
CHAPTER 7. TAIL PROBABILITIES

In exponential families the probability under θ of a set

generally fa l ls off exponentially fast as the distance of the set from ξ(θ)

increases. This section contains several results of this form. The f i r s t of

these wi l l be improved later, but i t is included here because of i ts simplicit:

of statement and proof.

Throughout this chapter let {pQ} be a steep canonical exponential

family. (Most of the results hold with possibly minor modifications for non-

minimal families, and many also hold for non-steep families.)

FIXED PARAMETER (Via Chebyshev's Inequality)

7.1 Theorem

Fix Θ
Q
 € N°. Choose ε so that {θ: | |θ - Θ

Q
| | £ ε} c Λ/°.

Then there exists a constant c < °°, such that

(1) Pr
Q
 H (v, α) < c exp(-εα)

θ
o

for all v e R
k
 with ||v|| = 1 and all α € R.

Proof. Let

(2) c = exp(sup {ψ(θ) - ψ(θ
Q
): | | θ - θ

o
| | = ε } )

and let θ
£
 = Θ

Q
 + εv. Then

208
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/ e x p ( θ Q x - ψ ( θ Q ) ) v ( d x )

= + / exp(θQ x + (εv) x - (εv) x - ψ(θn))v(dx)
H (v,α) ϋ °

1 ( + / exp(θε x - Ψ(θε))v(dx))exp(ψ(θε) - ψ(θQ) - εα)

£ c exp(-εα) . ||

Note that (2) provides a specific formula for the constant appear-

ing in ( 1 ) .

In specific situations the bound provided in Theorem 7.1 can be

improved in various ways. However the following converse result shows that

Theorem 7.1 always comes within an arbitrar i ly small amount of yielding the

best exponential rate of decrease for t a i l probabilities.

7.2 Proposition

Let Θ
Q
 € W°. Suppose there exists a c < » and ε > 0 such that

7.1(1) is valid for all v € Rk with ||v|| = 1 and all α > 0. Then

{θ: ||θ - θ
o
|| < ε} cN°.

(Thus, if for some ε > 0, c < °°, a bound of the form 7.1(1) is

valid for all v with ||v|| = 1 and all α > 0, then Theorem 7.1 will verify

such a bound for any ε
1
 < ε.)

Proof. We leave the proof as an exercise. ||

When ε = inf {||θ - θ J | : θ t W} then 7.1(1) may or may not be

valid for all α, v. The following example demonstrates this.

7.3 Example

Relat ive to Lebesgue measure, l e t
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(1) f_
 k
(y) = Γ(k)y

k
"

1
 e-

y / η
/n

k
 y > 0

0 y £ 0 .

This is the gamma density with scale parameter η and shape parameter k. Let

x l = ^ ' X2 = ^ n y θ l = " ^ η ' Θ2 = ^ " ^ ' anc* ^ e * v ^ e t ' Ί e m e a s u r e induced

by the map y + x when y has Lebesgue measure on (0 5 °°). One then has a

standard exponential family of order 2 with

ψ(θ) = ( θ 2 + 1) l n ί - θ j ) - In Γ(θ 2 + 1)

and

( 2 ) W = ( - « , 0 ) x ( - 1 , oo), κ = { ( x r x 2 ) : X j l O , x ? > I n Xj}

When k = 1 ( i . e . θ 2 = 0) the r e s u l t i n g one-parameter exponential

family is t h a t of exponential d i s t r i b u t i o n s with i n t e n s i t y | θ - | . For this

family

P r

θ =-i ί χ i > a) = e " α for all α > 0

so t h a t 7.1 holds with v = 1 and ε = 1 = i n f ί | | θ - ΘQ|| : θ ? W . On the

other hand, f o r θ 2 = 1 the r e s u l t i n g one-parameter gamma family has

> α} = (α + l ) e ~ α f o r a l l α > 0 .

Thus

Θ
Γ
- 1 1

here 7.1(1) fails to hold when v = 1 and ε = 1 = inf ί||θ - Θ
Q
| | : Θ < W

When W = R
k
 Theorem 7.1 says only that Pr

Ω
 {H

+
(u, α)} = 0 ( e "

k α
)

θo

for al l k > 0. However, much smaller bounds may be valid for these t a i l

probabilities. Consider for example the following well known facts:

(3) Γ e " t 2 / 2 dt < e" α 2 / 2 /α for α > 0

and
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oo 0.2/Q 2 / o

(4) J e dt ~ e /α as α •*• «>
α

Thus, suppose X is normal, mean 0, variance 1. Then, from (3)

(5) Pr{X > α} < e ~ α 2 / 2 / α ( 2 π ) ^ f o r α > 0 .

I t can be seen from (4) t h a t t h i s bound is asymptot ical ly accurate as α •> °° .

Theorem 7.5 contains a bound which e a s i l y y i e l d s the statement

(6) Pr{X > α} £ e " α 2 / 2

f o r t h i s s i t u a t i o n . This is much b e t t e r than what is ava i lable from 7.1(1)

but is s t i l l i n f e r i o r to ( 5 ) .

Theorem 7.1 applies to p r o b a b i l i t i e s of large deviations defined

by h a l f spaces but can e a s i l y be converted to a statement about any shape of

s e t , as f o l l o w s .

7.4 Corol lary

Consider a standard exponential f a m i l y . Fix ΘQ € W°. Let XQ € R .

Let S be any set . Let p = i n f { | | x - X Q | | : x t S} , and define ε as i n

Theorem 7 . 1 . Then there is a c < °° such t h a t

(1) PA ({(X - Xn)/α t S}) < c exp(-εpα) f o r a l l α € R .

θo ϋ

Proof. I t suffices to prove the corollary for xQ = 0 and S the open

sphere of radius p about the origin.

There exists p1 < p and ε1 < inf{||θ - ΘQ|| : θ f W} such that

ε'p1 = εp. There exists a f i n i t e set of unit vectors {a..: i = l , . . . ,n} such that

n n
n {x: x a. < p1} c S. Thus PrΩ {X/α £ S} < Σ Prft {X a. > αp1}

i = l Ί o i = l o '

n

< Σ c exp(-αp'ε') <_ c exp(-εpα) by Theorem 7.1 where c < ~ is
" 1 = 1

 Ί

appropriate constant. ||

an
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FIXED PARAMETER (Via Kullback-Leibler Information)

I t is possible to use the Kuilback-Leibler information number

( i . e . entropy) to improve the preceding bound. See the exercises for some

applications of this bound to asymptotic theory.

7.5 Theorem

Let ΘQ € A/° and H+ = H+(v, α ) . Then

(1) P Θ Q ( H + ) 1 exp(-K(H+, ξ ( θ Q ) ) ) .

Proof. Suppose f i r s t that

(2) H+ ΓΊ K° t φ .

Let ξ = ξR+ (ΘQ) . Note that ξ € FT n K° by Theorem 6.13. Hence

θ = θ(ξ) € W°. (This is precisely the situation pictured in Figure 6.14(1).)

Now,

(3) k = K(H+, ξ ( θ Q ) ) = (θ - θQ) £ - ψ(θ) + ψ(θQ)

i (θ - ΘQ) x - ψ(θ) + φ(θQ) V x € H+

by definition and by 6.13(2). This yields

P ( )

PA (x)v(dx) = /
ΰ + θo ΰ+

θ ( X )

Pfl (H ) = / PA (x)v(dx) = / — 2 — p~(x)v(dx)
ϋ + θo ΰ+ P~(x) θ

H

= J+ exp((θ0 - θ) x - ψ(θ0) + ψ(θ))p~(x)v(dx)

ίi θ

exp(-k)pg(x)v(dx) <. e"k

which is the desired result.

Now suppose H+ Π K ί φ but H+ Π K° = φ. Then
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(4) l imK(H + (v, α - ε ) , ξ ( θ Q ) ) = K(H+(v,α), ξ ( θ Q ) ) < co

since K( , ξ ( θ Q ) ) is lower semi-continuous (by definit ion), satisfies

lim K(ξ, ξ ( θ Q ) ) = »

IKI I-* 0 0

(by 6 . 5 ( 5 ) ) , and s i n c e K ( H + ( v , α ) , ξ ( θ Q ) ) >. K ( H + ( v , α - ε ) , ξ ( θ Q ) ) f o r a l l

ε > 0 . Hence

( 5 ) P f i ( H + ) = l i m P. ( H + ( v , α - ε ) ) < l i m e x p ( - K ( H + ( v , α - ε ) , ξ ( θ Ω ) ) )
θ o εΨO θ o εΨO υ

= exp(-K(fl+, ξ ( θ Q ) ) ) . ||

(We leave as an exercise to verify that

(6) K(H+, ζ ( θ Q ) ) = - i f and only i f Pθ (H+) = 0 .)

Note that the Kullback-Leibler information enters into the above

only as a convenient way of identifying the sup {(θ - ΘQ) x - ψ(θ) + ψ(θ Q ):

x € H } . Various other interpretations of K, such as the probabilistic

Definition 6 . 1 , do not enter into the above argument.

The connection between Theorem 7.5 and 7.1 is provided by the

following lemma.

7.6 Lemma

Let ΘQ € N° and H+ = H+(v, α). Suppose θ = Θ
Q
 + εv e W°. Then

(1) K(H
+
, ξ(θ

Q
)) >. ψ(θ

Q
) - ψ(θ) + εα .

Proof. Let ξ = ξ-+(θ
Q
) as in Theorem 7.5. Then

K(H
+
, ξ(θ

Q
)) = (θ - Θ

Q
) ξ + Ψ(θ

o
) - ψ(θ)

1 (θ - Θ
Q
) ξ + Ψ(Θ

Q
) - ψ(θ)

since θ = θ(ζ) = θ
w
(ξ) maximizes l(

 9
 ζ). Hence
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K(H
+
, θ

Q
) 1 εv ξ + ψ(θ

Q
) - ψ(θ) = εα + ψ(θ

Q
) - ψ(θ) . ||

Applying the bound (1) in the formula 7.5(1) yields the ear l ier

formulae, 7.1(1) and (2), of Theorem 7.1.
~ 2

Note also that in the normal example of Example 7.3, K(ξ, 0) = ξ / 2 ,

and thus 7.5(1) yields 7.3(6).

