodel NL of ̂  obtained by restricting ω to lie in Ω = ψ(B) has expected

information

i(3) = ̂ H ω ) ̂  . (2.31)

Thus 1(3) equals the Riemannian metric induced from the metric i(ω) on Ω to

the imbedded submanifold Ω
Q
. Furthermore, the α-connection of the model ML

equals the connection on Ω
Q
 induced from the α-connection on Ω, by the general

construction (2.25).

The measures on Ω defined by

li^dω (2.32)

and

\3\ αω (Z.33)

are both geometric measures, relative to expected and observed information

metric, respectively. Note that (2.33) depends on the value of the auxiliary

statistic a. We shall speak of (2.32) and (2.33) as expected and observed

information measure, respectively. It is an important property of these mea-

sures that they are parametrization invariant. This property follows from

the fact that i and a" are covariant tensors of rank 2. As a consequence we

have that c|j| L (of (2.7)) is parametrization invariant.

Invariant measures. A measure μ on x is said to be invariant with

respect to a group G acting on X̂  if gy = y for all gεG.
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Invariant measures, when they exist, may often be constructed from

a quasi-invariant measure, as follows.

A measure μ on X_ is called quasi-invariant with multiplier

x
 =
 x(9»x) if 9y and μ are mutually absolutely continuous for ewery gεG and if

d(g~M(x) = χ(g,x)dμ(x).

Furthermore, define a function m on X to be a modulator with associated

multiplier χ(g,x) if m is positive and

m(gx) = x(g.x)m(x).

Then, if μ
x
 is quasi-invariant with multiplier χ(g,x) and if m is a modulator

with the same multiplier we have that

μ = m" μ
X

is an invariant measure on _X.

As quasi-invariance is clearly a yery weak property the problem in

constructing invariant measures lies mainly in finding appropriate modulators.

It is usually possible to specify the modulators in terms of Jacobians.

In particular, in applications it is often the case that X_ is an

open subset of a Euclidean space. By the standard theorem on transformation

of integrals, Lebesgue measure λ on X is then quasi-invariant with multiplier

J / x(x). Under mild conditions an invariant measure on X̂  is then given by

dμ(x) = J ^ J O J Γ W ) . (2.34)

Here J / % denotes the Jacobian determinant of the mapping γ(g) of X. onto itself

determined by gεG and (z,u) constitutes an orbital decomposition of x, i.e.

(z,u) is a one-to-one transformation of x such that uεX̂  and u is maximal

invariant while zεG and x=zu. For a more detailed discussion see section 3

and appendix 1.

Transformation models. Let G be a group acting on the sample space

)L If the class P̂  of probability measures given by the statistical model is

invariant under the induced action of G on the set of all probability measures

on X then the model is called a composite transformation model and if IP
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consists of a single orbit we use the term transformation model. For a

composite transformation model, G acts on P̂  and we may, of course, equally

think of G as acting on the parameter space Ω. A parameter (function) λ which

is maximal invariant under this action is said to be an index parameter.

Virtually all composite transformation models of interest have the property

that after minimal sufficient reduction (and possibly after deletion of a null

set from X) there exists a sub-group K of G such that K is the isotropy group

for a point on every one of the orbits of X_ and of Ω. Each of these orbits is

then isomorphic to the homogeneous space G/K = {gK:gεG} of left cosets of K.

For a transformation model the information measures (2.32) and

(2.33) are invariant measures relative to the action of G on Ω induced from the

action of G on X via the maximum likelihood estimator ω, which is an equivariant

mapping from _X to Ω. This action is the same as the above-mentioned action of

G on P Ξ Ω and also the same as the natural action of G on G/K Ξ Ω.

It follows that relative to information measure on Ω the formula

(2.7) for the conditional distribution of ω is simply cL. From this it may be

shown that, with the auxiliary a as the maximal invariant statistic, p*(ω,ω|a)

is exactly equal to p(ώ;ω|a).

These results are shown in outline in Barndorff-Nielsen (1983). A

more general statement will be derived in section 5.

Exponential models. A (k,d) exponential model has model function of

the form

p(x ω) = exp{θ(ω) t(x) - κ(θ(ω)) - h(x)}. (2.35)

Here k is the order of the model (2.35) and is equal to the common dimension

of the vectors θ(ω) and t(x), while d denotes the dimension of the parameter ω.

The full exponential model generated by (2.35) has model function

p(x θ) = expίθ t(x) - κ(θ) - h(x)} (2.36)

and κ(θ) is the cumulant transform of the canonical statistic t = t(x). From

the viewpoint of inference on ω there is no restriction in assuming x = t,

since t is minimal sufficient, and we shall often do so. We set τ = τ(θ) = E t,
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i.e. τ is the mean value parameter of (2.36), and we write T for τ(intθ)

where Θ denotes the canonical parameter domain of the full model (2.36).

Let f be a real differentiate function defined on an open subset

of R
k
. The Legendre transform f

T
 of f is defined by

f
τ
(y) = χ y-f(χ)

where

y = (Df)(x) =fj(x) .

The Legendre transform is a useful tool in studying various, dualistic aspects

of exponential models (cf. Barndorff-Nielsen (1978a), Barndorff-Nielsen and

Blaesild (1983a)).

In particular, we may use the Legendre transform to define the

dual likelihood function 1 of (2.35) by

-1

1 (ω) = e τ(ω) - l(τ(ω)). (2.37)

Here, and elsewhere, ' as top index indicates maximum likelihood estimation

under the full model. Further, in this connection we take 1 as the sup-log-

likelihood function of (2.36) and then 1 is, in fact, the Legendre transform of

K. Note that for τ = τ(θ) ε T we have l(τ) = θ τ - κ(θ). An inference

methodology, parallel to that of likelihood inference for exponential families,

may be developed from the dual likelihood (2.37). The estimates, tests and

confidence regions discussed by Amari and others under the name of α = -1 (or

mixture) procedures are, essentially, part of the dual likelihood methodology.

More generally, based on Amari's concepts of α-geometry and α-
α

divergence, one may for each αε[-l,l] introduce an "α-likelihood" L by

L(ω) = L(ω t) = exp{-D
α
(θ,θ(ω))} (2.38)

where

Here p(x θ) is given by (2.36) and the function f is defined as
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x log x, α = 1

f
α
(x) = - ^ { Ί - x

( 1 + α ) / 2
} , -l<α<l . (2.40)

1-α

-log X, α = -1

α α

Letting 1 = log L we have, in particular,

1

l(θ) = l(θ) = -I(θ,θ) = θ t - κ(θ) - ί(t) (2.41)

and
-1
l(θ) = -I(θ,θ) = θ τ - f(τ) - κ(θ) (2.42)

where I denotes the discrimination information. Furthermore, for -l<α<l,

4
 -ίψ*l*) + ̂ κ(θ) -

 κ
( ^ θ

+
^ θ ) }

Kθ) = -K [e
 2 2

 2 2 _
υ>

Ί-α

Affine subsets of Θ are simple from the likelihood viewpoint while,

correspondingly, affine subsets of T are simple in dual likelihood theory. Dual

affine foliations, of Θ and T respectively, are therefore of some particular

interest. Such foliations have been studied in Barndorff-Nielsen and Blaesild

(1983a), see also Barndorff-Nielsen and Blaesild (1983b).

Suppose that the auxiliary component a of (ω,a) is approximately or

exactly distribution constant, i.e. a is ancillary. For instance, a may be the

affine ancillary or the directed log likelihood ratio statistic, as defined in

Barndorff-Nielsen (1980, 1986b). We may think of the partitions generated,

respectively, by a and ω as foliations of T, to be called the ancillary

foliation and the maximum likelihood foliation. (Amari's ancillary subspaces

are then, in the present terminology and for α = 1, leaves of the maximum like-

lihood foliation.)

Exponential transformation models. A model M^which is both trans-

formational and exponential is called an exponential transformation model. For

such models we have the following structure theorem (Barndorff-Nielsen,

Blaesild, Jensen and Jorgensen (1982), Eriksen (1984b)).

Theorem 2.1. Let M be an exponential transformation model with
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acting group G. Suppose X̂  is locally compact and that t is continuous. Fur-

thermore, suppose that G is locally compact and acts continuously on X_.

Then there exists, uniquely, a k-dimensional representation A(g) of

G and k-dimensional vectors B(g) and B(g) such that

t(gx) = t(x)A(g) + B(g) (2.43)

θ(g) = θίejAίg"
1
)* + &(g) (2.44)

where eεG denotes the identity element. Furthermore, the full exponential model

generated by M_ is invariant under G, and &* = {[A(g~ )*,&(g)]: gεG} is a group of

affine transformations of R leaving θ and into invariant in such a way that

θ(gP) = θ(P)A(g'V + B(g), gεG, PεlP .

