CHapter 7, TAIL PROBABILITIES

In exponential families the probability under 6 of a set
generally falls off exponentially fast as the distance of the set from £(6)
increases. This section contains several results of this form. The first of
these will be improved later, but it is included here because of its simplicit;
of statement and proof.

Throughout this chapter let {pe} be a steep canonical exponential
family. (Most of the results hold with possibly minor modifications for non-

minimal families, and many also hold for non-steep families.)

FIXED PARAMETER (Via Chebyshev's Inequality)

7.1 Theorem
Fix 85 € N°. Choose € so that {6: |16 - eol] < e} e N°.

Then there exists a constant ¢ < =, such that

(1) Pr'eo H+(v, a) < c exp(-ea)

for all v € R with ||v]| = 1 and a1l & € R.

Proof. Let

(2) ¢ = exp(sup {y(0) - w(eo): |8 - eol| = ¢})
and let 6. =8y t+ ev. Then

208



TAIL PROBABILITIES 209

Preo{H+(v,a)} o 1 exp(8y + x - ¥(8y))v(dx)

H (v,a)

+(v‘,[m)exp(‘ao e x+ (ev) « x - (ev) * x - w(eo))v(dx)

| A

(H+(V{a)exp(6e * x = w(6.))v(dx))exp(¥(6.) - ¥(8y) - ea)

| A

c exp(-ea) . [

Note that (2) provides a specific formula for the constant appear-
ing in (1).

In specific situations the bound provided in Theorem 7.1 can be
improved in various ways. However the following converse result shows that
Theorem 7.1 always comes within an arbitrarily small amount of yielding the

best exponential rate of decrease for tail probabilities.

7.2 Proposition

Let eo € N°. Suppose there exists a ¢ < » and € > 0 such that
7.1(1) is valid for all v € R with ||vl] = 1 and a1l @ > 0. Then
{6: |lo - 6gll < el =N°.

(Thus, if for some € > 0, ¢ < =, a bound of the form 7.1(1) is
valid for all v with ||v|| = 1 and all a > 0, then Theorem 7.1 will verify

such a bound for any €' < €.)
Proof. We leave the proof as an exercise. [

When e = inf {||6 - 6,]] : @ € N} then 7.1(1) may or may not be

valid for all a, v. The following example demonstrates this.

7.3 Example
Relative to Lebesgue measure, let
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(1) £ ly) = Ty e ¥/ K y >0

c,k
0 y<o0

This is the gamma density with scale parameter n and shape parameter k. Let

X; =Y Xy = Iny, e1 = -1/n, 6, = (k = 1), and let v be the measure induced

by the map y + x when y has Lebesgue measure on (0, =). One then has a

standard exponential family of order 2 with
w(e) = (6, +1) In(-6;) - InT(6, + 1)
and
(2) N= (-=, 0) x (-1, «), K= {(xl, Xp)t X320, x5 > 1n x;}

When k = 1 (i.e. 92 = 0) the resulting one-parameter exponential
family is that of exponential distributions with intensity |61|. For this

family

- =0
Pr61=—1 {x; >a} =e for all a>0

so that 7.1 holds with v=1and ¢ = 1 = inf {||6 - eo|| : 0 g N} On the

other hand, for 62 = 1 the resulting one-parameter gamma family has
= =0
Pr61=-1 {x; >a} = (o + 1)e for all o> 0.

Thus here 7.1(1) fails to hold when v = 1and € = 1 = inf {|]6 - eo|| : 6 ¢ N}

When N = Rk Theorem 7.1 says only that Pre {H+(u, a)} = O(e—ka)
Q
for all k > 0. However, much smaller bounds may be valid for these tail

probabilities. Consider for example the following well known facts:

o _t2 2
(3) [ e t/2 44 < e /z/a for a>0
¢}

and
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o _42 2
(4) aj e t/2 4t ~ e /2/a as a+®

Thus, suppose X is normal, mean 0O, variance 1. Then, from (3)

(5) PriX > o} < e 7%a(2m)%  for  a>0

It can be seen from (4) that this bound is asymptotically accurate as a + = .
Theorem 7.5 contains a bound which easily yields the statement

(6) PriX > o) < e@/2

for this situation. This is much better than what is available from 7.1(1)
but is still inferior to (5).

Theorem 7.1 applies to probabilities of large deviations defined
by half spaces but can easily be converted to a statement about any shape of

set, as follows.

7.4 Corollary
Consider a standard exponential family. Fix 60 € N°. Let ) € Rk.

Let S be any set. Let p = inf{||x - xOI} : x £ S}, and define € as in
Theorem 7.1. Then there is a ¢ < « such that
(1) Pe ({(x - xo)/a £ S}) < cexp(-epa) for all a €R
0
Proof. It suffices to prove the corollary for X9 = 0 and S the open
sphere of radius p about the origin.
There exists p' < p and €' < inf{[[6 - 6,|| : & £ N} such that

e'p' = ep. There exists a finite set of unit vectors {ai: i=1,...,n} such that

n
{x: x - a, <p't<eS. Thus Pr, {X/o £ S} < & Pre {x . ay > ap'}
1 1 90 i=1 0

[ R

i

n

< Zc, exp(-ap'e') < c exp(-epn) by Theorem 7.1 where ¢ < = is an
i=1

appropriate constant. |
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FIXED PARAMETER (Via Kullback-Leibler Information)

It is possible to use the Kullback-Leibler information number
(i.e. entropy) to improve the preceding bound. See the exercises for some

applications of this bound to asymptotic theory.

7.5 Theorem

Let 6, € N° and At = i (v, a). Then

0

(1) P (A1) < exp(-K(A", &(sy)))
Proof. Suppose first that

(2) A GI

Let & = g+ (90) . Note that £ € A" n K° by Theorem 6.13. Hence
9= e(é) € N°. (This is precisely the situation pictured in Figure 6.14(1).)

Now,
(3) k = K@, g(0))) = (8-16y) « € - w(6) + y(g)
=+

2(5-60)°x-w(5)+w(60) v x€H

by definition and by 6.13(2). This yields

P, (x)
—+
Pg () = £+ P, (X)v(dx) = £+5~—27)—p5(X)v(dX)
0

N £+ exp((eo - 6) X - w(eo) + W(a))Pa(x)v(dx)

~

I, exp(-k)pg(x)v(dx) < e,
H

IA

which is the desired result.

Now suppose AP nk#obutA nke =¢. Then
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~

(4) Tim K@ (v, o - e), £(8)) = K(A'(v,a), £(8p)) < =
ev0

since K(-, g(eo)) is lower semi-continuous (by definition), satisfies

lim  K(E, £(8y)) = o
| €] [ 0

(by 6.5(5)), and since K(A'(v, a), &(8,)) > K(A* (v, o - €), £(8,)) for all

e > 0. Hence

(5) Py (A") = TlimP, (A" (v, ae)) < Vim exp(-K(A* (v, a-e), £(8,)))
0 e¥0 0 €0

~

exp(-K(A*, E(eo))) . [

(We leave as an exercise to verify that

(6) K@, e(8p)) = =  ifandonly if P (A) = 0 )

Note that the Kullback-Leibler information enters into the above
only as a convenient way of identifying the sup {(5 - 00) .« X - w(é) + w(eo):
X € H+} . Various other interpretations of K, such as the probabilistic
Definition 6.1, do not enter into the above argument.

The connection between Theorem 7.5 and 7.1 is provided by the

following lemma.

7.6 Lemma

Let 8y € N° and H' = H+(v, a). Suppose 8 = By t ev € N°. Then
(1) K(H™, &(8g)) > w(eg) - w(e) + ea
Proof. Let £ = EH+(90) as in Theorem 7.5. Then

K(H', g(8g)) = (8 - 8y) + &+ wleg) - w(e)

(9 - 60) - &t W(eo) - W(e)

v

~ ~

since 6 = e(E) = gN(E) maximizes 2(+, £). Hence
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K(H', 8g) > ev e €+ w(eg) - w(6) = ea+w(sy) - w(e) . ||
Applying the bound (1) in the formula 7.5(1) yields the earlier
formulae, 7.1(1) and (2), of Theorem 7.1.
Note also that in the normal example of Example 7.3, E(E, 0) = gz/z,
and thus 7.5(1) yields 7.3(6).

FIXED REFERENCE SET

The preceding results concern the nature of probabilities of large
deviations when the parameter is fixed and the reference set for calculating
the probability proceeds to infinity. There is another class of results. These
concern the situation when the reference set is fixed and the parameter
proceeds to infinity in an appropriate direction. These theorems were exploited
in a statistical setting by Birnbaum (1955) and then Stein (1956). Giri (1977)

surveys several further applications of this theory.