FIXED REFERENCE SET

The preceding results concern the nature of probabil i t ies of large

deviations when the parameter is fixed and the reference set for calculating

the probabil ity proceeds to i n f i n i t y . There is another class of results. These

concern the situation when the reference set is fixed and the parameter

proceeds to i n f i n i t y in an appropriate direct ion. These theorems were exploited

in a s t a t i s t i c a l setting by Birnbaum (1955) and then Stein (1956). Gir i (1977)

surveys several further applications of th is theory.

7.7 Theorem

Let v € Rk, α € R. Let S χ , S 2 c Rk w i t h

(1) S2 c ίΓ(v, α) ,

(2) v ( S χ n H + ( v , α ) ) > 0 .

Let K c N be compact. Then there exist constants c and ε > 0 such that

e θ # x v(dx)

χ v(dx)

/

(3) — < c exp(-pε)

/
S l

for a l l θ € W of the form θ = η + pv with η € K, p > 0.
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Proof. Let S ^ ε ) = Sι f) H + (v, α + ε ) . There is an ε > 0 such that

v ( S Ί ( ε ) ) > ε > 0. Then,

/ e v(dx) / exp(p(v x - α) + pα + η x)v(dx)
S 2 . S 2

ft Y

/ e v(dx) / exp(ρ(v x - α) + pα + η x)v(dx)
S 2 S χ ( ε )

/ e η " x v(dx)

< < c exp(-pε)

e p ε / e η χ v(dx)
S,(ε)

where

(4) c = sup (/ e η ' x v(dx)/J e η # x v(dx)) < ~ .
ηCK S2 S ^ ε )

Here is why c < °°: K is compact and v ( S , ( ε ) ) > 0 so that

i n f / e η # x v(dx) > 0 . Also, / e η # x v(dx) is upper semicontinuous on K
η€K S j ( ε ) S2

by Fatou's lemma, and is f i n i t e on K since K c N . Thus sup J e η # \ > ( d x ) < <». ||
η€K S2

The preceding theorem real ly concerns the relationship of probabi-

l i t i e s for the sets S2 and S.,(0) = S1 n H (v , α) contained in separate half

spaces. Note again the dual relat ionship, connecting θ U a n d H c K i n Theorem

7.7. Because of this relationship i t is often revealing in such

contexts to superimpose both the sample space and parameter space on a single

plot. This is done in Example 7 . 1 2 ( 1 ) .

Here are some corol laries to the Theorem, the second of which w i l l

be used in the example. The f i r s t of these corol laries may be instruct ively

compared to Theorem 7 . 1 .
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7.8 Corollary

k
Let v € R , K c W b e compact, and S c H (a , α ) . Suppose

(1) v(H + (v, α ) ) > 0 .

Then there e x i s t constants c and ε > 0 such that

Pr θ (S) <_ c exp(-pε)

for a l l θ € W of the form θ = η + pv with η € K, p > 0. In par t icular , for

any sequence {θ.. € hi: θ.. = p..v + η ^ , p. -+«>, η>. e K} one has

lim Pr f i (S) = 0 .
i-*» θ i

Proof. Let S2 = H (v, α ) . Then by Theorem 7.7

PrAS) < c exp(-pε) J e

θ χ " ψ ( θ ) v(dx)
s

= c e x p ( - p ε ) P r θ ( S 2 ) <_ c exp(-pε) . ||

7.9 Corollary

Again, l e t v € R , K cW° be compact, and v(S) > 0; and le t {θ..}

be any sequence of the form θ. = p.v + η. with p. -> » and η. € K. Then

(1) l im Eft (v X) = sup{α: v(H + (v, α ) ) > 0} < «, .
i^o θ i

(Note that here we assume K c A/°; not merely K c hi.)

Proof. Let α n denote the supremum on the r ight of ( 1 ) . Since Eft (v X) <_ α n

i t is only necessary to prove lim i n f EA (v X) 2 l α n T° this end, l e t
i-*χ> ϋ i u

α < α1 < α Q and S2 = H"(v, α 1 ) . Let ξ 2 ( θ ) = EΘ(X|X € S 2 ) . I f v(S2) = 0 the

result is t r i v i a l . Hence, suppose v(S2) > 0. Note that ξ 2 ( θ ) exists and is

continuous for a l l θ € N°. Hence 3 = i n f ί v ζ 2 ( η ) : η € K} > -°°. Note that
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3 < α ' .

Apply Corollary 2.5 to the conditional exponential family given

X € S9 (generated by v|c ) to find

ά |S2

Eθ(v X|X € S2) >_ Eη(v X|X € S2) >. 3

for al l θ = η + pv with p _> 0. Then for such θ,

Eθ(v X) = Prθ(X € S2) Eθ(v X|X € S2)

+ Prθ(X ί S2) Eθ(v X|X € S - S2)

>. ( c e " ε p / ( l + c e " ε p ) ) 3 + ( 1 / ( 1 + c e ' ε p ) ) α '

by Theorem 7.7. Hence E (v X) > α (since α < α 1 ) for θ as above for a l l

p sufficiently large. This implies lim inf EA (v X) > α n , since α < α n was

arbitrary. ||

Note the placement of the hyperplane H in the statement of Theorem

7.7. I f S2 cz H" and v(S. n H+) > 0, but v(S, n H+) = 0, then only a much weaker

conclusion is valid. This conclusion is contained in the following corollary.

7.10 Corollary

Let v € R , α € R. Suppose

(1) S2 c H"(v, α)

and

(2) v(Sj n H+(v, α)) > 0 .

Let K c N be compact. Let { Θ . J c W b e a sequence of the form

= PΊ v + nΊ with n i e K, p1 + ». Then

(3) l i m — ! = 0 .

θ i 1
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Proof. Apply Theorem 7 . 7 t o f i n d

P θ ( S 2 ΓΊ H " ( v , α - ε ) )

(4) lim

θ. 1

for a l l ε > 0. Furthermore, i f p.. > 0

(5)

Pθ (S2 n H+(v, α - ε ) ) P (S2 ίl H+(v, α - ε ) )

! 1

as ε -• 0 uniformly for η. € K

(The inequality in (5) follows after applying Corollary 2.23 to the functions

hc(x) = Xs -cχ s
.

π
 H

+
(

v
,α-ε)

 WΊth C chosen so that E
η . ( M

X
^
 =
 °

 t0 find that

E
Ω
 (h (X)) > E (h (X)) for all c and p. > 0.) Combining (4) and (5) yields
ϋ. C — η.j C i

the conclusion of the corollary. ||

7.11 Example
2

Consider the usual sufficient statistics X, S derived from a

normal (μ, σ ) sample. As explained in Example 1.2 the statistics X, = X,

7 7
X2 = S + X are the canonical statistics for a two-parameter exponential

2 2
family with canonical parameters θ, = nμ/σ , θ 2 - -n/2σ . Note that

2
K = { ( x , , x 2 ) : x2 1 x p tor some c > 1 consider the conditioning set

Q = { ( x r x 2 ) : x2 1 c x i > = t(x» s 2 ) : x 2 /s 2 1 V(c " ι ) } ' ( ™ s i s t h e s e t o n

which the usual two-sided t-test (based on t = /rvT x/s) with n - 1 degrees of

freedom accepts at the appropriate level determined by c.) Fix μ = μQ and l e t

σ2 + 0. Then ( θ ^ θ 2 ) = (π/σ ) ( μ Q 5 -h). Thus ( θ ^ θ 2 ) proceeds down the

ray with slope - % i n as σ -* 0. Both X and Θ are displayed on the plot in

Figure 7.11(1), which shows also K, Q, and this l ine.

Corollary 7.9 applied to the conditional exponential family given

X € Q (generated by the measure v restricted to Q) yields
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(1)

sup { μ ^ - X g / Z K x j , x 2 ) € Q} = μ Q / 2 c 2 .

Note that E(μQX1 - X £ /2 |X € Q) = ( μ Q , -h) E ( ( X r X2)|X e Q) and that

S X 2 ) | χ € Q) € Q. Furthermore since Q is s t r i c t l y convex
2

0 / 2 c
2

μ 0 / 2 c = s u p

sequence ί ( x l Ί » X 2 Ί ) ^ c Q i f a n d ( χ ϋ s

' X 2

2
μ ^ c

# (Note that

the tangent to Q a t the point (\ιQ/c, WQ/C) is perpendicular to the ray

( n / σ 2 ) ( μ 0 , -H).) Thus

(2) 11m E ( μ σ 2 ) < ί χ i X 2 ) I X € Q> = ( μ 0 / c > μ 0 / c ) = e 0 ( s a y )

_ p

In terms of the t r a d i t i o n a l variables X, S , and t = /n-1 x/s t h i s y i e l d s

2

( 3 ) l i m E f 2 ) ( ( X , S 2 ) | l t l < τ ) = ( 9 f 9 _
σ2->0 ^ °' ' ^ τ + n - 1 ( τ + n - 1

Example 7 . 1 1 ( 1 ) : Picture for Example 7.12
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COMPLETE CLASS THEOREMS FOR TESTS (Separated Hypotheses)

The preceding results can be used to prove admissibility of many

conventional test procedures in univariate and multivariate analysis of

variance and in many other testing situations involving exponential families.

When combined with the continuity theory for Laplace transforms of Section 2.17

these results yield useful complete class characterizations for certain classes

of problems. In many of these cases the characterization precisely describes

the minimal complete class. The general theory, as well as a very few specific

applications, is described in the remainder of this chapter. Many more appli-

cations can be found in the cited references. The results to follow should be

compared to the results in the same s p i r i t for estimation which appear in

Chapter 4.

7.12 Setting and Definitions

Throughout the remainder of this chapter {p Q : θ€Θ} is a standard
Ό

exponential f a m i l y . The parameter space Θ is divided into non-empty null

and a l t e r n a t i v e spaces ΘQ, Θ-; so t h a t Θ = ΘQ U Θ.. In the customary fashion,

a t e s t of Θg versus Θ, is uniquely s p e c i f i e d by i t s c r i t i c a l f u n c t i o n , φ, where

Φ(x) = P ( t e s t r e j e c t s ΘQ|X = x ) . The power of ψ is π ( θ ) = E θ ( ψ ) . A t e s t

Φ1 is as good as a t e s t Φ2 i f

(1) V θ ) *• V e > θ € θ

π (θ) >. πφ (θ) θ e Θ

I t is better i f there is s t r i c t inequality for some θ € Θ. (Here, and in what

follows, we write, "a test φ" in place of the more precise but cumbersome

phrase, "a test with c r i t i c a l function φ".) A test is admissible i f there is

no better test. The decision-theoretic formulation with a two-point action

space A = {a^, a.} and a loss function of the form

L(θ, a.) = A(θ) > 0 i f θ d Θ., = 0 i f θ € Θ. ,
J j J

yields the same ordering among tests, and hence the same collection of
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admissible tests.