Dually, G = ί[A(g),B(g)]:gεG} is a group of affine transformations leaving

C = cl conv t( X_ ) as well as T = τ(intθ) invariant. Finally, let 6 be the

function given by

δ(g) = a(θ(e))a(θ(g))~
1
exp(-θ(g).B(g)). (2.45)

We then have

a(θ(gP)) = a(θ(P))δ(g)"
1
exp(-θ(gP).B(g)). (2.46)

Exponential transformation models that are full are a rarity.

However, important examples of such models are provided by the family of Wishart

distributions and the transformational submodels of this.

In general, then, an exponential transformation model M is a curved

exponential model. It is seen from the above theorem that the full model M_

generated by f̂  is a composite transformation model and that, correspondingly,

P4 (and, hence Θ and T) is a foliated manifold with M as a leaf. It seems of

interest to study how the leaves of this foliation are related geometric-

statistically. Exponential transformation models of type (k,d), and in partic-

ular those of type (2,1), have been studied in some detail by Eriksen (1984a,c).

In the first of these papers the Jordan normal form of a matrix is an important

tool.
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Many of the classical differentiable manifolds with their associated

acting Lie groups are carriers of interesting exponential transformation models.

Instances of this are compiled in table 2.1.

Analogies between exponential models and transformation models.

There are some intriguing analogies between exponential models and transforma-

tion models.

Example 2.3. Under a d-dimensional location parameter model, with

ω as the location parameter and for a fixed value of the (ancillary) configura-

tion statistic, the possible score functions are horizontal translates of each

other.

On the other hand, under a (k,d) exponential model, with ω as a

component of the canonical parameter and provided the complementary part of the

canonical statistic is a cut, the possible score functions are vertical trans-

lates of each other. (For details, see Barndorff-Nielsen (1982)).

Example 2.4. Suppose ω is one-dimensional. If ω is the location

parameter of a location model then the correction term C,, given by (2.10),

takes the simple form

i ΐ(4) j(3)
2

C
l
 =
 " 2Ϊ

 {3
 V "

 + 5
 ^ 3 —

}

1 24
 r r

Exactly the same expression is obtained for a (1,1) exponential

model with ω as the canonical parameter.

(This was noted in Barndorff-Nielsen and Cox (1984)).

Maximum estimation. Suppose that for a certain class of models we

have an estimation procedure according to which the estimate ω of ω is obtained

by maximizing a positive function M = M(ω) = M(ω x) with respect to ω. Let

m = log M and suppose that

ίc = -[3
Γ
3

s
m](ω) (2.47)

is positive definite. We shall then say that we have a maximum estimation pro-

cedure. Maximum likelihood estimation and dual maximum likelihood estimation
-1

(where m(ω) = l(ω) = θ τ(ω) - l(ω), cf. (2.37)) are examples of this. More
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generally, minimum contrast estimation, as discussed by Eguchi (1983), is of

this type.

Suppose that M depends on x through the minimal sufficient statis-

tic only and let a be an auxiliary statistic such that (ω,a) is minimal suf-

ficient. In generalization of (2.7) we may consider

p*(2f;ω|a) = c\H\\/ΐ, (2.48)

as a possible approximation to p(ω;ω|a). Here t = L(ω) and c is a norming

constant, determined so as to make the integral of the right hand side of

(2.48) with respect to ω equal to 1.

It will be shown in section 5 that (2.48) is exactly equal to

p(ω;ω|a) for a considerable range of cases.

Finally, it may be noted that by an argument of analogy it would

seem rather natural to consider the modification of (2.48) in which the func-

tion M is substituted for the likelihood function L. While this approach is

not without interest its general asymptotic degree of accuracy is only 0(n )

-1 -3/2
in comparison with 0(n~ ) or 0(n~ ' ) for (2.48). Also, for transformation

models this modification is exact in exceptional cases only.
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3. TRANSFORMATION MODELS

Transformation models were introduced in section 2. For any xεX.

the set Gx = {gx:gεG} of points traversed by x under the action of G is termed

the orbit of x. The sample space )Ms thus partitioned into disjoint orbits,

and if on each orbit we select a point u, to be called the orbit representative,

then any point x in X^can be determined by specifying the representative u of

Gx and an element zεG such that x = zu. In this way x has, as it were, been

expressed in new coordinates (z,u) and we speak of (z,u) as an orbital decompo-

sition of x.

The orbit representative, or any one-to-one transformation thereof,

is a maximal invariant - and hence ancillary - statistic, and inference under

the model proceeds by first conditioning on that statistic.

The action of G on a space Xjs said to be transitive if ^consists

of a single orbit and free if for any pair g and h of different elements of G

we have gx j hx for every xεX^. Note that after conditioning on a maximal

invariant statistic u we have a transitive action of G on the conditional sample

space. For any xεX^ the set G
χ
 = {g:gx = x) is a subgroup, called the isotropy

group of x. The space Xjs said to be of constant orbit type if it is possible

to select the orbit representatives u so that G is the same for all u.

The situation is particularly transparent if the action of G on the

sample space _X is free. Then for given x and u there is only one choice of zεG

such that x = zu, and _X is thus representable as a product space of the form

U x G where U is the subset of X, consisting of the orbit representatives u.

Note that u and z as functions of x are, respectively, invariant and equivariant

118
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i.e.

u(gx) = u(x), z(gx) = gz(x).

It is c "ten feasible to construct an orbital decomposition by first finding an

equivariant mapping z from _X onto G and then defining the orbit representative

u for x bv

u = z~ x.

In particular, the maximum likelihood estimate g of g is equivariant, and may be

used as z provided g(x) exists uniquely for eyery xε_X and g(X) = G. In this

case, G's action on P̂  must also be free.

However, we shall need to treat more general cases where the actions

of G on X_ and on P_ are not necessarily free.

Let H and K be subsets of G. We say that these constitute a

factorization of G if G is uniquely factorizable as

G = HK

in the sense that to each element gεG there exists a unique pair (h,k)εHχK such

that g = hk. We speak of a left factorization if, in addition, K is a subgroup

of G, and similarly for right factorization. If a factorization is both left

and right then G is said to be the product of the groups H and K. An important

example of such a product is afforded by the well-known unique factorization of

a regular n x n matrix A into a product UT of an orthogonal matrix U and a

lower triangular matrix with positive diagonal elements, i.e., using standard

notations for matrix groups, GL(n) is the product of 0(n) and T
+
(n).

A relevant left factorization is often generated in the following

way. Let P be a member of the family P̂  of probability measures for a transform-

ation model M_, and let K be the isotropy group G
p
, i.e.

K = {gεG gP = P}.

For each PεP̂  we may select an element h of G such that P = hP, and letting H be

the set consisting of these elements we have a (left) factorization G = HK.

(In a more technical wording, the elements h are representatives of the left

cosets of K.) Note that G
p
 = hG

p
h"

]
, and that the action of G on P is free if
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and only if K consists of the identity element alone. The quantity h para-

metrizes _P.

Suppose G = HK is a factorization of this kind. For most transform-

ation models of interest, if the action of G on X. is not free then there exists

an orbital decomposition (z,u) of x with zεH and such that for every u the iso-

tropy group G equals K and, furthermore, if z and z
1
 are different elements of

H then zu f z'u.

Example 3.1. Hyperboloid model. This model (Barndorff-Nielsen

(1978b), Jensen (1981)) is analogous to the von Mises-Fisher model but pertains

to observations x on the unit hyperboloid H^"
1
 of R

k
, i.e.