7.7 [heorem

let v e RS, o €R. Let S; 5, € R with

(1) s, © (v, o)

(2) \)(S1 n H+(v, a)) > 0

Let K = N be compact. Then there exist constants c and € > 0 such that

g %X y(dx)

(3) —2 < ¢ exp(-pe)
Il ef°x v(dx)
31

for all 6 € N of the form 6 = n + pv withn € K, p > 0.
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Proof. Let Sl(e) = S1 n H+(v, a + €). There is an € > 0 such that
v(Sl(e)) >¢>0. Then,

J R v(dx) J exp(p(v + x - a) + pa+n -+ x)v(dx)
S S

<
S % y(dx) J exp(p(v * x = a) + pa +n + x)v(dx)
Sy Sl(e)

37
< < c exp(-pe)
ePt e * y(dx)
SI(E)
where
(4) c = sup (J eM X vu(dx)/S e X u(dx)) <
n€kK SZ Sl(e)

Here is why ¢ < »: K is compact and v(Sl(e)) > 0 so that

inf | e™X y(dx) >0 . Also, f e X v(dx) is upper semicontinuous on K
nek s, (e) S,

by Fatou's lemma, and is finite on K since K = N. Thus sup J " Xu(dx) < w. [
nek S
2

The preceding theorem really concerns the relationship of probabi-
lities for the sets 52 and SI(O) = S1 n H+(v, a) contained in separate half
spaces. Note again the dual relationship, connecting & € N and H < K in Theorem
7.7. Because of this relationship it is often revealing in such
contexts to superimpose both the sample space and parameter space on a single
plot. This is done in Example 7.12(1).

Here are some corollaries to the Theorem, the second of which will
be used in the example. The first of these corollaries may be instructively

compared to Theorem 7.1.
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7.8 Corollary
Let v € Rk, K = N be compact, and S = A (a, o). Suppose

(1) v (v, a)) > 0
Then there exist constants c and € > 0 such that
Prg(S) < c exp(-pe)

for all 6 € N of the form 6 = n + pvwithn € K, p>0. In particular, for
any sequence {ei € N: ei =pVENng, v Ny € K} one has

Tim Pre (s) = o0

e i

Proof. Let S, = H'(v, a). Then by Theorem 7.7

6ex-y(6)

Pre(S) < cexp(-pe) [ e v(dx)

S2

= ¢ exp(-pe)Pre(Sz) < c exp(-pe) . H

7.9 Corollary
Again, let v € Rk, K = N° be compact, and v(S) > 0; and let {6;}

be any sequence of the form ei = o5V +n, with pj > and n; € K. Then

(1) lim Ee (v « X) sup{a: v(H+(v, a)) >0} < =

jr0 7§
(Note that here we assume K = N°; not merely K = N.)

Proof. Let ag denote the supremum on the right of (1). Since Ee_(v-X) 29
1

it is only necessary to prove lim inf Ee (veX) > a To this end, let

o0 i 0°
a<a' <ayandS, = H (v, a"). Let £,(8) = Eg(XIX €S,). If v(S,) =0 the

result is trivial. Hence, suppose v(sz) > 0. Note that 52(9) exists and is

continuous for all 6 € N°. Hence B = inf{v - Ez(n): n € K} > -o, Note that
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Apply Corollary 2.5 to the conditional exponential family given
X € S, (generated by v|. ) to find
2 S,

Eglv * X|X €5S,) > En(v- X|X €5s,) > 8

for all1 6 = n + pv with p > 0. Then for such 6,

Ee(v . X) Pre(X € 52) . EG(V . X|X € 52)
+ Pre(X £ 52) . Ee(v « X|X €S - 52)

(ce™ /(1 + ce™®P))g + (1/(1 + ce™*P))a’

lv

by Theorem 7.7. Hence E (v » X) > o (since o < a') for 6 as above for all
p sufficiently large. This implies 1im inf Eg (v + X) > oy since a < aq was
j o0 i
arbitrary. ||
Note the placement of the hyperplane H in the statement of Theorem

7.7. If S, < H™ and v(S1 n ﬁ+) > 0, but v(S1 n H+) = 0, then only a much weaker

conclusion is valid. This conclusion is contained in the following corollary.

7.10 Corollary

Let v € Rk, o € R. Suppose

(1) S, < H (v, a)
and
(2) v(S1 n ﬁ+(v, a)) > 0

Let K = N be compact. Let {ei} < N be a sequence of the form

ei =PV + n; with n; € K, Py > e Then

(3) lim—— = 0
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Proof. Apply Theorem 7.7 to find

Pe.(S2 nH (v, a-c¢))

(4) Tim — = 0
i P. (S

for all € > 0. Furthermore, if i > 0

PG.(SZ nAT(v, a-¢)) P (s
(5) ! < ! > 0
Pei(sl) P 1(51)

as € >0 uniformly for n; € K

(The inequality in (5) follows after applying Corollary 2.23 to the functions

(X)) = 0 to find that

hc(x) = xSl -cxSzn H+(v,a—s) with ¢ chosen so that En.(hc

i

Ee. (hc(X)) z En.
i i
the conclusion of the corollary. |

(hc(X)) for all c and Py > 0.) Combining (4) and (5) yields

7.11 Example

Consider the usual sufficient statistics X, S2 derived from a

normal (u, 02) sample. As explained in Example 1.2 the statistics X; = X,

X, = 52 + Xz are the canonical statistics for a two-parameter exponential

2
family with canonical parameters 8, = nu/oz, 8, = -n/202. Note that

K = {(xl, xz): X5 Z_xi}. For some ¢ > 1 consider the conditioning set

Q= {(xl, xz): Xo cxf} = {(X, 52): >'<2/s2 < 1/(c - 1)}. (This is the set on

which the usual two-sided t-test (based on t = /A=I X/s) with n - 1 degrees of

v

freedom accepts at the appropriate level determined by c.) Fix p = Yy and let
02 + 0. Then (91, 62) = (n/cz)(uo, -%). Thus (el, 62) proceeds down the
ray with slope -%uo as 02 » 0. Both X and 0 are displayed on the plot in
Figure 7.11(1), which shows also K, Q, and this line.

Corollary 7.9 applied to the conditional exponential family given

X € Q (generated by the measure v restricted to Q) yields
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(1) lim E

02-’0 (UQ,GZ)(onl = Xz/zlx € Q)

= sup {ugX; - xp/2[(xy5 x,) €Q} = u0/2c2

Note that E(uox1 - x2/2|x €Q) = (uy> %) - E((Xl, x2)|x € Q) and that
E((Xl’ X2)|X € Q) € Q. Furthermore since Q is strictly convex
(ug» -) . (Xli’ x21) -+ u0/2c2 = sup {(uo, -k) . (xl, Xp): X1s X €Q} for a
. . 2
sequence {(Xli’ x21)} cQ if and only if <x1i’ x21) > (uo/c, uO/c). (Note that
the tangent to Q at the point (uo/c, ug/c) is perpendicular to the ray

(n/oz)(uOs ‘!ﬁ).) ThUS

(2) 1m0 (g XK€ Q) = (g/cs vp/e) = g (say) -

In terms of the traditional variables X, SZ, and t = /n-1 x/s this yields

(n - 12
(3) lin € ™o n - D )

2 -
a2+0 (Uo,cz)((x’ )Y 1t <1) = (

T+n-1 ’ (t+n - 1)2

p""qt ~1/2)

Example 7.11(1): Picture for Example 7.12
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COMPLETE CLASS THEOREMS FOR TESTS (Separated Hypotheses)

The preceding results can be used to prove admissibility of many
conventional test procedures in univariate and multivariate analysis of
variance and in many other testing situations involving exponential families.
When combined with the continuity theory for Laplace transforms of Section 2.17
these results yield useful complete class characterizations for certain classes
of problems. In many of these cases the characterization precisely describes
the minimal complete class. The general theory, as well as a very few specific
applications, is described in the remainder of this chapter. Many more appli-
cations can be found in the cited references. The results to follow should be
compared to the results in the same spirit for estimation which appear in

Chapter 4.

7.12 Setting and Definitions

Throughout the remainder of this chapter {pe: 6€0} 1is a standard
exponential family. The parameter space © is divided into non-empty null
and alternative spaces OO’ Ol; so that 0 = OO V] Ol. In the customary fashion,
a test of 00 versus 01 is uniquely specified by its critical function, ¢, where

¢(x) = P(test rejects OOIX = x). The power of ¢ is ,(0) = Ee(¢). A test

¢
¢1 is as good as a test ¢2 if

(6)

m

(1) &
w¢1(6)

A

n¢2(6) 8 €O

v

1r¢2(6) 6 €0

It is better if there is strict inequality for some 6 € 6. (Here, and in what
follows, we write, "a test ¢" in place of the more precise but cumbersome
phrase, "a test with critical function ¢".) A test is admissible if there is
no better test. The decision-theoretic formulation with a two-point action

space A = {ao, al} and a loss function of the form

L(e, aj) =2(6) >0 if o ¢ oj, =0 if 0 € ej s

yields the same ordering among tests, and hence the same collection of
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admissible tests.