Let

(2) U r = ϋΓ(Θ, θ 0 )

= (u: I lul I = 1, 3 θ € 0 3 I Iθl I > r, and u = j ^ J ^ \ ,
I llθ - θ o l l J

r £ θ

and let

(3) U(0, θ 0 ) = n U (θ, θQ) and U*(0, θ n ) = Π 0 ( 0 , θ n ) .
u r >0 r u υ r^O r ϋ

Note that i f 0 is a closed cone then U = U*; more generally U c U*. I t is

possible that U = φ but U* f ψ.

I f S c R is a convex set l e t

(4) α(u) = ou(u) = sup {x u: x € S} .

This function is defined for u € R , , although we wil l mainly be interested in

its values for | | u | | = 1. As is well known,

(5) S = n FΓ(u, α s ( u ) ) .

I t is clear from the definition (4) that α( ) is lower semi continuous.

The following lemma is a key result which leads directly to the

f i r s t main theorem. A result of this type was f i r s t proved and used by

Birnbaum (1955) in the case of testing for a normal mean. A general result

similar to the following lemma was then proved and applied in Stein (1956b).

7.13 Lemma

Fix θ 2 € Rk. Let

(1) S = n ίΓ(u, α ς ( u ) )
u€U* b

where U* = U*(01> θ 2 ) . Assume further either that
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(2) S = n FΓ(u, α
ς
(u)) , (U = U(Θ, θ J ) ,

U€U S ά

or ou(u) is continuous a t u for a l l u e U* - U. Let φ ^ x ) = 1 f o r a l l x ί S.

Suppose Φ2 is as good as φ j . Then Φ 2 (x) = 1 f o r x i S, a . e . ( v ) .

(Note: A more formal way to s t a t e the conclusion of the lemma is

v{x: x ί S , φ 2 ( x ) < 1} = 0 . )

Proof. Assume f o r convenience θ 2 = 0. Suppose the conclusion of the lemma

is f a l s e . Then there is an ε Q > 0 , uQ e U* such t h a t

( 3 ) CQ = {x: Φ 2 (x) < l - e o l

s a t i s f i e s

(4) v(C Q n H + ( u Q , α ( u Q ) ) ) > 0 .

Assume uQ € U. Then there is a sequence {p . } with p. -> °° such that

{p .u Q : i = l , . . . } cz 0 . Theorem 7.7 y ie lds

> - y C Ί V V ( ) ) e9'X v(dx)

\~ f π X / \

1 - π (ρ u0) εn J e υ(dx)
2 1 ConH+(uo,α(uo))

<_ CQ exp (-p.ε ) + 0 as i + «

Hence π. (p.u
n
) > π. (p

n
 u

n
) for i sufficiently large, which shows that φ

9
 is

φ 1 U φ 1 U c.

not b e t t e r than φ-.

Now assume u Q ί U but ou(u) is continuous a t uQ e U* - U. Then

ε Q > 0 i n ( 3 ) can be chosen small enough so t h a t

( 6 ) v ( C n Π H + ( u , α ( u ) ) ) > ε n

u u

f o r a l l ||u||=l with | | u - u o | | < ε Q . Theorem 7 . 7 , including formula 7 . 7 ( 4 ) f o r

the constant c appearing in 7 . 7 ( 3 ) , now y i e l d s , f o r θ = pu € M,
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1 - 7τ (pu) / e p u ' x v(dx)
( 7 ) Φ* < fl~(u,ct(u))

1 - πA (pu) ~ / e p u * x v(dx)
ConH+(u,α(u))n

1 (l/εo)e-P£o

for | | u | | = 1 with | | U - U Q | | < ε Q . u Q € U * ( Θ 1 ) implies there exists a sequence

θ. e Θχ with | | θ . | | ->oo such t h a t θ . / d l θ . H ) -• u Q . I t follows from ( 7 ) t h a t

π ( θ j ) > π ( θ Ί ) f o r i s u f f i c i e n t l y l a r g e . Consequently φ« i s not b e t t e r

I t follows from the two cases t r e a t e d above t h a t φ ? b e t t e r

than φ-.

than φ, implies Φ
2
(x) = 1 for (a.e.) x ί S.

Lemma 7.13 leads directly to a criterion which can often be used

to prove admissibility of conventional tests for appropriate testing problems.

7.14 Corollary

Let {p : θ e 0 } , θ = 0Q U θ j be a standard exponential family, as

in 7.12. Let θ 2 € Rk and

(1) S = n H"(u, α ς (u))
u€U* b

where U* = U * ^ , θ
2
) , as in 7.13(1). Assume (also as in 7.13) that 7.13(2)

is satisfied or that ou(u) is continuous at u for all u € U* - U. Let

φ(x) = 1 - χ
s
(x) (= 0 if x € S, =1 if x £ S). Then φ is an admissible test.

Proof. Suppose φ
1
 is any test as good as φ. Then, φ'(x) = φ(x) = 1 for

a.e.(v) x € S by Lemma 7.13. But then, π.,(θ
0
) i ^ ( Θ Q ) implies φ'(x) =

φ(x) = 0 for a.e.(v) x 6 S. Thus, φ
1
 = φ a.e.(v). It follows that φ is

admissible. ||

Remark. It follows from Corollary 7.14 that if θ^ is a bounded null hypothe-

sis and Θ = R
k
 then any nonraήdomized test with convex acceptance region is
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admissible. When ΘQ = { θ Q } is simple and v is dominated by Lebesgue measure

such tests i n f a c t form a minimal complete class — i . e . a t e s t is admissible

i f and only i f i t is nonrandomized and has convex acceptance region ( a . e . ( v ) ) .

This is the fundamental r e s u l t which was proved by Birnbaum ( 1 9 5 5 ) . See

Exercise 7 . 1 4 . 3 .

7.15 Appl ication ( U n i v a r i a t e general l i n e a r model)

Here is a customary canonical form f o r the normal theory general

l i n e a r model: Y € Rp has the normal N(μ, σ I ) d i s t r i b u t i o n , μ s + 1 = . . . = μ = 0 ,

2
σ > 0 , and the null hypothesis to be tested is t h a t μ, = . . . = μ = 0 ,

1 £ Γ £ s £ P (See, e . g . Lehmann (1959, Chapter 7 ) . ) This can be reduced

via s u f f i c i e n c y and change of variables to a t e s t i n g question o f the form

P 2

considered above. Let X. = Y., i = l , . . . , s , X $ + 1 = Σ Y . Then the d i s t r i -

butions of X = ( X 1 » . . . , X S + J form a minimal standard exponential family with

2 2

canonical parameters θ. = μ Ί /σ , i = l , . . . , s , θ $ + 1 = - l/2σ . The null

hypothesis i s , t h e r e f o r e , ΘQ = {θ € N:θ. = 0 , i = l , . . . , r } , so t h a t

Θχ = {θ € N: I Qd. > 0 } , where of course W = {θ € R s + I : θ g + 1 < 0} .

Figure 7 . 1 5 ( 1 ) : The F-test when r = l = s, p = 2
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The usual likelihood ratio F-test accepts if (and only if)

r
 2
Σ Yί/r

( 1 )
 ^ <

F
c '

Σ Yί/(p - s)
S+l

 J

as determined from tables of the F-distribution. In terms of the canonical

variables this region is

(2)

or

Γ
 9

 S
 9

(3) K Σ X + Σ X < X , where K = 1 + (p - s)/rF > 1.
j=l

 J
 r+1

 J α

(The simple situation for r = 1 = s, p = 2 is illustrated in Figure 7.15(1),

above, which shows K in the upper half-space and N in the lower half. Compare

Figures 7.11(1) and Figure 7.12.3.)

Consider a point z in the boundary of the acceptance region (3).

r
 2

 s
 ?

Thus, K Σ z. + Σ z = z,.,-,. The outward normal at z is v = (2Kz
Ί
,... ,2Kz ,

Ί
 J

 r + 1
 J s+l I

 Γ
 r

2Z
Γ +
Ί,...,2z

$
, -1). Except for the (s + 1 - r) dimensional set having Σ Z . = 0

all positive multiples of this vector lie in Θ J. It follows that 7.13(1) and

7.13(2) are satisfied (for any choice of θ
Q
 € Θ Q ) . Thus the F-test (1) (or

(2)) is admissible. Note that the test remains admissible by the same
r 2 2

reasoning if e , is restricted by Σ y. > aσ since then

r
 2

Θ, = {θ € W: Σ θ > -2 a θ
c + 1

}I
 i = 1

 I s+i

The same style of reasoning can be used to prove admissibility of

a wide variety of tests involving the univariate and multivariate general

linear model. It was used in Stein (1956b) to prove admissibility of
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Hotelling's T test; Giri (1977) contains a compilation of other results

provable by this method, and further references.

7.16 Discussion

I f a test is shown to be admissible by virtue of Theorem 7.14 this

does not, in i t s e l f , constitute a strong recommendation in favor of the test.

In principle the following situation may exist: there may be another test φ1

with π , (θ) <_ τr.(θ) for al l θ € ΘQ and with π.,(θ) >. π (θ) for "most" θ € Qy

I t might occur that π , (θ^) > π (θ.) for θ € Θ-except when both π , and π are

\/ery nearly one. In such a case φ' would dominate φ for a l l practical purposes.

Of course, a procedure whose admissibility can be proved by Theorem

7.14 may also be a desirable one. The F-test of 7.15 is a good example of

this. I t is admissible from several perspectives in addition to that of

Theorem 7.14. The most surprising of these properties is undoubtedly the

fact that i t is a Bayes test. See Kiefer and Schwartz (1965) and Exercise

7.16.2.