H
k-1

= {x:x*x = 1, x
Q
>0}

where x = (XQ,X,,... ,x. ,) and * denotes the non-definite scalar product of

vectors in R which is given by

χ*y = χ
o
y

o
-χ

1
y

1
-...-χ

k
_

1
y

k
_

Γ

The analogue of the orthogonal group 0(k) is the so called pseudo-

orthogonal group 0(1,k-1), which is the subgroup of GL(k) with matrix represent-

ation

0(1,k-1) = {U:ll* 1 U = 1}

where t denotes the k x k diagonal matrix

1 0

0 -1

0

0 . -1

For k = 4 this is the Lorentz group of relativistic physics. Topologically,

the group 0(1,k-1) has four connected components, of which one is a subgroup of

0(1,k-1) and is defined by
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S O f ( l , k - l )

(the elements of U are denoted by u.., i and j = 0,1,...,k-l). This subgroup
• J

k 1is called the special pseudo-orthogonal group and it acts on H by (U,x)
k-1

(vector-matrix multiplication). The points of H can be expressed in hyper-

bolic-spherical coordinates as

XQ = cosh u

x. = sinh u cos v,

x2 = sinh u sin v, cos v?

x. 1 = sinh u sin v
1
 ... sin v

k
_

2
 ,

k-1 +

and an invariant measure μ on H , relative to the action of SO (l,k-l), is

specified by

dμ = sinh
k
"

2
u sin

k
"

3
v

1
 ... sin v

k
_

3
 dudv

]
 ... dv

k
_

2
 (3.1)

The hyperboloid model function, relative to the invariant measure

(3.1) on H
k
~ \ is

p(x;ξ,λ) = a
k
(λ)e"

λ ξ
*

x
 (3.2)

where the parameters ξ and λ, called the mean direction and the precision,

k-1
satisfy ξεH and λ>0, and where

a
k
(λ) = λ

k / 2
-

1
/{(2π)

k / 2
'

1
2K

k / 2
_

1
(λ)} (3.3)

with K
k
/
2
_-ι a Bessel function.

For any fixed λ, the hyperboloid distributions (3.2) constitute a

transformation model under the action of SO (l,k-l), and the induced action on

the parameter space is (U,ζ) •> ξU* (vector-matrix multiplication). The isotropy

group K of the element ξ = (1,0,...,0) may be identified with SO(k-l). Further-

more, SO*(l,k-l) can be factored as

SO*(l,k-l) = HK = H SO(k-l)
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where the matrix representation of hεH is

h =

1 +
l+x

r

X
1

X
2

1 +

Vl

Vk-1
1+XΛ

x
2

X
k-1

Vl

x
k-1

x
1

1+Xn

x
k-l

x
2

1+x
. 1 +

0

Λ
k-1
1+Xn

(3.4)

for x = (xQ,x-|,...,x
k->1

) varying over H . In relativity theory a Lorentz

transformation of the type (3.4) is termed a "pure Lorentz transformation" or

a "boost." (It may be noted that SO
f
(l,k-l) can equally be factored as KH with

the same K and H as above.)

We have already mentioned the concept of equivariance of a mapping

from .X onto G. More generally, if s is a mapping of X_ onto a space S and if

s(x) = s(x') implies s(gx) = s(gx') for x,x'ε_X and all gεG then s is said to be

equivariant. In this case we may define an action of G on S by gs = s(gx)

for s = s(x) and for any xε_X, and we speak of this as the action induced by s.

In the applications to be discussed later S is typically the parameter domain

under some parametrization of the model and s is the maximum likelihood estima-

tor, which is automatically equivariant.

We are now ready to state the results which constitute the main

tools of the theory of transformation models.

Subject to mild topological regularity conditions (for details, see

Barndorff-Nielsen, Blaesild, Jensen and Jorgensen (1982)) we have

Lemma 3.1. Let u be an invariant statistic with range space U =

u U ) , let s be an equivariant statistic with range space S = sOO, and assume

that the induced action of G on S is transitive. Furthermore, let μ be
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invariant measure on X_. Then, we have (s,u)QQ = S x U and

(s,u)y = v >< p

where v is an invariant measure on S and p is some measure on U.

Suppose r, s and t are statistics on X_ (in general vector-valued).

The symbol r i s|t is used to indicate that r and s are conditionally indepen-

dent given t.

Theorem 3.1. Let the notations and assumptions be as in lemma 3.1,

and suppose that the transformation model has a model function p(x g) relative

to an invariant measure μ on X such that p(x) = p(x e) is of the form

p(x) = q(u)r(s,w) (3.5)

for some functions q and r and some invariant statistic w which is a function

of u.

Then the following conclusions are valid.

(i) The model function p(x g) is of the form

p(x g) = q(u)r(g"
Ί
s,w), (3.6)

and hence the statistic (s,w) is sufficient.

(ii) We have

s i u|w.

(iii) The invariant statistic u has probability function

p(u) = q(u)/r(s,w)dv(s) <p> (3.7)

(where v is invariant measure on S).

(iv) The conditional probability function of s given w is

p(s;g|w) = c(w)r(g" s,w) <v> (3.8)

where c(w) is a norming constant.

It should be noted that the theorem covers the case where no suffi-

cient reduction is available (take q constant and w = u) as well as the case

where s - typically the maximum likelihood estimator - is sufficient (take w

degenerate). Note also that theorem 3.1 does not assume that the action of G

is free. If, however, the action is free and if (z,u) is an orbital decompo-

sition of x then the theorem applies with s = z.
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Example 3.2. Hyperboloid model (continued). Let x,,...,x be a

sample from the hyperboloid distribution (3.2) and let x = (x,,...,x ) and

x
+
 = X-.+ ... +x . Considering λ as fixed, theorem 3.1 applies with u as the

maximal invariant statistic, s = x
+
// x

+
*x

+
 and w = / x

+
*x

+
 . In particular,

it turns out that the conditional distribution of s given w (or, equivalently,

given u) is again a hyperboloid distribution, with mean direction ξ and pre-

cision wλ. This is in complete analogy with the von Mises-Fisher situation,

and accordingly s and w are termed the mean direction and the resultant length

of the sample. For details and further results see Jensen (1981) and Barndorff-

Nielsen, Blaesild, Jensen and Jorgensen (1982).

Lemma 3.1 and theorem 3.1 are formulated in terms of invariant

dominating measures on X̂  and S. In applications, however, the probability func-

tions are ordinarily expressed relative to Lebesgue measure - or, more general-

ly, relative to geometric measure when the underlying space is a differentiate

manifold. It is therefore important to have a formula which gives the relation

between the two types of dominating measure.

Let γ be an action of G on a space Y_ and suppose _Y has constant

orbit type under this action. Then there exists a subgroup K of G, a subset H

of G and an orbital decomposition (z,u) of yε^ such that G
u
 = K and zεH for

every y. We assume that H can be chosen so that HK constitutes a (left)

factorization of G. If X is a differentiate manifold and if γ acts differen-

tiably on X then an invariant measure μ o n Y can typically be constructed from

geometric measure λ on _Y, by means of Jacobians. In particular, if X is an

open subset of some Euclidean space R
r
, so that λ is Lebesgue measure, then

μ defined by

O
γ ( z )

(uΓ
Ί
dλ(y) (3.9)

will be invariant; here J / \ denotes the Jacobian determinant of the mapping

γ(g) of X onto itself. A proof of this is sketched in appendix 1.

Example 3.3. Hyperboloid model (continued). We show here how the

invariant measure (3.1) on the unit hyperboloid H
k
"

1
 may be derived from
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Lebesgue measure. For simplicity, suppose k = 3. The manifold H
2
 is in one-

2
to-one smooth correspondence with R through the mapping

and we start by finding an invariant measure on R . The action of S0
f
(l,2) on

2 ?

H is given by (U,x) -> xU* and the induced action on R is therefore of the

form (U,y) -> ψ(φ" (y)U*). These actions are transitive, and if we take
2

u = (0,0) as the orbit representative of R and let z be the boost

y
0
 y, y

2

z =

1
 +

1 +

y
2

(3.10)

y 2 2
1
 +
 y-i

 +
 Yo» then (u,z) constitutes an orbital decomposition of

yεR of the type required for the use of formula (3.9). Letting γ denote the

action of S0
Φ
(l,2) on R

2
 one finds that J'(

z
)(u) = l/l + y

2

measure

dy(y) =

2 2
+ y

2
 and hence the

p
is an invariant measure on R . Shifting to hyperbolic-spherical coordinates

(u,v) for (y ,
5
y

?
) this measure is transformed to (3.1) with k = 3.

Below and in sections 4 and 5 we shall draw several important con-

clusions from lemma 3.1 and theorem 3.1. Various other applications may be

found in Barndorff-Nielsen, Blaesild, Jensen and Jorgensen (1982).