Let
(2) Ur = Ur(@’ 60)
9'90
= {u: lfull =1, 3€eo>3ll6ll >r, and U = —m—— }
le - eoll
r>0;

and let
(3) U(e, 8,) = n U(e, 8,) and U*(e, 6,) = n 0_(0, 6,)

0 r>0 r 0 0 r>0 " 0

Note that if © is a closed cone then U = U*; more generally U c U*. It is

possible that U = ¢ but U* # ¢.

If S c Rk is a convex set let
(4) alu) = as(u) = sup {x-u: x € S}

This function is defined for u € Rk,, although we will mainly be interested

its values for |[[u|| = 1. As is well known,

wmi

(5) ™ (u, ag(u))

n
{uz]]u]|=1}
It is clear from the definition (4) that a(+) is lower semicontinuous.

The following lemma is a key result which leads directly to the
first main theorem. A result of this type was first proved and used by

Birnbaum (1955) in the case of testing for a normal mean. A general result

221

3

in

similar to the following lemma was then proved and applied in Stein (1956b).

7.13 Lemma

Fix 0, € RE. Let

(1) s = 0 B (us ag(u)
u€y*

where U* = U*(Ol, 62). Assume further either that
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(2) S = nA(u, ac(u)) » (U=U(e, 8,))

or as(u) is continuous at u for all u € U* - U. Let ¢1(x) =1 for all x £ S.
Suppose ¢, is as good as 9q- Then ¢2(x) =1 for x £S5, a.e. (V).
(Note: A more formal way to state the conclusion of the lemma is

vix: x ¢S, ¢2(x) <1} = 0.)

Proof. Assume for convenience 62 = 0. Suppose the conclusion of the lemma

is false. Then there is an € > 0, Ug € U* such that

(3) CO = {x: ¢2(x) <1- eo}
satisfies
(4) W(Cy 0 H (ugs alug))) > 0

Assume Uy € U. Then there is a sequence {pi} with py > such that

{piuo: i=1,...} < Ol. Theorem 7.7 yields

Bex
d
- 1- "¢1(p1u0) IH-(UO’Q(UO)) € v(dx)
—_—— <
L=, (o))~ g J e Xu(dx)
: CoMH" (ugsa(ug) )

A

CO exp (-pie ) - 0 as i>w

Hence n¢1(piu0) > n¢2(piu0) for i sufficiently large, which shows that ¢, is
not better than ¢1.
Now assume Uo £ U but as(u) is continuous at Uy € U* - U. Then

€ > 0 in (3) can be chosen small enough so that

(6) W€y 0 H (U, aw) > g

for all ||u|]=1 with ||u—uoll < eg. Theorem 7.7, including formula 7.7(4) for

the constant c appearing in 7.7(3), now yields, for 6 = pu € N,
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1- T (pu) S ePU"X y(dx)
7 7t H (u,a(u))
7 - pu*X
1-m, (pu) I, e v(dx)
2 CoMH ™ (usai(u))
< (1ey)e ™
for [Jul| = 1 with |[u-uyl| < ey. uy € U*(e;) implies there exists a sequence

6; €0, with ||6,|| ~« such that e,/(|]e,|]) ~ up- It follows from (7) that

T (ei) > n¢ (91) for i sufficiently large. Consequently ¢, is not better
1 2
than ¢1.

It follows from the two cases treated above that ¢2 better

than ¢, implies 95(x) =1 for (a.e.) x €S. ||

Lemma 7.13 leads directly to a criterion which can often be used

to prove admissibility of conventional tests for appropriate testing problems.

7.14 Corollary

Let {pe: 6 €0}, 0= 90 U Ol be a standard exponential family, as

in 7.12. Let 62 € Rk and

(1) S = n H(u, as(u))
ueu*

where U* = U*(Ol’ 62), as in 7.13(1). Assume (also as in 7.13) that 7.13(2)
is satisfied or that as(u) is continuous at u for all u € U* - U, Let

o(x) =1 - xs(x) (=0if x€S, =1 if x £S). Then ¢ is an admissible test.

Proof. Suppose ¢' is any test as good as ¢. Then, ¢'(x) = ¢(x) = 1 for
a.e.(v) x € S by Lemma 7.13. But then, n¢.(60) §_n¢(90) implies ¢'(x) =
¢(x) = 0 for a.e.(v) x € S. Thus, ¢' = ¢ a.e.(v). It follows that ¢ is

admissible. ||

Remark. 1t follows from Corollary 7.14 that if %y is a bounded null hypothe-

sis and 0 = Rk then any nonrandomized test with convex acceptance region is
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admissible. When OO = {eo} is simple and v is dominated by Lebesgue measure
such tests in fact form a minimal complete class -- i.e. a test is admissible
if and only if it is nonrandomized and has convex acceptance region (a.e.(v)).
This is the fundamental result which was proved by Birnbaum (1955). See

Exercise 7.14.3.

7.15 Application (Univariate general linear model)

Here is a customary canonical form for the normal theory general

Tinear model: Y € Rp has the normal N(u, 021) distribution, Mgyq =+0-= “p =0,

02 > 0, and the null hypothesis to be tested is that My SeeeTHy S 0,

1<r<s<p. (See, e.g. Lehmann (1959, Chapter 7).) This can be reduced

via sufficiency and change of variables to a testing question of the form

p
considered above. Let X, =Y., i=1,...,s, X = I Y? . Then the distri-
i i s+l j=19
butions of X = (Xl"“’xs+1) form a minimal standard exponential family with
canonical parameters ei = pi/oz, i=1,...,S, es+1 = -1/202 . The null

hypothesis is, therefore, @0 = {8 € N:ei =0, i=1,...,r}, so that

L2 s+1
0, ={06 €N: § 05 > 0}, where of course N = {6 € R”" ': 6_., < 0}
1 521 1 stl

/4ccept

We"

Figure 7.15(1): The F-test when r=1=5s, p=2.
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The usual 1ikelihood ratio F-test accepts if (and only if)

r
b Yg/r
.=.|J
(M £ cF
p 2 - a
ZYj/(P'S)
s+1

as determined from tables of the F-distribution. In terms of the canonical

variables this region is

r
R X§ rF
(2) J=] < o
X Pxe. sy PTT
- XS - X%
s gad e
or
e, S.2
(3) Kjilxj + rilxj < XS+1 where K =1+ (p - s)/rFa > 1.

(The simple situation for r = 1 =s, p = 2 is illustrated in Figure 7.15(1),
above, which shows K in the upper half-space and N in the lower half. Compare
Figures 7.11(1) and Figure 7.12.3.)

Consider a point z in the boundary of the acceptance region (3).

r s
Thus, K ¢ zg + 3 zg =z . The outward normal at z is v = (2Kzy,...,2Kz_,
1 rel d 0 TSH e
22r+1""’225’ -1). Except for the (s + 1 - r) dimensional set having zz§ =0
1

all positive multiples of this vector lie in ;- It follows that 7.13(1) and
7.13(2) are satisfied (for any choice of 8y € eo). Thus the F-test (1) (or
(2)) is admissible. Note that the test remains admissible by the same

reasoning if S is restricted by 1£1u§ > ao2 since then

ro2
.iz"e'i > -2 a es+~|}.

O] = {6 € N:
The same style of reasoning can be used to prove admissibility of
a wide variety of tests involving the univariate and multivariate general

linear model. It was used in Stein (1956b) to prove admissibility of
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Hotelling's T2 test; Giri (1977) contains a compilation of other results

provable by this method, and further references.

7.16 Discussion

If a test is shown to be admissible by virtue of Theorem 7.14 this
does not, in itself, constitute a strong recommendation in favor of the test.
In principle the following situation may exist: there may be another test ¢'
with n¢.(9)_5 n¢(e) for all 6 € 8y and with n¢.(e) 3_n¢(e) for “most" 6 € 0;-
except when both 7 , and 7, are

1 0 ¢
very nearly one. In such a case ¢' would dominate ¢ for all practical purposes.

It might occur that n¢.(ei) > n¢(ei) for 8 €0

Of course, a procedure whose admissibility can be proved by Theorem
7.14 may also be a desirable one. The F-test of 7.15 is a good example of
this. It is admissible from several perspectives in addition to that of
Theorem 7.14. The most surprising of these properties is undoubtedly the
fact that it is a Bayes test. See Kiefer and Schwartz (1965) and Exercise
7.16.2.