The F-test is also locally optimal (D-optimality) in the sense that

i t maximizes (among level-α tests)

? Γ a 2 ?
(1) min σ Σ - \ π. (μ, σ ) .

y(EΘ0 i = l d/. φ

See Giri and Kiefer (1964) or Giri (1977) and Exercise 7.16.3. When r = s the

F-test, φr> is also optimal in the sense that for any constant c > 0 and any

level-α test Φ
r

(2) min {π. (μ, σ
2
) : Σ μ

2
/σ

2
 = c

2
}

Φ
F i =

i i
2 ^ 2 2 2

> min {π.(μ, σ ): Σ μ./σ = c }
Φ i = i

 Ί

with equality only if φ = φ_. Note that the left side of (2) is a constant.

See Brown and Fox (1974b). Brown and Fox (1974a) yields the same result for

s + 1 = r. For r £ s + 2 it is only known that the (minimax) inequality (2)

is valid without the (admissiblity) assertion of equality only if φ = φp. This
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(minimax) assertion follows from the Hunt-Stein theorem as stated in Lehmann

(1959).

The next lemma is needed for the complete class theorems which

follow i t . The lemma can be viewed as an elaboration of Theorem 2.17.

7.17 Lemma

Let ω be a sequence of ( l o c a l l y f i n i t e ) measures concentrated on

Q c R , Then there exists a subsequence ω ,, a closed convex set S, and a

( l o c a l l y f i n i t e ) measure ω concentrated on Θ such that

λ
ω (

(b) * » , b (£ S .

If ω i, ω, and S are as in (1) and θ
2
 £ R then

(2) S = n R"(u, α
ς
(u)) ,

u€U* b

where U* = U*(Θ, θ 2 ) . (This is s i m i l a r to 7 . 1 3 ( 1 ) . )

Proof. The f i r s t part of the lemma is a direct consequence of Theorem 2.17.

To prove (2) l e t T = n H"(u, α Q ( u ) ) and suppose y € T°. Then for eyery u € U*
U€U* b

there is an x(u) € S such that u x(u) > u y.

Define N(u) by

(3) N(u) = {v: I|v|l = 1, v x(u) > v y} .

N(u) is a re la t ive ly open subset of the unit sphere and u € N(u). Hence

U N(u) 3 U*, and there is a f i n i t e subset u Γ . . . , u c U* such that
u€U*

r
(4) N = U N(u.) => U* .

i = l Ί

For convenience l e t x i = x ί u ^ . Now,

( 5 ) sup { | | θ | | : θ € 0 ,
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otherwise there would be a sequence v. ί S with v̂  -> v (v £ tj since M is open)

and a sequence p. •* °° such that p.v. € Θ, i = l , . . . but then v 6 U* c |, a

contradi cti on. Then

( 6 ) / e θ - y ω . ( d θ ) < e B H y | l { { θ : | | Θ | | < B } ) + £ / e 0 # x i ω . ( d θ )

z x ω ( x . )

by (3), (4), (5) and the simple fact that

B11x
Ί
11 θ x

Ί
ω

n
ι(ίθ: I |θ| I <_ B>) <_ e • fe ω

n
'(dθ) .

I t follows from (6) and (1) that y € S. Hence T° c s. Since T and S are

closed and convex this implies T = S. ||

Here is the complete class theorem from Farrell (1968). I t applies

to situations where ΘQ is compact and ΘQ and Θ1 are separated sets. See

Theorem 7.19 for a partial converse. Results l ike Theorem 7.18 and 7.19

have been proved in contexts somewhat more general than ordinary exponential

families. See Schwartz (1967), Oosterhoff (1969), Ghia (1976), Perlman (1980),

and Marden (1982a, 1982b), for such extensions and various applications. In

k
the following statement Θj denotes the closure in R , not merely the closure

relative to W.

7.18 Theorem

Let ΘQ c M be compact and assume θ Q n 0 = φ. Let φ1 be an

admissible test. Then there exists an equivalent test φ ( i . e . π.,(θ) = π.(θ)»

θ e ΘQ U Θj), a convex set S satisfying 7.17(2), and a (locally f i n i t e )

measure H. on Θ•, i = 0 , l , such that λn (x) < °° for x e S° and
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1 i f x ί S

λ H ( x )

( 1 ) Φ(x) = 1 i f x € S° , —! > 1
λ H ( x )

λ H (x)

0 i f x € S° , — 1 < 1 ,
λμ ( x )

H 0

a . e . ( v ) . ( λ H (x) is f i n i t e since H Q (Θ 0 ) < °°.) I f (ΘQ u Θ j ) 0 f φ then Φ = Φ 1 ;

and hence a l l admissible tests are of the form φ i n ( 1 ) .

Proof. I f φ1 is admissible then according to Theorem 4A.10 there exists an

equivalent test φ and a sequence of a priori distributions G (concentrated

on f i n i t e subsets of Θ) whose Bayes procedures Φn (say), converge to φ in

the topology of 4A.2. By Exercise 4A.2.1 this convergence means that φ + φ

weak* — i .e.

(2) / (Φn(x) - φ(x)) g(x)v(dx) - 0

for every v integrable function g. A consequence of (2) is that i f a subse-

quence of Φn(x) converges pointwise on some (measurable) subset T c K (say

Φn.(x) •* λ ( x ) , x € T) then the l imit must be φ ( i . e . , φ(x) = λ ( x ) , x € T,

a.e.

(3)

Note

(4)

(v))

HTn

that

Let

(dθ) =

"orW

Φ

e
-ψ(θ)

= 1.

n
( x )

G_(dθ)// e

Then

1

0

-Ψ(θ)
G
n

λ
H

(dθ)

(x)

θ € Θ , i = 0, 1

> 1

< 1

Let ω = HQ + Hχ . Let ω ,, ω, S be as in Lemma 7.17. Let H.. = u).Q ,

i=0, 1, so that H i n , -> HΊ , i=0, 1, as n1 ->«. Then H Q ( Θ ) = HQ(Θ0) = 1 since
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HQ n(Θ0) = 1 and ΘQ is compact. The assertions in (1) follow from this along

with Lemma 7.17, ( 4 ) , and the decision theoretic facts in the f i r s t paragraph

of the proof.

I f φ1 and φ are equivalent and (ΘQ U Θ j ° t φ then φ1 = φ (a.e.(v))

by completeness (Theorem 2.12). ||

Many of the tests produced by the recipe 7.18(1) are admissible.

In certain statist ical situations, i t can even be concluded that a l l of them

are admissible. Then Theorem 7.18 describes the minimal complete class. The

following converse to Theorem 7.18 contains statements of these facts. I t

is not entirely satisfactory but i t is the best general result we have been

able to devise. For the purpose of this theorem define

(1) Θ* = {θj € Qy θ 1 € W or there is a θ 2 € β1 3 (1 - ρ)θ 2

+ p,θ1 € Qι for 0 <_ p < 1}

(See Exercise 7.19.3 for an extension of ( 1 ) . )

7.19 Theorem

Consider the testing problem described in Theorem 7.18.

Suppose φ satisfies 7.18(1) where H, is concentrated on Θ* and S

satisfies all the assumptions of Lemma 7.13 relative to some θ
2
 € R .

Suppose also that

(2) φ(x)
1 ) . \

( X )

if x € S and
λ

μ
 (x) < 1 , a.e.(v)

H
0

> 1

(This is a mild extension of the latter part of 7.18(1).) Then any c r i t i c a l

function as good as φ must also satisfy (2) and 7.18(1) with the same values

of S, Ho, H r I f also either

λH (x)

( 3 1 ) v({x: — i = 1 and φ(x) < 1}) = 0 ,
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or

λH (x)

(3") v({x: —ΐ = 1 and φ(x) > 0}) = 0 ,
λH (x)

or

(4) (Supp (H o + H^)0 f φ

then φ is admissible; and i f η is as good as φ then η = φ a . e . ( v ) .

I f v is dominated by Lebesgue measure, U(Θ, θ 2 ) = U*(Θ, θ 2 )

for some θ 2 € Rk, and Θj c Θ* then the collection of tests of the form 7.18(1)

is a minimal complete class.

Proof. Suppose φ is defined by (2) and 7.18(1) where S s a t i s f i e s the

assumptions of Lemma 7.13. Suppose ηis another c r i t i c a l function as good as

φ. Then η(x) = 1 i f x f. S by Lemma 7.13.

I f θ € Θ- then

(5) 0 £ /(η(x) - φ(x))eθ # x v(dx)

since 0 £ π (θ) - π (θ). By continuity (5) also holds if θ € § 1 n M. Now,

suppose ζ = (1 - p)θ« +
 pθ, € Θ, for 0 <_ p < 1. Then (5) holds at θ = ζ and

ζ x
/(η(x) - φ(x))e

 p
 v(dx) is continuous in p as p t 1 by Exercise 1.13.l(ii)-

It follows that (5) holds whenever θ € 0, .

The opposite inequality to (5) holds when θ € Θ
Q
, and H

Q
 is finite

since Θ
Q
 <= W is compact. Hence

(6) 0 < / (/(η(x) - Φ(x))e
θ # x
 vίdxJJίHjtdθ) - H

Q
(θ)) .

Notice that η(x) - φ(x) < 0 whenever λ
u
 (x) > λn (x), so that

— Πj n
0

/ (η(x) - Φ(x))
+
 λ

μ
 (x) v(dx) £ /(η(x) - φ(x))

+
 λ

H
 (x) v(dx)
o

/ / e θ ' x v(dx) HQ(dθ)
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Furthermore, as already noted, HQ is a f i n i t e measure. Hence the order of

i n t e g r a t i o n in ( 6 ) can be reversed, y i e l d i n g t h a t

(7) 0 £ / ( η ( x ) - Φ ( x ) ) ( λ H (x) - λ H ( x ) ) v ( d x ) < -

with the i n t e g r a l extending only over the region x € S since η ( x ) = φ(x) f o r

x ί S. Because φ s a t i s f i e s ( 2 ) , the integrand i n ( 7 ) is non-posit ive; hence

η(x) also s a t i s f i e s ( 2 ) , for otherwise the i n t e g r a l would be negative.