Corollary 3.1. Let G = HK be a left factorization of G such that

K is the isotropy group of p. Thus the likelihood function depends on g through

h only. Suppose theorem 3.1 applies with S = H and let L(h) = L(h x) be any

version of the likelihood function. Then, the conditional probability

function of s given w may be expressed in terms of the likelihood function as
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p(s;h|w) = c(w) {•[£]• <v> . (3.11)

In formula (3.11) the likelihood function changes with the value of

s. However, an alternative expression for the conditional probability function

is available which employs only the single observed likelihood function. Sup-

pose for simplicity that K consists of the identity element alone, so that

S = G. Further, let XQ denote the observed point in X̂  and write Ln(g) for

L(g;x
0
). Also, for specificity, let the action of G on S = G be the so called

left action of G on itself, i.e. a gεG acts on a point sεS simply by multiply-

ing s on the left by g, in the group theoretic sense. (Thus, the two possible

interpretations of the symbol gs coincide). The situation here specified

occurs, in particular, if the action of G on X is free and if s is the group

component of an orbital decomposition of x. Setting s
Q
 = s(x

Q
) and w~ = w(x

Q
),

we are interested in the conditional distribution of s given w = w
Q
 and by

(3.6) and (3.11) this may be written as

L
Q
(s s~

Ί
g)

P(s;g|w
o
) = c(w

0
)
 L Q ( S Q )

 <α> ,

the invariant measure being denoted here by α, as a standard notation for left

invariant measure on G. This formula, which generalizes a similar

expression for the location-scale model due to Fisher (1934), shows how the

"shape and position" of the conditional distribution of s is simply determined

by the observed likelihood function and the observed s
Q
, respectively.

Formula (3.11), however, besides being slightly more general, seems

more directly applicable in practice.



4. TRANSFORMATIONAL SUBMODELS

Let M be a transformation model with acting group G. If P~ is any

of the probability measures in M̂  and if G
Q
 is a subgroup of G then P~ =

{9Pg
:
9εG

0
} defines a transformation submodel M~ of M_. For a given G

n
 the col-

lection of such submodels typically constitutes a foliation of M̂ .

Suppose G is a Lie group, as is usually the case. The one-parameter

subgroups of G are then in one-to-one correspondence with TG , the tangent

space of G at the identity element e, and this in turn is in one-to-one corre-

spondence with the Lie algebra £ of left invariant vector fields on G. More

generally, each subalgebra ĥ  of the Lie algebra of G determines a connected

subgroup H of G whose Lie algebra is ]χ (cf., for instance, Boothby (1975) chap-

ter 4, theorem 8.7). If AεTG , the one-parameter subgroup of G determined by

A is of the form {exp(tA):tεR}. In general, the subgroup of G determined

by r linearly independent elements A,,...,A of TG may be represented as

Example 4.1. Let M be a location-scale model,

p(x
15
...,X

n
;μ,σ) = σ"

Π
 Π f(σ"

1
(x.-μ)). (4.1)

1 n
 i=l

 ]

Here G is the affine group with elements [μ,σ] which may be represented by

2 χ 2 matrices

1 0

JJ σ

the group operation being then ordinary matrix multiplication. The Lie algebra

of G, or equivalently TG , is represented as the set of 2 x 2 matrices of the

127
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form

A =
0 0

b a

We have

e
t A
 = I + tA + 2T t

2
A

2
 +.

b/a(e
ta
-l) e

t a

where the last expression is to be interpreted in the limiting sense if a = 0.

There are therefore four different types of submodels. Specifical-

ly, letting U Q ^ Q )
 d e n o t e a n

 arbitrary value of (μ,σ) and taking P
Q
 as the

corresponding measure (4.1) we have

(i) If a = 0 then P~ is a pure location model.

(ii) If a f 0, b = 0 and μ
Q
 = 0 then P« is a pure scale model.

(iii) If a f= 0, b = 0 and μ
Q
 f 0 then M~ may be characterized as

the submodel of M_ for which the coefficient of variation μ/σ is constant and

equal to VQ/OQ

(iv) If both a and b are different from 0 then F> may be character-

ized as the submodel PL of M for which σ" (μ+b/a) is constant and equal to

σC
Ω
 = σ
Ω '

 Ί e
 if we let c = b/a then NL is determined by

σ"
Ί
(μ+c) = c

0
. (4.2)

Letting F denote the distribution function of f we can express (4.2) as the

condition that (μ,σ) is such that -c is the F(-c
o
)-quantile of the distribution

The above example is prototypical in the sense that G is generally

a subgroup of the general linear group GL(m) for some m and TG may be repre-

sented as a linear subset of the set M(m) of all m x m matrices.

Example 4.2. Hyperboioid model. The model function of the hyper-

boloid model with k = 3 and a known precision parameter λ may be written as
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p(u,v;
x
,φ) = (2π)-

1
λe

λ
sinh u

 e
"

λ { c o s h
*
 c o s h u

"
s i n h

*
 s i n h u

where u > 0, vε[0,2π) and x > 0, φε[0,2π). The generating group G = S0
f
(l;2)

may be represented as the subgroup of GL(3) whose elements are of the form

2 , 2
0 0

!
coshχ sinhχ 0

cosψ sinψ j I sinhx

-sinψ COSφ 0

cosh
x
 0

0 1 ζ

(4.4)

where -α><ζ<-α>. This determines the so called Iwasa decomposition (cf., for

instance, Barut and Raczka (1980) chapter 3) of S0*(l;2) into the product of

three subgroups, the three factors in (4.4) being the generic elements of the

respective subgroups. It follows that TG is the linear subspace of M(3) gen-

erated by the linearly independent elements

I 0 0 0 ί 0 1

' 0 0 1 , E
2
 = j 1 0

0 - 1 0
 !

 0 0

Γo
E
l
 =

0
 ί E

3
 =

L
1 -1

1

1 I

0

Each of the three subgroups of the Iwasawa decomposition generates

a transformational foliation of the hyperboloid model given by (4.3), as dis-

cussed in general terms above. In particular, the group determined by the

third factor in (4.4) yields, when applied to the distribution (4.3) with

X = Φ = 0, the following one-parameter submodel of the hyperbolic model:

p(u,v;ζ)

u
"

S Ί n h u c o s v
) ~

2
^
 s i n h u s i n v

^(2 Γ Ί λ ~ λ ( c o s h u ^ s i n h u

The general form o f the one-parameter subgroups o f SO ( 1 ; 2 ) i s

0 a b ~i

exp{t

I

a

0

-c 0

where a, b, c are fixed real numbers.



5. MAXIMUM ESTIMATION AND TRANSFORMATION MODELS

We shall be concerned with those situations in which there exists an

invariant measure y on X that dominates P_
9
 where P̂  = {gP:gεG} is transformation-

al. Letting

^~M = P(χ g)

and writing p(x) for p(x e) we have

p(χ g) = p(g" x) <u>.

In most cases of interest the model has the following additional structure (pos-

sibly after deletion of a null set from _X , cf. also section 3). There exists

a left factorization G = HK of G, a K-invariant function f on X_, and an orbit-

al decomposition (fr,u) of x such that:

(i) G = K for all u and, furthermore, G
p
 = K. Hence, in particu-

lar, H may be viewed as the parameter space of the model.

(ii) For eyery xε_X the function m(h) = f(h" x) has a unique maximum

on H and the maximum point is fr.

(iii) H may be viewed as an open subset of some Euclidean space R

and for each fixed xεX_ the function m is twice continuously differentiate on H

and the matrix * = ̂ (h) given by

is positive definite.

In these circumstances we have:

Proposition 5.1. The maximum estimator ft is an equivariant mapping

130
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of _X onto H and the action of G on H induced by ίi coincides with the natural

action of G on H. Furthermore, if the mapping x •> (Fί,u) is proper then there

exists an invariant measure v on H, and for any fixed u such a measure is given

by

dv(h) = j-fe I ̂ dh (5.1)

where dh indicates the differential of Lebesgue measure on H.

(111).

Here H is considered as an open subset of R , in accordance with

Proof. The equivariance of h follows immediately from (ii). Obvi-

ously, there is a one-to-one correspondence between the family of left cosets

G/K = {gK:gεG} and H. Let p be the mapping from G/K to H which establishes this

correspondence. The natural action φ of G on G/K is given by

G x G/K ̂  G/K

φ:

(g.gK) -> ggK

and we have to show that when this action is transferred to H by p it coincides

with the action γ of G on H induced by ft. In other words, we must verify that

for any gεG the diagram

G/K » H

Φ(g) | I γ(g) (5.2)
G/K • H

P

commutes. Let η be the mapping from G to H that sends a gεG into the uniquely

determined hεH such that g = hk for some kεK. For any fr = ίτί(x) in H we have

that γ(g)fr = ίτί(gx) is determined by

f({ίV(gχ)}"
Ί
 gx) > f(h

- 1
 gx), hεH. (5.3)

Now, by the K-invariance of f,

f(h
- 1
 gx) = f U g ^ h ^ x ) = f(η(g"

Ί
h)"

Ί
x)

and here η(g" h) ranges over all of H when h ranges over H. Hence (5.3) may be

rewritten as

f(h"
Ί
χ), hεH,
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i . e . , by ( i i ) ,

= n(rt(gx))
or, equivalently,

ίίπ(χ)κ =

and this, precisely, expresses the commutativity of (5.2), since p~ (h) = hK.