The F-test is also locally optimal (D-optimality) in the sense that

it maximizes (among level-a tests)

r
(1) min 02 T —22-n¢(u, 02)

Heo, i=1 aui
See Giri and Kiefer (1964) or Giri (1977) and Exercise 7.16.3. When r = s the

F-test, ¢, is also optimal in the sense that for any constant c > 0 and any
F

level-a test ¢

r
(2) min {n¢ (us 02): z uf/oz = &
F i=1
r
> min {r (u, ) 1 et = B
¢ ]:1 1

with equality only if ¢ = ¢p- Note that the left side of (2) is a constant.
See Brown and Fox (1974b). Brown and Fox (1974a) yields the same result for
s+1=r. Forr<s+2itis only known that the (minimax) inequality (2)

is valid without the (admissiblity) assertion of equality only if ¢ = ¢F' This
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(minimax) assertion follows from the Hunt-Stein theorem as stated in Lehmann
(1959).
The next Temma is needed for the complete class theorems which

follow it. The lemma can be viewed as an elaboration of Theorem 2.17.

7.17 Lemma

Let w, be a sequence of (locally finite) measures concentrated on
0c Rk. Then there exists a subsequence Wors @ closed convex set S, and a
(locally finite) measure w concentrated on © such that

A, (b) » A b), bese

(1) “n
Ay (B) > =, bES.
n
If Wy W and S are as in (1) and 6, € Rk then
(2) g = n Fl-(us OLS(U)) ’
u€Eu*

where U* = U*(0, 92). (This is similar to 7.13(1).)

Proof. The first part of the lemma is a direct consequence of Theorem 2.17.

To prove (2) lTet T= n A (u, as(u)) and suppose y € T°. Then for every u € U*
uel*

there is an x(u) € S such that u « x(u) > u -+ y.

Define N(u) by
(3) N(u) = {v: |Jv]] =1, v+ x(u)>v-y}

N(u) is a relatively open subset of the unit sphere and u € N(u). Hence

U N(u) o U*, and there is a finite subset Upseeesll, © U* such that
ueu*

n=
n
nhc-=

(4) N(ui) o> U*

i=1

For convenience let X; = x(ui). Now ,

(5) sup {|]6]]: eeo,ﬂ%rTe N} = B<w ;
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otherwise there would be a sequence v, £ with v, > v (v £ N since N is open)

and a sequence py > such that oy € 0, 1i=1,... ; but thenv €U*c |, a

contradiction. Then

r
(6) %Y (do) < BIWITy [(te: 0] <83y + 1 re® X w,(co)
i=1
Bl |xy]] r
< QBIIYIE 1T (x1) + a0 (x;)
“n! j=1 ®p* 1

by (3), (4), (5) and the simple fact that

Bl|x{|| 8-x
e ! Je 1

wn.({e: [le]| <B}) < w,'(de) .

It follows from (6) and (1) that y € S. Hence T° = §S. Since T and S are

closed and convex this implies T=35. ||

Here is the complete class theorem from Farrell (1968). It applies
to situations where 00 is compact and 00 and Ol are separated sets. See
Theorem 7.19 for a partial converse. Results like Theorem 7.18 and 7.19
have been proved in contexts somewhat more general than ordinary exponential
families. See Schwartz (1967), Qosterhoff (1969), Ghia (1976), Perlman (1980),
and Marden (1982a, 1982b), for such extensions and various applications. In
the following statement 61 denotes the closure in Rk, not merely the closure

relative to N.

7.18 Theorem

Let ©) = N be compact and assume 6, N él = ¢. Let ¢' be an
admissible test. Then there exists an equivalent test ¢ (i.e. ﬂ¢.(9) = n¢(e),
6 €0 U Ol), a convex set S satisfying 7.17(2), and a (locally finite)

measure H, on éi’ i=0,1, such that (x) <= for x € S° and
1
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1 if xg5

Ay (x)
: 1
(m o(x) = 1 if xe€es°, >
Ay (x)
0
Ay (x)
0 if xe€s°, 1 <1
AHO(X)

a.e.(v). (AHo(x) is finite since HO(OO) <w,) If (OO U él)° # ¢ then ¢ = ¢';

and hence all admissible tests are of the form ¢ in (1).

Proof. If ¢' is admissible then according to Theorem 4A.10 there exists an
equivalent test ¢ and a sequence of a priori distributions Gn (concentrated

on finite subsets of 0) whose Bayes procedures ¢ (say), converge to ¢ in

the topology of 4A.2. By Exercise 4A.2.1 this convergence means that ¢n > ¢

weak* -- i.e.
(2) J @p(x) - #(x)) g(x)v(dx) ~ 0

for every v integrable function g. A consequence of (2) is that if a subse-
quence of ¢n(x) converges pointwise on some (measurable) subset T < K (say
¢n.(x) + A(x), x € T) then the Timit must be ¢ (i.e., ¢(x) = A(x), x €T,
a.e.(v)).

Let

(3) g0 = eV g (o) e g (a0) . oo, i-0,1

%
Note that HOn(Oo) = 1. Then
1 A, (%) > 1
[ . Hin
(4) o0 = {} it A
0 Ay (x)
On < 1
Let w, = HOn + Hln' Let Wors W S be as in Lemma 7.17. Let Hi = w|@. s

i
i=0, 1, so that H, ., > H., i=0, 1, as n' > «. Then HO(O) = Ho(eo) = 1 since



230 STATISTICAL EXPONENTIAL FAMILIES

HOn(OO) = 1 and 0 is compact. The assertions in (1) follow from this along
with Lemma 7.17, (4), and the decision theoretic facts in the first paragraph
of the proof.

If ¢' and ¢ are equivalent and (9, U él)° # ¢ then ¢' = ¢ (a.e.(v))
by completeness (Theorem 2.12). [

Many of the tests produced by the recipe 7.18(1) are admissible.
In certain statistical situations, it can even be concluded that all of them
are admissible. Then Theorem 7.18 describes the minimal complete class. The
following converse to Theorem 7.18 contains statements of these facts. It
is not entirely satisfactory but it is the best general result we have been

able to devise. For the purpose of this theorem define

(1) e; = {6, €8;: 6, €N  or there is a 6, €0, 3 (1 - p)o,

+ pBl € 01 for 0<pc<1}
(See Exercise 7.19.3 for an extension of (1).)

7.19 Theorem
Consider the testing problem described in Theorem 7.18.
Suppose ¢ satisfies 7.18(1) where H1 is concentrated on 0* and §
satisfies all the assumptions of Lemma 7.13 relative to some 62 € Rk.

Suppose also that

1 AH (x) s 1
(2) o(x) = § % if xe § and —
0

(This is a mild extension of the latter part of 7.18(1).) Then any critical
function as good as ¢ must also satisfy (2) and 7.18(1) with the same values

of S, HO’ Hl' If also either
Ay (x)

(3') v({x: 1 1 and o(x) <‘1}) '= o ,
AHO(X)
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or
AH (x)
(3") v({xt —2— = 1 and ¢(x)>0}) = 0 ,
Ay (x)
2
or
(4) (Supp (Hy + Hy))® # ¢
then ¢ is admissible; and if n is as good as ¢ then n = ¢ a.e.(v).

If v is dominated by Lebesgue measure, U(0, 62) = U*(o, 62)
for some 6, € Rk, and él c OT then the collection of tests of the form 7.18(1)

is a minimal complete class.

Proof. Suppose ¢ is defined by (2) and 7.18(1) where S satisfies the
assumptions of Lemma 7.13. Suppose nis another critical function as good as
¢. Then n(x) =1 if x £ § by Lemma 7.13.

If 6 € @1 then

(5) 0 < £(n(x) - o(x))e? X v(dx)
since 0 5_nn(e) - n¢(e). By continuity (5) also holds if 6 € él N N. Now,
suppose ;p = (1 - p)e2 * 08, € 0; for 0 < p < 1. Then (5) holds at 8 = ;p and

S(n(x) - q>(x))e§p.x v(dx) is continuous in p as p 4+ 1 by Exercise 1.13.1(ii).
*
It follows that (5) holds whenever 8 € 0 -
The opposite inequality to (5) holds when 6 € oo, and H0 is finite

since éo = N is compact. Hence
(6) 0 < s (fn(x) - o(x))ed"* v(dx))(H,(de) - HO(G))
Notice that n(x) - ¢(x) < 0 whenever A, (x) > AHo(x), so that

1

£ (n(x) = o))" Ay () w(dx)

A

7(n(x) = 6(x))* A (x) v(dx)
0

77627 y(dx) Ho(de) < =
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Furthermore, as already noted, H0 is a finite measure. Hence the order of
integration in (6) can be reversed, yielding that
(7) 0 < [ (n(x) - ¢(x))(Ay (x) = Ay (x))v(dx) < = 3

5 H, Ho
with the integral extending only over the region x € S since n(x) = ¢(x) for
x £ S. Because ¢ satisfies (2), the integrand in (7) is non-positive; hence
n(x) also satisfies (2), for otherwise the integral would be negative.