I f in addit ion φ s a t i s f i e s ( 3 1 ) then ^ . ( θ ^ > TΓ ( θ ^ , ΘJ e Θy

(a c o n t r a d i c t i o n ) unless η(x) = Φ(x) a . e . ( v ) . S i m i l a r l y i f ( 3 " ) is

s a t i s f i e d n(x) = Φ(x) a . e . ( v ) ; for otherwise π φ ( θ Q ) < ^ ( Θ Q ) , Θ Q e ΘQ.

F i n a l l y , suppose ( 4 ) is s a t i s f i e d in place of ( 3 1 ) or ( 3 " ) . Note t h a t the

reasoning fol lowing ( 7 ) shows t h a t e q u a l i t y holds i n ( 7 ) and hence i n ( 6 ) .

From t h i s i t follows that / ( n ( x ) - Φ ( x ) ) e θ " x v ( d x ) = 0 a.e. HQ + H χ since

this i n t e g r a l is non-negative on θ * and non-positive on ΘQ. ( 4 ) then implies

η(x) = Φ(x) a . e . (v) by completeness and hence φ is admissible. This completes

the proof of a l l assertions i n the middle paragraph of the theorem.

I f v is dominated by Lebesgue measure and also s a t i s f i e s the

remaining assumptions of the l a s t paragraph of the theorem then

λ H (x)

v { x : xήxΓ = 1} = °
H o

so that any test, φ, of the form 7.18(1) is also of the form (2), and (3
1
)

(and (3")) is satisfied, and H- is concentrated on Θ- <= 0* and S satisfies

assumption 7.13(2) of Lemma 7.13. It follows that φ is admissible. ||

COMPLETE CLASS THEOREMS FOR TESTS (Contiguous Hypotheses)

7.20 Definitions:

It is necessary to characterize the local structure of Θ, near ΘQ.

Let Θ
Q
 = {θ

Q
} and Θj be given and let
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(1) J(ε) = {J: J is a f i n i t e non-negative measure on

{θ: θ ε Θr||θ-Θo|| < ε } , J J(dθ) < 1, f < »,

/ ^ τ J ( d θ ) | | < 1}
I|Θ-Θ O || 2

Then let

(2) Δ(ε) = {(v,M): V = / ^ J ( d θ ) ,

I I Θ - Θ 0 I I 2

(Θ-Θ )(Θ-Θ )*

M = j Q o J ( d θ ) > j ε J ( ε ) κ

ιiβ-θoιr
Also, let Δ = Γ\ Δ(ε). Note that v ε R and M is a positive semidefinite

ε>0
k x k matrix, and Δ and Δ(ε) are compact, convex sets.

In various typical statistical problems it is not hard to explicitly

describe Δ. For example, if Θ
Q
 = 0 and Θ = θ

Q
 U "Θ, is a closed conical

set then Δ is the convex hull of points of the form

(v,0): v ε Θ, ||v|| <_ 1 , and

(0,M): M = vv
1
 3 v ε Θ, -v ε Θ, ||v|| < 1 .

(See Exercise 7.20.1.) As another example, suppose Θ is a twice different-

iable curved exponential family at Θ
Q
. This means that there are two ortho-

gonal vectors u ., ιu ε R , with ||ui|| = 1 such that for θ ε Θ

(4) θ-θ
Q
 = ((θ-θ

o
)-u

1
)u

1
 + ||θ-θ

o
||

2
u

2
 + o(||θ-θ

0
||

2
).

(Note in (4) that K Θ - Θ Q J U ^ = ||θ-θ
o
|| + o( ||θ-θ

o
||

2
), and also that u

2
 = 0

is a possible value of u
2
 ) Then Δ is the convex hull of (u-j,O), (-u-j,O)

and (u^sUnU-j). (See Exercise 7.20.2.)

As with earlier results the full complete class characterization is not

directly as a generalized Bayes test but involves an extension of this notion.

As part of this extension the kernel e
θ
'

x
 is replaced by
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e
θ
"

x
-l-θ.χ

(5) ω(θ,x) =
I θ l l

2

A converse result which sometimes yields a characterization of the minimal

complete class is given in Theorem 7.22. As with earlier results both of the

following theorems can be profitably extended beyond the exponential family con-

text in which they are proved below. See Marden and Perlman (1980), Marden

(1981, 1982b), Cohen and Marden (1985), Brown and Sackrowitz (1984, Theorem 6.1),

and Brown and Marden (in preparation).

7.21 Theorem

Let ΘQ = {θ
Q
} be a simple null hypothesis. Let φ

1
 be an admissible

test of Θ
Q
 versus 0^. Then there exists an equivalent test φ and a closed

convex set S satisfying 7.17 (2) such that

(1) Φ(x) = 1 x Φ S.

Further, for every x
Q
 € S° there is a finite non-negative measure H on ̂ - {θ

Q
}

θ (x-x
n
)

with S° c {x: e H(dθ) < «>}, a constant C ε R, an M ε Δ
2
, and a

v ε R
k
 satisfying (3), below, with at least one of C, H, v, M being non-zero,

θ x
n

such that for all x ε S°

1 <

if C / ω(θ,x-x
Q
)e °H(dθ)+v (x-x

0
)

+ (x-x
o
)'M(x-x

o
)/2

0 >

If θn ̂  ψ then Φ = Φ
1
 a.e. (v).

Define

θ-θ~

||θ-θ
o
||>ε »" ~0"

Then there is a sequence ε
i
 -> 0 such that 1imv

ε
 = v

Q
 (say) exists, and

(3) (v
Q
,M) ε Δ.

(Note that if J||θ|| H(dθ) < « the extreme right side of (2) can be re-

written as



TAIL PROBABILITIES 235

0") / 5 'Lsl H(dθ) + v
o
 (x-x

o
)'M(x-x

o
)/Z .

θ (x-x
0
)

In particular, lim v = v
n
 exists.)

ε->0
 ε υ

Proof. The assertion just after (2) follows from completeness, as in

Theorem 7.17. Now, suppose Φ' is admissible. Then by Theorem 4A.10 there

is an equivalent <J> and a sequence of prior distributions G. concentrated

on finite subsets of Θ such that the Bayes procedures, ψ. = Φ
G
 , converge to

Φ in the topology of 4A.2. (See the proof of Theorem 7.18 for further re-

marks.)

Without loss of generality let θ
Q
 = 0 and

Thus ΦJ(X) = ί
0
} according to whether

(4) / e
θ
'

x
G!(dθ)

 >
 1 .

Θ
l

As in 7.17, it is possible to reduce {G!} to a subsequence (if neces-

sary) such that now for some closed S satisfying,7.17 (2),

lim Je
θ
'

x
G!(dθ) = « x i S

0 <_ lim Je
θ
'

x
G!(dθ) = q(x) < » x e S° ,

where G! -> G
1
 and q(χ) = Je

θ
'

x
G' (dθ). Clearly, (1) is satisfied.

Assume without loss of generality that x
Q
 = 0 € S°. Rewrite (4) as

(5) / ω(θ,x)||θ||
2
G!(dθ) + J (θ χ)G!(dθ)

 >
 cϊ .

Θ
l

 Θ
l

Let d. = J||θ||
2
G!(dθ)+||/θG!(dθ)|| + |c!| and H.(dθ) = dT

1
1| θ||

2
G!(dθ). Sub-

stituting in (5) and multiplying through by dT yields
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(6) / ω(θ,x)H 1 (dθ) + / - ^ 2 H.(dθ) > C 1

θ e ||θ||

where jH^dθ) + || /(θ/||θ||
2
)H

i
(dθ)|| + Ic^ = 1. Reduce { H ^ to a subse-

quence (if necessary) so that

(7) /(θ/1|θ||
2
)H

i
(dθ) •*• v, c

i
 + C.

H
i
 -• H

1
 since G\ ->• G

1
. Furthermore /H'(dθ) + | |v| | + C = 1 since x

Q
 = 0 € S°

Let H = H',- o}.

Let ε > 0 such that H({θ:||θ|| =e}) = 0. (AΠ but a countable set of

e's satisfy this.) For each x ε S

(8) / ω(θ,x)H.(dθ) + / ω(θ,x)H(dθ),
||θ||>ε 1 ||θ||>ε

and

(9) 1/ (ω(θ,x) . 2 L L § Θ ^ ) H (dθ)| = 0(ε)

iiθiiiε 2iiβir Ί

since (e* - 1 - t - t
2
/2)/t

2
 = 0(t) and jH^dθ) <. 1. Another subsequence may

now be taken, if necessary, so that the following limits exist:

(10) v = 11m f — 5 - y H.(dθ) = v - / - ^ - T H(dθ)
ε 1— ιiθiι<e Heir 1 ιiβiι>ε i i e i r

(11) M = lim / - ^ H.(dθ).
ε
 i - llθll

2 Ί

By definition, (v ,M ) ε Δ(ε). Δ(e) is compact in the obvious topology.

Hence there is a subsequence ε. + 0 so that (v ,M
£
 ) -> (v

Q
,M) ε Δ. If

j J
necessary another subsequence of {H.} may be extracted using a diagonaliza-

tion argument so that (10) and (11) hold for each ε . It follows from (5),
J

(7), (8), (9), and (11) that for x ε S°

1 <
Φ

Ί
 (x) + if C Jω(θ,x)H(dθ) +v x + x'Mx/2 .
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Note that Tr M = H'({0}). Hence Tr M + H(Φ" J) + | |v| | + C = 1 so that at least

one of M, H, ||v||, C are non-zero.

It follows from (10) that (3) is satisfied. Since Φ
Ί
 -* ψ in the topology of

4A.2 this yields (2). ||

7.22 Theorem

Consider the testing problem described in Theorem 7.21. Suppose θ
Q
 ε W°

and φ satisfies 7.21(1), (2), and (3) where "S satisfies all the assumptions of

Lemma 7.13 and H is concentrated on Θ*, as defined in 7.19(1). Suppose ψ(x) is

also given by 7.21(2) for x e S - S°. Then any critical function as good as ψ

must also satisfy 7.21(1) for x i S" and 7.21(2) for x ε S (a.e. (v)) with the

same values of S, H, v, M, C, x
Q
.

If also either

(1) v{x: ω(θ,x-x
Q
)H(dθ) + v'-(x-x

Q
) + (x-x

Q
)'M(x-x

o
)/2 = C, φ(x) < 1} = 0

or

(I
1
) v{x: ω(θ,x-x

o
)H(dθ) + v .(x-x

Q
) + (x-x

Q
)'M(x-x

Q
)/2 = C, φ(x) > 0} = 0

or

(2) (Supp H)° f φ

then φ is admissible; and if η is as good as φ then η = Φ a.e. (v).