When the mapping x -> (fί,u) is proper the subgroup K is compact

because K = G . Hence there exists an invariant measure on H, cf. appendix 1.

That |tfpdh is such a measure follows from (3.9) and formula (5.10) below.

In particular, then, there is only one action of G on H at play,

namely γ, and

γ(g)h = η(gh). (5.4)

Now, let h •> ω be an arbitrary reparametrization of the model and

let m(ω) = m(h(ω)) and
,2

*(ω) =*(ω;tl) = - JL j L (
ω
; h u ) . (5.5)

This matrix is a (0,2) tensor on Ω.

We shall now show that

-k(h) =*(h;u) = J. (e)~
Ί
**(e;u)J (e)"

1
. (5.6)

Ύ(h) Ύ(h)

Here the unit element e is to be thought of as a point in H.

We have

m(h) = f(h"
]
x) = f(h"

Ί
ίuι) = f ({

η
(ίτΓ

Ί
h)Γ

Ί
u)

where, again, we have used the K-invariance of f. Thus, with η as the projec-

tion mapping defined above we obtain

Mίjpί
 (h)

 _ M i
 ( η ( r h ) )

 ^ h ) * (
h
) (5.7)

and

3
2
m(h;x)

 (h)
 . 3η(ίτΓ

Ί
h)

 (h)
 Λ ( h u) /./ft-l

h
^ 3n(ίτΓ

Ί
h)*

fh
.

(h) . (5.8)
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In these expressions we have, since η(ίτΓ h) = γ(ίi~
Ί
)h, that

(5.9)

On inserting ft for h in (5.7), (5.8) and (5.9) (whereby (5.7) becomes 0) and

combining with (2.1) we obtain (5.6).

From (5.6) we may draw two important conclusions.

First, taking determinants we have

5 ]
ne',u)\

h
 (5.10)

and this, by (3.9) and the tensorial nature of *, implies that j-RfωJl^dω is an

invariant measure on Ω. In connection with formula (5.10) it may be noted that

J
γ'(h)

( e ) = J
δ ( h )

( e )

where 6 denotes left action of the group G on itself. A proof of this latter

formula is given in appendix 2.

Secondly, the tensor -K(ω) is found to be G-invariant, whatever the

value of the ancillary. In fact, by (5.4) we have, for any h
Q
εH and gεG,

γ(γ(g)h)h
0
 = γ(g) o γ(h)h

Q
.

Consequently

-
γ
(g)

and this together with (5.6) and (2.26) establishes the invariance.

In particular, observed information ^determines a G-invariant

Riemannian metric on the parameter space. The expected information metric i

can also be shown to be G-invariant.

From proposition 5.1 and corollary 3.1 we find

Corollary 5.1. The model function p*(ω*,ω|u) = c|ί<|\/t' is exactly

equal to p(ω;ω|u).

By taking m of (ii) equal to the log likelihood function 1 this

corollary specializes to theorem 4.1 of Barndorff-Nielsen (1983).

Suppose, in particular, that the model is an exponential transform-
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α
ation model. Then the above theory applies with m(ω) = l(ω). The essential

α -j

property to check is that l(ω;t(x)) is of the form f(h x). This follows simply
α

from the definition of 1 and theorem 2.1.



6. OBSERVED GEOMETRIES

In section 2 we briefly reviewed how the parameter space of the

model f̂  may be set up as a manifold with expected information i as Riemannian

metric tensor and with an associated family of affine connections, the α-con-

nections (2.30). We shall now discuss a similar type of geometries on the

parameter space, related to observed information and depending on the choice of

the auxiliary statistic a which together with the maximum likelihood estimator

ω constitutes a minimal sufficient statistic for fi. These latter geometries

are termed observed geometries (Barndorff-Neilsen, 1986a). In applications to

statistical inference questions it will usually be appropriate to take a to

be ancillary but a great part of what we shall discuss does not require dis-

tribution constancy of a and, unless explicitly stated otherwise, the auxil-

iary a is considered arbitrary (except for the implicit smoothness properties).

Let an auxiliary a be chosen. We may now take partial derivatives

of 1 = l(ω;ω,a) with respect to the coordinates ω
Γ
 of ω as well as with respect

to ω
Γ
. Letting a = a/3ω

Γ
 we introduce the notation

Ί
r r s s

 = 9
r \ h

 5
s

 ] ( 6 J )

r
r
. . r

p
, s

Γ
. . s

q
 r

r
. . r

p
 s

r
. . s

q

and refer to these quantities as mixed derivatives of the log model function.

The function of ω and a obtained from (6.1) by substituting ω for ω will be

denoted by \
r

Γ
..r

p
;s

Γ
..s

. Thus, for instance,

=
 *rs;t

( ω ; a )

More generally, for any combinant g of the form g(ω;ω,a) we write

135
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-? = -§f(ω;a) = g(ω;ω,a).

This is in consistency with the notation # introduced by (2.6). The observed

geometries, to be discussed, are expressed in terms of the mixed derivatives

\ r s s
 (6 2 )

r
Γ
. . r

p S
s

Γ
. . s

q

So are the terms of an asymptotic expansion of (2.7), cf. section 7.

Given the observed value of a the observed information tensor ̂ , of

(2.6), defines the parameter space of M̂  as a Riemannian manifold. The Rieman-
°t °tnian connection determined by a- has connection symbols -F given by & =

f
rst * ''"At " Vrs * Vrt'

Employing the notation established above we have 9.6- = -*
 c+
 -J

 c
. +

 9
 etc.

u rs rsu rs,u
so that

As we shall now show, the quantity

p = _(} + > .
t
[3]) (6.4)

is a covariant tensor of rank 3, i.e.

*pστ "
 T
rst

ω
/p

ω
/σ

ω
/τ

 (6
'

5)

First, from (2.14) we have

ω
/p

ω
/σ

ω
/τ

 + +
r S

ω
/

P
σ

ω
/ τ

[ 3 ]
'

Further, from (2.13) we obtain, on differentiating with respect to ψ
τ
 and then

substituting parameter for estimate,

V , τ
 = +

rs;t
ω
/p

ω
/σ

ω
/τ

 +
 V,t

ω
/

P
σ

ω
/τ'

 (6
'

7

Finally, differentiating the likelihood equation

we find
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*rs

or

Combination of (6.4), (6.6), (6.7) and (6.9) yields (6.5).

It follows from the tensorial nature of ? and from (6.3) and (6.9)
α

that for any real α an affine connection ? on M^may be defined by

f
rs ~ * *Vsu

with

In particular, we have

1 -1
=
 V,rs

 (6J1)

where to obtain the latter expression we have used

which follows on differentiation of (6.8). It may also be noted that

1 - 1 1 - 1

t rs rts str str rts

and
a l . l Ί "1

α

The connections -f, which we shall refer to as the observed α-con-
α

nections, are analogues of the expected α-connections r given by (2.30). The
α α

analogy between r and -F becomes more apparent by rewriting the skewness tensor

(2.29) as

T
rst = "

E { 1
rst

the validity of which follows on differentiation of the formula

E{1
rs

 +
 V s

} =
 °'

 (6J2)

which, in turn, may be compared to (6.8).

Under the specifications of a of primary statistical interest one
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has that, in broad generality, the observed geometries converge to the corre-

sponding expected geometries as the sample size tends to infinity.

For (k,k) exponential models

p(x θ) = a(θ)b(x)e
θ # t ( x )

 (6.13)

no auxiliary statistic is involved since θ is minimal sufficient, and we find
α α

j- = i and £ = r, αεR.

Let i,j,k,... be indices for the coordinates of θ, t and τ, using

upper indices for θ and lower indices for t and τ.