If in addition ¢ satisfies (3') then n¢(el) > nn(el), 6. €0

1 1’

(a contradiction) unless n(x) = ¢(x) a.e. (v). Similarly if (3") is

satisfied n(x) = ¢(x) a.e.(v); for otherwise n¢(60) < nn(eo), e0 € 00.

Finally, suppose (4) is satisfied in place of (3') or (3"). Note that the
reasoning following (7) shows that equality holds in (7) and hence in (6).
From this it follows that f(n(x) - ¢(x))ee'xv(dx) =0 a.e. H0 + H1
this integral is non-negative on OT and non-positive on 90. (4) then implies

since

n(x) = ¢(x) a.e. (v) by completeness and hence ¢ is admissible. This completes
the proof of all assertions in the middle paragraph of the theorem.
If v is dominated by Lebesgue measure and also satisfies the

remaining assumptions of the last paragraph of the theorem then
AHX(X)
\){XZ E’m = 1} = 0
0

so that any test, ¢, of the form 7.18(1) is also of the form (2), and (3')

(and (3")) is satisfied, and H1 is concentrated on 8, < OI, and S satisfies

1
assumption 7.13(2) of Lemma 7.13. It follows that ¢ is admissible. ||

COMPLETE CLASS THEOREMS FOR TESTS (Contiguous Hypotheses)

7.20 Definitions:

It is necessary to characterize the local structure of 0y near o,.

Let 6y = {90} and 0y be given and let
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(1) J(e) = {J: J is a finite non-negative measure on
{6: 6 c 0y, [|e-6y]| < €3, [ 3(d8) <1, f“—d(d—f)':-g < w,
0-6
0
6-60
| [ ——— J(de)]| < 1}
ll6-8,
Then let
8—90
(2) A(e) = {(v,M): v = [ ———— J(de),
l6-6,

8-6,)(6-6,)"
M= '[(—“—Q)_(Tz-())—‘](de)’ J e J(e)}.
5-6
0

k

Also, let A = N A(e). Note that v e R° and M is a positive semidefinite

e>0
kxk matrix, and A and A(e) are compact, convex sets.
In various typical statistical problems it is not hard to explicitly
describe A. For example, if eo =0 and 0O = 60 u 5& is a closed conical

set then A is the convex hull of points of the form

(v,0): veo, |[v] <1, and
(3)
(OM:M=w'msved, -veo, ||v] <1.

(See Exercise 7.20.1.) As another example, suppose © is a twice different-
iable curved exponential family at 00. This means that there are two ortho-

gonal vectors uy, u, € Rk, with [fu)]| = 1 such that for 6 €0

(4 0-0g = ((0-89)upluy + llo-64[1%uy + o(l|6-0011%).
(Note in (4) that |(6-8,)-u;| = [|6-8p] +0(][6-89]|%), and also that u, = 0
is a possible value of u2.) Then A 1is the convex hull of (u],O), (-u],O)
and (uz,u]ui). (See Exercise 7.20.2.)

As with earlier results the full complete class characterization is not
directly as a generalized Bayes test but involves an extension of this notion.

As part of this extension the kernel e? X is replaced by
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(5) 0(6,x) = Eflf:l:%iﬁ
[le]]

A converse result which sometimes yields a characterization of the minimal
complete class is given in Theorem 7.22. As with earlier results both of the
following theorems can be profitably extended beyond the exponential family con-
text in which they are proved below. See Marden and Periman (1980), Marden

(1981, 1982b), Cohen and Marden (1985), Brown and Sackrowitz (1984, Theorem 6.1),

and Brown and Marden (in preparation).
7.21 Theorem

Let ©y = {63} be a simple null hypothesis. Let ¢' be an admissible
test of oo versus O]. Then there exists an equivalent test ¢ and a closed

convex set S satisfying 7.17 (2) such that

(1) 6(x) =1 x¢s5.

Further, for every Xg € s° there is a finite non-negative measure H on 61 - {eo}
8+ (x-X,)

with $° < {x: e H(de) < =}, a constant C ¢ R, an M ¢ Bys and a

Ve Rk satisfying (3), below, with at least one of C, H, v, M being non-zero,

o

such that for all x e S

1 <
e-xo
if C i w(e,x-xo)e H(de)+v-(x—x0)
(2) $(x) = + (x=x,)"M(x-x,)/2 .
0 0
0 >
If 0; # 6 then ¢ =o' a.e. (v).
Define
6-0
v =v- | 0 H(de).
lo-sglle 1e~%ol!
Then there is a sequence €5 > 0 such that 1im V.. = VY (say) exists, and
Jre ]
(3) (vO,M) € A.

(Note that if fHell']H(de) < » the extreme right side of (2) can be re-

written as
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" ee-(x-xo)_]

(3") L
Ilel]

In particular, limv_ = Yo exists.)
e~+0

H(de) + vy (x-xq) "M(x-xy)/2 .

Proof. The assertion just after (2) follows from completeness, as in
Theorem 7.17. Now, suppose ¢' 1is admissible. Then by Theorem 4A.10 there
is an equivalent ¢ and a sequence of prior distributions Gi concentrated

on finite subsets of © such that the Bayes procedures, 95

= ¢G » converge to
i

¢ 1in the topology of 4A.2. (See the proof of Theorem 7.18 for further re-

marks.)

Without loss of generality let 8 = 0 and

( e‘¢(9)ei(de)
G!(de) = .
i(de) e'¢(05Gi{0}

Thus ¢i(x) = {5} according to whether

(4) | e¥%G}(de) .
O] <

As in 7.17, it is possible to reduce {G%} to a subsequence (if neces-

sary) such that now for some closed S satisfying, 7.17 (2),

X ¢S

n
8

Tim [e° %62 (de)

o

q(x) <= xeS ,

0 < 1im fee'xG%(de)

where G% > G' and q(x) =fee'XG'(de). Clearly, (1) is satisfied.
Assume without loss of generality that Xy = 0 € S°. Rewrite (4) as
2 >
(5) [ wlex)|lel|“6i(de) + [ (e-x)Gi(de) cj .
0 €] <
1 1
2| - '1 2|
Let d; = fllell“G;(de) + IIf 864(de)|[+|c;| and H;(de) = d;'[[e]|G;(de). Sub-

stituting in (5) and multiplying through by d;] yields
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(6) w(8 ,x)H, (d 8°X_ W (do) ” c.
Joy S I a2 M) <

where in(de) + | j(e/He||2)Hi(de)H + eyl = 1. Reduce {H;} to a subse-

quence (if necessary) so that

(7) fo/]le]|®H;(de) » v, c; ~ C.

H, + H' since G; ~ G'. Furthermore JH'(de) + ||v][ +C =1 since x5 = 0 € s°.
Let H = H'\5 o)
Let e > 0 such that H({e:||e|| =€}) = 0. (A1l but a countable set of

e's satisfy this.) For each x ¢ So

(8) / w(8,x)H,(de) » [ w(8,x)H(de),
llell>e ! llel|>e

and

(9) 1] (w(e,x) - 228Xy (do)| = 0(e)
6| <e 2ol

2

since (et-l -t —t2/2)/t = 0(t) and in(de) < 1. Another subsequence may

now be taken, if necessary, so that the following limits exist:

(10) v_=lim [ > Hy(de) = v - | o
: 2
€ e lefl<e ol ! [[ell>e |lel
(1) M= Tim [ 22 H.(do).
© i flof? !

By definition, (ve,Me) e M(e). B(e) s compact in the obvious topology.
Hence there is a subsequence 5> 0 so that (vej,ME_) > (vO,M) e A, If
necessary another subsequence of {Hi} may be extracted using a diagonaliza-
tion argument so that (10) and (11) hold for each €5 It follows from (5),
(7), (8), (9), and (11) that for x e S°

<
¢i(x) > if € fu(e,x)H(de) +v-x+x'Mx/2 .
0 >
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Note that Tr M = H'({0}). Hence Tr M + H(31) + ||v|| + C =1 so that at least
one of M, H, ||v||, C are non-zero.