If v is dominated by Lebesgue measure, U ( Θ , Θ
2
) = U * ( Θ , Θ

2
) for some

θ
2
 ε R

k
, and e^ = Θ* then the collection of tests of the form 7.21(1), (2)

is a minimal complete class.

Proof. Much of the proof resembles that of Theorem 7.19 (as does much of the

statement of the theorem). Assume with no loss of generality that θ
Q
 = 0 and

x
n
 = 0. Let ε. + 0 and v be as in 7.21(3) and let J. ε J(ε.)» be measures
U j ε J J

supported on finite subsets such that

v - /
 θ

 2
 JΛdθ) - 0

ε
 j 11 Θ 11

c J

(3)

/
 eθ

'
 ?
 J.(dθ) -> M.
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L β t H l i = H | { θ : | | θ | | > ε i > + J i ' H O i ( { O } ) = C + / l l θ l l ' 2 j i

is b e t t e r than ψ then η s a t i s f i e s 7.21 ( 1 ) and

(4) O 4 J ( n ( x ) - φ ( x ) ) Je θ χ ( H l i ( d θ ) - H o i ( d θ ) ) v ( d x ) ,

For each x ε S

( 5 ) J e θ ' x ( H , . ( d θ ) - H Q . ( d θ ) )

= / ω(θ.χ)H(dθ) + v x + x ' M x / 2 - C

v ) x

J ^ -x'Mx/2).

Lemma 2.1 implies that the dominated convergence theorem can be invoked in (4),

(5) as i -> 00 since 0 ε hi
6
 and ω(θ x) = 0(e

θ
'

x
+l). Hence

(6) 0 4 J (η(x)-φ(x))(/ω(θ x)H(dθ)+v x+x'Mx/2-C)v(dx).

It follows that η satisfies 7.21 (2). The remaining assertions of the

theorem are proved just as the analogous assertions in Theorem 7.19. ||
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EXERCISES

7.2.1

Prove proposition 7 . 2 . [ I f v is a f i n i t e measure and

v ( { | | x | | > α } ) = 0 ( e " ε α ) then E v ( e ε Ί | x | ! ) < » f o r a l l 0 < ε 1 < ε . ]

7.4.1

( i ) L e t S be a convex s e t w i t h p = i n f { | | x | | : x (. S } . Suppose f o r

some ε > 0 , c < °° 7 . 4 ( 1 ) holds i . e .

( 1 ) Pft ( { X / α (. S } ) < c e x p ( - ε p α ) V α € R .

θ o

Show that {θ: | |θ - Θ
Q
|| < ε

1
} N° for all ε

1
 < ε. (ii) Give an example of

a nonconvex set with v{x: ||x|| < p, x (. S} > 0 and in which (1) holds but

{θ: I|θ - Θ
Q
|I < ε

1
} φ N° for any ε

1
 < ε.

7.5.1

Let Θ
Q
 e W° and H

+
 = H

+
(v, α). Show

(1) lim (n"
1
 log P

θ
 (X

n
 € H+)) <_ -K(H+, ξ(θ

Q
)) .

[Use Theorem 7.5 and Proposition 5.15.]

7.5.2

In 7.5.1 suppose H
+
 n K° ϊ φ. Show

(1) lim (n"
1
 log P

ft
 (X

n
 € H+)) = -K(H+, ζ(θ

n
)) .

[For one d i r e c t i o n use 7 . 5 . 1 ( 1 ) . For the other l e t P l n ^ denote the d i s t r i b u -

t i o n of S n under θ = θ ( ξ H + ( θ ) ) . ]

( 2 ) PQ (X € Ho) > e x p [ - n ( K ( θ , ΘQ) + ε ) ] P ^ n ) ( { S : | ( θ Q - θ) \\ < e } )

•> e x p [ - n ( K ( θ , θ 0 ) + ε ) ]

by the Central Limit Theorem (Exercise 5 . 1 5 . 1 ) . ]
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7.5.3

Let Θ
Q
 = θ(ξ

Q
) € W°. Let Q be a closed subset of Rk. Show

lim (n"1 log P0 (*n € Q)) < -K(Q, ξ
Q
) .

[ L e t ε > 0 . Show Q c Σ H + ( v . , a . ) w h e r e K ( H + ( v , α . ) ) > K(Q, ξ n ) - ε .
. = 1 i i i i - 0

When k > 2 this requires some care.) Apply 7 . 5 . 2 . ]

7.5.4

Let ΘQ = θ ( ξ Q ) . Let Q c Rk be a set such that

K(Q°, ξ 0 ) = K(Q, ξ Q ) = k (say). Then

(1) lim n"1 log Pfl (X n € Q) = -k .
o

[Reason as in 7 .5 .2 and use 7 .5 .3 . ]

7.5.5

Let X , , . . . be i . i . d . random variables on R with distr ibut ion F.

Let h: X -+ Rk be measurable and Q c Rk. Let ζ(Q) = i n f { ζ p ( x ) : x € Q}

where ξp(x) denotes the entropy as defined in 6 . 1 6 ( 1 ) . Suppose ξ(Q°) = ξ(Q)

and E(exp ( ε | |X| I ) ) < «> for some ε > 0. Then

lim n"1 log P(X e Q) = E(Q) .

7.5.6

( i ) Show that K( , ξ Q ) is r e l a t i v e l y continuous on {x: K(x, ζ Q ) < «}

i f v(K - K°) = 0 , i f k = 1 , or i f v is concentrated on a countable number of

points sat isfying Assumptions in Theorem 6.23. I f so, then for Q an open set

K(Q, ξ Q ) = K(Q, ξ Q ) as required in 7 . 5 . 4 . ( i i ) Given an example where Q is open

and K(Q, ξ Q ) t K(Q, ξ Q ) . [Let v be Lebesgue measure on the f i r s t quadrant of

2
R plus a unit mass at the o r i g i n . ]

7 . 7 . 1

Hwang (1983) raises the following question: Let X - N(θ, I),

k k k
θ e R . Does there exist an estimator 6: R -> R for which
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(1) Pθ(||δ(X) - θ|| < B ) > PΘ(||X - θ|| < B) v B > 0 , θ € Rk ,

with str ict inequality for some B, θ? ( I f so, δ would be said to "stochastically

dominate" δQ(x) = x. Note that for fixed B > 0 there exists an estimator 6

dominating δQ in the sense of satisfying (1) for a l l θ € Rk. See Hwang (op.

ait.) and references cited therein.) I t can be shown that 6 f δQ exists

satisfying (1) i f and only i f there exists a continuous spherically symmetric

function δ f δQ satisfying ( 1 ) . Show that no such function exists. [Suppose

I I I I I I k

l l ^ v X o / l l < ι ι x o M f o r s o m e x o € R ( a n d h e n c e f o r a neighborhood of x Q ) .

Let θ p = ρxQ and B = (p - 1 ) | | X Q | | . Show t h a t f o r some ε > 0 , s u f f i c i e n t l y

s m a l l ,

( i ) - ^
p θ p ( ! l χ - θ p n > B p )

Pθ (x e H ( x 0 , I|χ o || 2 ), δ(X) e H " ( X Q , | | X Q | |

_ P

e ε p P θ ( X € H - ( V ||χo||2)
Pθ
P

Use t h e m u l t i v a r i a t e g e n e r a l i z a t i o n o f 7 . 3 ( 3 ) t o e s t i m a t e t h e denominator on

t h e l e f t o f ( 1 ) ; t h e n use 7 . 7 ( 3 ) f o r t h e a s y m p t o t i c a s s e r t i o n i n ( 1 ) . A

s i m i l a r a r g u m e n t , w i t h d i f f e r e n t θ and B , a p p l i e s when | | δ ( x Q ) | | > | | x Q | |

f o r some x Q e R . See Brown and Hwang ( i n p r e p a r a t i o n ) . ]

7.9.1

Consider the estimation problem described in Exercise 4 . 2 4 . 3 . Show

t h a t the estimtor 4 . 2 4 . 3 ( 1 ) is admissible. [Use Theorem 7.7 and Corol lary 7.9

to show t h a t i f δ1 is b e t t e r than 6 then ό ' ( x ) = 0 , x < 1 , and ό ' ( x ) <_ ^ ,

x = 1 , and symmetrically for x >_ 2. Among a l l such estimators 6 minimizes the

r i s k a t θ = 0 . ]

7 . 9 . 2 (A uniform version of Corollary 7.9)

Let Vj c V2 be subsets of the unit sphere in R with V- closed and

V2 r e l a t i v e l y open in the u n i t sphere. Let
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(1) α(v) = sup {α: K n H
+
(v, α) f φ} .

Assume α ( v ) < « V v € V2 Then

( i ) α ( v ) is continuous for v € V2

( i i ) V ε > 0 3 δ > 0 3 v ( H + ( v , α ( v ) - ε ) ) > δ , v € Vχ

( i l l ) V ε > 0 3 r Q 3

(2) v ξ ( r v ) > α ( v ) - ε V v € V χ , r > r Q *

7.9.3

Consider a steep exponential f a m i l y . Let K c {x: x £ 0 } , 0 e K,

and l e t K be s t r i c t l y convex. Let y € 3K, y ^ 0 . Let θ. € N° , 1 = 1 , . . . f such
1 θ.

t h a t ζ{Q.) -> y . Then, ( i ) 3 I < «, ε > 0 , δ > 0 such t h a t v ( H + ( i i Λ ι , ε ) ) > δ

f o r a l l i > I . Hence, ( i i ) ψ ( θ . ) >_ ε| |θ| | + In δ f o r a l l i > I , and ( i i i )

l im ψ ( θ . ) = °° .
i-**> η

[There e x i s t V., \L as i n 7.9.2 and ε > 0 , δ > 0 , s a t i s f y i n g

α ( v ) < ε , v € V2 ; v y < - 2 ε , v € V ^ and

( 1 ) v ( H + ( v , e ) ) > δ V v t V2 .

p
(Draw pictures in R to help see why the above is t r u e . The s t r i c t convexity

θ.
is important here.) Now, l l θ . l l -•» . (Why?) Hence, ,, 1 ., f. VΊ for i

s u f f i c i e n t l y l a r g e , by 7 . 9 . 2 ( 2 ) . ]

7.9.4

Consider a steep exponential f a m i l y . Let Θ c hi be r e l a t i v e l y

closed i n N and assume K i s s t r i c t l y convex. Suppose x € dK but

x ί (ζ(Θ n W°))~. Show t h a t θ ( x ) t <f>. (This r e s u l t complements Theorem 5 . 7 .