In the case of a curved exponential model (2.35), we have

\ = (t-τ)
Ί
.θ}

Γ
 (6.14)

and, letting Θ denote the maximum likelihood estimator of θ under the full model

generated by (2 35), the relation + = ? takes the form
r, s rs

V , s
( ω ) = κ

ij
( θ ) θ

jr*/s

Furthermore,

"
 κ
1J

( θ
>

θ
/r

θ
/s - (*-^i

• - < 1 j k ( θ ) θ / r θ / s θ / t

r s t i j
;

r s
^

t
= i

r s t
 (6.17)

and

^ rs-Ίj^/t^/rs-'rsf
 (6 1 8 )

I t is also to be noted that, under mild regularity conditions, the quantities

& and ^possess asymptotic expansions the f i r s t terms of which are given by

and

rst " {Ίjkθ;rsθ/tθ/\ [ 3 ]

W x } a λ + ' (6 20)
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where a
λ
, λ = l,...,k-d, are the coordinates of the auxiliary statistic a. For

instance, in the repeated sampling situation and letting a« denote the affine

ancillary, as defined in Barndorff-Nielsen (1980), we may take a = n a and

the expansions (6.19) and (6.20) are asymptotic in powers of n"*
5
. (For further

comparison with Amari (1982a) it may be noted that the coefficient in the first

i i
 e e

order correction term of (6.19) may be written as
 θ
/

r s

θ
/

λ

κ
- j - ;

 = n
^
 sλ

 where H

is Amari's notation for the exponential curvature, or α-curvature with α = 1, of

the curved exponential model viewed as a manifold imbedded in the full (k,k)

model.)

For a transformation model we find

l
Γ
(h;x) = T

r

(cf. the more general formula (5.7)) and hence

(6 21)

(6.22)

where, for a
r
 = a/ah

Γ
 and a

r
 = a/ah

r
,

A^ = a
s
n

r
(h"

1
l

so that

S
 " ~γ(h)

while

B
st =

 3
s V

B
s;t

B
 st
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Furthermore, to write the coefficients of 1 ,
c
,.,(e;u) in (6.21) and (6.22) as

r s K*

indicated we have used the relation

v Λ h "
Ί
h ) L = -3

ς
η

Γ
(h"

Ί
h)|

 Λ
 . (6.24)

s
 h=h

 s
 h=h

Formula (6.24) is proved in appendix 3.

We now briefly consider four examples. In the first three the

model is transformational and the auxiliary statistic a is taken to be the max-

imal invariant statistic, and thus a is exactly ancillary. In the fourth ex-

ample a is only approximately ancillary. Examples 6.1, 6.3 and 6.4 concern

curved exponential models whereas the model in example 6.2 - the location-scale

model - is exponential only if the error distribution is normal.

Example 6.1. Constant normal fractile. For known αε(0,l) and

c
ε
(-oo

5
oo)

5
 let N denote the class of normal distributions having the real

"~ΪDt , C

number c as α-fractile, i.e.

N . = {N(μ,σ
2
):(c-μ)/σ = u },

where u denotes the α-fractile of the standard normal distribution, and let

x
Ί
,...,x be a sample from a distribution in N . The model for x = (x,,... ,x,J

1 n —α,c I n

thus defined is a (2,1) exponential model, except for u = 0 when it is a (1,1)

model. Henceforth we suppose that u =)= 0, i.e. α f h. The model is also a

transformation model relative to the subgroup G of the group of one-dimensional

affine transformations given by

G = ί[c(l - λ),λ]:λ>0},

the group operation being

[c(l - λ),λ][c(l - λ'),λ'] = [c(Ί - λλ'),λλ']

and the action of G on the sample space being

[c(Ί - λ),λ](x
r
...,x

n
) = (c(Ί - λ) + λx

r
...,c(l - λ) + λx

n
).

(Note that G is isomorphic to the multiplicative group.)

Letting

a = (x - c)/s',
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where x = (x, +...+ x
n
)/n and

s
 n

 ^ ^ x . x; ,

we have that a is maximal invariant and, parametrizing the model by ζ = log σ,

that the maximum likelihood estimate is

ζ = log(bs')

where

b = b(a) = (u /2)a + /l + {(u / 2 )
2
 + l}a

2
.

Furthermore, (ζ,a) is a one-to-one transformation of the minimal sufficient

statistic (x,s') and a is exactly ancillary.

The log likelihood function may be written as

l (ς) = l ( ζ ; ζ , a ) = n[ζ - ζ - ^ { b - 2 e 2 ( ^ ζ ) + (uα + a t f V " 5 ) 2 } ]

from which it is evident that the model for ζ given a is a location model.

Indicating differentiation with respect to ζ and ζ by subscripts ς

and ζ, respectively, we find

l
ς
 = n{-l + b -

2
e

2 (
^

ζ )
 + ab"

1
(u

α
 + a t f V ^ e ^ }

and hence

ϊ = n{2b"
2
 + ab"

]
(u

α
 + 2ab"

Ί
)}

^ζζζ
 = n { 4 b

"
2 + a b

"
1
(

u

α

 + 4 a b
"

]
)

}

+ r = -n{4b"
2
 + ab"

Ί
(u

α
 + 4ab"

]
)} = *

.- = n{4b"^ + ab"'(u + 4ab"')} = -p= -̂
ζ jζζ ot

and the observed skewness tensor is

Jc = n{8b"
2
 + 2ab"

1
(u

α
 + 43b"

1
)}.

Note also that
α 1

We mention in passing that another normal submodel, that specified
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by a known coefficient of variation μ/σ, has properties similar to those ex-

hibited by example 6.1.

Example 6.2. Location-scale model. Let data x consist of a sample

x,,...,x from a location-scale model, i.e. the model function is

p(x;μ,σ) = σ= σ"
Π

n x.-μ

for some known probability density function f. We assume that {x:f(x)>0} is an

open interval and that g = -log f has a positive and continuous second order

derivative on that interval. This ensures that the maximum likelihood estimate

(μ,σ) exists uniquely with probability 1 (cf., for instance, Burridge (1981)).

Taking as the auxiliary a Fisher's configuration statistic

X
Ί
-μ X -μ

a = (a
r
...,a

n
) =

which is an exact ancillary, we find

3-(μ,σ) = σ

and, in an obvious notation,

-2
V(a Σa g"(a

Σa g"(a ) n+Σa
2
g"(a

f '(a,)

= -σ"
3
{2n + 4za

2
g"(a.) + za?g"'(a.)}

,σ l i l i

μμμ

-3
yyσ
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Kao
 = σ
"
3{4n

Furthermore,

*
W
o

Example 6.3. HyperboΊoid model. Let (u-. ,v,),... , (u ,v ) be a

sample from the hyperboioid distribution (4.3) and suppose the precision λ is

known. The resultant length is

a = {(Σ cosh u
Ί
 ) - (Σ sinh u. cos v..) - (Σ sinh u^ sin v^)

2
}^

and a is maximal invariant after minimal sufficient reduction. Furthermore,

the maximum likelihood estimate (χ,ί) of (χ,φ) exists uniquely, with probabil-

ity 1, (a,χ,φ) is minimal sufficient and the conditional distribution of (χ,ψ)

given the ancillary a is again hyperboloidic, as in (4.3) but with u, v and λ

replaced by χ, ψ and aλ. It follows that the log likelihood function is

l(x»φ) = Kχ
5
Φ;x,φ

9
a) = -aλ{coshχ coshχ - sinh

x
 sinhχ cos(φ-φ)}

and hence

α α α α
2 = -F = f = -F = 0
XXX XXΦ XΦX ΦΦΦ

α

¥
 AΛ
 = aλ cosh x sinh χ

xΦΦ
α

-F
Λ A
 = -aλ cosh x sinh χ,

ΦΦx

whatever the value of α. Thus, in this case, the α-geometries are identical.

We note again that whereas the auxiliary statistic a is taken so

as to be ancillary in the various examples discussed here - exactly distribu-
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tion constant in the three examples above and asymptotically distribution con-

stant in the one to follow - ancillarity is no prerequisite for the general

theory of observed geometries.

Furthermore, let a be any statistic which depends on the minimal

sufficient statistic t, say, only and suppose that the mapping from t to (ω,a)

is defined and one-to-one on some subset T~ of the full range X of values of t

though not, perhaps, on all of ]_. We can then endow the model M̂  with observed

geometries, in the manner described above, for values of t in T~. The

next example illustrates this point.

The above considerations allow us to deal with questions of non-

uniqueness and nonexistence of maximum likelihood estimates and nonexistence of

exact ancillaries, especially in asymptotic considerations.