It follows from (10) that (3) is satisfied. Since ¢; > ¢ in the topology of
8A.2 this yields (2). ||

7.22 Theorem

Consider the testing problem described in Theorem 7.21. Suppose 8g € N°
and ¢ satisfies 7.21(1), (2), and (3) where S satisfies all the assumptions of
Lemma 7.13 and H is concentrated on e;, as defined in 7.19(1). Suppose ¢(x) is
also given by 7.21(2) for x ¢ S - S°. Then any critical function as good as ¢
must also satisfy 7.21(1) for x ¢ S and 7.21(2) for x ¢ S (a.e. (v)) with the
same values of S, H, v, M, C, Xg-

If also either

(1) vix: w(e,x-xo)H(de) + v'-(x-xo) + (x-xo)'M(x-xo)/Z =C, ¢(x) <1} =0
or

(1) vix: w(e,x-xo)H(de) + v'-(x-xo) + (x-xo)'M(x-xO)/Z =C, ¢(x) >0} =0
or

(2) (Supp H)® # o

then ¢ is admissible; and if n is as good as ¢ then n = ¢ a.e. (v).
If v is dominated by Lebesgue measure, U(e,ez) = U*(e,ez) for some
0y € Rk, and 61 = e; then the collection of tests of the form 7.21(1), (2)

is a minimal complete class.

Proof. Much of the proof resembles that of Theorem 7.19 (as does much of the
statement of the theorem). Assume with no loss of generality that 89 = 0 and

Xy = 0. Let €5 > 0 and v, be as in 7.21(3) and let Jj € J(ej), be measures

supported on finite subsets such that
6
v. - [——=J.(de) >0
. 2
€ o] ]%
(3)
66"
/ — Jj(de) > M.
e
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Let Hyy = H) + 055 Hop(101) = € + [llell™20(de). As in 7.19 if

1i (CHIEHESH,
is better than ¢ then n satisfies 7.21 (1) and

(4) 0 < [ (nx)=(x)) [e ™ty (d0) - Hoy (do))u ().

For each x e S
(5) [e% X (Hy;(de) - Hy; (de))

= f w(6-x)H(de) + v-x+x'Mx/2-C

+ (,fw(e-x)Ji(de) - x'Mx/2).

Lemma 2.1 implies that the dominated convergence theorem can be invoked in (4),
(5) as i+ since 0e N° and w(6-x) = 0(e?X+1). Hence

(6) 0 < % (n(x)=6(x)) (Jw(®Xx)H(dB)+V-x+x"'Mx/2-C)v(dx).

It follows that n satisfies 7.21 (2). The remaining assertions of the

theorem are proved just as the analogous assertions in Theorem 7.19. |
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EXERCISES

7.2.1

Prove proposition 7.2. [If v is a finite measure and

v({||x|] > a}) = 0(e”®%) then Ev(eEI'IXII) <o forall 0 <e' <e€.]

7.4.1

(i) Let S be a convex set with p = inf{||x||: x ¢ S}. Suppose for

some € >0, c <~ 7.4(1) holds i.e.
(1) Py ({X/o ¢ S}) < cexp(-epa) V a €R.
0

Show that {6: ||6 - 60|| <e'l} N° for all g <e. (ii) Give an example of
a nonconvex set with v{x: ||x||] < p, x £ S} > 0 and in which (1) holds but

{6: ||e - eoll < g'} ¢ N° for any €' < €.

7.5.1
Let 6, € N° and H' = H'(v, a). Show
(1) Tim (n”! Tog P, (%, € A')) < -K(F', £(8p))
N 0

[Use Theorem 7.5 and Proposition 5.15.]

7.5.2
In 7.5.1 suppose At nke ¢ ¢. Show
(1) vim (n"! g Py (R, € W) = K, g(ey))
N->co 0

[For one direction use 7.5.1(1). For the other let Pé") denote the distribu-

tion of S under § = e(§H+(e)).]

Iv

(2) Pe (X eH

0

o) 2 ewl-n(K(G, 8) + &)1 PN (is: (s - §) + B < o)

¥

exp[-n(K(g, eo) + g)]

by the Central Limit Theorem (Exercise 5.15.1).]
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Let 8y = 9(50) € N°. Let Q be a closed subset of Rk. Show

lim (n”! log Py (7, € Q) < -K(Q, &) .

n-oo

I ~ -
[Let e >0. Show Qe & H+(vi, “i) where K(H+(vi, “i))-3 K(Q, 50) -€.
i=1
When k > 2 this requires some care.) Apply 7.5.2.]

7.5.4

Let eo = e(go). Let Q Rk be a set such that
K(Qe, gy) = K(Q, &) = k (say). Then

(1) Tinn! log Py (R €Q) = -k
0 n

n-

[Reason as in 7.5.2 and use 7.5.3.]

7.5.5

12 be i.i.d. random variables on Rk with distribution F.
k

Let h: X ~» Rk be measurable and Q =« R". Let &(Q) = inf {gF(x): x € Q}

Let X

where EF(x) denotes the entropy as defined in 6.16(1). Suppose &£(Q°) = £(Q)
and E(exp (€l1X{1)) < = for some € > 0. Then

Tim n1
n-r»

Tog P(X, €Q) = E(Q)

(i) Show that E(-, go) is relatively continuous on {x: i(x, 50) < o}
if v(K - K°) =0, if k = 1, or if v is concentrated on a countable number of
points satisfying Assumptions in Theorem 6.23. If so, then for Q an open set
E(Q, 50) = E(Q, go) as required in 7.5.4. (ii) Given an example where Q is open

and E(Q, EO) # E(G, go). [Let v be Lebesgue measure on the first quadrant of

R2 plus a unit mass at the origin.]

7.7.1

Hwang (1983) raises the following question: Let X ~ N(e, I),

k

6 € R°. Does there exist an estimator §: Rk > Rk for which
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(1) P(ll8(x) - 0]| <B) > Pe(llx-0]| <B) v B>0, oeRk ,

with strict inequality for some B, 6? (If so, & would be said to "stochastically
dominate" Go(x) = x. Note that for fixed B > 0 there exists an estimator §
dominating 60 in the sense of satisfying (1) for all 6 € Rk. See Hwang (op.
eit.) and references cited therein.) It can be shown that § # 60 exists
satisfying (1) if and only if there exists a continuous spherically symmetric
function & # 60 satisfying (1). Show that no such function exists. [Suppose
He(xg) ] < leoll for some x; € RX (and hence for a neighborhood of x;).

Let 6, = pxj and B = (0 - 1)|Ixyll. Show that for some e > 0, sufficiently

small,
P (116(X) - 8,11 >8)
(1) £

ro (15,01 >3,

Po (1 € H'(xg, 13 119), 600) € W(xgs |1x511%))

- 2,
e Po (X € Hxgx Il 19

Use the multivariate generalization of 7.3(3) to estimate the denominator on
the left of (1); then use 7.7(3) for the asymptotic assertion in (1). A
similar argument, with different 6  and B, applies when ||6(x0)|| > leoll

for some x; € Rk. See Brown and Hwang (in preparation).]

7.9.1
Consider the estimation problem described in Exercise 4.24.3. Show

that the estimtor 4.24.3(1) is admissible. [Use Theorem 7.7 and Corollary 7.9

to show that if §' is better than § then &'(x) =0, x< 1, and §'(x) < %,

x = 1, and symmetrically for x > 2. Among all such estimators § minimizes the

risk at 6 = 0.]

7.9.2 (A uniform version of Corollary 7.9)

Let V., < V2 be subsets of the unit sphere in Rk with V1 closed and

1

V, relatively open in the unit sphere. Let

2
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(1) alv) = sup {a: K0 H (v, o) # ¢}

Assume a{v) <= Vv € V,. Then

(i) a(v) is continuous for v € v,

(1) ve>0 3 6>0 3 v(H(v,a(v) -€)) >6, veV,
(iii) ve>o0 3 ro 3

(2) veE&(lry) > a(v) -e V VvE Vl, r>r,

Consider a steep exponential family. Let K < {x: x1 <0}, 0 €K,
and let K be strictly convex. lLety € 3K, y # 0. Let ei € N°, i=1,..., such
0.
that £(6,) > y. Then, (i) 3I<w, €>0, &> 0 such that v(H+(-I-|-e—:T|-,6)) > 8

for all i > I. Hence, (ii) ¥(0;) > €[[6]] + Tn & for al1 i > I, and (iii)
1im w(ei) = ©
i

[There exist Vl’ V2 as in 7.9.2 and € > 0, & > 0, satisfying

a(v) <e, vE€ V2; Vey<-2€, VE Vl; and
(1) wH (v, €)) > 5§ v VEV,

(Draw pictures in R2 to help see why the above is true. The strict convexity
9.
is important here.) Now, HosH » e . (Why?) Hence, TT_%—TT' £V, for i
i

sufficiently large, by 7.9.2(2).]

7.9.4

Consider a steep exponential family. Let © « N be relatively
closed in N and assume K is strictly convex. Suppose x € 3K but
x ¢ (E(6 n N°))". Show that 8(x) # ¢. (This result complements Theorem 5.7.
I believe it should be possible to prove it by showing the above hypotheses
imply that 5.7(1) is satisfied. However, the hint below indicates a different
argument.