I bel ieve i t should be possible to prove i t by showing the above hypotheses

imply t h a t 5 . 7 ( 1 ) i s s a t i s f i e d . However, the h i n t below indicates a d i f f e r e n t

argument.

[Assume x = 0 € K c {x: x χ <. 0} ( w . l . o . g . ) . Apply 7 . 9 . 3 to show

l i m ψ(θ) = °° . Now proceed as in the proof of Theorem 5 . 7 , fol lowing
llθll-χ»,θ€Θ
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5 . 7 ( 2 ) . ]

7.9.5

Consider a standard exponential family with natural parameter space

k +
N. Let v € R and α Q = sup {α: v(H (v, α ) ) > 0 } . Let θ^ = ρΊ v + r̂ . as in

Corollary 7 . 9 . Then

(1) 11m v Vψ(θ.) = α Ω .

Hence, there exist a c > -°° such that

(2) ψ(θ.) >. -c + αp. ,

and, consequently,

(3) p
θ
 (x) -* 0 V x e H"(v, α

Q
)

[The key assert ion, ( 1 ) , is a uniform version of Theorem 3 . 9 ,

since for η. Ξ η i t follows immediately from t h a t theorem. However, i t seems

easier to prove (1) as a consequence of Corollary 7.9. ( A l t e r n a t i v e l y , one

may also derive the above, as well as 7 . 9 , through an application of convex

d u a l i t y , since K° = R, e t c . ) ]

7.11.1

I n t h e s i t u a t i o n i n C o r o l l a r y 7 . 1 1 l e t p ( θ , ) = P f l ( S 9 ) / ( P f l ( S j ) .

C o n s t r u c t examples ( i ) i n which p ( θ . ) ~ | | θ . | |" α , α > 0 ; ( i i ) i n w h i c h

p f θ j ) •* 0 b u t I | θ i I |
α ρ ( θ Ί . ) + oo f o r a l l α > 0 ; and ( i i i ) i n w h i c h

p ( θ Ί ) = 0 ( 1 | Θ 1 | Γ α ) f o r a l l α > 0 b u t e ' α l l θ i ' l p ( θ 1 ) •> «, f o r a l l α > 0 .

[ ( 1 ) L e t k = 1 , v ( { 0 } ) = 1 and v ( d x ) = x 0 1 " 1 dx on x > 0 . ]

7.12.1

Consider a t e s t i n g problem, as i n 7.12 with ΘQ = H(v, α) n A/,

O = M _ 0 a n c j 0 n Wβ ^ φ. For z € Rk, l e t z = z ^ + z" ' where

z^1) e H(v, α ) , z ^ = pv l H(v, α ) . Assume ( w . l . o . g . ) v ( R k ) = 1. Show
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(i) If φ
1
 is better than φ then

(1) / φ(x)v(dx|x
(1)
 = y) = / Φ'(x)v(dx|x

(1)
 = y)

y € H(v, α) a.e.(v)

and

(2) / x
( 2 )
φ(x)v(dx|x

( 1 )
 = y) = / x

( 2 )
 φ'(x)v(dx|x

(1)
 = y)

y € H(v, α), a.e.(v)

( i i ) Show that φ is admissible i f and only i f for some measurable func-

tions CΊ , γ . , i = l ,2,

1 i f x ( 1 ) > C 2 ( x ( 2 ) )

γ 2 ( x ( 2 ) ) i f x ( 1 ) = C 2 ( x ( 2 ) )

(3) ψ(x) = 0 i f Cλ[x{2)) < x ( 1 ) < C 2 ( x ( 2 ) )

Ύi \X / •« x - I,.. vX /

1 if x u ; < C^x^M .

[This is a continuation of 2.12.1 and 2.21.2.] (Matthes and Truax (1967).)

7.12.2

Prove that i f φ is an admissible test and Q c X with v(Q) > 0

then φ must also be admissible for the same problem with dominating measure V.Q.

7.12.3

Let Xχ = X and X2 = S2 + X2 be the canonical statist ics for the two-
2

parameter exponential family generated by a N(μ, σ ) random sample. (See

Example 1.2.) Consider Figure 7.12.3. Draw the broken line parallel to

μ 0 x l " X 2 ^ 2 = ^ S U C ' Ί ^ a t V ( R ) = V (S). (v is defined in Example 1.2.)

( i ) Show that this is possible, ( i i ) Let Φ1 be the cr i t ica l function for

the test with acceptance region Q1 + R - S, and let φQ be the c r i t i c a l function

for the usual one-sided t- test , which has acceptance region Q1 = {x, < 0 or
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x
? -

 c x
i}

(μ,σ
2
)

( φ
l

}

(μ,σ
2
)

( φ
l

}
(μ,σ

2
)(

φ
O

}

Hence Φ1 is a better test than φQ of

(2) HQ: μ < 0 versus μ ^ μ Q

[E(Φ 1 - Φo) = E(χ s - χ R ) . Now use Corollary 2 . 2 3 . ] (See Brown and Sackrowitz

( 1 9 8 4 ) . See also Exercise 7 . 1 4 . 6 . )

A

Figure 7.12.3: Diagram for Exercise 7.12.3

7.13.1

Here is an example which shows that something more than 7.13(1)

p
is needed for validity of the conclusion of Lemma 7.13. Let X € R be

bivariate N(θ, I). Consider the problem of testing Θ
Q
 = {0} versus

1 0}.= {θ: θ
1
 > 0, θ

2
 = -θj}. Let S = {x e R

2
:

(i) Show that U = φ but U* = (0, -1).

(ii) Verify that S satisfies 7.13(1) but not the remaining hypotheses

of Lemma 7.13.

(iii) Let φ.ίx) = 1 if x ί S, = 0 otherwise. Show the conclusion of

Lemma 7.13 does not apply to φ,. [Let Φp(x) = 1 if x-i ̂ < ε or
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x. < 0, x« < -ε. Show for ε > 0 sufficiently small φp dominates φ,.]

7.13.2

The additional assumptions of 7.13 are stronger than necessary.

Let X ~ N(θ, I ) , Θo = {0}, S be as in 7.13.1. But now let

θ 1 = {(μ, y 4 ) : μ > 0}. Note that S satisfies 7.13(1) but does not satisfy

either of the other two assumptions of Lemma 7.13. Show that i f φ' is as good

as φ then φ'(x) = 1 for al l x (. S. Conclude that φ is admissible. [Show

directly that i f Q is an open set in Sc then

P (u u * ) i Q )

lim JU!iLJ = oo . ]
μ-*50 P/ M ( S )(μ>μ )

7.14.1

A test φ is said to have a nearly convex acceptance region i f

there is a closed convex set A such that φ(x) = 0 , x e A° and φ(x) = 1

for x (. A. (Thus, i f v is dominated by Lebesgue measure any test with nearly

convex acceptance region is equivalent to one with a (closed) convex

acceptance region. See the Remark fol lowing Corollary 4.17.) Suppose

ΘQ = {ΘQ} is simple in the set t ing of 7.12. Show that any Bayes test has

nearly convex acceptance region.

7.14.2

Let φ. be a sequence of critical functions with nearly convex

acceptance regions. Suppose φ. -* φ weak* on L
TO
. (See 4A.2(1) for the

definition of weak* convergence.) Then φ has a nearly convex acceptance

region. [Assume v(R ) < °°. To each φ. there corresponds an A.. Let {u.}

be a countable dense subset of {u: Mull = 1}. Choose a subsequence {i'}

such that α
Δ
 (u.) converges for each u , say, α

Λ
 (u. ) -*α . Let

", i J J M . i J J

A = nFΓ(u., α,). Then φ(x) = 0 , x e A° and =1 for x ft A.]
j
 J J

7.14.3

Suppose ΘQ = {ΘQ} is simple in the setting of 7.12.
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( i ) Show that the tests with nearly convex acceptance regions form a

complete class.

( i i ) Suppose, a lso, Θ1 = R - {θ Q } and v is dominated by Lebesgue measure.

Show that the tests with convex acceptance regions form a minimal complete

class. [Use Theorem 4.14, 7.14.1, 7.14.2, and, for ( i i ) , Theorem 7.14.]

7.14.4

Suppose the support of v is a f i n i t e set , X. Let 0Q = {ΘQ} € hi =

R . ( i ) Prove that φ is admissible i f and only i f there is a closed

convex set A such that φ(x) = 1 i f X (. A, = 0 i f x € A0 or i f x € r . i . F

for some face F of A. ( i i ) Can you formulate an analogous complete class

statement va l id when X is countable and the assumptions of Theorem 6.23 are

sat is f ied? [ ( i ) Use Theorem 7.14, Corollary 7.10, and 7.12.2. ( i i ) Be

care fu l ; the characterizat ion in ( i ) is not va l id here, even when

X = { 0 , 1 , . . . } k , and so w i l l need to be modif ied.]

7.14.5

Consider a 2χ2 contingency table. (See Exercise 1.8.1.) Two

common tests for independence of row and column effects are the likelihood

2
ratio test and the χ test, based on the values of

= N Σ

( i ) Use Theorem 7.14 to show that the χ test is admissible,

( i i ) Is the likelihood ratio test also admissible via Theorem 7.14?

( i i i ) Use 7.12.1 to prove both tests are admissible.

7.14.6

Show that the test with critical function φ- in Exercise 7.12.3

is admissible.
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7.16.1

Let X € Rk be N(θ, I ) . Suppose ΘQ = 0 and

Θj = {θ: |θ i I > c i = l , . . . , k } . Consider level α tests of the form

φ l ( x ) = 1 - χ { t : | t i l < a 1 , i = l k } ( x ) a n d *2(x> = l " X { | | t | K a 2 } ( x )

Note that φ, is admissible. Adjust k, c, α to provide an example where Φ2

dominates φΊ except where π is extremely small .