Example 6.4. Inverse Gaussian - Gaussian model. Let x( ) and y( )
2

be independent Brownian motions with a common diffusion coefficient σ = 1 and

drift coefficients μ>0 and ξ, respectively. We observe the process x( ) till it

first hits a level x«>0 and at the time u when this happens we record the value

v = y(u) of the second process. The joint distribution of u and v is then

given by
p(u,v;μ,ξ)

Suppose that (u,
s
v^),... ,(u ,v ) is a sample from the distribution

(6.25) and let t = (ΰ,v) where ΰ and v are the arithmetic means of the observa-

tions. Then t is minimal sufficient and follows a distribution similar to

(6.25), specifically
p(ΰ,v;y,ξ)

= (2π)"
Ί
x

o
ne ° G"

2
e
 2

 ° e
 2 2

 . (6.26)

Now, assume ξ equal to μ. The model (6.26) is then a (2,1) exponential model,

still with t as minimal sufficient statistic. The maximum likelihood estimate

of μ is undefined if t^T^ where
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IQ = it = (ΰ,v):x
0
 + v > 0}

fhereas for tεT^, μ exists uniquely and is given by

-1
y = ^(x0 + v) ΰ . (6.27)

he event t^T^ happens with a probability that decreases exponentially fast with

he sample size n and may therefore be ignored for most statistical purposes.

Defining, formally, μ to be given by (6.27) even for t^T^ and let-

ing

a = Φ"(ΰ;2nxQ,2 nμ
2
),

here Φ ( ;x»ψ) denotes the distribution function of the inverse Gaussian dis-

ribution with density function

φ-(x χ.Φ) = ( 2 π ) " ^ e ^ x"
3 / 2
 e-^

x
"

1 +
*

x
> (6.28)

e have that the mapping t -> (μ,a) is one-to-one from X = {t = (ΰ,v):ΰ>0} onto

-oo,+») x (0,oo) and that a is asymptotically ancillary and has the property

hat p*(μ;μ|a) =c|j p L approximates the actual conditional density of μ given

to order 0(n~
3 / 2

), cf. Barndorff-Nielsen (1984).

Letting Φ ( ;x»ψ) denote the inverse function of φ"( ;χ,ψ) we may

rite the log likelihood function for μ as

- 2
=
 Π{(XQ + V)μ - Uμ }

= nΦ_(a;2nx
2
,2nμ

2
) {2μμ-μ

2
} (6.29)

rom this we find

= -2nΦ (a;2nx
2
 2nί

2
)

o that

Xg
 9
2nμ )

+ = 0
μyy

nd
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μ̂μ μ
 = 8n

^(φ" ° W O U ;2nx
2
,2nμ

2
)

1 -1
= s = -h $

μμμ μμμ

where Φ~ denotes the derivative of Φ"(x;χ,ψ) with respect to ψ. By the well-

known result (Shuster (1968))

φ"(x;χ,ψ) = φ ( ψ V - χ
h
x'

h
) +

where Φ is the distribution function of the standard normal distribution, Φ"
Ψ

could be expressed in terms of Φ and ψ = Φ
1
.



7 . EXPANSION OF c l j l ^ L

We shall derive an asymptotic expansion of (2.7), by Taylor expan-

sion of cIjI L in ω around ω, for fixed value of the auxiliary a. The various

terms of this expansion are given by mixed derivatives (cf. (6.2)) of the log

model function. It should be noted that for arbitrary choice of the auxiliary

statistic a the quantity c|j|E constitutes a probability (density) function on

the domain of variation of ω and the expansions below are valid. However,

c|j|[ furnishes an approximation to the actual conditional distribution of ω

given a, as discussed in section 2, only for suitable ancillary specification

of a.

To expand c|j| L in ω around ω we first write E as exp{l-ΐ} and

expand 1 in ω around ω. By Taylor's formula,

v=2
 V> Γ

l
 Γ

v
1-1= Σ X (ω-ώ)

Ί
...(ω-ω)

v
(8 ...3 l)(ω)

V> Γ
l

 Γ
v

whence, expanding each of the terms (d ...a l)(ω) around ω,

Ί rv

1-1

oo , vv r Ί r

= Σ izJJ_ (u-ω) Ί...(ω-ω) V

v=2

. Σ X (ω-ω)Sl...(ω-ω)Sp 3. . . . 3 . \ ..._ . (7.1)
O P J O η d l η l

μ 1 p 1 v

Consequently, writing δ for ω-ω and 6 "' for (ω-ω) (ω-ω) ..., we have
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Next, we wish to expand log{|j|/|j|Ϋ in ω around ω. To do this we observe

that if A is a d x d matrix whose elements a depend on ω then

a
t
log|A| = |AΓ

]
3

t
|A|

where a denotes the (r,s)-element of the inverse of A. Furthermore, using

which is obtained by differentiating a a
u s
 = ό

S
 with respect to ω and solving

for a
Γ S
, we find

V u
l o g | A | = - a

V r
a

S V
\ a

v v Λ
a

r s +
 a

s l
\

V r s
.

It follows that

-"
tU{
*

 Γ S
ί

+
r s t u

+ +
r s t ; u

+
* r s u ; t

+ +
r s ; t u

)

(7.3)

By means of (7.2) and (7.3) we therefore find

)
d / 2

= (2π)
d/2
cφ

d
(ω-ω;aΉl + A

]
 + A

2
 + ...} (7.4)

where Φ.( a-) denotes the density function of the d-dimensional normal distribu-

tion with mean 0 and precision (i.e. inverse variance-covariance matrix) a- and

where

A
l • - " V ^ W

 +
 \^

 +
 ̂

St
(

+
rs;t

 +
 I *rst)

 (7
"
5)

and

A
2
 = ± [- 3δ

1 ^ » s s n rs t rst M vw u



Differential and Integral Geometry in Statistical Inference 149

8
*rst;u

χ
s ; t +

 | ^
s t
) (

+ u v ; w +
|

+ u v w
) ] , (7.6)

A^ and A
2
 being of order Oίn""

15
) and 0(n ), respectively, under ordinary repeat-

ed sampling.

By integration of (7.4) with respect to ω we obtain

(2π)
d / 2
c = 1 + C

1
 + ... , (7.7)

where C-. is obtained from A« by changing the sign of A« and making the sub-

stitutions

δ
rstu

the 3 and 15 terms in the two latter expressions being obtained by appropriate

permutations of the indices (thus, for example, <s
r s t u
 -> j-

r s
^

t u
 + >

r t
^

s u
 +

Combination o f ( 7 . 4 ) and ( 7 . 7 ) f i n a l l y y i e l d s

c | j | ^ L = φ ( ω - ω ; ί ) { l + A1 + ( A g + C ^ + . . . } ( 7 . 8 )

-3/2with an error term which in wide generality is of order 0(n ) under repeated

sampling. In comparison with an Edgeworth expansion it may be noted that the

expansion (7.8) is in terms of mixed derivatives of the log model function,

rather than in terms of cumulants, and that the error of (7.8) is relative,

rather than absolute.

In particular, under repeated sampling and if the auxiliary statis-

tic is (approximately or exactly) ancillary such that

p(ω;ω|a) = p*(ω;ω|a){l + 0(n"
3 / 2

)}

(cf. section 2) we generally have
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p(ω;ω|a) = Φ
d
(ω-ω;*){! + A

1
 + (A

2
 + C,) + 0(n"

3 / 2
)}. (7.9)

For one-parameter models, i.e. for d = 1, the expansion (7.8) with

A-., A
2
 and C-, as given above reduces to the expansion (2.9). In Barndorff-

-3/2
Nielsen and Cox (1984) a relation valid to order 0(n ) was established, for

general d, between the norming constant c of (2.7) and the Bartlett adjustment

factors for likelihood ratio tests of hypotheses about ω. By means of this rel-

ation such adjustment factors may be simply calculated from the above expression

for C-j.

Example 7.1. Suppose M_ is a (k,k) exponential model with model

function (6.13). Then the expression for C . takes the form

r
 _ 1

 r0
 rs tu /

o
 ru sv tw ,

 o
 rs tu vw

λ1C
l " 24

 { 3 κ
rstu

κ κ
 "

 κ
rst

κ
uvw

( 2 κ κ κ + 3 κ κ κ )}

where, for a
r
 = a/8θ

r
 and κ(θ) = -log a(θ),

κ
rs... = V s •••

 κ(θ)

and where κ
Γ S
 is the inverse matrix of K .

From (7.8) we find the following expansion for the mean value of ω:

tω = ω + μ . + y^
 +

where y? is of order 0(n" ), yί is of order 0(n ), and

α . .αr.St, ,.αr.St" /-,
 1 Π
N

μ
l " '** *

 +
r;st

 =
 -

1
* * ^str

 ( 7 J 0 )

Hence, from (7.8) and writing δ
1
 for δ-μ,,

Φ
d
( ω - ω -

= Φ
d
(ω - ω - μ

Ί
;j)Π + ̂

Γ S t
( δ ' ;£) (^

$
.

 t
 + | +

r s t
) + ..->. (7.Π)

-1 r T " r n

where the error term is of order 0(n" ) and where h ( ;3") denotes the

tensorial Hermite polynomial (as defined by Amari and Kumon ( 1 9 8 3 ) ) , r e l a t i v e

to the tensor ί . Using ( 6 . 1 0 ) we may rewrite the l a s t quantity in (7.11) as
2 -1/3

(7.12)
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where

Since

h
ΓSt
(S';j) = δ ' W * - / V ^ ] (7.14)

we find

h
r S t

( δ ' ; ^
r $ t
 = 0

and hence (7.11) reduces to

Λ
 ,

 Λ t
 -1/3

c|j| L = φ.(ω - ω - y
Ί
;a ){l - hh (δ' j ) - P . + . . . } , (7.15)

u i rsL

the error term being 0(n" ).