[Assume x = 0 € K < {x: Xq < 0} (w.l.0.g.). Apply 7.9.3 to show

Tim y(6) = = . Now proceed as in the proof of Theorem 5.7, following
1191 [+=,0€0
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Consider a standard exponential family with natural parameter space

N. Let ve Rk and gy = sup {a: v(H+(v, a)) > 0}, Let 6; = p;v + ny as in

Corollary 7.9. Then

(1) lim v vw(ei) = a

o0
Hence, there exist a ¢ > - such that
(2) w(6;) > -c+ap,
and, consequently,
(3) pei(x) > 0 V x€H (v, o)

[The key assertion, (1), is a uniform version of Theorem 3.9,
since for n; =n it follows immediately from that theorem. However, it seems
easier to prove (1) as a consequence of Corollary 7.9. (Alternatively, one
may also derive the above, as well as 7.9, through an application of convex

duality, since K° = R, etc.)]

7.11.1

In the situation in Corollary 7.11 let p(ei) = Pe.(sz)/(Pe (51))'
i i
Construct examples (i) in which p(6;) ~ ||ei||'“, a > 03 (ii) in which
p(e;) ~ 0 but Iieillu p(65) = for all a > 0; and (iii) in which

~al 16511

o(e;) = 0(||ei||-a) for all a > 0 but e p(6;) » = for all a > 0.

o-1

[(i) Let k = 1, v({0}) = 1 and v(dx) = x dx on x > 0.]

7.12.1

Consider a testing problem, as in 7.12 with 9 = H(v, a) N N,

0, =N - 60, and 0y N N° # ¢. For z € Rk, let z = z(l) + 2(2) where

1
z(l) € H(v, a), 2(2) = pv L H(v, o). Assume (w.l.0.g.) v(Rk) = 1. Show
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(i) If ¢' is better than ¢ then

(1) J ¢(x)v(dx|x(1) =y) = | ¢'(X)v(dx|x(1) = y)
X(1)=y x(1)=y
y € H(v, a) a.e.(v)
and
(2) § xBpv(ax|x(D = y) = S «(2) ¢'(X)v(dx|x(1) =)

y € H(v, o), a.e.(v)
(ii) Show that ¢ is admissible if and only if for some measurable func-

tions Ci’ i i=1,2,

1 it x s (2
(3) #(x) = 0 if Cl(x(z)) < xt1 ¢ Cz(x(z))
YI(X(Z)) if X(]') - Cl(x(z))

1 if x(l) Cl(x(z))

A

[This is a continuation of 2.12.1 and 2.21.2.]1 (Matthes and Truax (1967).)

7.12.2

Prove that if ¢ is an admissible test and Q = X with v(Q) > 0

then ¢ must also be admissible for the same problem with dominating measure vIQ.

7.12.3

Let X, = X and X, = sZ + %2 be the canonical statistics for the two-
parameter exponential family generated by a N(u, 02) random sample. (See
Example 1.2.) Consider Figure 7.12.3. Draw the broken line parallel to
HoXq - x2/2 = 0 such that v(R) = v(S). (v is defined in Exampie 1.2.)

(i) Show that this is possible. (ii) Let ¢1 be the critical function for
the test with acceptance region Q' + R - S, and let % be the critical function

for the usual one-sided t-test, which has acceptance region Q'= {x] <0or
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Xy > cx%}. Show

E(u,oz)(¢1) < E(u,oz)(¢0) v <0

(1)

E(U,OZ)(¢1) > E(U,O.Z)((%) H 3110

Hence ¢1 is a better test than ¢0 of
(2) Hp: w < 0 versus  Hpt w > wg

[E(¢>1 - ¢0) = E(xS - xR). Now use Corollary 2.23.] (See Brown and Sackrowitz
(1984). See also Exercise 7.14.6.)

AX Y,
. z so /. X, =cxi
X, = )(1
X
’
Q \
< \
K_’ T ; XI ,e‘
H, 2 H,
Y-
2 P(Fo < ,/2 )
Figure 7.12.3: Diagram for Exercise 7.12.3
7.13.1

Here is an example which shows that something more than 7.13(1)
is needed for validity of the conclusion of Lemma 7.13. Let X € R2 be
bivariate N(6, I). Consider the problem of testing 0y = {0} versus

0; = {6: 6; >0, 8, = -ef}. Llet S = {x € R%: Xy > 0}.
(i) Show that U = ¢ but U* = (0, -1).
(ii) Verify that S satisfies 7.13(1) but not the remaining hypotheses
of Lemma 7.13.
(ii1) Let ¢1(x) =1if x £S5, =0 otherwise. Show the conclusion of

Lemma 7.13 does not apply to ¢ [Let ¢2(x) =1if X1 >0, x,<e or
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Xy < 0, Xy < -€. Show for € > 0 sufficiently small ¢y dominates ¢1.]

7.13.2

The additional assumptions of 7.13 are stronger than necessary.
Let X ~ N(8, I), 9 = {0}, S be as in 7.13.1. But now let

0, = {(u, u4): u > 0}. Note that S satisfies 7.13(1) but does not satisfy

1
either of the other two assumptions of Lemma 7.13. Show that if ¢' is as good

as ¢ then ¢'(x) =1 for all x ¢ S. Conclude that ¢ is admissible. [Show
directly that if Q is an open set in s¢ then

Pt (@)

lim () -
e P(u,u“)(s)

A test ¢ is said to have a nearly convex acceptance region if
there is a closed convex set A such that ¢(x) = 0, x € A° and ¢(x) =1
for x ¢ A. (Thus, if v is dominated by Lebesgue measure any test with nearly
convex acceptance region is equivalent to one with a (closed) convex
acceptance region. See the Remark following Corollary 4.17.) Suppose
9 = {eo} is simple in the setting of 7.12. Show that any Bayes test has

nearly convex acceptance region.

7.14.2

Let 9 be a sequence of critical functions with nearly convex
acceptance regions. Suppose ¢y > ¢ weak* on L_. (See 4A.2(1) for the

definition of weak* convergence.) Then ¢ has a nearly convex acceptance
region. [Assume v(Rk) < o, To each ¢i there corresponds an Ai' Let {uj}
be a countable dense subset of {u: [lull = 1}. Choose a subsequence {i'}

such that aAi|(uj) converges for each uj,  say, aAi' (uj) >a Let

i

A =nA ("j’ aj). Then ¢(x) = 0, x € A° and =1 for x ¢ A.]
J

7.14.3
Suppose Oy = {eo} is simple in the setting of 7.12.
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(i) Show that the tests with nearly convex acceptance regions form a
complete class.
(ii) Suppose, also, 0, = R - {64} and v is dominated by Lebesgue measure.
Show that the tests with convex acceptance regions form a minimal complete

class. [Use Theorem 4.14, 7.14.1, 7.14.2, and, for (ii), Theorem 7.14.]

7.14.4

Suppose the support of v is a finite set, X. Let 9 = {eo} €N =
Rk. (i) Prove that ¢ is admissible if and only if there is a closed
convex set A such that ¢(x) = 1 if X ¢ A, =0 if x € A° or if x € r.i.F
for some face F of A. (ii) Can you formulate an analogous complete class
statement valid when X is countable and the assumptions of Theorem 6.23 are
satisfied? ((i) Use Theorem 7.14, Corollary 7.10, and 7.12.2. (ii) Be
careful; the characterization in (i) is not valid here, even when

X = {0,1,...1%, and so will need to be modified.]

7.14.5

Consider a 2x2 contingency table. (See Exercise 1.8.1.) Two
common tests for independence of row and column effects are the likelihood
ratio test and the X2 test, based on the values of

Y., Y,.
+
(V.. - S 42

2 N

X = NZ. 1
i, Y1.+ Y+j

(i) Use Theorem 7.14 to show that the X2 test is admissible.
(ii) Is the likelihood ratio test also admissible via Theorem 7.14?

(iii) Use 7.12.1 to prove both tests are admissible.

7.14.6

Show that the test with critical function ¢1 in Exercise 7.12.3

is admissible.
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7.16.1
Let X € RK be N(6, I). Suppose 0y = 0 and

0y = {6: leil >c i=1,...,k}. Consider level a tests of the form
100 = 1= X tqap,izt,e kg K and 000 = 1 Xy 1qq 3 (0

Note that ¢, is admissible. Adjust k, c, a to provide an example where ¢
1 2

dominates ¢1 except where m, 1is extremely small.

¢,

7.16.2

Consider the univariate linear model, as in 7.15. Show that the

usual F test, 7.15(1), is Bayes. [Let n € R°. Let 02 = 1/(1 + Ilnllz) and

M

i ni/(l + ||n||2), i=r+l,...,s. Under 0, also let u; = ni/(l + Ilnllz),

i=1,...,r. Under % (resp. Ol) let n have density proportional to

2
(1 + 1in112)7P/2 gyp(—Lintl
2(1 + 1In11%)
2
_ S ns;
(resp., (1 + Ilnllz) PIZ axp( 3 L

—) ).l
r+1 2(1 + (Inl1°)

(Kiefer and Schwartz (1965).)