7.16.2

Consider the u n i v a r i a t e l i n e a r model, as i n 7.15. Show t h a t the

usual F t e s t , 7 . 1 5 ( 1 ) , i s Bayes. [ L e t η € Rs. Le t σ 2 = 1/(1 + l l η l l 2 ) and

μ Ί = r ^ / U + l l η l l 2 ) , i = r + l , . . . , s . Under θ 1 a l s o l e t μ. = r)./{l + | | η | | 2 ) ,

i = l , . . . , r . Under ΘQ ( r e s p . Θ,) l e t η have d e n s i t y p r o p o r t i o n a l t o

(1 + Unl l 2 Γ p / 2 exp( 2
(

2 ( 1 + I In 11 )

2

(resp., (1 + M n l l 2 Γ p / 2 exp( Σ - ?-) ).]
r + 1 2 ( 1 + l l η l Γ )

(Kiefer and Schwartz (1965). )

7.16.3

Verify when r = 2 that the F test has the local optimality

property described in 7.16(1). (This is called D-optimality.) [Write

2 )2 - π ( 0 , σ
μ? Φ 8μ

)
μ=0

)dy

and use a general form o f the Neyman-Pearson Lemma or Theorem 2 . 2 1 . ]

7.16.4

Let X-,...,X. be independent gamma variables with known indices

α , , . . . , α h and unknown scale parameters σ,, . . . ,σ. . Consider the problem of

test ing the nul l hypothesis HQ: σ . = . . . = σ. . ( In the special case where
2

the X, /CL are χ variables resul t ing from a normal sample then th is is the

problem of test ing homogeneity of variance. (In this notation the variances
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are α,,... ,σ. .)) Show

(i) The likelihood ratio test for this problem has acceptance region

(Σχ.)
α
o k

(1) S = {x: ^ <_ C} , where α
n
 = Σ α,

π x ^
 Ί ι

( i i ) When these distributions are written as a canonical exponential

family the null hypothesis is linear in both parameter space and expectation

space. Nevertheless, for k _> 3, the acceptance region for the likelihood

ratio test is not convex. (Hence there is no hope of proving i ts admissibi-

l i t y via Theorem 7.14.)

[ ( i i ) Consider k = 3 and α. Ξ α. Consider points of the form

x = (z, z, 1) on the boundary of the acceptance region S. Let

πx.
f(x) = ^-T - C so that f(x) = 0 for x € as. Show that for z sufficiently

(Σx-jΓ

large (Vf(x
z
))' (D

2
f(x

z
))(vf(x

z
)) < 0.]

( i i i ) The likelihood ratio test is unique Bayes, hence admissible. Under

H1 let θ. = 1/σ = (1 + η.) where η. e R are independent variables with

density |η.| Ί" (1 + η?)~ α i . Under HQ, ΘΊ = 1/σ. Ξ (1 + η2) where η e R

has density | η p α ° " ^ ( l + η 2 )" α ° . (This result is another one of many

contained in Kiefer and Schwartz (1965).)

Note: I t is not always true that a likelihood ratio test is

admissible. For an interesting counter-example see Lehmann (1959, p.338)

or Kiefer and Schwartz (1965, p.767).

7 . 1 7 . 1
2

Let x G R be b ivar iate normal, N(θ, I ) . Consider the problem

of test ing ΘQ = {0} versus Θχ = {θ: θ ^ :> 0 , | |θ| | >_ 1} . Show that the
2

non-randomized level α = .05 test with acceptance region {x: ||x|| <_ 5.991]

is inadmissible. (Can you also f i n d a better test?) (Compare th is resu l t
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with 7.22.2 in which this test is admissible.)

7.17.2

Exercise 2.10.1 indicates a nontr iv ia l test ing problem where ΘQ

and Θ1 are contiguous and a l l tests are admissible. Here is an example of

the same phenomenon in which the nul l and al ternat ive hypotheses are sepa-

rated: Let 1 £ m < k and l e t X = {x e R : x i = 0 or 1, i = l , . . . , k , ΣxΊ = m}.

Let v be counting measure on X, with ί p θ ) the exponential family generated

by v. Let ΘQ = { 0 } , Θχ = {θ: ||θ|| 2 >_ 1}. (Other more r e s t r i c t i v e

def in i t ions of Θ, w i l l also s u f f i c e . ) Let φ be any (possibly randomized)

test . Then φ is admissible.

[ I t is possible to use Lemma 7.13 for t h i s , but here is an

easier argument. The aggregate family generated by { p θ l contains
k 1

{ q Γ : ξ € X} where q Γ ( ) = χ Γ (*) and also q Γ (•) = ( ) where

ξQ = ξ(0) (jj ) l . I f Φ is inadmissible there exists a test Φ' better than φ

for test ing ΘQ versus Θ-. Then (by cont inuity) φ1 must be as good as φ for

test ing q Γ versus { q r : ξ € X} . This implies φ'(x) >_ φ(x), x € X,

and ( V 1 Σ φ ' ( x ) < ( V 1 Σ φ ( x ) . ]
m x€X m xex

7.18.1

Let X,, Xp be independent gamma variables Γ(α. , λ . ) , i = l , 2 ,

variables with α , , α 2 known. Consider the problem of test ing HQ: λ = λp = 1

versus the a l ternat ive H-: max |1 - λ . | > ε for some given ε > 0. Show that
1 i = l , 2 Ί

any " intersect ion" test with acceptance region —

(1) φ(x) = 0 i f f a n < xΊ < a i 2 , i = l , 2, (0 < a . j < a i 2 < « ) —

is inadmissible. (See also 7.21.1.) [No admissible test can have an

acceptance region with a sharp corner at (x^, x^) = ( a 1 2 , a 2 2 ) l i k e (1) has.

See Example 2.10.]
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7.19.1

In Theorem 7.19 replace Θ* by

(1) θί* = {θ
Ί
 ε Θ", : θ, ε N or there is a set {θ' : j = 1,.. . , J } ^ N

and a sequence {ζ }czQ* with ζ. -> θ . and

{ζ.}cz conhull ({θU U {θ,})} .

[Use 1.13.2.]

7.20.1

Prove the assertion in 7.20(3). [The extreme points of

{J:J ε J(ε), JθJ(dθ) = V Q } , V
Q
 ε Θ, are the distributions in this set which

are concentrated on a single point; similarly the extreme points of

{J:J ε J(ε), JθJ(dθ) = 0, / ||θ||
2
J(dθ) = α} are two-point distributions. The

extreme points of ϊ(ε) are thus points (v, M) satisfying 7.19(2) with J

either a one- or two-point distribution, as above. The extreme points of Δ

are (contained in) the set of limits as ε + 0 of these points.]

7.20.2

Prove the assertion following 7.20(4). [Let J be either a one- or two-

point distribution.]

7.20.3

Generalize the assertion following 7.20(4) to apply to the situation where

Θ is a twice differentiate manifold at θ
Q
. [First generalize 7.20(5)!]

7.21.1

In the setting of 7.18.1 consider the problem of testing H
Q
: λ̂  = λ

2
 = 1

versus the complementary alternative H-.: λ, f 1 or λ^ t 1. Show that the

intersection test 7.18.1(1) is still inadmissible.
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7.21.2

Consider the curved exponential family of Example 3.14 and 5.14. Let

ΘQ = {θ
Q
} and Θ

1
 = Θ - Θ Q - TO be specific take θ

Q
 = θ(λ

Q
) = (-1,0); i.e.,

λ
Q
 = 1. One easily constructed test of θ

Q
 is that which rejects when

|λ-λ
o
| > c

n
 with c

n
 chosen to give the desired level of significance.

(Such a test can be constructed for any curved exponential family, and has

certain asymptotic optimality properties as n -> «>.) Show that for moderately

large n and the usual levels of significance this test is inadmissible;

although for every n there exists a (possibly very small) level of signifi-

cance for which the test of this form is admissible. [Use 5.14 and Theorem

7.21. Except for small values of n or large values of c
n
 the acceptance

region has a convex, but not strictly convex, form. Theorem 7.21 allows only

very special admissible acceptance regions which are not strictly convex; and

for appropriate values of n, c the above acceptance region is not of this

special form.]

7.22.1

Let X
19
...,X

n
 be independent normal variables, Xj ~ N(μ,l+μ ). Con-

sider the problem of testing H
Q
:μ = 0. Let Φ

Ί
 = 1 if |X"| > 1.96...//n ,

= 0 otherwise; and π,(μ) = E (Φ-.). Show

(i) φ j has level α = .05 and is locally unbiased (i.e., π.j(O) = 0,

πη (0) > 0). (Is ψ, also globally unbiased; i.e., π ^ μ ) ^ .05??)

(ii) ψ, is inadmissible. [Use 7.20(5) and Theorem 7.21. Note that

θ
2
 = --^2 = -(2(l+μ

2
))"

1
 4-I/2 to show ψ

]
 cannot satisfy 7.21(2) unless

2σ
H = 0.]

(iii) Find a locally best locally unbiased level α test; i.e., the test

which maximizes π"(μ) subject to π(0) = α, π'(0) = 0. Use Theorem 7.22 to

verify this test is admissible. [Admissibility actually follows directly from

the fact that this test is the unique locally best locally unbiased level α

test, but it may be instructive to note how this test can be written in the

form 7.21(2) with H = 0.] Call this test Φ
2
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((iv) Is Φ
2
 unbiased?? Is Φ

2
 better than ψ^?? If not, what is??)

(v) Generalize (i)-(iii) to arbitrary curved exponential families: Show

that the locally unbiased test with parallel boundaries for the acceptance

region is not locally best among locally unbiased tests unless u
2
 = 0 in

7.20(5). State (convenient, frequently satisfied) conditions under which this

parallel boundary test is inadmissible.

7.22.2

Let X be bivariate normal with mean θ and covariance 1. Consider the

problem of testing Θ
Q
 = 0 versus Θ-j = {(θ^.θg): θ ^ > 0}. Consider tests

of the form ψ(x) = χ
 2

 2 (
χ
)»

 a
>b>

c >
 0 (These tests are

( ) '
:
( ) ^

symmetric in (xpX^).) Show that such a test is admissible if and only if

2 2
a _> b. The same result holds if Θj = {(θ^ ,θ

2
): θ-jθ

2
 > 0, θ^+θ

2
 4 1}.