Suppose, in particular, that the model is an exponential (k,d)

model. We may then compare (7.15) with the Edgeworth expansion for an effi-

cient, bias adjusted estimate of ω given an ancillary statistic, provided by

formulas (3.33) and (3.25) in Amari and Kumon (1983). It appears that h

"
1/3
 "

1/3
 abc

(δ' j-) z
 t
 of (7.15) is the counterpart of Amari and Kumon's r . h -

P u. m

^ab ̂
a
 h

κ
 + H xa^

a
'

iK
 ' ^^

us
 ^-^^ offers some simplification over the cor-

responding expression provided by the Amari and Kumon paper.

Note that, again by the symmetry of (7.14), if
-1/3

*
r s t

[3] = 0 (7.16)

for all r,s,t then the first order correction term in (7.15) is 0. Further-
ex

more, for any one-parameter model M̂  the quantity % with α = -1/3, can be made

to vanish by choosing that parametrization for which ω is the geodesic coordin-

ate for the -1/3 observed conditional connection. (Note that generally this

parametrization will depend on the value of the ancillary a.) An analogous

result holds for the Edgeworth expansion derived by Amari and Kumon (1983),

referred to above. The parametrization making the α = -1/3 expected connection
α

r vanish has the interpretation of a skewness reducing parametrization, cf.

Kass (1984).



8. EXPONENTIAL TRANSFORMATION MODELS

Suppose M̂  is an exponential transformation model and that the full

exponential model M generated by M is regular. By theorem 2.1 the group G acts

affinely on T = τ(θ), and Lebesgue measure on T is quasi-invariant (in fact,

relatively invariant) with multiplier |A(g)|. Assuming, furthermore, that N[

and G have the structure discussed in section 3 with ίg:|A(g)| = 1} c K we find,

since the mapping g •> A(g) is a representation of G, that

|A(h(gx))| = |A(g)||A(h(x))|.

Thus m(x) = |A(fi)| is a modulator and

dv(h) = |A(h)|"
Ί
dh (8.1)

is an invariant measure on H (cf. appendix 1).

Again by theorem 2.1 the log likelihood function is of the form

l(h) = {θ(e)A(h"
]
h)* + Bf(h"

Ί
h)>-w - κ(θ(e)A(h~

Ί
h)* + §ί(h"

Ί
h)) (8.2)

where w = t(u) = h" t.

Some interesting special cases are

(i) B( ) or &(•) or both are 0. Then δ( ) of (2.45) is a multi-

plier (i.e. a homomorphism of G into (R
+
, )) Furthermore, if &(•) = 0 and if

(2.35) is an exponential representation of M_ relative to an invariant dominat-

ing measure on X̂  then b(x) is a modulator.

(ii) The norming constant a(θ(g)) does not depend on g. If in

addition B(g) does not depend on g, which implies that B( ) = 0, then the con-

ditional distribution of h given w is, on account of the exactness of (2.7),
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p(h;h|w) = c(w)|j|*e
θ ( h

"
l h ) w

 (8.3)

where the norming constant does not depend on h.

Note that the form (8.3) is preserved under repeated sampling, i.e.

the conditional distribution of h is of the same "type" whatever the sample

size.

The von Mises-Fisher model for directional data with fixed precision

has this structure with w equal to the resultant length r, and as is well-

known the conditional model given r is also of this type, irrespective of

sample size. Other examples are provided by the hyperboloid model with fixed

precision and by the class or r-dimensional normal distributions with mean 0

and precision Δ such that |Δ| = 1.

(iii) M is a (k,k-l) model.

For simplicity we now assume that M_ has all the above-mentioned

properties. There is then little further restriction in supposing that M̂  is of

the form

p(x,θ) = b M e x p ί - a λ e ^ h ^ h Γ ^ e ^ } (8.4)

where λ is the index parameter, a is maximal invariant and e, and e , are

known nonrandom vectors. For (8.4) the log likelihood function is

l(h) = -aλe
Ί
A(h"

Ί
h)e*

Ί
 (8.5)

where we have written A for A" . Hence

(8.6)

where Λ
r
 is given by (6.23). In this case, then, the conditional observed

geometries (̂ ( ;λ,a),*( ;λ,a)) are all "proportional" for fixed α, with aλ as

the proportionality factor. The geometric leaves of the foliation of M̂ , deter-

mined as the partition of M_ generated by the index parameter λ, are thus highly

similar. In this connection see example 6.3.



APPENDIX 1

Construction of invariant measures

One may usefully generalize the concepts of invariant and relatively

invariant measures as follows. Let a measure μ on X_ be called quasi-invariant

with multiplier χ = χ(g,x) if gy and y are mutually absolutely continuous for

e\/ery gεG and if

d(gΛ)(χ) = χ(g
5
x)dy(x).

Furthermore, define a function m on X to be a modulator with associated multi-

plier χ(g,x) if m is positive and

m(gχ) = χ(g,x)m(x). (Al.l)

Then, if y
x
 is quasi-invariant with multiplier χ(g,x) and if m is a modulator

satisfying (Al.l) we have that

y = m"
1
y

x
 (AΊ.2)

is an invariant measure on _X.

In particular, to verify that the measure y defined by (3.9) is

invariant one just has to show that m(y) = J (
z
\(u) is a modulator with associ-

ated multiplier J (
q
\(y) because, by the standard theorem on transformation of

integrals, Lebesgue measure λ is quasi-invariant with multiplier J (
q
)(y)

Corresponding to the factorization G = HK there are unique factorizations g = hk

and gz = hk and, using repeatedly the assumption that K = G for every orbit

representative u, we find
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In the last step we have used the fact that

J (
k
)(υ) = 1 for every kεK. (AT.3)

To see the validity of (A1.3) one needs only note that for fixed u the mapping

k -> J ,. x(u) is a multiplier on K and since K is compact this must be the

trivial multiplier 1. Actually, (A1.3) is a necessary and sufficient condition

for the existence of an invariant measure on _Y. This may be concluded from

Kurita (1959), cf. also Santalό (1979), section 10.3.



APPENDIX 2

An equality of Jacobians under left factorizations

Lemma. Let G = HK be a left factorization of G (as discussed in

sections 3 and 5), let γ denote the natural action of G on H and let δ denote

left action of G on itself. Then
 J
'(h)(e)

 = J
δ ( h ) ^

 f o r a 1 1 h ε H #

Proof. Let g = hk denote an arbitrary element of G. Writing g

symbolically as (h,k) and employing the mappings η and ζ defined by

η:g + h ζ:g -> k

we have, for any h'εH,

δ(h')g = δ(h')(h,k) = (η(h
l
h)

ίζ
(h'hk))

and hence the differential of δ(h')g is

Dδ(h')(g) =

ah
0

9ζ(h'hk) 3ζ(h'hk)
ah 9k

from which we find, using η(h'h) = γ(h')h and ζ(h'k) = k,

J
δ ( h ' )

( e ) =

J
γ ( h ' )

( e )
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APPENDIX 3

An inversion result

The validity of formula (6.24) is established by the following

Lemma. Let G = HK be a left factorization of the group G with the

associated mapping η:g = hk -> h (as discussed in sections 3 and 5). Further-

more, let h
1
 denote an arbitrary element of H. Then

3n(h~
]
h')* aη(h'"

Ί
h)*

h=h' h=h'
(A3.1)

Proof. The mapping h -> η(h" h
1
) may be composed of the three

mappings h -> h
1
 h, g -+ g" and η, as indicated in the following diagram

H

-1where i indicates the inversion g -> g '. This diagram of mappings between dif-

ferentiate manifolds induces a corresponding diagram for the associated dif-

ferential mappings between the tangent spaces of the manifolds, namely
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"Hi

Di

— > TG .

Dη

T H
n(h

I - 1
h)

From this latter diagram and from the well-known relation

(Di)(e) = -I,

where I indicates the identity matrix, formula (A3.1) may be read off immediate-

ly.
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