7.16.3

Verify when r = 2 that the F test has the local optimality

property described in 7.16(1). (This is called D-optimality.) [Write

3 2y 9
by ;;? ﬂ¢(0, o?) z Soly)( - pu(
1

y)‘ )dy
aui

u=0

and use a general form of the Neyman-Pearson Lemma or Theorem 2.21.]

7.16.4

Let Xl""’xk be independent gamma variables with known indices
CTERRR and unknown scale parameters Opsees0y- Consider the problem of
testing the null hypothesis HO: 01 = - = O (In the special case where
the Xi/Oi are x2 variables resulting from a normal sample then this is the

problem of testing homogeneity of variance. (In this notation the variances
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are 01,...,ck.)) Show

(i) The Tikelihood ratio test for this problem has acceptance region

IA

i

nhmMm=x

(1) S = {x: ————l;—— c}, where ag =
i
(ii) When these distributions are written as a canonical exponential
family the null hypothesis is linear in both parameter space and expectation
space. Nevertheless, for k > 3, the acceptance region for the 1ikelihood
ratio test is not convex. (Hence there is no hope of proving its admissibi-
lity via Theorem 7.14.)
[(ii) Consider k = 3 and a; = a. Consider points of the form

x, = (z, z, 1) on the boundary of the acceptance region S. Let

z
l'lxi

f(x) = —-———;5 - C so that f(x) = 0 for x € 3S. Show that for z sufficiently
(Zx,

1
Targe (7f(x,))" (D,f(x,))(VF(x,)) < 0.]

(ii1) The likelihood ratio test is unique Bayes, hence admissible. Under

2

H1 let ei = l/oi = (1+ ”1) where n; € R are independent variables with

;-1 -0;
density |ni|( i-1) (1+ n?) %i . Under Hos 8 = Voy = (1+ nz) where n € R

has density |nl(a°'1)(1 +n?)™%.  (This result is another one of many
contained in Kiefer and Schwartz (1965).)

Note: It is not always true that a likelihood ratio test is
admissible. For an interesting counter-example see Lehmann (1959, p.338)

or Kiefer and Schwartz (1965, p.767).

7.17.1

Let x € R2 be bivariate normal, N(8, I). Consider the problem
of testing @) = {0} versus o, = {6: 6,6, >0, [l6]] > 1} . Show that the
non-randomized level o = .05 test with acceptance region {x: ]lx{|2 < 5.991}

is inadmissible. (Can you also find a better test?) (Compare this result
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with 7.22.2 in which this test is admissible.)

7.17.2

Exercise 2.10.1 indicates a nontrivial testing problem where OO
and Ol are contiguous and all tests are admissible. Here is an example of
the same phenomenon in which the null and alternative hypotheses are sepa-
rated: Let 1 <m< k and Tet X = {x € RK: x; =0 or 1, i=l,....k, Ix; = m}.
Let v be counting measure on X, with {pe} the exponential family generated
by v. Let 9y = {0}, ©; = {6: Ilellz.i 1}. (Other more restrictive
definitions of 0, will also suffice.) Let ¢ be any (possibly randomized)
test. Then ¢ is admissible.

[It is possible to use Lemma 7.13 for this, but here is an
easier argument. The aggregate family generated by {pe} contains
(k)"

{qu & € X} where qg(~) = Xg(') and also qgo(°) where

&0 = £(0) (E)}. If ¢ is inadmissible there exists a test ¢' better than ¢
for testing OO versus Ol. Then (by continuity) ¢' must be as good as ¢ for

testing 9 versus {qE: £ € X} . This implies ¢'(x) > ¢(x), x € X,
0

and (9712 o' (x) < () 3 6(x).]
m  xex m X€X

7.18.1

Let X;, X, be independent gamma variables T'(a, A)s 1212,
variables with ags O known. Consider the problem of testing HO: Al =2, = 1

versus the alternative le max |1 - Ail > ¢ for some given € > 0. Show that
i=1,2

any "intersection" test with acceptance region --
(1) o(x) =0 iff a7 <X <A, s i=1, 2, (0 < 8,0 <8, < ) --

is inadmissible. (See also 7.21.1.) [No admissible test can have an
acceptance region with a sharp corner at (xl, x2) = (a12’ a22) like (1) has.

See Example 2.10.]



TAIL PROBABILITIES 251

7.19.1

In Theorem 7.19 replace e? by

(1) e?* = {e] € EH: 04 e N or there is a set {ej: Jj=1,...,d}= N

and a sequence {Ci} <0 with Ly > 8y and

{z51e conhull ({ej} v {e]})} .
[Use 1.13.2.]

7.20.1

Prove the assertion in 7.20(3). [The extreme points of
{J:0 € J(e), [od(ds) = Vo}s Vg € ©s are the distributions in this set which
are concentrated on a single point; similarly the extreme points of
{9:0 ¢ J(e), fod(de) = 0, [ |[0]|2(de) = o} are two-point distributions. The
extreme points of a(e) are thus points (v, M) satisfying 7.19(2) with J
either a one- or two-point distribution, as above. The extreme points of a

are (contained in) the set of limits as e +~ 0 of these points.]

7.20.2

Prove the assertion following 7.20(4). [Let J be either a one- or two-

point distribution.]

7.20.3

Generalize the assertion following 7.20(4) to apply to the situation where

0 1is a twice differentiable manifold at 8- [First generalize 7.20(5)!]

7.21.1
In the setting of 7.18.1 consider the problem of testing HO: M o=y s 1
versus the complementary alternative H1: A1 #1 or xz # 1. Show that the

intersection test 7.18.1(1) 1is still inadmissible.
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7.21.2

Consider the curved exponential family of Example 3.14 and 5.14. Let
0 = {90} and 0y = 0-0q- To be specific take 8y = e(xo) = (-1,0); i.e.,
Ag = 1. One easily constructed test of 9 is that which rejects when
|i =Xl > ¢, with ¢, chosen to give the desired level of significance.
(Such a test can be constructed for any curved exponential family, and has
certain asymptotic optimality properties as n + ».) Show that for moderately
large n and the usual levels of significance this test is inadmissible;
although for every n there exists a (possibly very small) level of signifi-
cance for which the test of this form is admissible. [Use 5.14 and Theorem
7.21. Except for small values of n or large values of < the acceptance
region has a convex, but not strictly convex, form. Theorem 7.21 allows only
very special admissible acceptance regions which are not strictly convex; and
for appropriate values of n, <, the above acceptance region is not of this

special form.]

7.22.1

Let X ,X_ be independent normal variables, X - N(u,1+p2). Con-

10000,
sider the problem of testing Hoiw = 0. Let ¢y = 1 if |X| >1.96...//n ,
= 0 otherwise; and ﬂ](u) = Eu(¢1)' Show

(i) ¢ has level a = .05 and is locally unbiased (i.e., ni(O) =0,
u;(o) >0). (Is ¢7 also globally unbiased; i.e., ﬂ](u) > .0527)

(i) 9 is inadmissible. [Use 7.20(5) and Theorem 7.21. Note that

8, = -—l§-= -(2(1+u2))—] < -1/2 to show ¢; cannot satisfy 7.21(2) unless

2 20
H=0.]

(iii1) Find a locally best locally unbiased level o test; i.e., the test
which maximizes ="(u) subject to =(0) = a, w'(0) = 0. Use Theorem 7.22 to
verify this test is admissible. [Admissibility actually follows directly from
the fact that this test is the unique locally best locally unbiased Tevel «

test, but it may be instructive to note how this test can be written in the

form 7.21(2) with H = 0.] Call this test 7%
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((iv) Is 95 unbiased?? Is 95 better than ¢]?? If not, what is??)

(v) Generalize (i)-(iii) to arbitrary curved exponential families: Show
that the Tocally unbiased test with parallel boundaries for the acceptance
region is not locally best among locally unbiased tests unless uy = 0 in
7.20(5). State (convenient, frequently satisfied) conditions under which this

parallel boundary test is inadmissible.

7.22.2

Let X be bivariate normal with mean 6 and covariance 1. Consider the
problem of testing 90 =0 versus 0, = {(e],ez): 818, > 0}. Consider tests

of the form ¢(x) = x 2 2 (x), a,b,c > 0. (These tests are
{a(x]+x2) +b(x]—x2) >c}
symmetric in (x],xz).) Show that such a test is admissible if and only if

a > b. The same result holds if 0 = {(e],ez): 8165 > 0, e$+e§ < 1}.





